Science.gov

Sample records for advanced controls program

  1. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  2. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  3. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  4. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1999-01-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  5. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-10-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  6. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-07-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  7. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  8. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  9. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  10. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  11. Advanced Emissions Control Development Program: Mercury Control

    SciTech Connect

    Evans, A.P.; Redinger, K.W.; Holmes, M.J.

    1997-07-01

    McDermott Technology, Inc. (a subsidiary of Babcock & Wilcox) is conducting the Advanced Emissions Control Development Project (AECDP) which is aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPS) from coal-fired electric utility plants. The need for such controls may arise as the US Environmental Protection Agency (EPA) proceeds with implementation of requirements set forth in the Clean Air Act Amendments (CAAA`s) of 1990. Promulgation of air toxics emissions regulations for electric utility plants could dramatically impact utilities burning coal, their industrial and residential customers, and the coal industry. AECDP project work will supply the information needed by utilities to respond to potential HAPs regulations in a timely, cost-effective, enviromnentally-sound manner which supports the continued use of the Nation`s abundant reserves of coal, such as those in the State of Ohio. The development work is being carried out using the 10 MW Clean Environment Development Facility wherein air toxics emissions control strategies can be developed under controlled conditions. The specific objectives of the project are to (1) measure and understand production and partitioning of air toxics species for a variety of coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems, (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. This project is supported by the Department of Energy, the Ohio Coal Development Office within the Ohio Department of Development and Babcock & Wilcox. A comprehensive assessment of HAP emissions from coal-fired electric utility boilers sponsored by the Department of Energy and the Electric Power Research Institute concluded that with the exception of selenium and mercury

  12. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  13. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  14. The Advanced Controls Program at Oak Ridge National Laboratory

    SciTech Connect

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor (ALWR) and high temperature gas-cooled reactor (HTGR) designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs.

  15. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  16. Overview of the US program of controls for advanced reactors

    SciTech Connect

    White, J.D.; Sackett, J.I.; Monson, R.; Lindsay, R.W.; Carroll, D.G.

    1989-01-01

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed.

  17. Advanced Environmental Monitoring and Control Program: Strategic Plan

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory

    1996-01-01

    Human missions in space, from short-duration shuttle missions lasting no more than several days to the medium-to-long-duration missions planned for the International Space Station, face a number of hazards that must be understood and mitigated for the mission to be carried out safely. Among these hazards are those posed by the internal environment of the spacecraft itself; through outgassing of toxic vapors from plastics and other items, failures or off-nominal operations of spacecraft environmental control systems, accidental exposure to hazardous compounds used in experiments: all present potential hazards that while small, may accumulate and pose a danger to crew health. The first step toward mitigating the dangers of these hazards is understanding the internal environment of the spacecraft and the compounds contained within it. Future spacecraft will have integrated networks of redundant sensors which will not only inform the crew of hazards, but will pinpoint the problem location and, through analysis by intelligent systems, recommend and even implement a course of action to stop the problem. This strategic plan details strategies to determine NASA's requirements for environmental monitoring and control systems for future spacecraft, and goals and objectives for a program to answer these needs.

  18. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  19. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  20. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  1. AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel

    SciTech Connect

    S.W. Allison; D.L. Beshears; W.W. Manges

    1999-06-30

    This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

  2. EPRI`s nuclear power plant instrumentation and control program and its applicability to advanced reactors

    SciTech Connect

    Naser, J.; Torok, R.; Wilkinson, D.

    1997-12-01

    I&C systems in nuclear power plants need to be upgraded over the lifetime of the plant in a reliable and cost-effective manner to replace obsolete equipment, to reduce O&M costs, to improve plant performance, and to maintain safety. This applies to operating plants now and will apply to advanced reactors in the future. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating more cost-effective power production. The increasing O&M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. This need for increased productivity applies to government facilities as well as commercial plants. Increasing competition will continue to be a major factor in the operation of both operating plants and advanced reactors. It will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its member nuclear utilities are working together on an industry wide I&C Program to address I&C issues and to develop cost-effective solutions. A majority of the I&C products and demonstrations being developed under this program will benefit advanced reactors in both the design and operational phases of their life cycle as well as it will benefit existing plants. 20 refs.

  3. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    SciTech Connect

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  4. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  5. Advanced General Dentistry Program.

    ERIC Educational Resources Information Center

    Barnes, Douglas M.; And Others

    1988-01-01

    A description of the University of Maryland at Baltimore's one-year postdoctoral program in advanced general dentistry focuses on its goals and objectives, curriculum design, patient population, faculty and staff, finances, and program evaluation measures. (MSE)

  6. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Program review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report summarizes the Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport Project, established as one element of the NASA/Boeing Energy Efficient Transport Technology Program. The performance assessment showed that incorporating ACT into an airplane designed to fly approximately 200 passengers approximately 2,000 nmi could yield block fuel savings from 6 to 10 percent at the design range. The principal risks associated with incorporating these active control functions into a commercial airplane are those involved with the ACT system implementation. The Test and Evaluation phase of the IAAC Project focused on the design, fabrication, and test of a system that implemented pitch axis fly-by-wire, pitch axis augmentation, and wing load alleviation. The system was built to be flight worthy, and was planned to be experimentally flown on the 757. The system was installed in the Boeing Digital Avionics Flight Controls Laboratory (DAFCL), where open loop hardware and software tests, and a brief examination of a direct drive valve (DDV) actuation concept were accomplished. The IAAC Project has shown that ACT can be beneficially incorporated into a commercial transport airplane. Based on the results achieved during the testing phase, there appears to be no fundamental reason(s) that would preclude the commercial application of ACT, assuming an appropriate development effort is included.

  7. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  8. The US Department of Energy`s advanced environmental control technology program

    SciTech Connect

    Feeley, T.J. III; Ruth, L.A.

    1997-07-01

    The US electric-utility industry faces a number of environmental challenges. Title IV of the 1990 Clean Air Act Amendments (CAA) is requiring significant reductions in sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from coal-fired electric-utility boilers. Under Tide III of the CAA, the Environmental Protection Agency (EPA) is evaluating the emission of hazardous air pollutants (HAPs) from electric-utility steam generating units and is conducting a separate assessment of the potential health and environmental effects of mercury. These studies will serve as the basis for determining whether or not there is a need to regulate HAP emissions from the utility sector. In addition, EPA has recently issued draft revised National Ambient Air Quality Standards (NAAQS) for both fine particulates and ozone. Point sources of SO{sub 2} and NO{sub x} including coal-fired boilers, will be reviewed as States move to comply with the revised NAAQS. Finally, recent debate concerning greenhouse gases has included proposals to reduce the level of carbon dioxide (CO) emitted from large, stationary sources. The continued production of low-cost, environmentally sound electricity will require a well-focused, cooperative research and development (R&D) effort between government and industry. To this end, the U.S. Department of Energy`s Federal Energy Technology Center (FETC) is carrying out an R&D program aimed at the development of environmental control technology suitable for incorporation into existing plants and/or integrated into advanced power systems. The program encompasses a wide-range of R&D projects, from laboratory investigations to pilot-scale testing and evaluation. A summary of FETC`s environmental technology R&D activities in the areas of SO{sub 2}, NO{sub x}, and fine particulates, HAPs (air toxics), and CO{sub 2} is provided.

  9. The Teacher Advancement Program.

    ERIC Educational Resources Information Center

    Schiff, Tamara W.

    2002-01-01

    This publication contains two essays discussing the Teacher Advancement Program (TAP) and a criticism of merit pay for teachers. Today's schools are larger, often overcrowded, and frequently staffed by temporary or inexperienced teachers. TAP was created in response to the need for teacher-quality reform. It addresses challenges of teacher quality…

  10. The Advanced Throwers Ten Exercise Program: a new exercise series for enhanced dynamic shoulder control in the overhead throwing athlete.

    PubMed

    Wilk, Kevin E; Yenchak, A J; Arrigo, Christopher A; Andrews, James R

    2011-11-01

    The overhead throwing motion is a high-velocity, extremely stressful athletic movement. Its repetitive nature places tremendous demands on the entire body, frequently resulting in injury to the throwing shoulder. Such injuries, whether managed nonoperatively or surgically, require a multiphased approach beginning with exercises to restore muscular strength and proprioception, and advancing to more demanding exercises to improve power, endurance, and dynamic control. This article presents a new and innovative approach to the rehabilitation of the overhead throwing athlete, The Advanced Throwers Ten Exercise Program. This expanded program incorporates throwing motion-specific exercises and movement patterns performed in a discrete series, utilizing principles of coactivation, high-level neuromuscular control, dynamic stabilization, muscular facilitation, strength, endurance, and coordination, which all serve to restore muscle balance and symmetry in the overhead throwing athlete. This program is a continuation of the Throwers Ten Exercise Program, which has been utilized with excellent results in clinical practice and in athletic performance training. This unique combination of advanced exercise techniques bridges the gap between rehabilitation and training, facilitating a kinetic linking of the upper and lower extremities and providing a higher level of humeral head control necessary for the overhead throwing athlete's symptom-free return to sports.

  11. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  12. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  13. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2014

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  14. Advanced solar dynamic technology program

    NASA Technical Reports Server (NTRS)

    Calogeras, James

    1990-01-01

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  15. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  16. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  17. Criteria for Evaluating Advancement Programs.

    ERIC Educational Resources Information Center

    Heemann, Warren, Ed.

    Criteria for evaluating college and university advancement programs are presented, based on the efforts of professional area trustees and advisory committees of the Council for Advancement and Support of Education (CASE). The criteria can be useful in three ways: as the basis of internal audits of advancement programs or program components; as the…

  18. Advanced Rotorcraft Transmission Program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The U.S. Army/NASA Advanced Rotorcraft Transmission (ART) program is charged with developing and demonstrating a light, quiet, and durable drivetrain for next-generation rotorcraft in two classes: a 10,000-20,000 Future Attack Air Vehicle capable of both tactical ground support and air-to-air missions, and a 60,000-80,000 lb Advanced Cargo Aircraft, for heavy-lift field-support operations. Specific ART objectives encompass a 25-percent reduction in drivetrain weight, a 10-dB noise level reduction at the transmission source, and the achievement of a 5000-hr MTBF. Four candidate drivetrain systems have been carried to a conceptual design stage, together with projections of their mission performance and life-cycle costs.

  19. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  20. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  1. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of

  2. Advances in cancer control

    SciTech Connect

    Anderson, P.N. ); Engstrom, P.F. ); Mortenson, L.E. )

    1989-01-01

    This book contains the proceedings of the sixth annual meeting on Advances in Cancer Control. Included are the following articles: Barriers and facilitators to compliance with routine mammographic screening, Preliminary report of an intervention to improve mammography skills of radiologists.

  3. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  4. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  5. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    SciTech Connect

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  6. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  7. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... gas emission standards on July 8, 2009 (74 FR 32744). Subsequently, CARB adopted a series of... those model years. On June 14, 2011 (76 FR 34693), EPA confirmed that these series of amendments were...-the-scope decisions for CARB's ZEV program in 2006 (71 FR 78190, December 28, 2006) and 2011 (76...

  8. Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program

    SciTech Connect

    Crowley, N.L.

    1997-11-01

    This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components and industry standards.

  9. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  10. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  11. Advanced emissions control development program. Quarterly technical progress report {number_sign}4, July 1--September 30, 1995

    SciTech Connect

    Farthing, G.A.

    1995-12-31

    Babcock and Wilcox (B and W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the US Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B and W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  12. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  13. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  14. NASA advanced design program. Design and analysis of a radio-controlled flying wing aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The main challenge of this project was to design an aircraft that will achieve stability while flying without a horizontal tail. The project focused on both the design, analysis and construction of a remotely piloted, elliptical shaped flying wing. The design team was composed of four sub-groups each of which dealt with the different aspects of the design, namely aerodynamics, stability and control, propulsion, and structures. Each member of the team initially researched the background information pertaining to specific facets of the project. Since previous work on this topic was limited, most of the focus of the project was directed towards developing an understanding of the natural instability of the aircraft. Once the design team entered the conceptual stage of the project, a series of compromises had to be made to satisfy the unique requirements of each sub-group. As a result of the numerous calculations and iterations necessary, computers were utilized extensively. In order to visualize the design and layout of the wing, engines and control surfaces, a solid modeling package was used to evaluate optimum design placements. When the design was finalized, construction began with the help of all the members of the project team. The nature of the carbon composite construction process demanded long hours of manual labor. The assembly of the engine systems also required precision hand work. The final product of this project is the Elang, a one-of-a-kind remotely piloted aircraft of composite construction powered by two ducted fan engines.

  15. Advanced release technologies program

    NASA Technical Reports Server (NTRS)

    Purdy, Bill

    1994-01-01

    The objective of the ARTS program was to develop lighter and less expensive spacecraft ordnance and release systems that answer to the requirements of a wide variety of spacecraft applications. These improvements were to be evaluated at the spacecraft system level, as it was determined that there were substantial system-level costs associated with the present ordnance and release subsystems. New, better devices were to be developed, then flight qualified, then integrated into a flight experiment in order to prove the reliability required for their subsequent use on high-reliability spacecraft. The secondary goal of the program was to quantify the system-level benefits of these new subsystems based upon the development program results. Three non-explosive release mechanisms and one laser-diode-based ordnance system were qualified under the program. The release devices being developed were required to release high preloads because it is easier to scale down a release mechanism than to scale it up. The laser initiator developed was required to be a direct replacement for NASA Standard Initiators, since these are the most common initiator in use presently. The program began in October, 1991, with completion of the flight experiment scheduled for February, 1994. This paper provides an overview of the ARTS program, discusses the benefits of using the ARTS components, introduces the new components, compares them with conventional systems and each other, and provides recommendations on how best to implement them.

  16. Delayed coker fractionator advanced control

    SciTech Connect

    Jaisinghani, R.; Minter, B. ); Tica, A.; Puglesi, A.; Ojeda, R. )

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  17. ADVANCED SORBENT DEVELOPMENT PROGRAM

    SciTech Connect

    Unknown

    1998-06-16

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

  18. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  19. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  20. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    SciTech Connect

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  1. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  2. Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Bossler, Robert B., Jr.

    1993-01-01

    Work performed by the McDonnell Douglas Helicopter Company and Lucas Western, Inc. within the U.S. Army/NASA Advanced Rotorcraft Transmission (ART) Program is summarized. The design of a 5000 horsepower transmission for a next generation advanced attack helicopter is described. Government goals for the program were to define technology and detail design the ART to meet, as a minimum, a weight reduction of 25 percent, an internal noise reduction of 10 dB plus a mean-time-between-removal (MTBR) of 5000 hours compared to a state-of-the-art baseline transmission. The split-torque transmission developed using face gears achieved a 40 percent weight reduction, a 9.6 dB noise reduction and a 5270 hour MTBR in meeting or exceeding the above goals. Aircraft mission performance and cost improvements resulting from installation of the ART would include a 17 to 22 percent improvement in loss-exchange ratio during combat, a 22 percent improvement in mean-time-between-failure, a transmission acquisition cost savings of 23 percent of $165K, per unit, and an average transmission direct operating cost savings of 33 percent, or $24K per flight hour. Face gear tests performed successfully at NASA Lewis are summarized. Also, program results of advanced material tooth scoring tests, single tooth bending tests, Charpy impact energy tests, compact tension fracture toughness tests and tensile strength tests are summarized.

  3. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  4. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  5. Programmed electronic advance for engines

    SciTech Connect

    Dogadko, P.

    1987-03-03

    An ignition advance control is described for an internal combustion engine including a crankshaft, a throttle control, and at least one cylinder, the ignition advance control comprising a spark ignition circuit associated with the cylinder and including trigger means operative to cause an ignition spark, means for generating a control pulse associated with the cylinder, latch means for enabling the trigger means in response to generation of the control pulse, means for generating a constant plurality of sequentially occurring electrical reference pulses during each revolution of the crankshaft, means for counting the reference pulses developed during each revolution of the crankshaft, means for firing the enabled trigger means in response to the counting means counting a predetermined number of the reference pulses to cause the ignition spark at a predetermined ignition point in each revolution of the crankshaft, means for sensing the position of the throttle control, and means responsive to the throttle sensing means for varying the predetermined number of reference pulses solely in accordance with the position of the throttle control to vary the predetermined ignition point as appropriate for the position of the throttle control.

  6. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  7. IPIRG programs - advances in pipe fracture technology

    SciTech Connect

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  8. Advanced emissions control development program. Quarterly technical progress report {number_sign}8, July 1--September 30, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in Babcock and Wilcox`s state-of-the-art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. The specific objectives of the project are to: measure and understand production and partitioning of air toxics species in coal-fired power plant systems; optimize the air toxics removal performance of conventional flue gas cleanup systems; quantify the impacts of coal cleaning on air toxics emissions; identify and/or develop advanced air toxics emissions control concepts; develop and validate air toxics emissions measurement and monitoring techniques; and establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  9. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  10. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  11. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  12. Developing a career advancement program.

    PubMed

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  13. Developing a career advancement program.

