Science.gov

Sample records for advanced cosmic-ray composition

  1. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  2. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  3. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    SciTech Connect

    Wefel, John P.

    1999-01-22

    ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the 'knee' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control, power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.

  4. Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Wefel, John P.

    1999-01-01

    In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.

  5. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  6. Advanced cosmic-ray composition experiment for the space station (ACCESS)

    SciTech Connect

    Israel, Martin H.; Streitmatter, Robert E.; Swordy, Simon P.

    1999-01-22

    ACCESS is a large electronic cosmic-ray detector, designed for one of the zenith-pointing external attach points on the International Space Station. ACCESS addresses the fundamental astrophysical question: How do cosmic rays gain their enormous energies? It does this by combining two kinds of measurements. By determining the energy spectra of individual elements with atomic number (Z) in the interval 1{<=}Z{<=}28 up to an energy of 10{sup 15} eV, ACCESS will probe a region of the spectra where theories of supernova acceleration predict changes in the cosmic-ray element composition. By measuring individual element abundances at more moderate energies of every element in the entire periodic table, ACCESS will distinguish between competing theories of how the cosmic-ray nuclei are initially injected into the accelerator that gives them their high energies. ACCESS will identify the atomic number of incident cosmic-ray nuclei using silicon solid-state detectors Cherenkov detectors, and scintillators. It will measure the energy of heavy nuclei (Z{>=}4) with transition radiation detectors, and the energy of light nuclei (Z{<=}8) with an ionization calorimeter.

  7. The elemental and isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1982-01-01

    Galactic cosmic rays represent samples of matter from areas outside the solar system. New information regarding the elemental composition of cosmic rays has been obtained in connection with the French-Danish experiment on HEA0-3 and recent balloon experiments. The energy dependence of the source composition is considered along with a comparison of cosmic ray and solar system abundances, and the N-14 source abundance. Attention is given to cosmic ray clocks and the Mn-54 problem, advances concerning cross section measurements, and cosmic ray isotopes. The considered new observations suggest that cosmic ray elemental abundance differences from the solar system continue to be ordered by atomic parameters such as first ionization potential, at least up through Z equals 40. The isotopic composition of the cosmic ray source is found to be unlike that of the solar system.

  8. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  9. Source composition of cosmic rays

    SciTech Connect

    Silberberg, R.; Tsao, C.H. ); Shapiro, M.M. )

    1990-03-20

    A theory is developed that yields great improvement in deriving the cosmic-ray source abundances for energies below 10{sup 12} eV/u. In addition, based on the acceleration theory of Voelk and Biermann and on nucleosynthesis processes in pre-supernova stars, a theory is presented for the source composition at 10{sup 12}--10{sup 15} eV/u. The strong shock wave of young supernova remnant accelerates the wind particles of the pre-supernova red, blue supergiant stars and Wolf-Rayet (WR) stars to energies up to 10{sup 15} eV/u. They contain the nucleosynthesis products of the CNO cycle and of He-burning. They accelerate the flare particles in interstellar space. The composition below 10{sup 12} eV/u differs from that of the general stellar photosphere by: (1) Suppression of elements with a large FIP ({gt}10 eV) by a factor of 4; (2) The depletion of light nuclei (Z{le}10); (3) A large contribution of WC stars to {sup 12}C, {sup 16}O and {sup 22}Ne, with renormalization of the initial (Z{gt}2)/(Z{le}2) abundances of Prantzos et al., based on general elemental abundances.

  10. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  11. Nuclear composition of solar cosmic rays

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.

    1974-01-01

    Experimental observations of the elemental and isotopic composition of solar flare particles are discussed. Sources and characteristics of particle-emitting solar flare events are reviewed, and techniques for separating particle species are briefly described. Data are presented for the elemental composition of the solar atmosphere, and the possibility of determining the solar helium abundance from solar cosmic-ray observations is explored. The main experimental determinations of heavy element abundances at energies greater and less than 10 MeV/nucleon are summarized, and techniques for measuring the ionic charge composition of solar cosmic rays are outlined. Models explaining heavy element enhancements are described along with processes leading to gamma-ray emission during solar flare events. Observations of the rare isotopes of hydrogen and helium during solar flare events are noted, and a lower atmospheric limit is derived for nuclear reactions leading to positron decay. The possibility of investigating low-energy solar cosmic rays by measuring the relative abundances of different elements is evaluated.

  12. Elemental composition, isotopes, electrons and positrons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.

    1979-01-01

    Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.

  13. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  14. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  15. Maximum entropy analysis of cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Nosek, Dalibor; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, Jana

    2016-03-01

    We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the superposition model. We present two examples that demonstrate what consequences can be drawn for energy dependent changes in the primary composition.

  16. ECCO: The extremely heavy cosmic ray composition observer

    SciTech Connect

    Westphal, A. J.; Weaver, B. A.; Solarz, M.; Price, P. B.; Lin, C.-L.

    1999-01-22

    Using the Trek ultraheavy galactic cosmic ray collector onboard Mir, we have measured the abundances of even-Z elements from {sub 76}Os through the actinides in the galactic cosmic rays, with a charge resolution of {approx}0.45e, roughly a three-fold improvement in resolution over pioneering measurements by HEAO, Ariel, and UHCRE onboard LDEF. Building on the successful design of Trek, we plan to design and construct ECCO, a large array of BP-1 glass track-etch detectors which would be deployed on the International Space Station. ECCO, the Extremely Heavy Cosmic Ray Composition Observer, would have sufficient charge resolution and collecting power to accurately measure the abundances of the very rare actinides with respect to each other and with respect to the platinum-group. These abundance measurements will strongly distinguish between models of GCR origin. We are verifying a promising new detector concept, which would result in significant cost savings, and would have several technical advantages over previous detector configurations; also, we are testing an advanced gas-transfer hodoscope for ECCO. Finally, we are constructing mockup ECCO modules for flight testing in preparation for a launch in 2003 and supporting an accommodation and design study for ECCO at GSFC.

  17. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  18. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  19. An overview of cosmic ray research - Composition, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1988-01-01

    An overview of cosmic ray (CR) research and its relationship to other areas of high-energy astrophysics is presented. Research being conducted on the composition of cosmic rays (CRs) is examined, including the study of the solar system 'template' for CRs, CR abundances at earth, solar energetic particles, the CR elements beyond zinc, and the study of electrons, positrons, antinuclei, and of isotopic composition of CRs. Research on the CR energy spectrum and anisotropy is briefly reviewed. The study of acceleration processes, particle confinement, and propagation of CRs is addressed. Finally, the investigation of source abundances in CRs is discussed.

  20. The elemental and isotopic composition of galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1983-01-01

    A directly accessible sample of matter which originates outside the solar system is provided by galactic cosmic rays. The present investigation is primarily concerned with progress related to questions raised regarding the similarity or difference between solar system matter and matter coming from outside the solar system. The investigation takes into account U.S. contributions to this topic over the period from 1979 to 1982. The cosmic ray (CR) abundances of all the elements from H to Ni (atomic number Z=1 to 28) have now been measured. Cosmic ray source (CRS) and solar system (SS) elemental compositions are listed in a table, and the ratio of CRS to SS abundance for 21 elements is shown in a graph. There is now clear evidence from CR isotope studies that the nucleosynthesis of CRS material has differed from that of SS material.

  1. The composition of cosmic rays at high energies

    NASA Technical Reports Server (NTRS)

    Muller, Dietrich

    1989-01-01

    Measurements of the composition of the cosmic rays at high energies, and of the energy spectra of the individual components provide the basis for the understanding of the sources, of the acceleration mechanism, and of the galactic containment of these particles. A brief review of the presently available information and a recent measurement performed on the Space Shuttle to substantially extend the range of energies in which the elemental composition is known are described. Results, and recent data on the electron component of cosmic rays are discussed and summarized. The body of data now available contains several features that are difficult to explain within current models of galactic shock acceleration and 'leakly box' containment. The need for further measurements is emphasized and possible opportunities for future work are briefly discussed.

  2. Composition of primary cosmic rays near the knee

    NASA Technical Reports Server (NTRS)

    Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.

    1985-01-01

    The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.

  3. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  4. Chemical composition of primary cosmic rays with IceCube

    NASA Astrophysics Data System (ADS)

    Xu, Chen

    Ground detector arrays have been used to measure high energy cosmic rays for decades to overcome their very low rate. IceCube is a special case with its 3D deployment and unique location---the South Pole. Although all 86 strings and 81 stations of IceCube were completed in 2011, IceCube began to take data in 2006, after the completion of the first 9 strings. In this thesis, experimental data taken in 2009 with 59 strings are used for composition analysis albeit some techniques are illustrated with the 40-string data. Simulation is essential in the composition work. Simulated data must be compared against the experimental data to find the right mix of cosmic ray components. However, because of limited computing resources and complexities of cosmic rays, the simulation in IceCube is well behind the experiment. The lower and upper bounds of primary energy in simulation for events that go through IceTop and the deep arrays of IceCube are 1014 eV and 1017 eV. However, since IceCube has a threshold energy about several hundred TeV, and an upper limit of 10 18 eV, the full energy range cannot be explored in this thesis. The approach taken to the composition problem in this thesis is a 2D Bayesian unfolding. It takes account of the measured IceTop and InIce energy spectrum and outputs the expected primary energy spectrum of different mass components. Studies of the uncertainties in the results are not complete because of limited simulation and understanding of the new detector and South Pole environment.

  5. ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE

    SciTech Connect

    Liu Ruoyu; Wang Xiangyu

    2012-02-10

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultrahigh energies and provide a sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultrahigh energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  6. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  7. Low energy particle composition. [cosmic rays produced in solar system

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1975-01-01

    A review is given of current knowledge of low-energy cosmic ray particles produced in the solar system. It is argued that the notion that the sun alone can accelerate particles in the solar system must be abandoned in light of evidence that Jupiter and earth may be sources of observed low-energy particles. Measurements of the composition and energy spectra of low-energy particles during quiet times are examined, emphasizing the abundance of protons and helium and of anomalous N, O, and Ne. The abundance of heavy particles (B, C, N, O, Ne, Ca and Fe) of unknown origin in the earth magnetosphere is examined. Reported observations of Jovian electrons are discussed and solar particle events with anomalous compositions (He-3 rich events and Fe rich events) are treated in detail. Nuclear abundances of solar particles, emphasizing their temporal and spatial variations are considered together with the nature of nuclear reaction products in solar flares.

  8. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Rosenvinge, T. T. von

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  9. Voyager measurements of the isotopic composition of cosmic-ray aluminum and implications for the propagation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of aluminum in the low-energy range form 75 to 206 MeV per nucleon.This measurement was made using the high-energy telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1993 with an average solar modulation level about 497 MV, roughly the same as at Earth near sunspot minimum. We obtain approximately 430 Al events of which approximately 35 are Al-26 and 395 are Al-27. The Al isotopes were separated with an average mass resolution sigma of 0.35 amu. Our interpretation of the isotopic composition of cosmic-ray aluminum is based on a standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the latest cross sections of the New Mexico-Saclay collaboration as well as a disk-halo diffusion model. From our observed ratio Al-26/Al-27 of 8.3 +/- 2.4 % we deduce an average interstellar density of about 0.52 (+0.26, -0.2) atoms per cu cm. This density is larger than the value of 0.28 (+0.14, -0.11) atoms per cu cm we found from an analysis of the observed abundance of the longer lived Be-10 made using data from the Voyager detectors over almost the same time interval and using essentially the same propagation program.

  10. Energy Spectra and Mass Composition of Cosmic Rays in the Fractal-Like Galactic Medium

    NASA Astrophysics Data System (ADS)

    Lagutin, A. A.; Tyumentsev, A. G.; Yushkov, A. V.

    We consider the problem of the cosmic ray spectrum formation assuming that cosmic rays are produced by galactic sources. The fractional diffusion equation proposed in our recent papers is used to describe the cosmic rays propagation in interstellar medium. We show that in the framework of this approach it is possible to explain the locally observed basic features of the cosmic rays in the energy region 1010 ÷ 1020 eV: difference between spectral exponents of protons and other nuclei, mass composition variation, "knee" problem, flattening of the primary spectrum for E ≥ 1018 ÷ 1019 eV.

  11. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; VonRosenvinge, T. T.

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  12. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  13. Determination and study of the cosmic-ray composition above 100 TeV

    SciTech Connect

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeV (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.

  14. The Phosphorus, Sulfur, Argon, and Calcium Isotopic Composition of the Galactic Cosmic Ray Source

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.; Stone, E. C.; Leske, R. A.; Mewaldt, R. A.; Wiedenbeck, M. E.; Binns, W. R.; Israel, M. H.; von Rosenvinge, T. T.; de Nolfo, G. A.; Moskalenko, I. V.

    2009-04-01

    Galactic cosmic ray (GCR) measurements of the phosphorus, sulfur, argon, and calcium isotopes made by the Cosmic Ray Isotope Spectrometer aboard the Advanced Composition Explorer are reported over the energy range from ~100 to ~400 MeV nucleon-1. The propagation of cosmic rays through the Galaxy and heliosphere is modeled with constraints imposed by measurements. Isotopic source abundance ratios 31P/32S, 34S/32S, 38Ar/36Ar, and 44Ca/40Ca are deduced. The derived 31P/32S ratio is 2.34 ± 0.34 times larger than the solar system value, lending further credence to the suggestion that refractory elements are enriched in the GCRs due to the sputtering of ions off grains in the cores of superbubbles. By determining the GCR source abundances of argon (a noble gas) and calcium (a refractory), it is determined that material in grains is accelerated to GCR energies a factor of 6.4 ± 0.3 more efficiently than gas-phase material in this charge range. With this information, the dust fraction of phosphorus and sulfur in the interstellar material that is mixed with stellar ejecta to form the GCR seed material is found to be consistent with astronomical observations.

  15. TAIGA the Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy — present status and perspectives.

    NASA Astrophysics Data System (ADS)

    Budnev, N. M.; Astapov, I. I.; Bogdanov, A. G.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Gafarov, A. V.; Chvalaev, O. B.; Gorbunov, N.; Grebenyuk, V.; Grinyuk, A.; Gress, O. A.; Gress, T.; Dyachok, A. N.; Epimakhov, S. N.; Horns, D.; Ivanova, A. L.; Karpov, N. I.; Kalmykov, N. N.; Kazarina, Y. A.; Kindin, V.; Kirichkov, N. V.; Kiryuhin, S. N.; Kokoulin, R. P.; Kompaniets, K. G.; Konstantinov, E. N.; Korobchenko, A. V.; Korosteleva, E. E.; Kozhin, V. A.; Kunnas, M.; Kuzmichev, L. A.; Lenok, V. V.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Mirzoyan, R.; Monkhoev, R. D.; Nachtigall, R.; Pakhorukov, A. L.; Panasyuk, M. I.; Pankov, L. V.; Poleschuk, V. A.; Popova, E. G.; Porelli, A.; Prosin, V. V.; Ptuskin, V. S.; Petrukhin, A. A.; Rubtsov, G. I.; Rueger, M.; Samoliga, V. S.; Satunin, P. S.; Savinov, V. Yu; Semeney, Yu A.; Shaibonov, B. A., Jr.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Slunecka, M.; Spiering, C.; Sveshnikova, L. G.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Wischnewski, R.; Yashin, I. I.; Zagorodnikov, A. V.; Zurbanov, V. L.

    2014-09-01

    TAIGA stands for ``Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy'' and is a project to built a complex, hybrid detector system for ground-based gamma-ray astronomy from a few TeV to several PeV, and for cosmic ray studies from 100 TeV to 1 EeV. TAIGA will search for ``PeVatrons'' (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV-10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE — an array of wide-angle air Cherenkov stations, an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground and the TUNKA-133 air Cherenkov array.

  16. A survey of solar cosmic ray composition 1974-1978

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Von Rosenvinge, T. T.; Mcdonald, F. B.

    1980-01-01

    Data on solar particle composition from the Goddard experiment on IMP 8 now spans a period of five years. During this time, detailed abundances and spectra have been obtained for elements through the Fe group and isotopic abundances have been obtained for H and He from a number of the largest flare-associated solar particle events. In the energy range 6.7-15 MeV/nucleon, a systematic enhancement of solar cosmic ray over solar photospheric Na, Mg, Al and Si abundances relative to oxygen is shown to exist in all these large flare events. An additional enhancement of abundances in the elements beyond carbon relative to oxygen that is correlated with atomic charge (or mass) occurs in certain events and produces a variability in Fe/O greater than a factor of 10. Summed over these eight large flares, the Be/O and B/O ratios are shown to be less than 0.0002 and Li/O to be less than 0.001 between 4.2 and 15 MeV/nucleon.

  17. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  18. Energy spectra and composition of primary cosmic rays

    NASA Astrophysics Data System (ADS)

    Mueller, Dietrich; Swordy, Simon P.; Meyer, Peter; L'Heureux, Jacques; Grunsfeld, John M.

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp -2.1 provides a good description of the observed spectra of most elemental species.

  19. GALACTIC COSMIC-RAY ENERGY SPECTRA AND COMPOSITION DURING THE 2009-2010 SOLAR MINIMUM PERIOD

    SciTech Connect

    Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.; Cummings, A. C.; Davis, A. J.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.