    PubMed

    Pinette, Shirley L

    2003-01-01

    Have you ever asked yourself, "What will I be doing five or ten years from now?" "Will I be doing the same thing I'm doing right now?" How would you feel if the answer were "yes"? I often wonder if any of my employees think the same thing. If they do, and the answer is "yes," just how does that make them feel? A day's work for managers can run the gamut--from billing and coding, to patient issues, to staff performance reviews, to CQI, to JCAHO-just to name a few. We're NEVER bored. Can we say the same of our employees, or do they do the same thing day in and day out? If so, it's no wonder that attitudes may become negative and motivation and productivity may decline. What are we as healthcare managers and administrators doing to value and continually train our employees so that staff morale, productivity and patient satisfaction remain high? What are we doing to keep those highly motivated employees motivated and challenged so that they don't get bored and want to move across town to our neighboring hospital or healthcare center? What are we doing to stop our employees from developing the "same job, different day" attitude? A Career Ladder program holds many benefits and opportunities for the motivated employee who seeks and needs additional challenges on the job. It affords them opportunities to learn new skills, demonstrate initiative, accept additional responsibilities and possibly advance into new positions. It also affords them opportunities to grow, to be challenged and to feel like an important and valued member of the radiology team and radiology department. For the manager, a Career Ladder program affords opportunities to retain valuable employees, attract new high-quality employees and maintain a workforce of well-trained highly motivated employees, which in turn will provide high quality products and services to our customers. A Career Ladder program is a "win-win" situation for everyone. For the last twelve months, I have been working with other

  14. Advances in infection control

    PubMed Central

    Marra, Alexandre Rodrigues

    2016-01-01

    ABSTRACT Several initiatives took place in recent years in relation to nosocomial infection control in order to increase patient safety. Some of these initiatives will be commented in this brief review. PMID:27074240

  15. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  16. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  17. Demonstration of advanced combustion NO{sub X} control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect

    2001-01-01

    The project represents a landmark assessment of the potential of low-NO{sub x} burners, advanced overtire air, and neural-network control systems to reduce NO{sub x} emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO{sub x} emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10{sup 6} Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over $5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO{sub x} burners (LNB), and LNB/AOFA on wall-fired boiler NO{sub x} emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO{sub x} Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to

  18. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  19. Readings in program control

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor); Lawbaugh, William M. (Editor); Hoffman, Edward J. (Editor)

    1994-01-01

    Under the heading of Program Control, a number of related topics are discussed: cost estimating methods; planning and scheduling; cost overruns in the defense industry; the history of estimating; the advantages of cost plus award fee contracts; and how program control techniques led to the success of a NASA development project.

  20. The advanced thermionics initiative. program update

    SciTech Connect

    Lamp, T.R.; Donovan, B.D. )

    1993-01-20

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs.

  1. The advanced thermionics initiative...program update

    NASA Astrophysics Data System (ADS)

    Lamp, Thomas R.; Donovan, Brian D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs.

  2. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  3. AISI/DOE Advanced Process Control Program Vol. 3 of 6: Improved Liquid Steel Feeding for Slab Casters

    SciTech Connect

    Brent Isaacson; Mike Slepian; Thomas Richter

    1999-06-30

    This report describes the development, construction and testing of the Electromagnetic Valve System (EVS), conducted as a project entitled ''Improved Liquid Steel Feeding System for Slab Casters''. This program ran from November 1992 to January 1995. Many of the technical issues in bringing the EVS to the steel industry were identified and resolved during the course of the program. During this time, significant hardware improvements in Westinghouse's electromagnetic valve were made to easily integrate it with existing continuous casting processes,. An improved refractory nozzle was developed and tested which had superior thermal shock and anti-cracking performance. In addition, several trials were conducted with molten steel to verify the proof-of-principle of the electromagnetic valve and its auxiliary equipment. However, improvements in other conventional pouring technologies have greatly diminished the potential value of this project to the steel industry. A such, the program w as canceled by the American Iron and Steel Institute after the conclusion of Phase I

  4. The MSFC Program Control Development Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.

  5. STOVL Control Integration Program

    NASA Technical Reports Server (NTRS)

    Weiss, C.; Mcdowell, P.; Watts, S.

    1994-01-01

    An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.

  6. Advanced theoretical and experimental studies in automatic control and information systems. [including mathematical programming and game theory

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Polak, E.; Zadeh, L. A.

    1974-01-01

    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.

  7. Advanced Thermal Control Flight Experiment.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  8. Advanced Industrial Materials (AIM) fellowship program

    SciTech Connect

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2002-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  11. AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

    SciTech Connect

    Sarah Allendorf; David Ottesen; Donald Hardesty

    2002-01-31

    The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events

  12. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  13. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}5 for the period October 1 to December 31, 1995

    SciTech Connect

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  14. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}6 for the period: January 1 to March 31, 1996

    SciTech Connect

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self- consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  15. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  16. Advanced main combustion chamber program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form and include the following: investment of low cost castings; usage of SSME program; usage of MSFC personnel for design effort; and usage of concurrent engineering techniques.

  17. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current

  18. Optimal control computer programs

    NASA Technical Reports Server (NTRS)

    Kuo, F.

    1992-01-01

    The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.

  19. Algorithmic advances in stochastic programming

    SciTech Connect

    Morton, D.P.

    1993-07-01

    Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.

  20. Advanced composite airframe program: Today's technology

    NASA Technical Reports Server (NTRS)

    Good, Danny E.; Mazza, L. Thomas

    1988-01-01

    The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

  1. Laserjet Control Program

    1992-07-02

    LC is a single program designed to serve as a Laser Jet printer controller. Options include specifying paper size, print orientation, number of lines per inch, top and bottom margins, end-of-line wrap, symbol set, typeface, style (upright or italic), stroke weight, proportional or fixed spaced font, and point size (height of character whose size can be scaled.

  2. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. DOD's advanced thermionics program an overview

    SciTech Connect

    Drake, T.R.

    1998-07-01

    The Defense Special Weapons Agency (DSWA) manages a congressionally mandated program in advanced thermionics research. Guided by congressional language to advance the state-of-the-art in the US and support the Integrated Solar Upper Stage (ISUS) program, DSWA efforts concentrate on four areas: an electrically testable design of a high-performance, in-core thermionic fuel element (TFE), the ISUS program, a microminiature thermionic converter and several modeling efforts. The DSWA domestic program is augmented by several small contracts with Russian institutes, awarded under the former TOPAZ International Program that the Ballistic Missile Defense Organization transferred to DSWA. The design effort at General Atomics will result in an electrically testable, multi-cell TFE for in-core conversion, involving system design and advanced collector and emitter technologies. For the ISUS program, DSWA funded a portion of the engine ground demonstration, including development of the power management system and the planar diodes. Current efforts supporting ISUS include continued diode testing and developing an advanced planar diode. The MTC program seeks to design a mass producable, close-spaced thermionic converter using integrated circuit technologies. Modeling and analysis at DSWA involves development of the Reactor System Mass with Thermionics estimation model (RSMASS-T), developing a new thermionic theory, and reviewing applications for the MTC technology. The Russian deliverables include several reports and associated hardware that describe many of its state-of-the-art thermionic technologies and processes.

  4. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  5. Solar Concentrator Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Knasel, Don; Ehresman, Derik

    1989-01-01

    The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.

  6. Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  7. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.

  8. Advanced Aircraft Structures program: an overview

    NASA Astrophysics Data System (ADS)

    Becker, Juergen; Schroeder, H. W.; Dittrich, Kay W.; Bauer, E. J.; Zippold, H.

    1999-07-01

    Requirements of future military aircraft structures are constantly increasing with advancing technological progress. While performance is still the main focus, costs have become a major issue in military aircraft procurement.In order to efficiently support its technological base oriented on the future demands of the market Daimler Chrysler Aerospace/Military Aircraft Division has inaugurated the Advanced Aircraft Structures Program, a collaborative research effort together with the German Aerospace Center and Daimler Chrysler Research and Technology, the corporate research division of Daimler Benz. The two key technologies to be pursued within the framework of this program are cost- effective composite structures and smart materials. This paper will give an overview of the Advanced Aircraft Structures Program with particular emphasis on smart structures technology as applied to active vibration damping, vibration isolation of equipment and composite health monitoring.

  9. Advanced Rotorcraft Transmission (ART) Program summary

    NASA Astrophysics Data System (ADS)

    Krantz, T. L.; Kish, J. G.

    1992-07-01

    The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

  10. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  11. Advanced Rotorcraft Transmission (ART) program summary

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Kish, J. G.

    1992-01-01

    The Advanced Rotorcraft Transmission (ART) Program was initiated to advance the state of the art for rotorcraft transmissions. The goal of the ART Program was to develop and demonstrate the technologies needed to reduce transmission weight by 25 pct. and reduce noise by 10 dB while obtaining a 5000 hr 'mean time between failure'. The research done under the ART Program is summarized. A split path design was selected as best able to meet the program goals. Key part technologies needed for this design were identified, studied, and developed. Two of these technologies are discussed in detail: the load sharing of split path designs including the use of a compliant elastomeric torque splitter and the application of a high ratio, low pitch line velocity gear mesh. Development of an angular contact spherical roller bearing, transmission error analysis, and fretting fatigue testing are discussed. The technologies for a light weight, quiet, and reliable rotorcraft transmission were demonstrated.

  12. Cysticercosis Control: Bringing Advances to the Field

    PubMed Central

    O’Neal, SE; Winthrop, KL; Gonzalez, AE

    2011-01-01

    Progress towards Taenia solium control is evident in the development of new technologies and in increasing regional coordination, yet disease eradication remains unlikely in the near future. In the meantime, translation of research advances into functioning control programs is necessary to address the ongoing disease burden in endemic areas. Multiple screening assays, effective treatments for both human and porcine infection, and vaccines blocking transmission to pigs are currently available. Strategies based on identification and treatment of T. solium adult tapeworms, as well as interventions that block cysticercosis acquisition in pigs have temporarily reduced transmission. Building on these successes with controlled community trials in varying endemic scenarios will drive progress towards regional elimination. PMID:21731303

  13. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP Project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  14. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  15. Advanced CNC Programming (EZ-CAM). 439-366.

    ERIC Educational Resources Information Center

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  16. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading. No new memberships, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, nine subcontractor reports were received (5 final reports and 4 semi-annual reports). The report technology distribution is as follows: 3--aero-heat transfer, 2--combustion and 4--materials. AGTSR continues to project that it will under spend DOE obligated funds by approximately $329K.

  18. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  19. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  20. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  1. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity...

  2. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  3. 7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the...

  4. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  5. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  6. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  7. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  8. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  9. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  10. Student Advancement Programs: Shaping Tomorrow's Alumni Leaders Today.

    ERIC Educational Resources Information Center

    Todd, Barbara Tipsord, Ed.

    This volume discusses the ways to get college students involved in helping advance their college both before and after graduation. The book's five sections contain papers on student advancement programs, their focus and structure, advising student advancement programs, programs and events, and preparing for the future. Paper titles are: (1)…

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  12. Advanced composites wing study program, volume 2

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.

  13. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  14. NASA/USRA University advanced design program

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.; Prussing, John

    1989-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA University Advanced Design Program for the 1988 to 1989 academic year is reviewed. The University's design project was the Logistics Resupply and Emergency Crew Return System for Space Station Freedom. Sixty-one students divided into eight groups, participated in the spring 1989 semester. A presentation prepared by three students and a graduate teaching assistant for the program's summer conference summarized the project results. Teamed with the NASA Marshall Space Flight Center (MSFC), the University received support in the form of remote telecon lectures, reference material, and previously acquired applications software. In addition, a graduate teaching assistant was awarded a summer 1989 internship at MSFC.

  15. Advanced optics in an interdisciplinary graduate program

    NASA Astrophysics Data System (ADS)

    Nic Chormaic, S.

    2014-07-01

    The Okinawa Institute of Science and Technology Graduate University, established in November 2011, provides a 5- year interdisciplinary PhD program, through English, within Japan. International and Japanese students entering the program undertake coursework and laboratory rotations across a range of topics, including neuroscience, molecular science, physics, chemistry, marine science and mathematics, regardless of previous educational background. To facilitate interdisciplinarity, the university has no departments, ensuring seamless interactions between researchers from all sectors. As part of the PhD program a course in Advanced Optics has been developed to provide PhD students with the practical and theoretical skills to enable them to use optics tools in any research environment. The theoretical aspect of the course introduces students to procedures for complex beam generation (e.g. Laguerre-Gaussian), optical trapping, beam analysis and photon optics, and is supported through a practical program covering introductory interference/diffraction experiments through to more applied fiber optics. It is hoped that, through early exposure to optics handling and measurement techniques, students will be able to develop and utilize optics tools regardless of research field. In addition to the formal course in Advanced Optics, a selection of students also undertakes 13 week laboratory rotations in the Light-Matter Interactions research laboratory, where they work side-by-side with physicists in developing optics tools for laser cooling, photonics or bio-applications. While currently in the first year, conclusive results about the success of such an interdisciplinary PhD training are speculative. However, initial observations indicate a rich cross-fertilization of ideas stemming from the diverse backgrounds of all participants.

  16. Perspective on BVDV control programs.

    PubMed

    Givens, M Daniel; Newcomer, Benjamin W

    2015-06-01

    Programs for control and eradication of bovine viral diarrhea virus (BVDV) are often considered prudent when the expense of a control program within a specified time frame effectively prevents loss due to disease and the expense of control does not exceed the costs associated with infection. In some geographic areas, concerns about animal welfare or desires to reduce antibiotic usage may motivate BVDV control even when control programs are associated with a lack of financial return on investment. In other geographic areas, concerns about financial return on investment may be the key motivating factor in considering implementation of BVDV control programs. Past experiences indicate that systematic, well-coordinated control programs have a clear potential for success, while voluntary control programs in cultures of distributed decision-making often result in notable initial progress that ultimately ends in dissolution of efforts. Segmentation of the cattle industry into cow-calf producers, stocker/backgrounders, and feedlot operators amplifies the distribution of decision-making regarding control programs and may result in control measures for one industry segment that are associated with significant costs and limited rewards. Though the host range of BVDV extends well beyond cattle, multiple eradication programs that focus only on testing and removal of persistently infected (PI) cattle have proven to be effective in various countries. While some individuals consider education of producers to be sufficient to stimulate eradication of BVDV, research surrounding the adoption of innovative health care procedures suggests that the process of adopting BVDV control programs has a social element. Collegial interactions and discussions may be crucial in facilitating the systematic implementation necessary to optimize the long-term success of control programs. Compulsory control programs may be considered efficient and effective in some regions; however, in a nation where

  17. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}7 for the period: April 1 to June 30, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  18. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  19. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  20. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  1. AFWAL space control technology program

    NASA Technical Reports Server (NTRS)

    Hoehne, V. O.

    1985-01-01

    An overview of space oriented control technology programs which are applicable to flexible large space structures is presented. The spacecraft control activity is interdisciplinary with activities in structures, structural dynamics and control brought together. The large flexible structures to be controlled have many physical factors that influence the final controllability of the vehicle. Factors are studied such as rigidity of both structural elements and joints, damping inherent in both material as well as discrete dampers located throughout the structure, and the bandwidth of both sensors and actuators used to sense motion and control it. Descriptions of programs both in-house and contracted are given.

  2. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Service Rural Utilities Service 7 CFR Part 4288 RIN 0570-AA75 Advanced Biofuel Payment Program; Correction... Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. This... contracts with advanced biofuel producers to pay such producers for the production of eligible...

  3. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  4. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  5. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Kish, Jules G.

    1993-03-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  6. National Advanced Drilling and Excavation Technologies Program

    SciTech Connect

    1993-06-15

    The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

  7. Bell Helicopter Advanced Rotocraft Transmission (ART) program

    NASA Astrophysics Data System (ADS)

    Henry, Zachary S.

    1995-06-01

    Future rotorcraft transmissions require key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight to power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for the future rotorcraft transmission when compared with a current state-of-the-art transmission (SOAT) are: (1) a 25 percent weight reduction; (2) a 10 dB reduction in the transmitted noise level; and (3) a system reliability of 5000 hours mean-time-between-removal (MTBR) for the transmission. This report summarizes the work conducted by Bell Helicopter Textron, Inc. to achieve these goals under the Advanced Rotorcraft Transmission (ART) program from 1988 to 1995. The reference aircraft selected by BHTI for the ART program was the Tactical Tiltrotor which is a 17,000 lb gross weight aircraft. A tradeoff study was conducted comparing the ART with a Selected SOAT. The results showed the ART to be 29 percent lighter and up to 13 dB quieter with a calculated MTBR in excess of 5000 hours. The results of the following high risk component and material tests are also presented: (1) sequential meshing high contact ratio planetary with cantilevered support posts; (2) thin dense chrome plated M50 NiL double row spherical roller planetary bearings; (3) reduced kinematic error and increased bending strength spiral bevel gears; (4) high temperature WE43 magnesium housing evaluation and coupon corrosion tests; (5) flexure fatigue tests of precision forged coupons simulating precision forged gear teeth; and (6) flexure fatigue tests of plasma carburized coupons simulating plasma carburized gear teeth.

  8. Bell Helicopter Advanced Rotocraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Henry, Zachary S.

    1995-01-01

    Future rotorcraft transmissions require key emerging material and component technologies using advanced and innovative design practices in order to meet the requirements for a reduced weight to power ratio, a decreased noise level, and a substantially increased reliability. The specific goals for the future rotorcraft transmission when compared with a current state-of-the-art transmission (SOAT) are: (1) a 25 percent weight reduction; (2) a 10 dB reduction in the transmitted noise level; and (3) a system reliability of 5000 hours mean-time-between-removal (MTBR) for the transmission. This report summarizes the work conducted by Bell Helicopter Textron, Inc. to achieve these goals under the Advanced Rotorcraft Transmission (ART) program from 1988 to 1995. The reference aircraft selected by BHTI for the ART program was the Tactical Tiltrotor which is a 17,000 lb gross weight aircraft. A tradeoff study was conducted comparing the ART with a Selected SOAT. The results showed the ART to be 29 percent lighter and up to 13 dB quieter with a calculated MTBR in excess of 5000 hours. The results of the following high risk component and material tests are also presented: (1) sequential meshing high contact ratio planetary with cantilevered support posts; (2) thin dense chrome plated M50 NiL double row spherical roller planetary bearings; (3) reduced kinematic error and increased bending strength spiral bevel gears; (4) high temperature WE43 magnesium housing evaluation and coupon corrosion tests; (5) flexure fatigue tests of precision forged coupons simulating precision forged gear teeth; and (6) flexure fatigue tests of plasma carburized coupons simulating plasma carburized gear teeth.

  9. Calorimeter Control Program

    1998-11-03

    The Calorimeter Control Software provides PID (Proportional, Integral, and Derivative) Control for up to twelve Mound Calorimeters and five Calorimeter Waterbaths. The software accepts a Voltage input, compares it to a user defined setpoint, calculates a new voltage output designed to bring the input closer to the setpoint using a PID control algorithm, then sets the analog voltage output to the calculated value. The software is designed to interface with HP 3852A Data Acquisition Unitmore » via an HP-1B PC board. All field inputs are wired into Digital Input cards and field outputs are wired from Analog Output cards.« less

  10. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect

    Not Available

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  11. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  12. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  13. LABCON - Laboratory Job Control program

    NASA Technical Reports Server (NTRS)

    Reams, L. T.

    1969-01-01

    Computer program LABCON controls the budget system in a component test laboratory whose workload is made up from many individual budget allocations. A common denominator is applied to an incoming job, to which all effort is charged and accounted for.

  14. Advanced low emissions catalytic combustor program at General Electric

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The Advanced Low Emissions Catalytic Combustors Program (ALECC) is being undertaken to evaluate the feasibility of employing catalytic combustion technology in aircraft gas turbine engines as a means to control emission of oxides of nitrogen during subsonic stratospheric cruise operation. The ALECC Program is being conducted in three phases. The first phase, which was completed in November, 1978, consisted of a design study to identify catalytic combustor designs having the greatest potential to meet the emissions and performance goals specified. The primary emissions goal of this program was to obtain cruise NO emissions of less than 1g/kg (compared with levels of 15 to 20 g/x obtained with current designs)/ However, good overall performance and feasibility for engine development were heavily weighted in the evaluation of combustor designs.

  15. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  16. 76 FR 7935 - Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Federal Register on April 16, 2010 (75 FR 20085), with a 60-day comment period that ended June 15, 2010... producer'' provisions for determining whether an advanced biofuel producer of biogas or solid advanced biofuels is a ``larger producer'' or a ``smaller producer.'' For biogas and solid advanced biofuel,...

  17. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  18. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  19. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  20. Recent advances in active noise control

    NASA Astrophysics Data System (ADS)

    Guicking, D.

    Advances in the field of active noise control over the last few years are reviewed. Some commercially available products and their technical applications are described, with particular attention given to broadband duct noise silencers, broadband active headphones, waveform synthesis, and LMS controllers. Recent theoretical and experimental research activities are then reviewed. These activities are concerned with duct noise, structural sound, interior spaces, algorithms, echo cancellation, and miscellaneous applications.

  1. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  2. Privilege, Equity, and the Advanced Placement Program: Tug of War

    ERIC Educational Resources Information Center

    Schneider, Jack

    2009-01-01

    The Advanced Placement Program is growing at a striking rate in US high schools and at the same time being abandoned by high-status schools. This paper explores the history of the Advanced Placement Program, from its roots in the 1950s as a programme for challenging high-achieving students at high-status schools, through its equity-motivated…

  3. English 591, 592, and 593--Advance Program: Images of Man.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    For those students who qualify, the Advance Program offers an opportunity to follow a stimulating curriculum designed for the academically talented. The purposes of the course outlined in this guide for twelfth grade English are to bring the previous three years' studies in Advance Program English to a meaningful culmination; to provide a…

  4. 12 CFR 952.5 - Community Investment Cash Advance Programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Community Investment Cash Advance Programs. 952.5 Section 952.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK ASSETS AND OFF-BALANCE SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.5 Community Investment...

  5. 12 CFR 952.5 - Community Investment Cash Advance Programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Community Investment Cash Advance Programs. 952... OFF-BALANCE SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.5 Community Investment Cash... targeted community lending at the appropriate targeted income levels. (3) Each Bank may offer RDF...

  6. Advanced Technological Education Program: 1995 Awards and Activities.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Advanced Technological Education (ATE) program promotes exemplary improvement in advanced technological education at the national and regional level through support of curriculum development and program improvement at the undergraduate and secondary school levels, especially for technicians being educated for the high performance workplace of…

  7. Architectures & requirements for advanced weapon controllers.

    SciTech Connect

    McMurtrey, Brian J.; Klarer, Paul Richard; Bryan, Jon R.

    2004-02-01

    This report describes work done in FY2003 under Advanced and Exploratory Studies funding for Advanced Weapons Controllers. The contemporary requirements and envisioned missions for nuclear weapons are changing from the class of missions originally envisioned during development of the current stockpile. Technology available today in electronics, computing, and software provides capabilities not practical or even possible 20 years ago. This exploratory work looks at how Weapon Electrical Systems can be improved to accommodate new missions and new technologies while maintaining or improving existing standards in nuclear safety and reliability.

  8. Advanced ignition and propulsion technology program

    SciTech Connect

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  9. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  10. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  11. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  12. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  13. The DPC-2000 advanced control system for the Dynamitron accelerator

    NASA Astrophysics Data System (ADS)

    Kestler, Bernard A.; Lisanti, Thomas F.

    1993-07-01

    The DPC-2000 is an advanced control system utilizing the latest technology in computer control circuitry and components. Its overall design is modular and technologically advanced to keep up with customer and engineering demands. The full control system is presented as four units. They are the Remote I/O (Input / Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The central processing unit, the heart of the system, executes a high level language program that communicates to the different sub-assemblies through advanced serial and parallel communication lines. All operational parameters of the accelerator are monitored, controlled and corrected at close to 20 times per second. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not have to communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the machine. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. This allows the operator to set up the process parameters by selecting the product identification code from a menu presented on the display screen. All process parameters are printed to report at regular intervals during a process run for later analysis and record keeping.

  14. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  15. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  16. Public Television Program Content: 1974. Advance Edition.

    ERIC Educational Resources Information Center

    Katzman, Natan

    As part of a program of statistical reports on public broadcasting, a survey requested 147 public broadcasting stations to supply information about their operations during one week in 1974. Data were collected about instructional television services, "Sesame Street,""The Electric Company," general and news programing, any programs produced for a…

  17. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  18. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  19. A Distance Learning Program in Advanced General Dentistry.

    ERIC Educational Resources Information Center

    Smith, Timothy A.; Raybould, Ted P.; Hardison, J. David

    1998-01-01

    Describes a University of Kentucky program in advanced general dentistry offered by compressed video and computer in remote areas of the state. Topics discussed include program development, the technology, instructional design principles used, student recruitment, program evaluation, student evaluation, faculty evaluation, laboratory exercises,…

  20. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  1. Control definition study for advanced vehicles

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.

    1983-01-01

    The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.

  2. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  3. Development of Advanced Casing Treatments for Flow Control

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Tsung, Fu-Lin

    2001-01-01

    Under the Base R&T and Ultra Efficient Engine Technology programs, the NASA-Goddard Space Flight Center Compressor Branch is investigating flow control strategies required to increase the loading and efficiency of core compressors while maintaining current levels of operability. Flow-control strategies being studied include advanced casing treatments, wall jet injection, and blade-tip injection for compressor stability enhancement, directed jets for surface boundary layer control, and vortex-generating devices. The use of computational fluid dynamics (CFD) simulations to assess the effectiveness of flow-control devices and to guide their design is a key element in this research. CFD simulations serve to screen potential flow-control concepts at a lower cost than executing physical experiments in turbomachinery facilities. CFD simulations also provide guidance in designing physical experiments for those flow control concepts, which appear promising.

  4. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  5. Software for the ACP (Advanced Computer Program) multiprocessor system

    SciTech Connect

    Biel, J.; Areti, H.; Atac, R.; Cook, A.; Fischler, M.; Gaines, I.; Kaliher, C.; Hance, R.; Husby, D.; Nash, T.

    1987-02-02

    Software has been developed for use with the Fermilab Advanced Computer Program (ACP) multiprocessor system. The software was designed to make a system of a hundred independent node processors as easy to use as a single, powerful CPU. Subroutines have been developed by which a user's host program can send data to and get results from the program running in each of his ACP node processors. Utility programs make it easy to compile and link host and node programs, to debug a node program on an ACP development system, and to submit a debugged program to an ACP production system.

  6. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A.; Parks, W.P.

    1993-03-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy`s (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE`s Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research & Development (R&D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R&D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  7. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A. ); Parks, W.P. )

    1993-01-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy's (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE's Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research Development (R D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  8. Economic convergence of environmental control and advanced technology

    SciTech Connect

    Bolli, R.E.; Haslbeck, J.L.

    1995-12-31

    Emerging advanced technologies for environmental control have many advantages over conventional, single pollutant removal processes. Features include high efficiencies, multiple pollutant control and zero waste streams. In the past, the economics for state-of-the-art emission control processes could not compete with proven, low-efficiency scrubbers that create throw away by-products. With the implementation of the Clean Air Act Amendments (CAAA), the entire economic environment has changed. If a single process can provide a facility`s compliance requirements for Title I, Title III and Title IV of the CAAA, its net costs can be lower than conventional technology and actually provide economic incentives for overcontrol. The emission allowance program is maturing and the annual revenues from overcontrol of SO{sub 2} are easily quantified. The economics of NO{sub x} control and offsets are currently being realized as EPA identified Title IV requirements, and facilities begin to realize the impact from Title I NO{sub x} control. Air toxic control from Title III could require yet a third control process for a facility to maintain emission compliance. The costs associated with single control strategies vs. multiple pollutant control processes will be discussed and compared. This paper will also present a specific application of the NOXSO Process and identify the potential advantages that can transform advanced technologies, like NOXSO, into the prudent solution for overall environmental compliance.

  9. 78 FR 65715 - Request for Comments on the Program Solicitation for the Advanced Technological Education Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Technological Education (ATE) program focuses on the education of technicians for the high technology fields... Education (ATE) Program is seeking information from the public and program stakeholders. Governmental policy... Request for Comments on the Program Solicitation for the Advanced Technological Education Program...

  10. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  11. Advanced Turbine System Program: Phase 2 cycle selection

    SciTech Connect

    Latcovich, J.A. Jr.

    1995-10-01

    The objectives of the Advanced Turbine System (ATS) Phase 2 Program were to define a commercially attractive ATS cycle and to develop the necessary technologies required to meet the ATS Program goals with this cycle. This program is part of an eight-year Department of Energy, Fossil Energy sponsored ATS Program to make a significant improvement in natural gas-fired power generation plant efficiency while providing an environmentally superior and cost-effective system.

  12. Simulation Of Advanced Train Control Systems

    NASA Astrophysics Data System (ADS)

    Craven, Paul; Oman, Paul

    This paper describes an Advanced Train Control System (ATCS) simulation environment created using the Network Simulator 2 (ns-2) discrete event network simulation system. The ATCS model is verified using ATCS monitoring software, laboratory results and a comparison with a mathematical model of ATCS communications. The simulation results are useful in understanding ATCS communication characteristics and identifying protocol strengths, weaknesses, vulnerabilities and mitigation techniques. By setting up a suite of ns-2 scripts, an engineer can simulate hundreds of possible scenarios in the space of a few seconds to investigate failure modes and consequences.

  13. Center for Advanced Energy Studies Program Plan

    SciTech Connect

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  14. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  16. Summary highlights of the Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1992-01-01

    The NASA/U.S. Army Advanced Rotorcraft Transmission (ART) program is charged with the development and demonstration of lightweight, durable drivetrains for next-generation rotorcraft: (1) a Future Air Attack Vehicle for tactical ground-support and air-to-air missions, and (2) an Advanced Cargo Aircraft for heavy-lift field-support operations. Both tilt-rotor and more conventional helicopter configurations have been studied by the ART program. ART performance goals are sought through the use of advanced component materials and lubrication systems, transmission and geartrain configurations, and airframe/drivetrain integrations.

  17. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  18. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Accomplishments in the DOE program include: continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbine diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; construction of four diode module completed; favorable results obtained from TAM combustor-gas turbine system analyses; and obtained a FERP work function of 2.3 eV with the W(100)-O-Zr-C electrode. JPL program accomplishments include: the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 20 eV (WHK).

  19. Advanced Technological Education Program Fact Sheet, May 2006

    ERIC Educational Resources Information Center

    Coryn, Chris L. S.; Ritchie, Liesel A.; Gullickson, Arlen R.

    2006-01-01

    The 2006 survey is the seventh annual survey of the National Science Foundation's (NSF) Advanced Technological Education (ATE) program conducted by The Evaluation Center. This survey collects information about the general characteristics of the ATE program's grantees and their work activities, accomplishments, and impacts. This fact sheet presents…

  20. Evaluation of ADVANCE: A Nontraditional Adult Diploma Program.

    ERIC Educational Resources Information Center

    Deegan, James

    An evaluation of Project ADVANCE (Adult Diploma Validating and Accrediting Necessary Competence and Experiences), an adult competency-based high school completion program, was conducted to determine program effectiveness, as viewed subjectively by recent graduates and present students. Personal interviews and/or questionnaires were given to 31 of…

  1. A Study of the Army's Advanced Civilian Schooling Programs.

    ERIC Educational Resources Information Center

    King, Joseph S.

    The purpose of the study is to review the official and unofficial U.S. Army policy toward graduate level education at civilian institutions. Particular attention is paid to: (1) the Army's advanced civilian schooling programs; (2) whether the Army receives a reasonable return on its financial and manpower expenditures on these programs; (3) what…

  2. Advanced space program studies, overall executive summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Multidisciplined advanced planning studies were conducted that involve space operations and the associated system elements, identification of potential low cost system techniques, vehicle design, cost synthesis techniques, DoD technology forecasting, and the development of near and far term space initiatives with emphasis on domestic and military use commonality. Specific areas studied include: (1) manned systems utilization; (2) STS users; (3) vehicle cost/performance; (4) space vehicle applications to future national needs; (5) STS spin stabilized upper stage; and (6) technology assessment and forecast.

  3. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  4. Advanced Lockouts: Reengineering Safety Programs for Efficiency.

    PubMed

    Michalscheck, Jimi

    2015-08-01

    Remember one golden rule when engineering out lockout/tagout: No additional risk can be introduced to the employees by using alternative procedures. If you can design alternative procedures and an overall alternative program to ensure equivalent protection for specific tasks...the sky is the limit to enhancing productivity. PMID:26387279

  5. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  6. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.

  7. Fuel savings potential of the NASA Advanced Turboprop Program

    SciTech Connect

    Whitlow, J.B. Jr.; Sievers, G.K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technology are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.

  8. Operating Systems Support for Advanced Programming Languages

    SciTech Connect

    Kubiatowicz, John

    2012-10-29

    As machines grow in scale and complexity, techniques to make the most effective use of network, memory, and processor resources will also become increasingly important. Programming models that rely on one-sided communication or global address space support have demonstrated advantages for productivity and performance, but they are most effective when used with proper OS support. We propose to develop OS and runtime support for programming models like UPC, GA, Charm++, and HPCS languages, which rely on one-sided communication. Rather than a full OS model, we envision applications bundled with only the necessary OS functions linked in to the application in user space -- relying on the hypervisor for protaction, resource sharing, and mangagement of Quality of Service guarantees. Our services will include support for remote reads and writes to memory, along with remote active message handlers, which are essential for support of fast noncontiguous memory operations, atomic operations, and event-driven applications.

  9. Advanced Turbine Systems annual program review

    SciTech Connect

    Koop, W.E.

    1995-10-01

    Integrated High Performance Turbine Engine Technology (IHPTET) is a joint Air Force, Navy, Army, NASA, ARPA, and industry program focused on developing turbine engine technologies, with the goal of doubling propulsion capability by around the turn-of-the-century, and thus providing smaller, lighter, more durable, more affordable turbine engines in the future. IHPTET`s technology development plan for increasing propulsion capability with respect to time is divided into three phases. This phased approach reduces the technological risk of taking one giant leap, and also reduces the {open_quotes}political{close_quotes} risk of not delivering a product for an extended period of time, in that the phasing allows continuous transfer of IHPTET technologies to our warfighters and continuous transfer to the commercial sector (dual-use). The IHPTET program addresses the three major classes of engines: turbofan/turbojet, turboshaft/turboprop, and expendables.

  10. Advanced, enhanced HEX program for PIXE

    NASA Astrophysics Data System (ADS)

    Lipworth, A. D.; Annegarn, H. J.; Kneen, M. A.