    2013-06-20

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 {<=} Z {<=} 28 in the energy range {approx}50-550 MeV nucleon{sup -1}. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than {approx}7%, and the relative abundances changed by less than {approx}4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2{sigma}, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple ''leaky-box'' galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  20. Energy spectra and composition of primary cosmic rays

    SciTech Connect

    Mueller, D.; Swordy, S.P.; Meyer, P.; L'heureux, J.; Grunsfeld, J.M. )

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp {minus}2.1 provides a good description of the observed spectra of most elemental species. 33 refs.

  1. Composition of Ultra High Energy Cosmic Rays Observed by Telescope Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Hanlon, William; Telescope Array Collaboration

    2016-03-01

    The energy spectrum of cosmic rays exhibits several important features such as the knee (E ~10 15 . 5 eV), ankle (E ~10 18 . 7 eV), and high energy suppression (E ~10 19 . 8 eV). Cosmic ray chemical composition is the key to understanding their galactic and extragalactic sources as well as the origin of particle production and acceleration mechanisms. Energy dependent chemical composition is a fundamental input for models of cosmic ray sources and interstellar transport which may lead to competing explanations of the observed spectral features. Understanding composition will therefore allow one to distinguish between the different scenarios of cosmic ray origin, a decades old problem in astrophysics. In this talk we will describe measurements of ultra high energy cosmic ray composition performed by Telescope Array (TA) using Xmax measured in extended air showers (EAS) simultaneously observed by the TA surface array and TA fluorescence stations (called hybrid mode). Showers with primary energies above 1018 eV will be considered. We will also discuss improved methods of comparing the measured composition to EAS models.

  2. The cosmic ray composition as viewed from the chemical abundances of the solar system

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1985-01-01

    It is shown that the chemical composition of cosmic rays at their sources for the elements up to the atomic number as 80 is quite similar to that of the carbonaceous chondrites, which have been keeping the properties of the protosolar nebula. In particular, the similarity between these two compositions is significant to the elements classified as refractory and siderphile, in addition to the elements, Ca and Al. These results as cited above suggest that cosmic rays, being currently observed near the Earth, may have been accelerated from the matter with the composition similar to that which is found of these chondrites as Allende.

  3. The KASCADE-Grande observatory and the composition of very high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-11-01

    KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 — 1018 eV cosmic rays with KASCADE-Grande is presented.

  4. Elemental composition of low energy Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Ferrando, P.; Lal, N.; McDonald, F. B.

    1989-03-01

    This paper describes new measurements (at about 100 MeV/n) of elemental ratios in cosmic rays, made from Voyager 2 at about 22.5 AU. These data are characterized by a very low level of solar modulation, which results from the combination of the 1986-1987 solar minimum period and the large heliocentric distance. The data were obtained from one of the two HET telescopes on board Voyager 2, collected during 1986 and 1987; the charges were derived from a double dE/dx vs E analysis. The results on the secondary/primary elemental ratios are presented along with previous results obtained at 1 AU by IMP-8 and ISEE-3.

  5. Elemental composition of low energy Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Lal, N.; Mcdonald, F. B.

    1989-01-01

    This paper describes new measurements (at about 100 MeV/n) of elemental ratios in cosmic rays, made from Voyager 2 at about 22.5 AU. These data are characterized by a very low level of solar modulation, which results from the combination of the 1986-1987 solar minimum period and the large heliocentric distance. The data were obtained from one of the two HET telescopes on board Voyager 2, collected during 1986 and 1987; the charges were derived from a double dE/dx vs E analysis. The results on the secondary/primary elemental ratios are presented along with previous results obtained at 1 AU by IMP-8 and ISEE-3.

  6. The isotopic composition of galactic cosmic ray lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    The isotopic composition of galactic-cosmic-ray Li, Be, and B has been measured near 100 MeV/nucleon by using the University of Chicago IMP 7 and IMP 8 cosmic-ray telescopes during 1973-1975. The measured abundances allow detailed checks of models of interstellar propagation and solar modulation to be made and conclusions to be drawn concerning the spectral forms at the source and the minimum solar modulation level. For example, comparing these results with local interstellar spectra calculated by using a 'leaky box' model, it is found that if solar modulation is ignored, there is no unique leakage mean free path consistent with all the observations. However, by taking account of a sizable level of residual solar modulation, excellent agreement is obtained between the calculated and measured abundances. Thus, these isotopic abundances confirm the old hypothesis that cosmic-ray Li, Be, and B are produced as secondaries in interstellar space.

  7. Study of the ultrahigh-energy primary-cosmic-ray composition with the MACRO experiment

    SciTech Connect

    Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baldini, A.; Bam, B.B.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, P.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiera, C.; Cobis, A.; Cormack, R.; Corona, A.; Coutu, S.; DeCataldo, G.; DeMarzo, C.; De Vincenzi, M.; Di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Ficenec, D.; Forti, C.; Foti, L.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giubellino, P.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Klein, S.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lee, C.; Levin, D.; Lipari, P.; Liu, G.; Liu, R.; Longo, M.J.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Martellotti, G.; Marzari Chiesa, A.; Masera, M.; Matteuzzi

    1992-08-01

    We present the analysis of multiple-muon events collected with one supermodule (1013 h live time) and two supermodules (1195 h live time) of the MACRO detector at Gran Sasso, Italy. Multimuon rates are shown to be sensitive to primary-cosmic-ray energies between {similar to}50 TeV and several thousand TeV. Experimental data are compared with the expected rates from two composition models: a light (i.e., proton-rich) and a heavy (i.e., Fe-rich) composition. The predictions are based on a Monte Carlo simulation of the hadronic interactions of cosmic-ray nuclei, followed by a detailed tracking of the muons through the rock and the experimental apparatus. The results show good sensitivity of the MACRO detector to primary composition. The data exhibit a preference towards the light composition model.

  8. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  9. The CNO Concentration in Cosmic Ray Spectrum as Measured From The Advanced Thin Ionization Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction "target".

  10. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  11. Composition and spectrum of cosmic rays at the knee measured by the CASA-BLANCA experiment

    NASA Astrophysics Data System (ADS)

    Fowler, Joseph Westbrook

    2000-07-01

    The energy spectrum and primary composition of cosmic rays with energy between 0.25PeV and 30PeV have been studied using the CASA-BLANCA detector. In this energy range, a ``knee'' in the spectrum has been recognized for over 40 years, but the astrophysical origins of the knee remain unknown. Measuring the spectrum and elemental composition of cosmic rays near the knee can help to address the problem. The favored model of acceleration in supernova shock waves predicts that cosmic rays with energy above 10PeV are heavy nuclei. The measurements were made by BLANCA, a new array of 144 angle-integrating Cherenkov light detectors located at the CASA-MIA site in Utah. CASA data on particle density are used to find the core and direction of air showers, while BLANCA measures the lateral distribution of Cherenkov light about the core. The advantages of Cherenkov light allow BLANCA to measure shower energy with minimal composition bias and to estimate accurately the depth of shower maximum. The cosmic ray flux measured by BLANCA exhibits a knee in the range of 2-3PeV with a width of approximately 0.5 decades in primary energy. The power law indices of the differential flux above and below the knee are -2.72 +/- 0.02 and -2.95 +/- 0.02. The data on mean shower depth indicate that the composition is lighter at 3 PeV than below the knee and that it becomes heavier with increasing energy above 3PeV. Cherenkov measurements are interpreted using the predictions of the CORSIKA Monte Carlo air shower simulation coupled with each of four hadronic interaction codes (QGSJET, VENUS, SIBYLL, and HDPM). The distribution of air shower depths can be reproduced well at all energies by the QGSJET and VENUS models, and these distributions suggest the same composition trends exhibited by the mean depth of maximum results.

  12. Indications of proton-dominated cosmic-ray composition above 1.6 EeV.

    PubMed

    Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X

    2010-04-23

    We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d/d[log(E)] of 47.9+/-6.0(stat)+/-3.2(syst) g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4x10(18) eV. PMID:20482038

  13. Mass Composition of Cosmic Rays at Ultra High Energies by Yakutsk Data

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor

    2015-08-01

    The paper describes methods for the analysis of cosmic rays mass composition and results for over a large time span. The data were obtained at Small Cherenkov array over 20 year period of continuous observation and 40 - years of observations at the main Yakutsk array. The experimental data indicates changes in the MC in the energy range 1016 - 1018 eV which confirmed by results obtained by other EAS arrays.