    1993-04-01

    The REX code and subsequent HEX code, originating at Florida State University, have been extensively used for PIXE spectra fitting. In 1989 we produced a renovated HEX package: WITS-HEX, enabling the original Fortran program to be more accessible to the PIXE community. We modernised the user interface by replacing the batch mode of operation with an integrated, menu-driven environment. We added the ability to edit support data files from within the program, provided detailed feedback during the fitting process and enhanced spectral plots using high resolution colour graphics. Our prototype also permitted the inclusion of many more peaks and absorption coefficients into the element library than the original HEX, permitting a more extensive element request list to be used during the fitting operation. We have now completed the second phase of the renewal of HEX. The man-machine interface has been upgraded to conform to the IBM SAA Common User Access (CUA) standard. This eliminated several of the sequential (modal) human-computer dialogues, replacing them with a single parallel system. The support utility used in WITS-HEX to convert the binary format of spectra captured using foreign data acquisition systems has been replaced by code to directly access data in ASCII format. The program is now equipped with context-sensitive help and a tutorial. The polynomial background model has been supplemented by a digital filter model, eliminating the associated instability from the fitting process and other spectral features modelled. The program has been validated by comparing results with those obtained from the former versions: WITS-HEX and HEX. A demonstration version is available on request for evaluation purposes.

  11. Advanced Rotorcraft Transmission (ART) program status

    NASA Technical Reports Server (NTRS)

    Bossler, Robert; Heath, Gregory

    1990-01-01

    This paper presents the current status of the ART program for the Future Attack Airvehicle. Consideration is given to the general configuration, the weights methodology, the reliability methodology, the noise evaluation, and materials analyses. It is shown that the methodologies developed for weights analysis and reliability will be useful in future design concept evaluations and that the noise prediction methodology under development can provide an indication of noise levels during the design process.

  12. Advanced power electronics and electric machinery program

    SciTech Connect

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  13. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  14. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  15. Variable stream control engine for advanced supersonic aircraft design update

    NASA Technical Reports Server (NTRS)

    Hunt, R. B.; Howlett, R. A.

    1980-01-01

    The updating of the engine concept for a second-generation supersonic transport, the variable stream control engine (VSCE), in terms of mechanical design definition and estimated performance is discussed. The design definition reflects technology advancements that improve system efficiency, durability and environments were established. The components unique to the VSCE concept, a high performance duct burner and a low noise coannular nozzle, and the high temperature components are identified as critical technologies. Technology advances for the high temperature components (main combustor and turbines) are also discussed. To address the requirements in this area, the technical approach for undertaking a high temperature validation program is defined. The multi-phased effort would include assorted rig and laboratory tests, then culminate with the demonstration of a flight-type main combustor and single-stage high pressure turbine at operating conditions envisioned for a VSCE.

  16. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  17. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  18. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  19. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  1. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  2. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  3. Environmental readiness document advanced isotope separation program

    SciTech Connect

    Not Available

    1981-08-01

    Advanced Isotope Separation (AIS) techniques hold the promise of significantly reducing the cost of enriching uranium for use in commercial nuclear power reactors. By reducing uranium enrichment costs, the tails assay of an enrichment plant can be lowered resulting in a decrease in the requirements for natural uranium feed material and a small decrease in the cost of the electricity produced by nuclear power plants. With this increased efficiency of uranium enrichment, there will be an overall reduction in the environmental impacts associated with uranium processing in the front end of the fuel cycle. AIS is characterized by much lower energy requirements compared to diffusion; comparable energy requirements to centrifuge; generally similar offsite environmental and socioeconomic impacts to centrifuge; and substantially fewer secondary impacts than diffusion because of reduced need for power. In the broadest definitions of environmental concerns, the socio-political and security aspects of proliferation and safeguards are the most significant in reducing AIS to practice. The potential exists for exposure of plant workers or offsite personnel to radioactive material or process chemical during normal or accident conditions. Some AIS processes make use of strong magnetic or electromagnetic fields and lasers, and methods are required to monitor the levels of these radiations. The AIS processes will routinely generate chemical and radioactive wastes. Additional wastes may be generated during plant decontamination and decommissioning. All of these wastes must be managed to meet Federal and state requirements. Finally, based on preliminary designs, some of the AIS processes may require significant, relative to US and world supply, quantities of a coating material.

  4. Technical review of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect

    Diakunchak, I.S.; Bannister, R.L.

    1995-10-01

    U.S. Department of Energy, Office of Fossil Energy Advanced Turbine Systems (ATS) Program is an ambitious program to develop the necessary technologies, which will result in a significant increase in natural gas-fired power generation plant efficiency, a decrease in cost of electricity and a decrease in harmful emissions. In Phase 1 of the ATS Program, preliminary investigations on different gas turbine cycles demonstrated that net plant efficiency greater than 60% could be achieved. The more promising cycles were evaluated in more detail in Phase 2 in order to select the one that would achieve all of the program goals. The closed-loop cooled combined cycle was selected because it offered the best solution with the least risk for exceeding the ATS Program goals of net plant efficiency, emissions, cost of electricity, reliability, availability, and maintainability (RAM), and commercialization in the year 2000. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam. turbine and a high efficiency generator. To enhance achievement of the challenging performance, emissions, and RAM goals, current technologies are being extended and new technologies developed. The attainment of ATS performance goal necessitates advancements in aerodynamics, sealing, cooling, coatings, and materials technologies. To reduce emissions to the required levels, demands a development effort in the following combustion technology areas: premixed ultra low NOx combustion, catalytic combustion, combustion instabilities, and optical diagnostics. To achieve the RAM targets, requires the utilization of proven design features, with quantified risk analysis, and advanced materials, coatings, and cooling technologies. Phase 2 research and development projects currently in progress, as well as those planned for Phase 3, will result in advances in gas turbine technology and greatly contribute to ATS Program success.

  5. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  6. Environmental impact statement Space Shuttle advanced solid rocket motor program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  7. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  8. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  9. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  10. NASA'S controls-structures interaction program

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.

    1989-01-01

    A NASA program is about to start which has the objective to advance Controls-Structures Interaction (CSI) technology to a point where it can be used in spacecraft design for future missions. Because of the close interrelationships between the structure, the control hardware, and the analysis/design, a highly interdisciplinary activity is defined in which structures, dynamics, controls, computer and electronics engineers work together on a daily basis and are co-located to a large extent. Methods will be developed which allow the controls and structures analysis and design functions to use the same mathematical models. Hardware tests and applications are emphasized and will require development of concepts and test methods to carry out. Because of a variety of mission application problem classes, several time-phased, focus ground test articles are planned. They will be located at the Langley Researdh Center (LaRC), the Marshall Space Flight Center (MSFC) and at the Jet Propulsion Laboratory (JPL). It is anticipated that the ground tests will be subject to gravity and other environmental effects to the extent that orbital flights tests will be needed for verification of some technology items. The need for orbital flight experiments will be quantified based on ground test results and mission needs. Candidate on-orbit experiments will be defined and preliminary design/definition and cost studies will be carried out for one or more high-priority experiments.

  11. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  12. The AFDM (advanced fluid dynamics model) program: Scope and significance

    SciTech Connect

    Bohl, W.R.; Parker, F.R. ); Wilhelm, D. . Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. )

    1990-01-01

    The origins and goals of the advanced fluid dynamics model (AFDM) program are described, and the models, algorithm, and coding used in the resulting AFDM computer program are summarized. A sample fuel-steel boiling pool calculation is presented and compared with a similar SIMMER-II calculation. A subjective assessment of the AFDM developments is given, and areas where future work is possible are detailed. 10 refs.

  13. INL Advanced Radiotherapy Research Program Annual Report 2004

    SciTech Connect

    James Venhuizen

    2005-06-01

    This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

  14. The Learning Edge: Advanced Technological Education Programs at Community Colleges.

    ERIC Educational Resources Information Center

    Mahoney, James R., Ed.; Barnett, Lynn, Ed.

    This book is one of several supported by a National Science Foundation (NSF) grant to the American Association of Community Colleges. It reviews the first seven years of the Advanced Technological Education (ATE) program by showcasing activities, partners, and achievements at 13 colleges. When Congress enacted legislation in 1993 establishing the…

  15. INEEL Advanced Radiotherapy Research Program Annual Report for 2002

    SciTech Connect

    J. R. Venhuizen

    2003-05-01

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  16. INEEL Advanced Radiotherapy Research Program Annual Report 2002

    SciTech Connect

    Venhuizen, J.R.

    2003-05-23

    This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

  17. Recent advances in unstructured grid generation program VGRID3D

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar

    1992-01-01

    A program for the generation of unstructured grids over complex configurations, VGRID3D, is described. The grid elements (triangles on the surfaces and tetrahedra in the field) are generated starting from the surface boundaries towards the interior of the computational domain using the Advancing Front Method.

  18. DOE/NREL Advanced Wind Turbine Development Program

    NASA Astrophysics Data System (ADS)

    Butterfield, C. P.; Smith, B.; Laxson, A.; Thresher, B.; Goldman, P.

    1993-05-01

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  19. 75 FR 75666 - Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...: On September 1, 2010, we published in the Federal Register (75 FR 53681) a notice inviting... in the September 1, 2010 notice (75 FR 53682-53683). We encourage eligible applicants to submit their... Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education...

  20. 77 FR 65395 - Air Cargo Advance Screening (ACAS) Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Air Cargo Advance Screening (ACAS) Pilot Program Correction In notice document 2012-26031 appearing on pages 65006-65009 in the issue of October 24, 2012 make...

  1. Residency and Fellowship Programs for RNs and Advanced Practice RNs.

    PubMed

    Cosme, Sheryl

    2015-09-01

    In this month's column, the Senior Accreditation Operations Manager of the American Nurses Credentialing Center (ANCC) discusses the value of nursing residency programs and current discussion in the profession, along with criteria offered by the ANCC to support this imperative for both RNs and advanced practice RNs including new graduates and those transitioning between clinical settings.

  2. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  3. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  4. Impact of Advance Control on Microturbine Generation System Performance

    NASA Astrophysics Data System (ADS)

    Kamil Mat Hussin, Ahmad; Zamri Che Wanik, Mohd

    2013-06-01

    Advance control employed in microturbine generation system (MTGS) is expected to improve its performance in responding to grid faults. This paper compares the effect of advance control of MTGS power conversion topology on the performance in riding through the grid faults. The analysis and investigation study through simulation shows there is no significant different on MTGS output performance even advance control is employed for its rectifier.

  5. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC I. Instructor Book.

    ERIC Educational Resources Information Center

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…

  6. Advanced Thermionic Technology Program: summary report. Volume 4. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 4 (Part E) is a highly technical discussion of the attempts made by the Program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  7. Boeing Helicopters Advanced Rotorcraft Transmission (ART) program status

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.

    1990-01-01

    A review is presented of a program structured to incorporate key emerging component and material technologies into an advanced rotorcraft transmission with the intent of making significant improvements in the state-of-the-art (SOA). The specific goals of this program include a reduction of transmission weight by 25 percent relative to SOA trends, a reduction of transmission noise by 10 dB relative to SOA, and improvment of transmission life and reliability while extending the mean time between removal to 5000 hours. Attention is given to comparisons and trade studies between transmission configurations, component development testing, improved bearing technology, and the aircraft selection process for the program.

  8. Guidance, Navigation, and Control Program

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Tamblyn, Scott; Jackson, William L.; Foster, Chris; Brazzel, Jack; Manning, Thomas R.; Clark, Fred; Spehar, Pete; Barrett, Jim D.; Milenkovic, Zoran

    2011-01-01

    The Rendezvous and Proximity Operations Program (RPOP) is real-time guidance, navigation, and control (GN&C) domain piloting-aid software that provides 3D Orbiter graphics and runs on the Space Shuttle's Criticality-3 Payload and General Support Computer (PGSC) in the crew cockpit. This software provides the crew with Situational Awareness during the rendezvous and proximity operations phases of flight. RPOP can be configured from flight to flight, accounting for mission-specific flight scenarios and target vehicles, via initialization load (I-load) data files. The software provides real-time, automated, closed-loop guidance recommendations and the capability to integrate the crew s manual backup techniques. The software can bring all relative navigation sensor data, including the Orbiter's GPC (general purpose computer) data, into one central application to provide comprehensive situational awareness of the rendezvous and proximity operations trajectory. RPOP also can separately maintain trajectory estimates (past, current, and predicted) based on certain data types and co-plot them, in order to show how the various navigation solutions compare. RPOP s best estimate of the relative trajectory is determined by a relative Kalman filter processing data provided by the sensor suite s most accurate sensor, the trajectory control sensor (TCS). Integrated with the Kalman filter is an algorithm that identifies the reflector that the TCS is tracking. Because RPOP runs on PC laptop computers, the development and certification lifecycles are more agile, flexible, and cheaper than those that govern the Orbiter FSW (flight software) that runs in the GPC. New releases of RPOP can be turned around on a 3- to 6-month template, from new Change Request (CR) to certification, depending on the complexity of the changes.

  9. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  10. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995

    SciTech Connect

    1996-01-01

    This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

  11. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  12. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  13. An overview of DARPA's advanced space technology program

    NASA Astrophysics Data System (ADS)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  14. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  15. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  16. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  17. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  18. Advanced Thermionic Technology Program: Summary Report. Volume 1

    NASA Astrophysics Data System (ADS)

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the current generation of hemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  19. Advanced Thermionic Technology Program: summary report. Volume 1. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familiarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  20. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  1. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  2. The Rocket Engine Advancement Program 2 (REAP2)

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Hawk, Clark W.

    2004-01-01

    The Rocket Engine Advancement Program (REAP) 2 program is being conducted by a university propulsion consortium consisting of the University of Alabama in Huntsville, Penn State University, Purdue University, Tuskegee University and Auburn University. It has been created to bring their combined skills to bear on liquid rocket combustion stability and thrust chamber cooling. The research team involves well established and known researchers in the propulsion community. The cure team provides the knowledge base, research skills, and commitment to achieve an immediate and continuing impact on present and future propulsion issues. through integrated research teams composed of analysts, diagnosticians, and experimentalists working together in an integrated multi-disciplinary program. This paper provides an overview of the program, its objectives and technical approaches. Research on combustion instability and thrust chamber cooling are being accomplished

  3. Materials and Area of Study for Advanced Placement Program in American History.

    ERIC Educational Resources Information Center

    Santos, Peter A.

    This paper describes and evaluates benefits of advanced placement programs and identifies materials which can help high school history classroom teachers develop effective advanced placement programs. An advanced placement program is defined as a program which requires a student to do extensive research and writing throughout the school year.…

  4. Advanced Rotorcraft Transmission (ART) program-Boeing helicopters status report

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1991-01-01

    The Advanced Rotorcraft Transmission (ART) program is structured to incorporate key emerging material and component technologies into an advanced rotorcraft transmission with the intention of making significant improvements in the state of the art (SOA). Specific objectives of ART are: (1) Reduce transmission weight by 25 pct.; (2) Reduce transmission noise by 10 dB; and (3) Improve transmission life and reliability, while extending Mean Time Between Removal to 5000 hr. Boeing selected a transmission sized for the Tactical Tilt Rotor (TTR) aircraft which meets the Future Air Attack Vehicle (FAVV) requirements. Component development testing will be conducted to evaluate the high risk concepts prior to finalizing the advanced transmission configuration. The results of tradeoff studies and development test which were completed are summarized.

  5. Collaborative Advanced Gas Turbine Program: Phase 1. Final report

    SciTech Connect

    Hollenbacher, R.; Kesser, K.; Beishon, D.

    1994-12-01

    The Collaborative Advanced Gas Turbine (CAGT) Program is an advanced gas turbine research and development program whose goal is to accelerate the commercial availability, to within the turn of the century, of high efficiency aeroderivative gas turbines for electric power generating applications. In the first project phase, research was conducted to prove or disprove the research hypothesis that advanced aeroderivative gas turbine systems can provide a promising technology alternative, offering high efficiency and good environmental performance characteristics in modular sizes, for utility applications. This $5 million, Phase 1 research effort reflects the collaborative efforts of a broad and international coalition of industries and organizations, both public and private, that have pooled their resources to assist in this research. Included in this coalition are: electric and gas utilities, the Electric Power Research Institute, the Gas Research Institute and the principal aircraft engine manufacturers. Additionally, the US Department of Energy (DOE) and the California Energy Commission have interacted with the CAGT on both technical and executive levels as observers and sources of funding. The three aircraft engine manufacturer-led research teams participating in this research include: Rolls-Royce, Inc., and Bechtel; the Turbo Power and Marine Division of United Technologies and Fluor Daniel; and General Electric Power Generation, Stewart and Stevenson, and Bechtel. Each team has investigated advanced electric power generating systems based on their high-thrust (60,000 to 100,000 pounds) aircraft engines. The ultimate goal of the CAGT program is that the community of stakeholders in the growing market for natural-gas-fueled, electric power generation can collectively provide the right combination of market-pull and technology-push to substantially accelerate the commercialization of advanced, high efficiency aeroderivative technologies.

  6. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  7. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K.; Hoffman, E.E.

    1995-12-31

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

  8. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  9. Proceedings of the DOE/Advanced Heat Exchangers Program Review

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Semiannual review meetings of the USDOE's Advanced Heat Exchanger Program with the objective of reviewing ongoing and recently completed project activities. Personnel from industrial contractors and National Laboratories present technical aspects of their projects. The projects deal with high temperature heat exchangers for waste heat recuperation and process heat exchange and other areas such as materials performance and heat transfer enhancement. Topics presented are high pressure heat exchangers, ceramic heat exchangers, enhanced tubes, and materials studies to include silicon carbide whiskers and alumina.

  10. The National Launch System Advanced Development Program: A brief overview

    NASA Technical Reports Server (NTRS)

    Battenburg, J. A.

    1993-01-01

    A broad-based Advanced Development Program is being conducted to modernize the technological base and support the systems design of the National Launch System. While the principal concentration of efforts has been in propulsion, significant work is being accomplished in all of the disciplinary areas associated with space launch. Tasks are selected that offer reduced costs, increased reliability, and enhanced operability with anticipated task completion times which are consistent with NLS development.

  11. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  12. Helicopter trimming and tracking control using direct neural dynamic programming.

    PubMed

    Enns, R; Si, Jennie

    2003-01-01

    This paper advances a neural-network-based approximate dynamic programming control mechanism that can be applied to complex control problems such as helicopter flight control design. Based on direct neural dynamic programming (DNDP), an approximate dynamic programming methodology, the control system is tailored to learn to maneuver a helicopter. The paper consists of a comprehensive treatise of this DNDP-based tracking control framework and extensive simulation studies for an Apache helicopter. A trim network is developed and seamlessly integrated into the neural dynamic programming (NDP) controller as part of a baseline structure for controlling complex nonlinear systems such as a helicopter. Design robustness is addressed by performing simulations under various disturbance conditions. All designs are tested using FLYRT, a sophisticated industrial scale nonlinear validated model of the Apache helicopter. This is probably the first time that an approximate dynamic programming methodology has been systematically applied to, and evaluated on, a complex, continuous state, multiple-input multiple-output nonlinear system with uncertainty. Though illustrated for helicopters, the DNDP control system framework should be applicable to general purpose tracking control.

  13. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  14. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    NASA Astrophysics Data System (ADS)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  15. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to

  16. Mercury Control With The Advanced Hybrid Paticulate Collector

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Jay Almlie

    2004-09-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task

  17. Fly-by-Light Advanced Systems Hardware (FLASH) program

    NASA Astrophysics Data System (ADS)

    Bedoya, Carlos A.

    1995-05-01

    hundreds of MHz are available. Applications of fiber optic buses would then result in the reduction of wires and connections because of reduction in the number of buses needed for information transfer due to the fact that a large number of different signals can be sent across one fiber by multiplexing each signal. The Advanced Research Projects Agency (ARPA) Technology Reinvestment Project (TRP) Fly-by-Light Advanced Systems Hardware (FLASH) program addresses the development of Fly-by-Light Technology in order to apply the benefits of fiber optics to military and commercial aircraft.

  18. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  19. 76 FR 9585 - Poison Control Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... HUMAN SERVICES Health Resources and Services Administration Poison Control Program AGENCY: Health... SUNY d.b.a. the Upstate New York Poison Control Center. HRSA will also transfer funds and duties from... Control Center. These transfers are necessary in order to maintain poison control services and...

  20. Open architecture controllers for advanced manufacturing

    SciTech Connect

    Gore, R.A.

    1994-03-01

    The application of intelligent control systems to the real world of machining and manufacturing will benefit form the presence of open architecture control systems on the machines or the processes. The ability to modify the control system as the process or product changes can be essential to the success of the application of neural net or fuzzy logic controllers. The effort at Los Alamos to obtain a commercially available open architecture machine tool controller is described.

  1. Users manual for flight control design programs

    NASA Technical Reports Server (NTRS)

    Nalbandian, J. Y.

    1975-01-01

    Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.

  2. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  3. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  4. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  5. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  6. Comparison of advanced distillation control methods. First annual report

    SciTech Connect

    Riggs, J.B.

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  7. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  8. Smart Engines Via Advanced Model Based Controls

    SciTech Connect

    Allain, Marc

    2000-08-20

    A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.

  9. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  10. 76 FR 14379 - Advanced Placement Incentive Program; Office of Elementary and Secondary Education; Overview...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... Advanced Placement Incentive Program; Office of Elementary and Secondary Education; Overview Information...: Promoting Science, Technology, Engineering, and Mathematics (STEM) Education and the competitive preference... Advanced Placement Programs is from section 1705(c) of the Elementary and Secondary Education Act of...

  11. An advanced intelligent control system framework

    NASA Technical Reports Server (NTRS)

    Nemeth, ED; Anderson, Ronald R.; Maram, Jon; Norman, Arnie; Merrill, Walt

    1992-01-01

    A reusable rocket-engine intelligent control system (RREICS) framework was developed to a define a control framework for rocket-engine systems that reduces the required engine maintenance, extends the useful operating life, and maximizes the probability of mission success. The RREICS framework defines a controller that handles a rocket engine cluster as a single system rather than as a collection of individual engines. This enables the controller to alter individual engine operations in response to engine performance or integrity degradations while maintaining the propulsion subsystem external parameters at the levels required for mission success. A simplified model of a three engine cluster and the associated propulsion subsystem controller is also described.

  12. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Astrophysics Data System (ADS)

    Williams, Willie E.

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  13. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  14. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  15. Temperature controlled material irradiation in the advanced test reactor

    SciTech Connect

    Furstenau, R.V.; Ingrahm, F.W.

    1995-12-31

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor`s principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor`s capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment `in-pile tube (IPT)` inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities.

  16. Advanced launch system trajectory optimization using suboptimal control

    NASA Technical Reports Server (NTRS)

    Shaver, Douglas A.; Hull, David G.

    1993-01-01

    The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.

  17. Advancements in HMD technology: the DARPA-sponsored SCENICC program

    NASA Astrophysics Data System (ADS)

    Sprague, Randall; Zhang, Arthur; Cookson, Scott; Hendricks, Lee; O'Brien, Tyrone; Ford, Joseph; Tremblay, Eric; Rutherford, Todd; Reinert, Doug; Johnson, Adam

    2013-05-01

    In this paper we report on the technical developments of the head worn display (HWD) for DARPA's SCENICC program. The goal of the SCENICC program is to provide the warfighter with vision capabilities exceeding normal human vision. This is being achieved with an advanced imaging system that is able to capture the surrounding scene with superior visual acuity, contrast sensitivity, and wavelength sensitivity. With this increased visual information density, intelligent image processing provides imagery to the wearer's eyes via an advanced HWD. The goal of this HWD is to provide digital visual information at the limits of human perception over a field of view near the human peripheral vision limits. This represents a tremendous amount of information requiring novel concepts in order to achieve such ambitious goals. One important concept is the use of imaging optics located directly on the eye, moving with the eye as it changes its gaze angle. A second concept is the use of demagnification optics to convert a large, low spatial resolution image into a smaller, high spatial resolution image. This is done in conjunction with image processing that is constantly modifying the image presented based on real-time pupil tracking. In addition to enabling a high performance optical system, integrating the imaging optical components into contact lenses eliminates much of the bulky imaging optics from the HWD itself creating a high performance wearable display in a standard protective eyewear form factor. The resulting quantum advance in HWD performance will enable HWDs to expand well beyond their current limited roles.

  18. Comparison of advanced distillation control methods. First annual report

    SciTech Connect

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C3) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and articial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  19. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  20. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  1. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  2. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  3. The HST Treasury ``Advanced Spectral Library'' (ASTRAL) Programs

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Ayres, Thomas R.

    2015-01-01

    The ``Advanced Spectral Library (ASTRAL)'' Project (PI = T. Ayres) consists of two Treasury Programs: the Cycle 18 ``Cool Stars'' (GO-12278) Program and the Cycle 21 ``Hot Stars'' (GO-13346) Program. The primary goal of these programs is to collect, for the use of the astronomical community over the coming decades, a definitive set of representative, high-resolution (R˜30,000-100,000), high signal/noise (S/N>100) spectra, with full UV coverage (˜1150 - 3100 Å) of prototypical stars across the HR diagram, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The Cycle 18 program obtained spectra of 8 F-M evolved late-type stars, while the Cycle 21 program is in the process of observing 21 early-type stars, which span a broad range of spectral types between early-O and early-A. All of these data will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu/ãyres/ASTRAL/. These data will enable investigations of a broad range of problems - stellar, interstellar, and beyond - for many years into the future. We describe here the details of the observing programs, including the program targets and the observing strategies utilized to optimize the quality of the spectra, and present some illustrative examples of the on-going scientific analyses, including a study of the outer atmospheres and winds of the two evolved M stars in the sample and a first look at a ``high definition'' UV spectrum of a magnetic chemically peculiar ``Ap'' star.

  4. Model-free adaptive control of advanced power plants

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  5. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  6. Controls-structures-electromagnetics interaction program

    NASA Technical Reports Server (NTRS)

    Grantham, William L.; Bailey, Marion C.; Belvin, Wendell K.; Williams, Jeffrey P.

    1987-01-01

    A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration.

  7. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  8. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  9. Redundant actuator development program. [for flight control

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Fain, D. M.; Svensson, C. I.

    1975-01-01

    Two concepts of redundant secondary actuator mechanization, applicable to future advanced flight control systems, were studied to quantitatively assess their design applicability to an AST. The two actuator concepts, a four-channel, force summed system and a three-channel, active/standby system have been developed and evaluated through analysis, analog computer simulation, and piloted motion simulation. The quantitative comparison of the two concepts indicates that the force summed concept better meet performance requirements, although the active/standby is superior in other respects. Both concepts are viable candidates for advanced control application dependent on the specific performance requirements.

  10. Advanced Topics in Wet-Weather Discharge Control

    EPA Science Inventory

    This report discusses four related but generally independent wet-weather flow (WWF) topic areas, namely: i) opportunities for advanced practices in WWF control technology, particularly as it applies to sewered systems; ii) tradeoffs between storage facilities (tanks) and enlarged...

  11. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  12. Advanced control of a flexible spherical wrist

    NASA Astrophysics Data System (ADS)

    Gorgenyi, Louis Alexander

    1993-07-01

    A flexible spherical wrist, susceptible to nonlinear torsional vibrations, was developed which utilizes controllers to provide position control and vibration rejection. The issue of robust performance and stability for this robot wrist is examined while adhearing to practical implementation limits. System identification techniques are used to obtain linear models of the dynamic equations of motion. These models contain physical information such as friction and cable drag, and several different parametric forms are presented. Asymptotic stability of the wrist under proportional derivative control is proven using a linearized set of dynamical equations. Experimental results show only stability rather than asymptotic stability due to friction and unmodeled dynamics. In addition, poor robustness of this control methodology is demonstrated when the orientation and payload are varied. One- and two-parameter Hardy space controllers are designed to address the robustness and implementation issues. Variations in wrist orientation and payload are modeled as multiplicative uncertainties. Simulation and experimental results are presented and compared to those of a tracking controller. The Hardy space controllers are shown to have superior robustness properties but poorer performance.

  13. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  14. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  15. Environmental Restoration Program Document Control Plan

    SciTech Connect

    Montgomery, L.M.

    1993-09-01

    This Environmental Restoration (ER) Program Document Control Plan has been developed to comply with the document control system requirements of the US Department of Energy, Richland Operations Office (RL), the Hanford Federal Facility and the ER Program. One of the five components, or summary subprojects, of the Environmental Restoration (ER) Program is program management and support, which includes both management systems development and information and data management. Efforts within the management systems development area include the creation of a document control plan. Westinghouse Hanford Company (WHC) has developed and established an overall document control system that governs the methods by which all WHC documents are generated, maintained, and disposed of. The ER Program performing organizations within WHC utilize the established WHC document control systems to the maximum extent possible. These systems are discussed in Chapters 3.0 and 4.0 of this plan. In addition, this plan describes the documents that require control within the ER Program and how they will be controlled.

  16. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  17. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  18. Advancing infection control in dental care settings

    PubMed Central

    Cleveland, Jennifer L.; Bonito, Arthur J.; Corley, Tammy J.; Foster, Misty; Barker, Laurie; Brown, G. Gordon; Lenfestey, Nancy; Lux, Linda

    2015-01-01

    Background and Overview The authors set out to identify factors associated with implementation by U.S. dentists of four practices first recommended in the Centers for Disease Control and Prevention’s Guidelines for Infection Control in Dental Health-Care Settings—2003. Methods In 2008, the authors surveyed a stratified random sample of 6,825 U.S. dentists. The response rate was 49 percent. The authors gathered data regarding dentists’ demographic and practice characteristics, attitudes toward infection control, sources of instruction regarding the guidelines and knowledge about the need to use sterile water for surgical procedures. Then they assessed the impact of those factors on the implementation of four recommendations: having an infection control coordinator, maintaining dental unit water quality, documenting percutaneous injuries and using safer medical devices, such as safer syringes and scalpels. The authors conducted bivariate analyses and proportional odds modeling. Results Responding dentists in 34 percent of practices had implemented none or one of the four recommendations, 40 percent had implemented two of the recommendations and 26 percent had implemented three or four of the recommendations. The likelihood of implementation was higher among dentists who acknowledged the importance of infection control, had practiced dentistry for less than 30 years, had received more continuing dental education credits in infection control, correctly identified more surgical procedures that require the use of sterile water, worked in larger practices and had at least three sources of instruction regarding the guidelines. Dentists with practices in the South Atlantic, Middle Atlantic or East South Central U.S. Census divisions were less likely to have complied. Conclusions Implementation of the four recommendations varied among U.S. dentists. Strategies targeted at raising awareness of the importance of infection control, increasing continuing education

  19. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  20. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  1. Proceedings of the Advanced Turbine Systems annual program review meeting

    SciTech Connect

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  2. [Advanced accelerator R and D program]. Final report

    SciTech Connect

    1997-12-31

    This proposal requests funding for a 3-year renewal of the DOE advanced accelerator R and D (AARD) program at Texas A and M University. The program to date has focused on the development of the gigatron, a compact high-efficiency microwave driver for future linear colliders. The author reports results and progress in that project, and plans to bring it to a milestone and conclusion by mid-1995. He proposes to initiate a second project, the development of a new technology for ultra-high field superconducting magnets for future hadron colliders. This project builds upon two magnet designs which he has introduced during the past year, which have the potential for a dramatic extension of the achievable field strength for both dipoles and quadrupoles.

  3. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  4. The DOE advanced gas reactor fuel development and qualification program

    NASA Astrophysics Data System (ADS)

    Petti, David; Maki, John; Hunn, John; Pappano, Pete; Barnes, Charles; Saurwein, John; Nagley, Scott; Kendall, Jim; Hobbins, Richard

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular high-temperature gas-cooled reactors (HTGRs) enable an efficient and cost-effective integration of the reactor system with non-electricity-generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The U.S. Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. An overview of the program and recent progress is presented.

  5. Control of Smart Building Using Advanced SCADA

    NASA Astrophysics Data System (ADS)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  6. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  7. School Bus Driver Instructional Program. Instructor's Guide--Advanced Unit.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC. National Highway Safety Bureau.

    Geared to behavioral objectives, the instruction is organized into programed units on emergency driving techniques, first aid, field trips, transporting exceptional students, detecting hazards, controlling the position of the bus, driving under special conditions, and preventive maintenance of the bus. Each unit is constructed around content…

  8. Human factors survey of advanced instrumentation and controls

    SciTech Connect

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  9. Advanced Platform Systems Technology study. Volume 4: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An overview study of the major technology definition tasks and subtasks along with their interfaces and interrelationships is presented. Although not specifically indicated in the diagram, iterations were required at many steps to finalize the results. The development of the integrated technology advancement plan was initiated by using the results of the previous two tasks, i.e., the trade studies and the preliminary cost and schedule estimates for the selected technologies. Descriptions for the development of each viable technology advancement was drawn from the trade studies. Additionally, a logic flow diagram depicting the steps in developing each technology element was developed along with descriptions for each of the major elements. Next, major elements of the logic flow diagrams were time phased, and that allowed the definition of a technology development schedule that was consistent with the space station program schedule when possible. Schedules show the major milestone including tests required as described in the logic flow diagrams.

  10. Modern advances in sustainable tick control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks are the vector of the many different organisms responsible for both animal and human diseases. Understanding the progress we have made and new directions in tick control is critical to the sustainability of human and animal health. The integration of vaccines, acaricides, and new acaricide ap...

  11. Advancing Scholarship, Team Building, and Collaboration in a Hybrid Doctoral Program in Educational Leadership

    ERIC Educational Resources Information Center

    Holmes, Barbara; Trimble, Meridee; Morrison-Danner, Dietrich

    2014-01-01

    Hybrid programs are changing the landscape of doctoral programs at American universities and colleges. The increased demand for hybrid doctoral programs, particularly for educational and career advancement, serves as an innovative way to increase scholarship, advance service, and promote leadership. Hybrid programs serve as excellent venues for…

  12. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  13. Advanced concepts in accelerator timing control

    SciTech Connect

    Frankel, R.; Salwen, C.

    1988-01-01

    The control system for the Booster accelerator presently under construction at BNL includes a timing section with serial high speed coded data distribution, computer based encoders for both real time and field driven clocks and a method of easily tracking the performance and reliability of these timing streams. We have developed a simple method for the generation of timing which operates to produce pulses which may be repeated as desired with minimal latency.

  14. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  15. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  16. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  17. 77 FR 38066 - Medicare Program; Announcement of a New Opportunity for Participation in the Advance Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ..., Medicaid, and Children's Health Insurance Program beneficiaries. One potential mechanism for achieving... partnerships through complementary efforts, including the Medicare Shared Savings Program and initiatives... Register (76 FR 68012), we published a notice entitled ``Medicare Program; Advance Payment Model''...

  18. Refurbishment program of HANARO control computer system

    SciTech Connect

    Kim, H. K.; Choe, Y. S.; Lee, M. W.; Doo, S. K.; Jung, H. S.