  14. Present Status of Cosmic-Ray Spectrum and Composition Obtained by the Direct Measurements

    NASA Astrophysics Data System (ADS)

    Hareyama, Makoto; Shibata, Toru

    We report recent results on the cosmic-ray spectrum and the composition obtained by RUNJOB collaboration (RUssia-Nippon JOint Balloon collaboration). We present the preliminary spectra for individual elements from proton to iron as well as the all-particle and the average mass in the energy range 10 to ~ 1000 TeV/particle, using 95% of the total exposure, and compare them with other experimental data, particularly those recently reported by ATIC group.

  15. The elemental and isotopic composition of cosmic rays - Silicon to nickel

    NASA Technical Reports Server (NTRS)

    Young, J. S.; Freier, P. S.; Waddington, C. J.; Brewster, N. R.; Fickle, R. K.

    1981-01-01

    The reported observations were made with the aid of the Cosmic Ray Isotope Instrument System (CRISIS) which had been designed to detect and resolve the isotopes of cosmic ray nuclei with atomic numbers equal to or greater than 10. The CRISIS detector was flown on a balloon launched from Aberdeen, South Dakota on 1977 May 20. The period 1977 May 19-22 has been classified by Mason et al. (1979) as one of 'superquiet' solar activity, characterized by the lowest fluxes of low-energy solar particles ever observed. The obtained results are presented in a number of graphs and tables. It was found that the elemental and isotopic abundances of Si are solar-like. Elemental S is underabundant in the cosmic rays by a factor of approximately 3 relative to the solar system, but its isotopic composition resembles the solar composition with S-32 being the dominant isotope. Elemental Ar is virtually absent in the source, and the observed isotopic composition is consistent with a secondary origin. Elemental Ni has a solar-like abundance.

  16. Composition and spectra of primary cosmic-ray electrons and nuclei above 10 GeV

    NASA Technical Reports Server (NTRS)

    Meyer, P.

    1975-01-01

    Recent experiments have extended the knowledge of the flux and energy spectra of individual cosmic-ray components to much higher energies than had previously been accessible. Both electron and nuclear components show a behavior at high energy which is unexpected, and which carries information regarding the sources and the propagation of particles between sources and observer. Electromagnetic interactions which are suffered by the electrons in interstellar space should steepen their spectrum, a steepening that would reveal the average lifetime a cosmic-ray particle spends in the galaxy. Measurements up to 1000 GeV show no such steepening. It was discovered that the composition of the nuclear species which is now measured up to 100 GeV/nucleon changes with energy. This change indicates traversal of less interstellar matter by the high energy particles than by those of lower energy.-

  17. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 2. Mass composition of cosmic rays at ultra high energies

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor

    2015-08-01

    In the paper, we describe methods for the analysis and present results for the mass composition of cosmic rays, obtained by using these techniques over a large time span. The data were obtained at the Small Cherenkov array over a 20 - year period of continuous observation and 40 - years of observations at the main Yakutsk array. Our experimental data indicate a change in the mass composition in the energy range 1016-1018 eV and is confirmed by independent results obtained by other EAS arrays.

  18. Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness

    NASA Astrophysics Data System (ADS)

    Stapleton, James

    The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.

  19. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition

    SciTech Connect

    Blasi, Pasquale; Amato, Elena E-mail: amato@arcetri.astro.it

    2012-01-01

    In this paper we investigate the effect of stochasticity in the spatial and temporal distribution of supernova remnants on the spectrum and chemical composition of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. In particular, at high energies we assume that D(E)∝E{sup δ}, with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars, with and without accounting for the spiral structure of the Galaxy. We find that the stochastic fluctuations induced by the spatial and temporal distribution of supernovae, together with the effect of spallation of nuclei, lead to mild but sensible violations of the simple, leaky-box-inspired rule that the spectrum observed at Earth is N(E)∝E{sup −α} with α = γ+δ, where γ is the slope of the cosmic ray injection spectrum at the sources. Spallation of nuclei, even with the small rates appropriate for He, may account for small differences in spectral slopes between different nuclei, possibly providing an explanation for the recent CREAM observations. For δ = 1/3 we find that the slope of the proton and helium spectra are ∼ 2.67 and ∼ 2.6 respectively (with fluctuations depending on the realization of source distribution) at energies around ∼ 1 TeV (to be compared with the measured values of 2.66±0.02 and 2.58±0.02). For δ = 0.6 the hardening of the He spectra is not observed. The stochastic effects discussed above cannot be found in ordinary propagation calculations, such as GALPROP, where these effects and the point like nature of the sources are not taken into account. We also comment on the effect of time dependence of the escape of cosmic rays from supernova remnants, and of a possible clustering of the sources in superbubbles. In a second paper we will discuss the

  20. A large area multi-element telescope for measuring the cosmic ray isotope composition

    NASA Technical Reports Server (NTRS)

    Fisher, A. J.; Ormes, J. F.; Hagen, F. A.

    1974-01-01

    To measure the isotopic composition of cosmic rays up to Fe an instrument is needed with good isotopic resolution and a large exposure. The large geometry needed for a balloon-borne detector has been obtained with large mapped detectors and a trajectory determining spark chamber. The instrument achieves isotopic resolution only for stopping particles. For low charge particles where there is no Cerenkov response the detector works as a multiple dE/dx-Range-Energy detector. For higher charges where scintillator saturation becomes important it becomes a Cerenkov-range measurement.

  1. Cosmic ray spectrum and composition from three years of IceTop and IceCube

    NASA Astrophysics Data System (ADS)

    Rawlins, K.; IceCube Collaboration

    2016-05-01

    IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.

  2. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  3. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  4. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu; Taylor, Andrew M.; Lemoine, Martin; Waxman, Eli

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ∼20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ∼> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  5. Dependence of the muon pseudorapidity on the cosmic ray mass composition around the knee

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, Gohar; Nemati, Mohammad

    2015-11-01

    In order to identify the mass composition of cosmic rays (CRs), we have investigated the mean muon pseudorapidity (<η>) values of muonic component in extensive air showers (EASs). For this purpose we have simulated EASs by CORSIKA 7.4 code for Hydrogen, Oxygen and Iron nucleus. The energy range was selected between 1014 eV and 1016 eV with zenith angle from 0°-18°. We have compared our calculations with KASCADE muon tracking detector (MTD) measurements to obtain results on the primary mass relationship with mean muon pseudorapidity values of EASs muonic component. It is shown that after the knee energies, experimental data tend to the heavy primaries and mass composition becomes heavier. Finally, linear equations between the mass of primary and mean η values for different energies are obtained.

  6. Results and perspectives of cosmic ray mass composition studies with EAS arrays in the Tunka Valley

    NASA Astrophysics Data System (ADS)

    Prosin, V. V.; Budnev, N. M.; Chiavassa, A.; Dyachok, A. N.; Epimakhov, S. N.; Fenu, F.; Fomin, Yu A.; Gress, O. A.; Gress, T. I.; Kalmykov, N. N.; Karpov, N. I.; Korosteleva, E. E.; Kozhin, V. A.; Kuzmichev, L. A.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Monhoev, R. D.; Osipova, E. A.; Panasyuk, M. I.; Pankov, L. V.; Popova, E. G.; Ptuskin, V. S.; Semeney, Yu A.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Spiering, C.; Sulakov, V. P.; Sveshnikova, L. G.; Zagorodnikov, A. V.

    2016-05-01

    The study of the cosmic ray mass composition in the energy range 1016 - 1018 eV is one of the main aims of Tunka-133. This EAS Cherenkov array started data acquisition in the Tunka Valley (50 km from Lake Baikal) in autumn 2009. Tunka-133 provides a measurement of the EAS maximum depth (Xmax) with an accuracy of about 30 g/cm2 . Further mass composition analyses at the highest energies (1017 - 1018 eV) will be based on the comparison of primary energy measured by the radio method and the densities of charged particles measured by shielded and unshielded detectors. The high duty cycle of the common operation of the new scintillation array (Tunka-Grande) and the radio extension of the experiment (Tunka-REX) will provide a high statistics of events.

  7. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  8. The isotopic composition of neon and magnesium in the low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.; Wefel, J. P.

    1980-01-01

    The ratios Ne-22/Ne-20 and Mg-26/Mg-24 were measured in galactic cosmic rays by the IMP-7 satellite in the 60 to 230 MeV/nucleon range. The neon cosmic ray source ratio Ne-22/Ne-20 is about 0.38, which is much larger than the current solar system relationship; the Mg data agrees with the solar system isotopic ratio of 0.14 at the cosmic ray source. The Ne and Mg source ratios are explained by supernova models, and become a new constraint which should be satisfied by any model of cosmic ray origin.