    2012-07-01

    HANARO, an open-tank-in-pool type research reactor with 30 MW thermal power, achieved its first criticality in 1995. The programmable controller system MLC (Multi Loop Controller) manufactured by MOORE has been used to control and regulate HANARO since 1995. We made a plan to replace the control computer because the system supplier no longer provided technical support and thus no spare parts were available. Aged and obsolete equipment and the shortage of spare parts supply could have caused great problems. The first consideration for a replacement of the control computer dates back to 2007. The supplier did not produce the components of MLC so that this system would no longer be guaranteed. We established the upgrade and refurbishment program in 2009 so as to keep HANARO up to date in terms of safety. We designed the new control computer system that would replace MLC. The new computer system is HCCS (HANARO Control Computer System). The refurbishing activity is in progress and will finish in 2013. The goal of the refurbishment program is a functional replacement of the reactor control system in consideration of suitable interfaces, compliance with no special outage for installation and commissioning, and no change of the well-proved operation philosophy. HCCS is a DCS (Discrete Control System) using PLC manufactured by RTP. To enhance the reliability, we adapt a triple processor system, double I/O system and hot swapping function. This paper describes the refurbishment program of the HANARO control system including the design requirements of HCCS. (authors)

  19. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  20. Cylinder Pressure-Based Spark Advance Control for SI Engines

    NASA Astrophysics Data System (ADS)

    Park, Seungbum; Yoon, Paljoo; Sunwoo, Myoungho

    The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a spark advance control strategy based upon cylinder pressure in spark ignition engines. It is well known that the location of peak pressure(LPP) reflects combustion phasing and can be used for controlling the spark advance. The well-known problems of the LPP-based spark advance control method are that many samples of data are required and there is loss of combustion phasing detection capability due to hook-back at late burn conditions. To solve these problems, a multi-layer feedforward neural network is employed. The LPP and hook-back are estimated, using the neural network, which needs only five output voltage samples from the pressure sensor. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 1° crank angle (CA) to 20° CA. A proposed control algorithm does not need a sensor calibration and pegging (bias calculation) procedure because the neural network estimates the LPP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advances. The experimental results have revealed a favorable agreement of optimal combustion phasing in each cylinder.

  1. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  2. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  3. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Astrophysics Data System (ADS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-06-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  4. Advanced parallel programming models research and development opportunities.

    SciTech Connect

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  5. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  6. Advancing nursing leadership: a model for program implementation and measurement.

    PubMed

    Omoike, Osei; Stratton, Karen M; Brooks, Beth A; Ohlson, Susan; Storfjell, Judy Lloyd

    2011-01-01

    Despite the abundant literature documenting the need for nurse management education and career development, only recently have professional standards been targeted for this group. Competency standards for nurse leaders repeatedly identify systems-level concepts including finance and budget, communication skills, strategic management, human resources management, change management, and computer technology skills. However, educational initiatives to meet these standards are still at the early stages and most nurse leaders continue to acquire knowledge and experience through "on-the-job" training. This article will illustrate the need for partnerships and collaboration between academia and hospitals to advance nursing leadership to the next century. In addition, a tool to measure the impact of a graduate certificate program in nursing administration on nurse leader competencies is presented. Overall, the certificate program has been successful in multiple ways; it has "graduated" almost 80 nurse leaders, improved participant competence in their role at the systems level, as well as providing an impetus for completion of a graduate degree post program. PMID:21900817

  7. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-12-31

    The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

  8. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  9. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  10. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at

  11. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a

  12. Energy Savings and Economics of Advanced Control Strategies for Packaged Heat Pumps

    SciTech Connect

    Wang, Weimin; Huang, Yunzhi; Katipamula, Srinivas

    2012-10-31

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), evaluated a number of control strategies for packaged cooling equipment that can be implemented in an advanced controller, which can be retrofit into existing packaged heat pump units to improve their operational efficiency. This report documents the results of that analysis.

  13. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  14. Advanced development of atmospheric models. [SEASAT Program support

    NASA Technical Reports Server (NTRS)

    Kesel, P. G.; Langland, R. A.; Stephens, P. L.; Welleck, R. E.; Wolff, P. M.

    1979-01-01

    A set of atmospheric analysis and prediction models was developed in support of the SEASAT Program existing objective analysis models which utilize a 125x125 polar stereographic grid of the Northern Hemisphere, which were modified in order to incorporate and assess the impact of (real or simulated) satellite data in the analysis of a two-day meteorological scenario in January 1979. Program/procedural changes included: (1) a provision to utilize winds in the sea level pressure and multi-level height analyses (1000-100 MBS); (2) The capability to perform a pre-analysis at two control levels (1000 MBS and 250 MBS); (3) a greater degree of wind- and mass-field coupling, especially at these controls levels; (4) an improved facility to bogus the analyses based on results of the preanalysis; and (5) a provision to utilize (SIRS) satellite thickness values and cloud motion vectors in the multi-level height analysis.

  15. Controlling adsorbate interactions for advanced chemical patterning

    NASA Astrophysics Data System (ADS)

    Saavedra Garcia, Hector M.

    Molecules designed to have specific interactions were used to influence the structural, physical, and chemical properties of self-assembled monolayers. In the case of 1-adamantanethiolate monolayers, the molecular structure influences lability, enabling alkanethiol molecules in solution to displace the 1-adamantanethiolate monolayers, ultimately leading to complete molecular exchange. The similar Au-S bond environments measured for both n-alkanethiolate and 1-adamantanethiolate monolayers indicate that displacement is not a result of weakened Au-S bonds. Instead, it was hypothesized that the density differences in the two monolayers provide a substantial enthalpic driver, aided by differences in van der Waals forces, ultimately leading to complete displacement of the 1-adamantenthiol molecules. Additionally, it was discovered that displacement occurs via fast insertion of n-dodecanethiolate at the defects in the original 1-adamantanethiolate monolayer, which nucleates an island growth phase and is followed by slow ordering of the n-dodecanethiolate domains into a denser and more crystalline form. Langmuir-based kinetics, which describe alkanethiolate adsorption on bare Au{111}, fail to model this displacement reaction. Instead, a model of perimeter-dependent island growth yields good agreement with kinetic data over a 100-fold variation in n-dodecanethiol concentration. Rescaling the growth rate at each concentration collapses all the data onto a single universal curve, suggesting that displacement is a scale-free process. Exploiting the knowledge gained by studying 1-adamantethiolate monolayer displacement, a reversible molecular resist was developed, in which displacement is controlled via external stimuli. This methodology for the fabrication of controllably displaceable monolayers relies on carboxyl-functionalized self-assembled monolayers and in-situ Fischer esterification. Using an 11-mercaptoundecanoic acid monolayer as a model system, it was shown that in

  16. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-kW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

  17. Advanced component research in the solar thermal program

    NASA Astrophysics Data System (ADS)

    Brown, C. T.

    The capabilities, equipment, and programs of the DoE advanced components test facility (ACTF) for developing solar thermal technologies are reviewed. The ACTF has a heliostat field, a rigid structural steel test tower at the geometric center of the heliostat field, an experiment platform on the tower, a heat rejection system, and computerized instrumentation. Tests have been performed on a directly-heated fluidized-bed solar receiver, a high pressure single-pass-to-superheat steam generator, a liquid Na heat pipe receiver, a flash pyrolysis biomass gasifier, and a grid-connected Stirling engine powered electrical generator. Helium served as the 720 C working fluid in the Stirling engine, and 18.8 kWe continuous was produced for the grid. Verified components qualified for further development are subjected to larger scale testing at a 5 MW facility in Albuquerque, NM.

  18. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    SciTech Connect

    Marra, J.E.; Murray, A.M.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical

  19. Discrete neural dynamic programming in wheeled mobile robot control

    NASA Astrophysics Data System (ADS)

    Hendzel, Zenon; Szuster, Marcin

    2011-05-01

    In this paper we propose a discrete algorithm for a tracking control of a two-wheeled mobile robot (WMR), using an advanced Adaptive Critic Design (ACD). We used Dual-Heuristic Programming (DHP) algorithm, that consists of two parametric structures implemented as Neural Networks (NNs): an actor and a critic, both realized in a form of Random Vector Functional Link (RVFL) NNs. In the proposed algorithm the control system consists of the DHP adaptive critic, a PD controller and a supervisory term, derived from the Lyapunov stability theorem. The supervisory term guaranties a stable realization of a tracking movement in a learning phase of the adaptive critic structure and robustness in face of disturbances. The discrete tracking control algorithm works online, uses the WMR model for a state prediction and does not require a preliminary learning. Verification has been conducted to illustrate the performance of the proposed control algorithm, by a series of experiments on the WMR Pioneer 2-DX.

  20. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  1. A formal structure for advanced automatic flight-control systems

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L. S.

    1975-01-01

    Techniques were developed for the unified design of multimode, variable authority automatic flight-control systems for powered-lift STOL and VTOL aircraft. A structure for such systems is developed to deal with the strong nonlinearities inherent in this class of aircraft, to admit automatic coupling with advanced air traffic control, and to admit a variety of active control tasks. The aircraft being considered is the augmentor wing jet STOL research aircraft.

  2. Langley Research Center contributions in advancing active control technology

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active control technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. Some of the contributions of the Langley Research Center in advancing active control technology are described. Contributions are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  3. Reliability of an interactive computer program for advance care planning.

    PubMed

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  4. Reliability of an Interactive Computer Program for Advance Care Planning

    PubMed Central

    Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-01-01

    Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  5. Cryogenic Thermal Management Advances during the CRYOTOOL Program

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.; Roberts, T.; Davis, T.

    2006-04-01

    This paper describes the cryogenic thermal management advances made during the AFRL-sponsored CRYOTOOL program. Advances occurred as a result of conducting four technology development tasks: (1) development of a differential thermal expansion cryogenic thermal switch (DTE-CTSW) made with high purity Al end-pieces and an Ultem support rod; (2) carrying out of a dual DTE-CTSW/dual cryocooler performance test to quantify CTSW benefits in a redundant cryocooler system; (3) development of a miniaturized cryogenic loop heat pipe (mini-CLHP) that combines flex link, conduction bar, and CTSW functionalities; and (4) development of an across-gimbal cryogenic thermal transport system (GCTTS) with large diameter transport line coils for optics cooling. The results are as follows. The DTE-CTSW achieved an ON conductance of 2-3.6 W/K (from 35-90 K) and an OFF resistance of 1100-2300 K/W (300-230 K warm end). The redundant cryocooler test showed modest parasitic heat leak savings when dual DTE-CTSWs were used versus when they were not used. The mini-CLHP, using neon as the working fluid, transported 2.5 W at 35 K, achieved an OFF resistance of 1555 K/W, and had cross/axial flexibilities of 100-450 N/m. Lastly, GCTTS, using nitrogen as the working fluid, transported 20 W at 100 K in a flat configuration. Additional work is needed to verify GCTTS operation in an elevated orientation.

  6. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  7. Women's Center Volunteer Intern Program: Building Community While Advancing Social and Gender Justice

    ERIC Educational Resources Information Center

    Murray, Margaret A.; Vlasnik, Amber L.

    2015-01-01

    This program description explores the purpose, structure, activities, and outcomes of the volunteer intern program at the Wright State University Women's Center. Designed to create meaningful, hands-on learning experiences for students and to advance the center's mission, the volunteer intern program builds community while advancing social and…

  8. 78 FR 19691 - Applications for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Applications for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information Advanced Placement Test... Announcement I. Funding Opportunity Description Purpose of Program: The AP Test Fee program awards grants...

  9. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    SciTech Connect

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  10. Preparing Future Biology Faculty: An Advanced Professional Development Program for Graduate Students

    ERIC Educational Resources Information Center

    Lockwood, Stephanie A.; Miller, Amanda J.; Cromie, Meghan M.

    2014-01-01

    Formal professional development programs for biology graduate students interested in becoming faculty members have come far; however, programs that provide advanced teaching experience for seasoned graduate teaching assistants are scarce. We outline an advanced program that focuses on further training of graduate teaching assistants in pedagogy…

  11. Contributions of CCLM to advances in quality control.

    PubMed

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  12. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  13. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  14. 12 CFR 952.5 - Community Investment Cash Advance Programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to rehabilitate the projects or to preserve affordability for current residents. (d) Pricing and.... (12 U.S.C. 1430(a)). (2) Pricing of CIP advances. The price of advances made under CIP shall not... reasonable administrative costs. (3) Pricing of AHP advances. A Bank shall price advances made under AHP...

  15. 12 CFR 952.5 - Community Investment Cash Advance Programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to rehabilitate the projects or to preserve affordability for current residents. (d) Pricing and.... (12 U.S.C. 1430(a)). (2) Pricing of CIP advances. The price of advances made under CIP shall not... reasonable administrative costs. (3) Pricing of AHP advances. A Bank shall price advances made under AHP...

  16. Advanced man-machine interface systems and advanced information management systems programs

    SciTech Connect

    Naser, J.; Gray, S.; Machiels, A.

    1997-12-01

    The Advanced Light Water Reactor (ALWR) Program started in the early 1980`s. This work involves the development and NRC review of the ALWR Utility Requirements Documents, the development and design certification of ALWR designs, the analysis of the Early Site Permit process, and the First-of-a-Kind Engineering for two of the ALWR plant designs. ALWRs will embody modern proven technology. However, technologies expected to be used in these plants are changing very rapidly so that additional capabilities will become available that will be beneficial for future plants. To remain competitive on a life-cycle basis in the future, the ALWR must take advantage of the best and most modem technologies available. 1 ref.

  17. Low-Cost Programmed Oven Temperature Controller.

    ERIC Educational Resources Information Center

    Clubine, Gerald D.

    1982-01-01

    A remote, programed oven temperature controller unit was built for about $425.00. Specifications, circuit diagrams, design details, and operations are discussed. Detailed information including complete schematics, parts list, and detailed theory of operation may be obtained by contacting the author. (Author/SK)

  18. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  19. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  20. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  1. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski

    1999-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The seventh reporting period in Phase II (April 1-June 30, 1999) included experimental activities and combined chemistry-mixing modeling on advanced gas reburning. The goal of combustion tests was to determine the efficiency of advanced reburning using coal as the reburning fuel. Tests were conducted in Boiler Simulator Facility (BSF). Several coals were tested. The modeling effort was focused on the description of N-agent injection along with overfire air. Modeling identified process parameters that can be used to optimize the AR-Lean process.

  2. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Pete M. Maly

    2000-03-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The tenth reporting period in Phase II (January 1-March 31, 2000) included proof-of concept tests in the 10 x 10{sup 6} Btu/hr Tower Furnace. Several variants of Second Generation Advanced Reburning (SGAR) were studied, including AR-Lean, AR-Rich, reburning + SNCR, and Multiple Injection Advanced Reburning (MIAR). Tests demonstrated that the SGAR performance was the most effective under MIAR conditions achieving maximum overall NO{sub x} reduction of 96%.

  3. University programs of the U.S. Department of Energy advanced accelerator applications program

    SciTech Connect

    Beller, D. E.; Ward, T. E.; Bresee, J. C.

    2001-01-01

    The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21st Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R&D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R&D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs.

  4. [Development of advanced educational programs, including research programs, for undergraduate students in National Universities: the facts in 2010].

    PubMed

    Kurosaki, Yuji; Tomioka, Yoshihisa; Santa, Tomofumi; Kitamura, Yoshihisa

    2012-01-01

    This article summarizes detailed facts obtained from the questionnaire conducted in 2010 at about 14 National Universities on the topic of "Research programs and advanced educational programs for undergraduate students". The contents of the questionnaire included: (1) Research programs based on the coalition of university and hospital and/or community pharmacy, other Graduate Schools, such as School of Medicine etc., and the University Hospital, (2) Educational systems for the achievement of research programs and their research outcomes, (3) Research programs based on pharmacist practices, (4) Ongoing advanced educational programs for undergraduate students, taking advantage of the coalition with Graduate School, School of Medicine (and Dentistry), and University Hospital. Some of the advanced educational programs outlined in this questionnaire will be carried out by our group in the coming years and the educational benefits together with associated problems shall as well be clarified. This approach will be informative for the development of the leader-oriented pharmacist programs for the college of Pharmacy.

  5. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  6. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  7. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  8. Advances in developing alternative treatments for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS made two significant advances in the last 10 years in the development of alternative treatments for postharvest pest control: oxygenated phosphine fumigation and nitric oxide fumigation. Oxygenated phosphine is phosphine fumigation in an oxygen enriched atmosphere. It is significantly more...

  9. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC 11: SPC & Graphs. Instructor Book.

    ERIC Educational Resources Information Center

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills in working with line graphs and teaching…

  10. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1993-05-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  11. Status of the Fiber Optic Control System Integration (FOCSI) program

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1993-01-01

    This report presents a discussion of the progress made in the NASA/NAVY Fiber Optic Control System Integration (FOCSI) program. This program will culminate in open-loop flight tests of passive optical sensors and associated electro-optics on an F-18 aircraft. Currently, the program is in the final stages of hardware fabrication and environmental testing of the passive optical sensors and electro-optics. This program is a foundation for future Fly-by-Light (FBL) programs. The term Fly-by-Light is used to describe the utilization of passive optical sensors and fiber optic data links for monitoring and control of aircraft in which sensor and actuation signals are transmitted optically. The benefits of this technology for advanced aircraft include the following: improved reliability and reduced certification cost due to greater immunity to EME (electromagnetic effects); reduced harness volume and weight; elimination of short circuits and sparking in wiring due to insulation deterioration; lower maintenance costs (fewer components); greater flexibility in data bus protocol and architecture; absence of ground loops; and higher operating temperatures for electrically passive optical sensors.