  9. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  10. The puzzle of the ankle in the Ultrahigh Energy Cosmic Ray Spectrum, and composition indicators

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    The sharp change in slope of the ultra-high energy cosmic ray spectrum around 10^18.6 eV (the ankle), combined with evidence of a light but extragalactic component near and below the ankle and intermediate composition above, has proved exceedingly challenging to understand theoretically. In this talk I discuss two possible solutions to the puzzle and how they can be (in)validated.First, I present a new mechanism whereby photo-disintegration of ultra-high energy nuclei in the region surrounding a UHECR accelerator naturally accounts for the observed spectrum and inferred composition (using LHC-tuned models extrapolated to UHE) at Earth. We discuss the conditions required to reproduce the spectrum above 10^17.5 eV and the composition, which -- in our model -- consists below the ankle of extragalactic protons and the high energy tail of Galactic Cosmic Rays, and above the ankle of surviving nuclei from the extended source. Predictions for the spectrum and flavors of neutrinos resulting from this process will be presented, and also implications for candidate sources.The other possible explanation is that in actuality UHECRs are entirely or almost entirely protons, and the cross-section for p-Air scattering increases more rapidly above center-of-mass energy of 70 TeV (10 times the current LHC cm energy) than predicted in conventional models. This gives an equally good fit to the depth-of-shower maximum behavior obverved by Auger, while being an intriguing sign of new state in QCD at extremely high energy density.

  11. Fe/O ratio variations during the disturbed stage in the development of the solar cosmic ray fluxes: Manifestations of the first ionization potential effect in the solar cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Minasyants, G. S.; Minasyants, T. M.; Tomozov, V. M.

    2016-03-01

    The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n-1) have been constructed for various powerful flare events (1997-2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.

  12. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Borisov, S.; Casolino, M.; De Pascale, M. P.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Castellini, G.; Danilchenko, I. A.; De Santis, C.; and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  13. The elemental and isotopic composition of quiet time low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Smith, B.; Mcdonald, F. B.

    1983-01-01

    Isotopic abundances during several periods of solar quiet times are derived from multidimensional analysis of double dE/dX modes made with two 150 micron dE detectors and a 3000 micron stopping E detector. The spectra of the low-energy cosmic rays suggest that all the primary species of elements exhibit flux enhancements. The flux increases of 5-12 MeV/N for C, Mg, Si, and Fe are different from the anomalous components and may result from solar contamination of the quiet time data or from interplanetary acceleration processes. They may be anomalous components (ACR), although to a lesser extent than He, N, O, and Ne. The isotopic data indicate that the ACR component is predominantly N-14, O-16, and Ne-20. The isotopic compositions require that the ACRs have traversed a very limited amount of material, suggesting a local origin for them.

  14. Isotopic composition of primary cosmic rays H-Fe for ISEE-C

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1984-01-01

    The high energy cosmic ray instrument built for the International Sun-Earth Explorer is described. Some aspects of that system are critically renewed so that the experience gained in the design, construction and operation of this experiment can serve as a guide in designing future cosmic ray particle identification systems.

  15. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  16. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  17. RELATIVE COMPOSITION AND ENERGY SPECTRA OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Bene, P.

    2010-11-20

    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon{sup -1}. The isotopic ratio {sup 7}Li/{sup 6}Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  18. Results on the energy dependence of cosmic-ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.

  19. Measurement of the mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Settimo, Mariangela; Pierre Auger Collaboration

    2016-05-01

    The understanding of the nature of ultra-high energy cosmic rays is one of the most intriguing open questions for current and future observatories. With its hybrid design and huge exposure, the Pierre Auger Observatory provides valuable statistical measurements of the chemical composition of cosmic rays with energies above 1017 eV, including the search for neutral primaries such as neutrinos and photons. We report on the most recent results which are based on the accurate measurement of the depth of the shower maximum, Xmax, by the fluorescence telescopes and on the shape of the signals recorded by the water-Cherenkov detectors. The interpretation of these results in terms of mass composition is also discussed related to the hadronic interaction models used to describe the development of air showers.

  20. Measurement of the composition and energy spectrum of cosmic rays above 10 sup 15 eV

    SciTech Connect

    Berley, D. ); Ellsworth, R.W. )

    1990-03-20

    The availability of a launch vehicle with the capability of carrying a heavy payload, would make possible several definitive experiments including: (1) the determination of the composition and energy spectrum of cosmic rays up to 10{sup 12} electron volts (eV) (2) the observation of gamma rays from compact sources, up to energies of 10{sup 12} eV. The instrument proposed, weighing about 30 tons, is designed to address these fundamental questions.

  1. The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1975-01-01

    The isotopes of cosmic-ray Li, Be, and B near 100 MeV per nucleon have been measured with cosmic-ray telescopes on board the IMP-7 and IMP-8 satellites during 1973 and 1974. The measured isotopic abundances provide a stringent test for models of interstellar propagation and solar modulation. It is found that the isotopic abundances can be explained using a steady-state interstellar propagation model with a 5-g/sq cm leakage mean free path. These results, taken along with Be-10 abundance measurements, indicate a longer lifetime for cosmic rays than that predicted by the usual assumption of an average interstellar density of 1 to 3 atoms per cu cm.

  2. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  3. ISOTOPIC COMPOSITION OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Berges, P.

    2011-08-01

    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios {sup 2}H/{sup 4}He, {sup 3}He/{sup 4}He, {sup 6}Li/{sup 7}Li, {sup 7}Be/({sup 9}Be+{sup 10}Be), and {sup 10}B/{sup 11}B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.

  4. The isotopic composition of hydrogen and helium in low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1976-01-01

    The isotopes H-2 and He-3 have been identified in low-energy cosmic rays during solar-quiet periods from 1973 January to 1974 October. These observations, made with the electron/isotope spectrometer on IMP-7, cover the energy intervals 5-29 MeV per nucleon for H-2 and 7-50 MeV per nucleon for He-3. The energy spectra of H-1, H-2, and He-3 fall rapidly with decreasing energy, giving H-2/H-1 and He-3/H-1 ratios which are essentially independent of energy as expected from current theories of the solar modulation of galactic cosmic rays. The measured He-4 spectrum, however, is essentially flat below 40 MeV per nucleon, suggesting that there may be contributions from a local, nonsolar source of He-4. Comparisons of the H-1, H-2, and He-3 observations with calculated spectra at 1 AU imply a mean interstellar path length of 7 plus or minus 2 g/sq cm. However, present low-energy measurements of H and He isotopes at 1 AU do not discriminate between possible cosmic-ray source spectra.

  5. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  6. A study of the ultrahigh-energy cosmic ray mass composition with the MACRO and EAS-TOP experiments

    NASA Astrophysics Data System (ADS)

    Coutu, Stephane

    Two components of cosmic-ray-induced air showers are measured simultaneously at the Gran Sasso Laboratory: the electromagnetic shower at the ground surface by the EAS-TOP extensive air shower array, and the deep-underground muons by the MACRO experiment. The two independent data sets collected during 96.3 days of simultaneous running are combined, and underground muon multiplicity distributions are obtained for anticoincident events (no surface trigger) and high-energy, coincident events. These categories correspond to ranges in primary energy from about 2 x 103 GeV to a few times 105 GeV, and from about 1.5 x 105 GeV to about 107 GeV, respectively. The experimental shower size and muon multiplicity distributions, as well as the distribution of mean muon multiplicity as a function of shower size (N-barmu -- log(Ne) relation), are compared to the ones obtained with detailed Monte Carlo calculations (with a generator based on recent hadronic accelerator data) using various trial compositions as input. This is done in an effort to discriminate between these models of primary cosmic-ray mass composition at and above the 'kneel' in the all-particle spectrum, where contradictory experimental evidence exists and where a knowledge of the composition would bear upon possible mechanisms for cosmic-ray acceleration and propagation. Detailed studies of simulated anticoincident event rates (which arise from a region of primary energy where the composition has been measured directly by satellite and balloon experiments) uncover problems with the generator used, with between 25 and 40 percent too few high-energy muons created. This, combined with the dependence of absolute event rates on the assumed differential primary energy spectra, hampers the interpretation in terms of composition of underground muon or surface air shower data taken separately. However, the N-barmu -- log(Ne) relation is independent of the spectra or overall Monte Carlo normalization problems. The simulated

  7. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1982-01-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  8. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Astrophysics Data System (ADS)

    Price, P. B.

    1982-06-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  9. A composition dependent energy scale and the determination of the cosmic ray primary mass in the ankle region

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Etchegoyen, A.; Melo, D.; Sanchez, F.