  12. Controlling death: the false promise of advance directives.

    PubMed

    Perkins, Henry S

    2007-07-01

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  13. Career Advancement and Work Support Services on the Job: Implementing the Fort Worth Work Advancement and Support Center Program

    ERIC Educational Resources Information Center

    Schultz, Caroline; Seith, David

    2011-01-01

    The Work Advancement and Support Center (WASC) program in Fort Worth was part of a demonstration that is testing innovative strategies to help increase the income of low-wage workers, who make up a large segment of the U.S. workforce. The program offered services to help workers stabilize their employment, improve their skills, and increase their…

  14. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  15. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  16. Advanced Thermionic Technology Program: summary report. Volume 3. Final report

    SciTech Connect

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. As a general rule of thumb, cogeneration technologies are most attractive to industries when those technologies naturally produce a ration of electrical to thermal output which closely matches the demand within the industrial facilities themselves. Several of the industries which consume the largest amounts of energy have an electrical-to-thermal ratio of about ten percent, as can be seen in Exhibit D-1.1. This closely matches the electrical efficiency of thermionic converters. Thermionic cogeneration has several other unique advantages relative to alternative technologies for cogeneration which should lead to a much broader application of cogeneration in industry. These advantages accrue from the much higher temperatures at which thermionic energy conversion takes place, its suitability for very small as well as large process heaters, and, of course, its production of direct heat rather than process steam. In fact, thermionics can even be coupled to more conventional cogeneration technologies (e.g., steam turbines) to extend their applicability to processes requiring a greater electrical-to-thermal ratio than either cogeneration technology alone can provide. Several examples of thermionic cogeneration are presented in greater detail: copper refining by the Noranda process; thermionic topping cycles for gas turbine; and combined cycle and fossil-fuel steam power plants. 13 refs., 71 figs.

  17. Position Paper: General Practice Residency and Advanced Education in General Dentistry Programs: Evaluation.

    ERIC Educational Resources Information Center

    Cassidy, Robert E.

    1983-01-01

    The currently used internal and external program evaluation processes for general practice residency and advanced education in general dentistry programs are discussed, noting accrediting and evaluation groups, criteria, and designs. A generalized evaluation plan is proposed. (MSE)

  18. The Pioneer Jupiter magnetic control program.

    NASA Technical Reports Server (NTRS)

    Sanders, N. L.; Broce, R. D.; Inouye, G. T.

    1972-01-01

    The Pioneer Jupiter spacecraft was required to have a sufficiently small magnetic field that accurate interplanetary-magnetic field measurements would not be compromised. In order to control the magnetic field throughout the program a running account of spacecraft magnetic fields was maintained by means of a periodically updated magnetic model. This model was used to make economic tradeoffs in subsystem magnetic moments within the allowed magnetic budget. The program was culminated with a measurement of the magnetic field of the spacecraft. A description of the magnetic tests and a comparison with estimates made with the magnetic model are also presented.

  19. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  20. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  1. Spectrophotometric Procedure for Fast Reactor Advanced Coolant Manufacture Control

    NASA Astrophysics Data System (ADS)

    Andrienko, O. S.; Egorov, N. B.; Zherin, I. I.; Indyk, D. V.

    2016-01-01

    The paper describes a spectrophotometric procedure for fast reactor advanced coolant manufacture control. The molar absorption coefficient of dimethyllead dibromide with dithizone was defined as equal to 68864 ± 795 l·mole-1·cm-1, limit of detection as equal to 0.583 · 10-6 g/ml. The spectrophotometric procedure application range was found to be equal to 37.88 - 196.3 g. of dimethyllead dibromide in the sample. The procedure was used within the framework of the development of the method of synthesis of the advanced coolant for fast reactors.

  2. Need of advanced technologies for coal ash utilization programs

    SciTech Connect

    Dube, S.K.

    1997-09-01

    National Thermal Power Corporation Ltd. (NTPC) alone produces year about 17 million tonnes of coal ash every year, out of 13 coal based stations having about 12,000 MW coal based installed capacity. The coal ash utilization program in NTPC has explored the uses of ash in the areas of raising of ash dykes, structural fills, development of low lying lands, construction of road, building materials, small brick plants, PPC, etc. In taking the studies further the Center for Power Efficiency and Environmental Protection (Cenpeep) of NTPC is evaluating the scope of employing the advanced technologies in coal ash utilization to maximize its consumption and with improved productivity. To start with it is being suggested to develop the ash ponds using more economical compacting techniques to increase the life of current ash pond. The other areas include the development of suitable grout for back filling of mine without sacrificing the productivity of mine, use of fly ash and bottom ash in the road base construction work, manufacture of clay-ash and lime ash bricks using high speed brick plants and manufacture of light weight aggregates near the consumption center. There are many other areas also where ash can find its application in large volumes.

  3. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect

    Glowka, D.A.; Dennis, T.; Le, Phi; Cohen, J.; Chow, J.

    1995-11-01

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  4. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  5. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-10-01

    Westinghouse`s experience with land based gas turbines started in 1945 with the development of a 2000 hp gas turbine-generator set that consisted of a single reduction gear, compressor, 12 combustors and turbine. A thermal efficiency of 18% was obtained. By 1954, Westinghouse had developed a 15 MW unit (with a regenerator and intercooler) that was designed for a full-load simple cycle efficiency of 29%. As the initial step in the Advanced Turbine Systems (ATS) program, Westinghouse has already developed a 230 MW gas turbine that has a simple cycle efficiency of 38.5% without the use of regeneration and intercooler concepts. In 1967, Westinghouse developed its first gas turbine combined cycle, a synergistic combination of the Brayton and the Rankine cycles. In a combined cycle the heat rejected by the higher temperature topping cycle is recovered in the lower temperature bottoming cycle to produce additional power from the energy initially released by the fuel. In this first Westinghouse combined cycle, a 1450{degrees}F burner outlet temperature gas turbine, rated at 25 MW, supplied exhaust heat which was used in a boiler to furnish steam to drive an 85 MW steam turbine. This plant achieved an annual average efficiency of 39.6%.

  6. More than genes: the advanced fetal programming hypothesis.

    PubMed

    Hocher, Berthold

    2014-10-01

    Many lines of data, initial epidemiologic studies as well as subsequent extensive experimental studies, indicate that early-life events play a powerful role in influencing later suceptibility to certain chronic diseases. Such events might be over- or undernutrition, exposure to environmental toxins, but also changes in hormones, in particular stress hormones. Typically, those events are triggered by the environmental challenges of the mother. However, recent studies have shown that paternal environmental or nutritional factors affect the phenotype of the offspring as well. The maternal and paternal environmental factors act on the phenotype of the offspring via epigenetic modification of its genome. The advanced fetal programming hypothesis proposes an additional non-environmentally driven mechanism: maternal and also paternal genes may influence the maturating sperm, the oocyte, and later the embryo/fetus, leading to their epigenetic alteration. Thus, the observed phenotype of the offspring may be altered by maternal/paternal genes independent of the fetal genome. Meanwhile, several independent association studies in humans dealing with metabolic and neurological traits also suggest that maternal genes might affect the offspring phenotype independent of the transmission of that particular gene to the offspring. Considering the implications of this hypothesis, some conclusions drawn from transgenic or knockout animal models and based on the causality between a genetic alteration and a phenotype, need to be challenged. Possible implications for the development, diagnostic and therapy of human genetic diseases have to be investigated.

  7. The cryogenic cooling program at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80{degrees}. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 {mu}rad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ``thin`` crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K.

  8. Advanced actuators for the control of large space structures

    NASA Technical Reports Server (NTRS)

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  9. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  10. Research directions and progress in the SERI advanced high efficiency concept program

    SciTech Connect

    Cole, L A; Benner, J P

    1984-06-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  11. Research directions and progress in the SERI Advanced High Efficiency Concept Program

    SciTech Connect

    Cole, L.A.; Benner, J.P.; US

    1984-05-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  12. Medicare and Medicaid programs; advance directives--HCFA. Interim final rule with comment period.

    PubMed

    1992-03-01

    This interim final rule amends the Medicare and Medicaid regulations governing provider agreements and contracts to establish requirements for States, hospitals, nursing facilities, skilled nursing facilities, providers of home health care or personal care services, hospice programs and prepaid health plans concerning advance directives. An advance directive is a written instruction, such as a living will or durable power of attorney for health care, recognized under State law, relating to the provision of health care when an individual's condition makes him or her unable to express his or her wishes. The intent of these provisions is to enhance an individual's control over medical treatment decisions. This rule implements sections 4206 and 4751 of the Omnibus Budget Reconciliation Act of 1990 (OBRA '90), Public Law 101-508.

  13. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  14. Performance measurement: A tool for program control

    NASA Technical Reports Server (NTRS)

    Abell, Nancy

    1994-01-01

    Performance measurement is a management tool for planning, monitoring, and controlling as aspects of program and project management--cost, schedule, and technical requirements. It is a means (concept and approach) to a desired end (effective program planning and control). To reach the desired end, however, performance measurement must be applied and used appropriately, with full knowledge and recognition of its power and of its limitations--what it can and cannot do for the project manager. What is the potential of this management tool? What does performance measurement do that a traditional plan vs. actual technique cannot do? Performance measurement provides an improvement over the customary comparison of how much money was spent (actual cost) vs. how much was planned to be spent based on a schedule of activities (work planned). This commonly used plan vs. actual comparison does not allow one to know from the numerical data if the actual cost incurred was for work intended to be done.

  15. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  16. Improving attendance in weight-control programs.

    PubMed

    Mullen, P D; Culjat, D

    1980-01-01

    This field study evaluated the use of a food dairy as a screening device for admission to a behaviorally oriented weight-reduction program for its effectiveness in improving attendance. All study participants were required (1) to attend an orientation meeting where the program was described and questions were solicited and (2) to pay a $25, nonrefundable fee. During the orientation experimental-group attendees were told that a 2-week food dairy was a requirement for admission to the series. It was expected the experimental requirement would decrease the number of less motivated enrollees, thereby reducing early termination and improving attendance. Keeping the record was in itself expected to modify eating behavior. This would have the effect of adding 2 weeks to the program and, therefore, weight loss at the end of the program was expected to be greater. In general, the hypotheses were confirmed. A smaller proportion of those who had the food-dairy requirement enrolled. a significantly larger proportion of experimental-group women enrollees attended at least three-quarters of the sessions. The attendance records of control-group and experimental-group men were not significantly different. Mean weight loss at the end of the program was greater for those enrolled under the experimental condition. Achievement of a weight loss of at least 8 pounds was found to be positively related to attendance.

  17. An Assessment of Social Diffusion in the Respecting Choices Advance Care Planning Program

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Carr, Deborah; Kirchhoff, Karin T.; Hammes, Bernard J.

    2012-01-01

    This study examines the potential social diffusion effects of the Respecting Choices advance care planning program administered in La Crosse, Wisconsin, since 1991. The program produces educational materials for patients, trains facilitators to help patients prepare for end of life, and ensures that advance directives are connected to patients'…

  18. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  19. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  20. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  1. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  2. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  3. 77 FR 8848 - Application for New Awards; Advanced Placement (AP) Test Fee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Application for New Awards; Advanced Placement (AP) Test Fee Program AGENCY: Office of Elementary and Secondary Education, Department of Education. ACTION: Notice. Overview Information: Advanced Placement Test.... Full Text of Announcement I. Funding Opportunity Description Purpose of Program: The AP Test...

  4. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  5. Comparison of advanced distillation control methods. Fourth annual report

    SciTech Connect

    Riggs, J.B.

    1998-09-01

    Detailed dynamic simulations of three industrial columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selection for single-ended and dual-composition control as well as compare conventional and advanced control approaches. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that in order to identify the optimum configuration, detailed testing using dynamic simulation is required. The optimum configurations were used to evaluate the control performance of conventional PI controllers, DMC (Dynamic Matrix Control), PMBC (Process Model Based Control), and ANN (Artificial Neural Networks) control. It was determined that DMC works best when one product is much more important than the other while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and DMC.

  6. HBT-EP Program: Active MHD Mode Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Bialek, J.; Boozer, A. H.; Byrne, P. J.; Donald, G. V.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Peng, Q.; Rhodes, D. J.; Stoafer, C. C.; Hansen, C. J.

    2015-11-01

    The HBT-EP active mode control research program aims to: (i) quantify external kink dynamics and multimode response to magnetic perturbations, (ii) understand the relationship between control coil configuration, conducting and ferritic wall effects, and active feedback control, and (iii) explore advanced feedback algorithms. Biorthogonal decomposition is used to observe multiple simultaneous resistive wall modes (RWM). A 512 core GPU-based low latency (14 μs) MIMO control system uses 96 inputs and 64 outputs for Adaptive Control of RWMs. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A biased electrode in the plasma is used to control the rotation of external kinks and evaluate error fields. A Thomson scattering diagnostic measures Te and ne at 3 spatial points, soon to be extended to 10 points. A quasi-linear sharp-boundary model of the plasma's multimode response to error fields is developed to determine harmful error field structures and associated NTV and resonant torques. Upcoming machine upgrades will allow measurements and control of scrape-off-layer currents, and control of kink modes using optical diagnostics. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  7. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration.

  8. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  9. Feasibility of advanced vehicle control systems (AVCS) for transit buses

    NASA Astrophysics Data System (ADS)

    Larsen, Robert

    1997-01-01

    In the course of developing automated vehicle-roadway systems, opportunities to deploy vehicle control systems art intermediate stages of development may emerge. Some of these systems may provide a significant efficiency or safety enhancement to existing operations with manually driven vehicles. Under certain circumstances, transit buses provide an ideal testbed for such systems. The work presented here represents a feasibility study for the application of advanced vehicle control systems (AVCS) to transit bus operations. The paper explores past and present research relevant to automatic control for buses and recommends specific operations which could be better performed by AVCS- assisted or controlled vehicles. A survey of feasible technologies for the guidance and control of the buses is also presented.

  10. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski

    1999-10-29

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The eighth reporting period in Phase II (July 1--September 26, 1999) included combined chemistry-mixing modeling on advanced gas reburning and experimental activities in support of modeling. Modeling efforts focused on description of AR-Lean--combination of basic reburning and co-injection of N-agent with overfire air. Modeling suggests that efficiency of AR-Lean strongly depends on the amount of the reburning fuel, temperature of flue gas at the point of OFA/N-agent injection, and evaporation time of N-agent. The model describes the most important features of AR-Lean and can be used for AR-Lean optimization.

  11. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  12. Strategies for casualty mitigation programs by using advanced tsunami computation

    NASA Astrophysics Data System (ADS)

    IMAI, K.; Imamura, F.

    2012-12-01

    1. Purpose of the study In this study, based on the scenario of great earthquakes along the Nankai trough, we aim on the estimation of the run up and high accuracy inundation process of tsunami in coastal areas including rivers. Here, using a practical method of tsunami analytical model, and taking into account characteristics of detail topography, land use and climate change in a realistic present and expected future environment, we examined the run up and tsunami inundation process. Using these results we estimated the damage due to tsunami and obtained information for the mitigation of human casualties. Considering the time series from the occurrence of the earthquake and the risk of tsunami damage, in order to mitigate casualties we provide contents of disaster risk information displayed in a tsunami hazard and risk map. 2. Creating a tsunami hazard and risk map From the analytical and practical tsunami model (a long wave approximated model) and the high resolution topography (5 m) including detailed data of shoreline, rivers, building and houses, we present a advanced analysis of tsunami inundation considering the land use. Based on the results of tsunami inundation and its analysis; it is possible to draw a tsunami hazard and risk map with information of human casualty, building damage estimation, drift of vehicles, etc. 3. Contents of disaster prevention information To improve the hazard, risk and evacuation information distribution, it is necessary to follow three steps. (1) Provide basic information such as tsunami attack info, areas and routes for evacuation and location of tsunami evacuation facilities. (2) Provide as additional information the time when inundation starts, the actual results of inundation, location of facilities with hazard materials, presence or absence of public facilities and areas underground that required evacuation. (3) Provide information to support disaster response such as infrastructure and traffic network damage prediction

  13. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  14. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  15. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  16. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  17. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  18. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  19. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally. PMID:11808572

  20. Application of advanced polymeric materials for controlled release pesticides

    NASA Astrophysics Data System (ADS)

    Rahim, M.; Hakim, M. R.; Haris, H. M.

    2016-08-01

    The objective of this work was to study the capability of advanced polymeric material constituted by chitosan and natural rubber matrices for controlled release of pesticides (1-hydroxynaphthalene and 2-hydroxynaphthalene) in aqueous solution. The released amount of pesticides was measured spectrophotometrically from the absorbance spectra applying a standardized curve. The release of the pesticides was studied into refreshing and non-refreshing neutral aqueous media. Interestingly, formulation successfully indicated a consistent, controlled and prolonged release of pesticides over a period of 35 days.

  1. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.

    1991-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 90% pyrite sulfur rejection at an energy recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. 5 refs., 22 figs., 34 tabs.

  2. Study of the application of advanced technologies to long range transport aircraft. Volume 2: Advanced technology program recommendations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The benefits of the application of advanced technology to future transport aircraft were investigated. The noise reduction goals established by the CARD (Civil Aviation Research and Development) study for the 1981-1985 time period can be satisfied. Reduced terminal area and airway congestion can result from use of advanced on-board systems and operating procedures. The use of advanced structural design concepts can result in greatly reduced gross weight and improved operating economics. The full potential of these benefits can be realized in a 1985 airplane by implementing a research and development program that is funded to an average level of approximately $55 million per year over a ten year period.