    2015-08-01

    At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays. The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to

  10. Advanced digital self-triggering of radio emission of cosmic rays

    NASA Astrophysics Data System (ADS)

    Ruehle, Christoph; Pierre Auger Collaboration

    2012-01-01

    Radio detection provides information about the electromagnetic part of an air shower in the atmosphere complementary to that obtained by water-Cherenkov detectors predominantly sensitive to the muonic content of an air shower at ground. For the measurement of ultra-high-energy cosmic rays (UHECR) by the detection of their coherent radio emission, several test setups have been developed and deployed at the Pierre Auger Observatory in Argentina. However, these UHECR radio pulses are significantly polluted by man-made radio frequency interferences (RFI). This requires a special design of antennas, analog, data acquisition (DAQ), and communication electronics, which are under investigation at the Pierre Auger Observatory. In large-scale detector arrays sophisticated self-triggering methods are necessary, to use the limited available communication data rate efficiently. This paper gives an overview of the electronics and self-triggering methods used in the test setups at the Pierre Auger Observatory and describes the experiences gained so far.

  11. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  12. Cosmic rays: the spectrum and chemical composition from 1010 to 1020 eV

    NASA Astrophysics Data System (ADS)

    Todero Peixoto, C. J.; de Souza, Vitor; Biermann, Peter L.

    2015-07-01

    The production of energetic particles in the universe remains one of the great mysteries of modern science. The mechanisms of acceleration in astrophysical sources and the details about the propagation through the galactic and extragalactic media are still to be defined. In recent years, the cosmic ray flux has been measured with high precision in the energy range from 1010 to 1020.5 eV by several experiments using different techniques. In some energy ranges, it has been possible to determine the flux of individual elements (hydrogen to iron nuclei). This paper explores an astrophysical scenario in which only our Galaxy and the radio galaxy Cen A produce all particles measured on Earth in the energy range from 1010 to 1020.5 eV . Data from AMS-02, CREAM, KASCADE, KASCADE-Grande and the Pierre Auger Observatories are considered. The model developed here is compared to the total and if available to the individual particle flux of the experiments considered.The flux of each element as determined by AMS-02, CREAM, KASCADE and KASCADE-Grande and the mass sensitivity parameter Xmax measured by the Pierre Auger Observatory above 10^ eV are also explored within the framework of the model. The transition from 1016 to 1018 eV is carefully analyzed. It is shown that the flux measured in this energy range suggest the existence of an extra component of cosmic rays yet to be understood.

  13. Spectrum and mass composition of cosmic rays in the energy range 1015-1018 eV derived from the Yakutsk array data

    NASA Astrophysics Data System (ADS)

    Knurenko, S. P.; Sabourov, A.

    2013-06-01

    A spectrum of cosmic rays within energy range 1015 - 3 × 1017 eV was derived from the data of the small Cherenkov setup, which is a part of the Yakutsk complex EAS array. In this, work a new series of observation is covered. These observations lasted from 2000 till 2010 and resulted in increased number of registered events within interval 1016-1018 eV, which in turn made it possible to reproduce cosmic ray spectrum in this energy domain with better precision. A sign of a thin structure is observed in the shape of the spectrum. It could be related to the escape of heavy nuclei from our Galaxy. Cosmic ray mass composition was obtained for the energy region 1016-1018 eV. A joint analysis of spectrum and mass composition of cosmic rays was performed. Obtained results are considered in the context of theoretical computations that were performed with the use of hypothesis of galactic and meta-galactic origin of cosmic rays.

  14. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  15. The isotopic composition of hydrogen and helium in low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1975-01-01

    The Caltech Electron/Isotope Spectrometer on IMP-7 has been used to identify the isotopes H-2 and He-3 in low energy cosmic rays during solar quiet periods from October 1972 to October 1974. These observations cover the energy intervals 5 to 29 MeV/nuc for H-2 and 7 to 50 MeV/nuc for He-3. The energy spectra of H-1, H-2, and He-3 all fall rapidly with decreasing energy, giving H-2/H-1 and He-3/H-1 ratios essentially independent of energy as expected from adiabatic acceleration. The measured He-4 spectrum, however, was essentially flat over this energy interval, and therefore the H-2/He-4 ratio observed at 1 AU is not simply related to the interstellar abundances of these nuclei. However, comparisons of the H-2/H-1 and He-3/H-1 ratios with calculated spectra are possible.

  16. Cerenkov x total energy telescopes for the study of the mass composition of cosmic rays

    NASA Technical Reports Server (NTRS)

    Webber, W. R.

    1980-01-01

    The mass resolution attainable with cosmic ray telescopes employing Cerenkov counters for velocity measurement was examined. It is shown that in most cases, the limiting mass resolution is determined by the resolution of the Cerenkov counter. The resolution achieved in the UNH telescope flown on a balloon in 1977 is studied as a function of charge and energy. This telescope determines the mass using the Cerenkov x total energy technique. It is shown that the mass resolution for heavier nuclei can be accurately predicted using the response of the Cerenkov counter to sea level mu-mesons. The actual in flight resolution for heavier nuclei, including broadening effects, may be predicted using the beta = 1 Cerenkov distributions, and independently by studying the distribution function of the differences of the two banks of photomultipliers employed on each Cerenkov counter.

  17. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  18. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  19. Development of cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It is pointed out that most advances of cosmic-ray physics have been directly related to the development of observational techniques. A review is presented of the history of the evolution of the techniques and equipment for the study of cosmic-ray physics, taking into account the new scientific advances accompanying each new development related to experimental technology. All of the early observations were performed by means of ionization chambers. These chambers had already been in use for a number of years, when they were first applied to the study of cosmic rays in the early years of this century. However, an application to the low-intensity cosmic radiation required special refinements. Attention is given to the design of suitable electrometers, the development of self-recording instruments, the 'tube counter', the development of the coincidence method, a cosmic-ray 'telescope', a magnetic lens for cosmic rays, an arrangement of Geiger-Mueller counters for the demonstration of secondary radiation, cloud chambers, scintillation counters, and air shower experiments.

  20. Composition of primary cosmic rays near the bend from a study of hadrons in air showers at sea level

    NASA Technical Reports Server (NTRS)

    Mincer, A. I.; Freudenreich, H. T.; Goodman, J. A.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Berley, D.

    1985-01-01

    Data on hadrons in air showers arriving at sea level were studied to find sensitivity to primary cosmic ray composition. The rate of showers which satisfy minimum shower density and hadron energy requirements as well as the rate of showers containing hadrons delayed with respect to the electron shower front are compared to Monte Carlo simulations. The data on the rate of total triggers and delayed hadrons are compared to predicted rates for two models of primary composition. The data are consistent with models which require an increasing heavy nuclei fraction near 10 to the 15th power eV. The spectra which are consistent with the observed rate are also compared to the observed shower size spectrum at sea level and mountain level.

  1. A study of galactic cosmic ray propagation models based on the isotopic composition of the elements lithium, beryllium and boron

    NASA Technical Reports Server (NTRS)

    Hinshaw, G. F.; Wiedenbeck, M. E.; Greiner, D. E.

    1982-01-01

    A good test for a cosmic ray propagation model is its ability to predict the abundances of the light secondary nuclei lithium, beryllium, and boron. By using measured isotopic abundances of lithium, beryllium, and boron, Garcia-Munoz et al. (1979) were able to place limits on three important parameters of a leaky box propagation model. The considered parameters include the source spectral parameter, the leakage mean free path, and the characteristic adiabatic energy loss due to solar modulation. The present investigation is concerned with a critical evaluation of the information which can be deduced about these parameters from isotopic composition alone, taking into account the effects of uncertainties in the spallation cross section data.

  2. First Measurements of Cosmic Ray Composition from 1-50 PeV using New Techniques on Coincident Data from the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Andeen, Karen Grace

    The precise measurement of cosmic ray mass composition in the region of the knee (˜3 PeV) is critical to understanding the origin, acceleration and propagation of high energy cosmic rays. At energies up to 100 TeV, the mass composition of cosmic rays can be measured directly; however, due to the low flux, the mass composition above 100 TeV must currently be gleaned from indirect measurements, involving the examination of the extensive air shower produced by the primary particle in the atmosphere. By utilizing more than one component of the air shower, an analysis technique has been developed to simultaneously measure both the energy spectrum and the composition of the cosmic ray primaries. At the South Pole we use the surface air shower array, IceTop, and the in-ice array, IceCube, to simultaneously measure the electromagnetic and muonic components of the extensive air showers, respectively. We develop a neural network mapping combined with a minimization technique to obtain a measurement of primary energy and mean log mass. We observe a knee in the energy spectrum around 5 PeV and a strongly increasing mass through the knee.