  3. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  4. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  5. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  6. Advanced Reactor Safety Program – Stakeholder Interaction and Feedback

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, the Idaho National Laboratory (INL) began discussions with industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling and simulation could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  7. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  8. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  9. Advances in the development of FRIDA's mechanisms control system and house-keeping

    NASA Astrophysics Data System (ADS)

    Flores-Meza, R.; Garcés, J.; Lara, G.; Sánchez, B.; Espejo, C.; Keiman, C.; Cuevas, S.; Díaz, J. J.

    2014-07-01

    FRIDA will be a near infrared imager and integral field spectrograph covering the wavelength range from 0.9 to 2.5 microns. Primary observing modes are: direct imaging and integral field spectroscopy. This paper describes the main advances in the development of the electronics and control system for both the mechanisms and house-keeping of FRIDA. In order to perform several tests of mechanisms in both room and cryogenic environments, a set of programs had been developed. All variables of the vacuum control system were determined and the main control structure based on one Programmable Logic Controller (PLC) had been established. A key function of the FRIDA's control system is keeping the integrity of cryostat during all processes, so we have designed a redundant heating control system which will be in charge of avoiding cryostat inner overheating. In addition, some improvements of cryogenic and room temperature cabling structure are described.

  10. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  11. Economic Impact of an Advanced Illness Consultation Program within a Medicare Advantage Plan Population

    PubMed Central

    Colaberdino, Vincent; Marshall, Colleen; DuBose, Paul; Daitz, Mitchell

    2016-01-01

    Abstract Background: In the United States the quality and cost associated with medical treatment for individuals experiencing an advanced illness is highly variable and is often misaligned with the patient's and family's quality of life values and priorities. Many of the obstacles that stand in the way of aligning the care that an individual receives with their priorities are well understood in the context of behavioral science. Through employing behavioral based approaches to improve the quality of communication and shared decision making processes among patients, providers and families it is possible to enhance the efficiency of delivering care which is also more highly aligned with the individual's preferences. Objectives: The study objectives were to measure the economic impact of a proprietary advanced illness behavioral consultation program, the Vital Decisions Living Well Consultation Program (LWCP), on the cost of care delivered during the last six and three months of life for enrolled members in a Medicare Advantage plan. Study design: Retrospective matched case control analysis examined medical, pharmaceutical, and capitation expenses after an offset by premium revenue. Methods: The treatment population consisted of participating members of the LWCP who died between October 1, 2011 and March 31, 2013 (N = 1755). The control population consisted of plan members who died between July 1, 2008 and June 1, 2011, prior to the introduction of the LWCP (N = 5560). Criteria used to match treatment subjects with one or more control subjects were diagnosis, age at death, and health care costs incurred prior to the time under examination. A paired t-test evaluated the significance of differences between the matched treatment and control members. Results: The mean cost reduction during the last six months of life for treatment members compared to matched control group members was $13,956 (p < 0.001) during the last six months of life and $9,285 (p < 0

  12. Neonatal Resuscitation Program and Pediatric Advanced Life Support.

    PubMed

    Malinowski, C

    1995-05-01

    The need for delivery resuscitation of the newborn cannot be predicted in most cases; therefore it is judicious to train all providers who may be involved in the delivery of newborns to follow guidelines developed to improve outcome, especially in the presence of transitional asphyxia. The Neonatal Resuscitation Program emphasizes basic steps of warming, drying, suctioning, and adequately ventilating the newborn. It also addresses current theories regarding resuscitation of the low birthweight newborns, infants with meconium aspiration, and medication use. The NRP applies to all acute-care hospitals that provide delivery services and those at which a respiratory therapist is likely to be present in the high-risk delivery or unanticipated delivery-room resuscitation. Outcomes have not been well documented and more clinical research is needed to identify which therapeutic strategies promote the best survival in this population. A topic that should be included in the NRP of the future is exogenous surfactant delivery. Respiratory distress syndrome has been a significant cause of death and morbidity in prematurely born neonates. Exogenous surfactant therapy has had a dramatic effect on the death rate of premature infants and on the incidence of respiratory distress syndrome. Current methods of surfactant administration demand that personnel proficient in management of the low birthweight newborn be present. As hospitals with all levels of nurseries continue to receive the prematurely delivered newborn and better methods to administer surfactant are discovered, the NRP could add information and a skills laboratory on surfactant administration. A trained cadre of health professionals who are proficient in the specific resuscitation skills required in pediatric patients can make a difference. The infant and child have different anatomy, physiology, and disease etiology that need to be emphasized and understood by the pediatric caregiver. The Pediatric Advanced Life

  13. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  14. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  15. Building America: The Advanced Whole-Home Efficiency Program (Presentation)

    SciTech Connect

    Engebrecht, C.

    2012-02-01

    This presentation discusses the Building America Program. This presentation discusses the background and goals of the program. A few hot topic technologies are discussed. Outreach activities are discussed as well.

  16. Advanced Controller Developed for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  17. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  18. Clinical ladder to professional advancement program. An evolutionary process.

    PubMed

    Goodloe, L R; Sampson, R C; Munjas, B; Whitworth, T R; Lantz, C D; Tangley, E; Miller, W

    1996-06-01

    Since the early 1970s, clinical ladder programs have been a method of defining, recognizing, and rewarding nursing practice. As clinical practice in an institution grows and evolves, so must the program that supports the development of the practitioner. An in-depth evaluation of one clinical ladder program was conducted to determine if it was reflective of current practice. The authors discuss the method of evaluation, findings, and the revised program.

  19. VME insertion device control at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Smith, M.; Ramanathan, M.; Grimmer, J.; Merritt, M.

    2002-03-01

    The Advanced Photon Source (APS) currently has 29 insertion devices (IDs) installed and operating. The need to remotely diagnose and correct problems has become increasingly important. This has been accomplished through the development of a new control system with greatly enhanced input/output (I/O) capabilities specifically targeted to this control task. The system features a custom VME control card and three rack-mounted interface chassis for ID control, encoder interface, and motor drive shutdown. The card provides device interlocks, limit switch logic, motor axis selection, digital I/O, and status feedback. This VME insertion device control was designed to operate with an eight-axis intelligent motor controller and a stepper-motor drive that accepts step and direction inputs. The front panel of the card has two connectors for all of the control signals for the stepper-motor drives. There is a third connector for the ID limit switch inputs and the emergency stop circuit, and a fourth connector provides 23 bits of digital outputs and 16 bits of digital inputs. Light-emitting diodes indicate which motions are inhibited by the limit switch logic. An experimental physics industrial control system (EPICS) (http://www.APS.ANL-GOV/EPICS) device driver was developed to access all the registers on the VME control card. Using standard EPICS records, the insertion device status can be viewed remotely. This minimizes downtime for APS ID beamline users by allowing faster resolution of any problems preventing a user from operating the insertion device. This new insertion device control has been in use at the APS since July of 1999. The design features of the control system and rationale for them will be presented, along with our experience in building, testing, installing, and operating the control system.

  20. Can the SBIR and STTR programs advance research goals?

    PubMed

    Ceulemans, Steven; Kolls, Jay K

    2013-03-01

    With diminishing grant support for traditional funding in immunology, can the small-business program leverage a research program? The small-business grants programs offered by the US National Institutes of Health and other organizations support high-risk, early-stage technology commercialization at small businesses. PMID:23416667

  1. Controlling robot manipulators by dynamic programming

    NASA Astrophysics Data System (ADS)

    Richard, Marc J.; Cheng, Li

    1995-02-01

    A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems. In this article, we provide a detailed presentation of the mechanical and electrical implications of robots equipped with DC motor actuators. This model takes into account all non-linear aspects of the system. Then, we develop computational algorithms for optimal control based on dynamic programming. The robot's trajectory must be predefined, but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied. As an example, a manipulator arm with 3 degress of freedom is analyzed.

  2. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  3. 7 CFR 58.141 - Alternate quality control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Service 1 Quality Specifications for Raw Milk § 58.141 Alternate quality control program. When a plant has... outlined above for milk or cream, then such a program may be accepted in lieu of the program...

  4. 7 CFR 58.141 - Alternate quality control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Service 1 Quality Specifications for Raw Milk § 58.141 Alternate quality control program. When a plant has... outlined above for milk or cream, then such a program may be accepted in lieu of the program...

  5. 7 CFR 58.141 - Alternate quality control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Service 1 Quality Specifications for Raw Milk § 58.141 Alternate quality control program. When a plant has... outlined above for milk or cream, then such a program may be accepted in lieu of the program...

  6. 7 CFR 58.141 - Alternate quality control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Service 1 Quality Specifications for Raw Milk § 58.141 Alternate quality control program. When a plant has... outlined above for milk or cream, then such a program may be accepted in lieu of the program...

  7. 7 CFR 58.141 - Alternate quality control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Service 1 Quality Specifications for Raw Milk § 58.141 Alternate quality control program. When a plant has... outlined above for milk or cream, then such a program may be accepted in lieu of the program...

  8. Corporate Mentors and Undergraduate Students: A Qualitative Study of the Advancing Women in Construction Mentorship Program

    ERIC Educational Resources Information Center

    Eicher, Matthew

    2013-01-01

    In a conscious effort to combat the low enrollment of women in construction management, a program was created to retain women through a mentorship program--Advancing Women in Construction. A qualitative analysis, facilitated through a grounded theory approach, sought to understand if the program was indeed successful, and what value did the…

  9. The Advanced Placement English Program in Salt Lake and Granite School Districts.

    ERIC Educational Resources Information Center

    Stratopoulos, Irene Chachas

    The main purposes in examining and evaluating the Advanced Placement English Program in Salt Lake and Granite School Districts were to identify the essential curriculum features of the program, to make suggestions for curriculum improvement, and to determine whether or not the quality of the AP English Program surpassed that of the conventional…

  10. What's Working: Program Factors Influencing California Community College Basic Skills Mathematics Students' Advancement to Transfer Level

    ERIC Educational Resources Information Center

    Fiero, Diane M.

    2013-01-01

    Purpose: The purpose of this study was to determine which basic skills program factors were exhibited by successful basic skills programs that helped students advance to transfer-level mathematics. This study specifically examined California community college basic skills programs that assist students who place in mathematics courses 2 levels…

  11. Advanced stimulation technology program helps zero in the optimum frac treatment

    SciTech Connect

    Saunders, B.

    1995-08-01

    The Gas Research Institute (GRI) has initiated the Advanced Stimulation Technology (AST) program to ensure that successful stimulation technologies developed in previous GRI programs are available to the petroleum industry and are used regularly. The AST program focuses on benefits analysis, real-time fracture treatment evaluation, and understanding critical concepts in fracture stimulation.

  12. From Ground to Distance: The Impact of Advanced Technologies on an Innovative School Leadership Program

    ERIC Educational Resources Information Center

    Korach, Susan; Agans, Lyndsay J.

    2011-01-01

    An educational leadership preparation program for the 21st Century not only makes use of innovations in teaching and learning, but pushes the educational experience forward through the effective use of advanced technologies. This idea frames the delivery methodology for a blended online principal preparation program. The blended online program was…

  13. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  14. PREFACE: European Workshop on Advanced Control and Diagnosis

    NASA Astrophysics Data System (ADS)

    Schulte, Horst; Georg, Sören

    2014-12-01

    The European Workshop on Advanced Control and Diagnosis is an annual event that has been organised since 2003 by Control Engineering departments of several European universities in Germany, France, the UK, Poland, Italy, Hungary and Denmark. The overall planning of the workshops is conducted by the Intelligent Control and Diagnosis (ICD) steering committee. This year's ACD workshop took place at HTW Berlin (University of Applied Sciences) and was organised by the Control Engineering group of School of Engineering I of HTW Berlin. 38 papers were presented at ACD 2014, with contributions spanning a variety of fields in modern control science: Discrete control, nonlinear control, model predictive control, system identification, fault diagnosis and fault-tolerant control, control applications, applications of fuzzy logic, as well as modelling and simulation, the latter two forming a basis for all tasks in modern control. Three interesting and high-quality plenary lectures were delivered. The first plenary speaker was Wolfgang Weber from Pepperl+Fuchs, a German manufacturer of state-of-the-art industrial sensors and process interfaces. The second and third plenary speakers were two internationally high-ranked researchers in their respective fields, Prof. Didier Theilliol from Université de Lorraine and Prof. Carsten Scherer from Universität Stuttgart. Taken together, the three plenary lectures sought to contribute to closing the gap between theory and applications. On behalf of the whole ACD 2014 organising committee, we would like to thank all those who submitted papers and participated in the workshop. We hope it was a fruitful and memorable event for all. Together we are looking forward to the next ACD workshop in 2015 in Pilsen, Czech Republic. Horst Schulte (General Chair), Sören Georg (Programme Chair)

  15. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  16. Reviewing the impact of advanced control room technology

    SciTech Connect

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-08-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  17. Model-based advanced process control of coagulation.

    PubMed

    Baxter, C W; Shariff, R; Stanley, S J; Smith, D W; Zhang, Q; Saumer, E D

    2002-01-01

    The drinking water treatment industry has seen a recent increase in the use of artificial neural networks (ANNs) for process modelling and offline process control tools and applications. While conceptual frameworks for integrating the ANN technology into the real-time control of complex treatment processes have been proposed, actual working systems have yet to be developed. This paper presents development and application of an ANN model-based advanced process control system for the coagulation process at a pilot-scale water treatment facility in Edmonton, Alberta, Canada. The system was successfully used to maintain a user-defined set point for effluent quality, by automatically varying operating conditions in response to changes in influent water quality. This new technology has the potential to realize significant operational cost saving for utilities when applied in full-scale applications.

  18. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  19. Status and design of the Advanced Photon Source control system

    SciTech Connect

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-06-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  20. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  1. PLC & DTAM Software Programs for Pumping Instrumentation & Control Skid P

    SciTech Connect

    HORNER, T.M.

    2001-07-19

    This document describes the software programs for the programmable logic controller and the datable access module for pumping instrumentation and control skid P. The appendices contains copies of the printouts of these software programs.

  2. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  3. Advanced control strategy for plant heat rate improvement

    SciTech Connect

    Schultz, P.; Frerichs, D.K.; Kyr, D.

    1995-12-31

    Florida Power & Light Company (FPL) supplies electricity to about half of the population of Florida, roughly 6.5 million people. The load base is largely residential/business with the obvious seasonal extremes due to the climate. FPL`s generating capacity is 16,320 MW composed of 70% traditional fossil cycle, 18% nuclear, and 12% gas turbine. The system load profile coupled with bulk power purchases is such that the 400 MW class units (9 Foster Wheeler drum type units comprising 24% of total capacity) are now forced to cycle daily all year, and to come off line on weekends during the winter months. The current economic realities of power generation force utility companies to seek methods to improve plant heat rate, and FPL is no exception. FPL believed it possible to achieve the goal of lower heat rate and follow the required load demand with the 400 MW class units through the use of an advanced control strategy implemented totally within the unit`s Distributed Control System (DCS). As of the writing of this paper, the project is still ongoing. This paper will present the theory and methodology of the advanced control strategy along with the current design and implementation status and results obtained to date.

  4. System engineering of aerospace and advanced technology programs at an astronautics company (record of study)

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    An internship with the Martin Marietta Astronautics Group that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree is documented. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. A first-hand look is taken at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management: (1) The effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. (2) The restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. (3) The capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. (4) The thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. (5) The technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. The relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor are explored.

  5. Maintenance accountability, jobs, and inventory control (MAJIC) program

    SciTech Connect

    Adkisson, B P

    1990-01-01

    This document describes the operating procedures for the maintenance accountability, jobs, and inventory control (MAJIC) program for the Maintenance Management Department of the ORNL Instrumentation and Controls Division.

  6. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  7. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  8. Advanced Transport Operating System (ATOPS) control display unit software description

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  9. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  10. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1993-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decisionmaking between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. The Sensing-Knowledge-Command (SKC) fusion network is proposed as a fundamental architecture for implementing cooperative and interactive sensing and control. Simulation results are shown.

  11. Interactive and cooperative sensing and control for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Zapata, Eduardo; Schenker, Paul S.

    1992-01-01

    This paper presents the paradigm of interactive and cooperative sensing and control as a fundamental mechanism of integrating and fusing the strengths of man and machine for advanced teleoperation. The interactive and cooperative sensing and control is considered as an extended and generalized form of traded and shared control. The emphasis of interactive and cooperative sensing and control is given to the distribution of mutually nonexclusive subtasks to man and machine, the interactive invocation of subtasks under the man/machine symbiotic relationship, and the fusion of information and decision-making between man and machine according to their confidence measures. The proposed interactive and cooperative sensing and control system is composed of such major functional blocks as the logical sensor system, the sensor-based local autonomy, the virtual environment formation, and the cooperative decision-making between man and machine. A case study is performed to demonstrate the feasibility of implementing the fundamental theory and system architecture of interactive and cooperative sensing and control, proposed for the new generation of teleoperation.

  12. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  13. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect

    Stooksbury, F.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  14. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  15. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  16. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  17. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  18. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  19. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  20. 15 CFR 752.11 - Internal Control Programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Internal Control Programs. 752.11... COMPREHENSIVE LICENSE § 752.11 Internal Control Programs. (a) Scope—(1) Introduction. It is through Internal Control Programs (ICPs) that the SCL holder and the consignee assure that exports and reexports are...