  3. High energy cosmic ray physics with underground muons in MACRO. II. Primary spectra and composition

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    Multimuon data from the MACRO experiment at Gran Sasso have been analyzed using a new method, which allows one to estimate the primary cosmic ray fluxes. The estimated all-particle spectrum is higher and flatter than the one obtained from direct measurements but is consistent with EAS array measurements. The spectral indexes of the fitted energy spectrum are 2.56{plus_minus}0.05 for E{lt}500 TeV and 2.9{plus_minus}0.3 for E{gt}5000 TeV with a gradual change at intermediate energies. The average mass number shows little dependence on the primary energy below 1000 TeV, with a value of 10.1{plus_minus}2.5 at 100 TeV. At higher energies the best fit average mass shows a mild increase with energy, even though no definite conclusion can be reached taking into account errors. The fitted spectra cover a range from {approximately} 50 TeV up to several thousand TeV. {copyright} {ital 1997} {ital The American Physical Society}

  4. Isotopic composition of low energy beryllium in the galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1974-01-01

    The multielement charged-particle telescope on the IMP-5 satellite obtained data essentially continuously for more than three years in the interplanetary medium under stable instrument conditions which have made it possible to separate the H, He, and Be isotopes in the galactic cosmic radiation using the technique of double dE/dx vs residual E and particle range measurements. Special emphasis is placed on demonstrating that in the energy range from 50 to 150 MeV/nucleon the instrument clearly resolved Be-7 vs Be-9. A detailed analysis of approximately 100 Be events collected over the mission lifetime yields the ratios (Be-7/Be) = 0.50 plus or minus 0.07, (Be-9/Be) = 0.41 plus or minus 0.10, and (Be-10/Be) = 0.09 plus or minus 0.10. These results are consistent with current models of galactic cosmic ray propagation after taking account of the effects of solar modulation.

  5. A ready-to-use galactic cosmic ray model

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Mrigakshi, Alankrita I.; Reitz, Günther

    2013-02-01

    Galactic cosmic ray nuclei close to Earth are of great importance in different fields of research. By studying their intensity in near-Earth interplanetary space and modeling their modulation in the heliosphere it is possible to gain knowledge both about the structure of the heliosphere and the transport processes within. Additionally, secondary phenomena like cloud formation, ionization processes in the atmosphere, cosmogenic nuclide production and radiation exposure in space and at aviation altitudes are related to the intensity of the galactic cosmic rays and their modulation in the heliosphere. In order to improve the knowledge about these processes and underlying mechanisms it is often beneficial to perform numerical simulations. A necessary prerequisite for such simulations is a model describing the galactic cosmic ray intensities for all particle types and energies of importance. Several of these models exist in the literature. However, many of these do not provide essential characteristics like the description of heavier nuclei or it is difficult to associate them to recent or actual solar modulation conditions. In this work a model is presented which describes the galactic cosmic ray spectra of nuclei based on a single parameter. The values of this parameter for different solar modulation conditions are derived from measurements of the Advanced Composition Explorer (ACE) spacecraft and Oulu neutron monitor count rates. Comparing the galactic cosmic ray spectra predicted by the model to a comprehensive set of experimental data from literature shows very good agreement.

  6. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fountain, W. F.; Holynski, R.; Derrickson, J. H.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iwai, J.; Jones, W. V.

    1985-01-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  7. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Astrophysics Data System (ADS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-08-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  8. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  9. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  10. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    NASA Astrophysics Data System (ADS)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  11. The cosmic ray spectrum and composition measured by KASCADE-Grande between 1016 eV and 1018 eV

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2014-11-01

    The shape and composition of the primary spectrum of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic cosmic rays. Besides the well known knee and ankle features, the recent results of KASCADE-Grande indicate that the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2 × 1016 eV and a steepening at 1017 eV. The average mass composition gets heavier after the knee till 1017 eV where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017 eV has been measured as well. In this paper the major results obtained so far by the KASCADE-Grande experiment are reviewed.

  12. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  13. Cosmic ray composition between 10 to the 15th power - 10 to the 17th power eV obtained by air shower experiments

    NASA Technical Reports Server (NTRS)

    Muraki, Y.

    1985-01-01

    Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.

  14. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  15. Sensitivity of the ARGO-YBJ Strip Size Spectrum to Different Models of the Primary Cosmic Ray Composition in the Energy Range 10-500 TeV

    NASA Astrophysics Data System (ADS)

    Saggese, L.; Di Sciascio, G.; Iacovacci, M.; Mastroianni, S.; Vernetto, S.; ARGO-YBJ Collaboration

    2003-07-01

    The ARGO-YBJ experiment is currently under construction at the Yangba jing Cosmic Ray Lab oratory (4300 m a.s.l.). The detector will cover 74 × 78 m2 with a single layer of Resistive Plate Counters (RPCs), surrounded by a partially instrumented guard ring. Signals from each RPC are picked-up with 80 read out strips 6 cm wide and 62 cm long. These strips allow one to count the particle number of small size air showers. In this paper we discuss the digital response of the detector for showers with core located in a small fiducial area inside the carp et. The results enable us to assess the sensitivity of the strip size spectrum measurement to discriminate between different models of the Primary Cosmic Ray composition in the energy range 10 ÷ 500 T eV .

  16. Satellite measurements of the charge composition of solar cosmic rays in the 6 less than or equal to Z less than or equal to 26 interval

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Vonrosenvinge, T. T.; Mcdonald, F. B.

    1972-01-01

    The charge composition of solar cosmic rays were measured during two flares occurring in April and September 1971. The results were derived from a solid state dE/dx vs E telescope which was part of the cosmic ray experiment on the IMP 6 spacecraft. The data suggest that the helium to medium ratio may be varying from one flare to the next. The abundance ratios (normalized to oxygen) are compared with measurements of other investigators and significant disagreements are found. In particular, the data do not exhibit any systematic enhancement of heavy nuclei with respect to the spectroscopic abundances such as previously reported. Finally, the results are compared with the spectroscopically determined coronal and photospheric values, and again several important differences between the two sets of data are found.

  17. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  18. Origin of high energy Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.

    1990-01-01

    The flux of cosmic ray antiprotons and the chemical composition in the region of the 'knee' of the cosmic ray energy spectrum are discussed. The importance of a direct determination of the energy spectrum of each major component of cosmic radiation through the knee region is stressed, and the necessary kinds of experiments are described. It is emphasized that antiprotons are a unique probe of acceleration and propagation of energetic particles in the galaxy because of the high threshold for their production.

  19. Interpreting cosmic ray spectra and composition above 100 TeV

    SciTech Connect

    Gaisser, T.K.

    1995-07-10

    Cosmic radiation which have energies above 100 TeV are discussed. Exam of the possible sources of such high energy particles are given. Also, measurement of high energy muons in air showers as a probe of composition in the 10{sup 14} to 10{sup 17} eV region of the spectrum is discussed. Finally, a description of a simulation used to analyze the 10{sup 17} to 10{sup 19} eV energy region of the spectrum is given. In this higher energy region evidence for a transition to a new population of particles exists. (AIP) {copyright}{ital American} {ital Institute} {ital of} {ital Physics} 1995

  20. Energy dependence of cosmic ray composition above 10(15) GeV/nucleus

    NASA Technical Reports Server (NTRS)

    Linsley, J.; Fichtel, C. E.

    1985-01-01

    It is argued that above 10 to the 5th power GeV/nucleus, in the range where charge-resolved spectra have not yet been determined, the appropriate measures of equal-energy composition are 1nA and 1nA , the mean value and dispersion relative to the mean value and dispersion relative to the mean of 1nA, where A is the mass number. Experimental data which are sensitive to changes in 1nA with increasing energy are examined. It is found that, taken as a whole, they show no change (+ or 0.5) between 10 to the 5th power and 10 to the 6th power GeV, and a decrease of 1.5 + or - 0.5 between 10 to the 6th power and 10 to the 8th power GeV, with no further change + or - 0.5) above 10 to the 8th power GeV. Taken as a whole, the various indirect estimates of the absolute value of 1nA above 10 to the 5th power GeV/nucleus are also consistent with this pattern. For a wide range of astrophysically plausible composition models the value of the other measure, 1nA is insensitive to changes in 1nA . Because of this the existing data on 1nA can likewise easily be reconciled with this pattern.

  1. Basic Research on the Composition of Heavy Cosmic Rays: The Trans-Iron Galactic Element Recorder Experiment (TIGER)

    NASA Technical Reports Server (NTRS)

    Binns, W. Robert

    2004-01-01

    Among the most fundamental astrophysical problems is understanding the mechanism by which particles are accelerated to the enormous energies observed in the cosmic rays. That problem can be conveniently divided into two questions: (1) What is the source of the energy and the mechanism for converting the energy of that source into the energy of individual cosmic-ray nuclei, and (2) what is the source of the material that is accelerated and the mechanism for injecting that material into the cosmic-ray accelerator? There is a general consensus that the answer to the first of these questions, for nuclei with energy eV, is that the source of their energy is almost certainly from supernova explosions (e.g., Ginzburg & Syrovatskii, 1964). The answer to the second question is still uncertain, although evidence in favor of a superbubble origin of cosmic rays is becoming quite significant (Higdon et al, 2203 and Binns, 2005 (Submitted to ApJ). There are several ways of interpreting available data that lead to quite different models for the source of the material and its injection mechanism. With the The Trans-Iron Galactic Element Recorder Experiment (TIGER) instrument we have obtained data that will help to distinguish among these possible models. In the report, the TIGER flights, the instrument itself, results, and a publication list as a result of the work are presented.

  2. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  3. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  4. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    SciTech Connect

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.; Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.

    2010-11-01

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from {approx}70 to {approx}450 MeV nucleon{sup -1}, near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside {approx}20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  5. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  6. Record Intensities of Galactic Cosmic Rays in 2009

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Davis, Andrew; Lave, Kelly; Leske, Richard; Wiedenbeck, Mark; Binns, Walter; Cummings, A. C.; Israel, Martin; Stone, E. C.; von Rosenvinge, Tycho

    Data from the Advanced Composition Explorer (ACE) show that in late 2009 the galactic cosmic ray (GCR) intensity at 200 MeV/nuc (near the peak in the spectrum at 1 AU) reached the highest intensities of the space era. During mid-2007 GCR intensities had apparently leveled off at intensities comparable to those measured in the 1976-77 and 1997-1998 solar minima, and the onset of new solar activity was expected in 2008. Instead, solar-minimum conditions continued, and the GCR intensity began to increase again in early 2008. By the end of 2009 the 200 MeV/nuc intensities of the major species from C to Fe were all about 20 percent above those in the 1997-1998 solar minimum. Comparisons with earlier spacecraft data show conclusively that the GCR intensities late 2009 were the highest of the space era. However, viewed in the context of the long-term Be-10 record, the space era has experienced a below-average cosmic-ray intensity. The record-setting intensity levels are likely due to a combination of factors that include the weakened interplanetary magnetic field strength, the reduced solar wind speed and dynamic pressure, and the extended solar minimum conditions. In addition, during alternate solar minima, including the present one, the drift pattern of cosmic rays in the heliosphere is sensitive to the tilt of the interplanetary magnetic current sheet, which gradually declined during 2008-2009, eventually reaching 10 degrees. This paper will compare the 2009 cosmic ray intensities with those from the past 50 years and with the long-term archival record, and discuss the role of the various solar-wind parameters in modulating the near-Earth cosmic ray intensity.

  7. Electron and muon parameters of EAS and the composition of primary cosmic rays in 10(15) to approximately 10(16) eV

    NASA Technical Reports Server (NTRS)

    Cheung, T.; Mackeown, P. K.

    1985-01-01

    Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.

  8. New approach to cosmic ray investigations above the knee

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  9. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  10. Updated Computational Model of Cosmic Rays Near Earth

    NASA Technical Reports Server (NTRS)

    ONeill, Patrick M.

    2006-01-01

    An updated computational model of the galactic-cosmic-ray (GCR) environment in the vicinity of the Earth, Earth s Moon, and Mars has been developed, and updated software has been developed to implement the updated model. This model accounts for solar modulation of the cosmic-ray contribution for each element from hydrogen through iron by computationally propagating the local interplanetary spectrum of each element through the heliosphere. The propagation is effected by solving the Fokker-Planck diffusion, convection, energy-loss boundary-value problem. The Advanced Composition Explorer NASA satellite has provided new data on GCR energy spectra. These new data were used to update the original model and greatly improve the accuracy of prediction of interplanetary GCR.

  11. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  12. Studies of low-energy Galactic cosmic-ray composition at 22 AU. I - Secondary/primary ratios

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Lal, N.; Mcdonald, F. B.; Webber, W. R.

    1991-01-01

    Data from the High Energy Telescope of the CRS experiment on Voyager 2 have been used to measure the intensity, spectra, and elemental abundances of Galactic cosmic rays from Be to Ni at about 100 MeV/n. The charge resolution of this telescope varies from sigma = 0.034 for oxygen to sigma = 0.11 for iron. The solar modulation deceleration parameter Phi relevant for these data is estimated to be around 300 MV (Phi = 150 MeV/n for particles with A/Z = 2), an unprecedently low level for such measurements. This low modulation parameter is a result of the measurements being made in the outer heliosphere at a heliocentric distance of 22 AU, and centered on the solar minimum period of cycle 21. The results on secondary/primary ratios are used to test the Leaky-Box model of cosmic ray propagation, using the most recent cross sections data in hydrogen and helium, and taking into account the effects of the ionized fraction of the interstellar medium. It is found that all the secondary/primary ratios up to P/S are completely consistent with an exponential pathlength distribution (PLD). This PLD shape also accounts for the Sc-V/Fe ratio.

  13. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  14. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  15. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  16. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  17. Heliolatitude distribution of galactic cosmic rays

    SciTech Connect

    Antonucci, E.; Attolini, M.R.; Cecchini, S.; Galli, M.

    1985-08-01

    An analysis of the annual and semiannual variation of the galactic cosmic ray intensity has been performed for the period 1953-1979 by using the data from the Climax and Dourbes neutron monitors. This analysis, based on a method developed for searching periodicities and recurrences in the cosmic ray intensity, has confirmed the existence of such variations and their phase changes associated with the reversals of the solar magnetic dipole. Hence the importance in the cosmic ray transport of transverse diffusion arising from drift effects due to the curvature and gradient of the interplanetary magnetic field is confirmed, since this is the mechanism which can explain the dependence on the solar magnetic cycle. Such a mechanism is effective when the polarity configuration of the interplanetary magnetic field is well defined and stable. A phase advance of the semiannual variation is observed, which can be explained through the modulation of the heliolatitude distribution of cosmic rays by the activity of the solar magnetic regions migrating in both hemispheres toward the equator, during the 11-year cycle of solar activity. A residual annual variation, detectable when averaging out the effects of the magnetic cycle or when the polarity configuration of the interplanetary magnetic field is not well defined, probably indicates the existence of a preferential azimuthal direction for the access of low-energy galactic cosmic rays into the heliosphere, along the galactic magnetic field.

  18. The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.

    1985-01-01

    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.

  19. The isotopic composition of cosmic-ray helium from 123 to 279 MeV per nucleon - A new measurement and analysis

    NASA Technical Reports Server (NTRS)

    Leech, H. W.; Ogallagher, J. J.

    1978-01-01

    A description is given of an experiment which was designed to measure the spectra and composition of cosmic-ray hydrogen and helium isotopes in the interval 120-280 MeV per nucleon to compare with the recent values observed at low energies and also with the only earlier measurement in this high-energy regime. The results presented were obtained during a high-altitude balloon flight from Thompson, Manitoba, in 1973 August. This flight occurred during the period in which the presence of the anomalous component in the helium spectrum became apparent, and provides the opportunity of determining whether this component extends to higher energies than those studied by satellite experiments. The results place an upper limit on the flux of 'anomalous' He-4 (which appeared at low energy in 1972) of at most 15% in the energy range of this experiment, and combined with the low-energy observations of the Chicago group, show an energy dependence of the average ratio of the helium isotopes in the modulated cosmic rays which is difficult to reconcile with current modulation models.

  20. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  1. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  2. The HEAO-3 Cosmic Ray Isotope spectrometer

    NASA Technical Reports Server (NTRS)

    Bouffard, M.; Engelmann, J. J.; Koch, L.; Soutoul, A.; Lund, N.; Peters, B.; Rasmussen, I. L.

    1982-01-01

    This paper describes the Cosmic Ray Isotope instrument launched aboard the HEAO-3 satellite on September 20, 1979. The primary purpose of the experiment is to measure the isotopic composition of cosmic ray nuclei from Be-7 to Fe-58 over the energy range 0.5 to 7 GeV/nucleon. In addition charge spectra will be measured between beryllium and tin over the energy range 0.5 to 25 GeV/nucleon. The charge and isotope abundances measured by the experiment provide essential information needed to further our understanding of the origin and propagation of high energy cosmic rays. The instrument consists of 5 Cerenkov counters, a 4 element neon flash tube hodoscope and a time-of-flight system. The determination of charge and energy for each particle is based on the multiple Cerenkov technique and the mass determination will be based upon a statistical analysis of particle trajectories in the geomagnetic field.

  3. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  4. Gamma Rays, Cosmic Rays, and Extinct Radioactivity in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Jin, Liping

    1995-10-01

    We investigate causal connection between two astonishingly big numbers: the very large 26Al concentration (5 × 10-5 of 27Al) in the early solar system and the very large nuclear excitation rate in Orion clouds. We present three separate pictures attributing 26Al within the early solar system and other molecular cloud cores to special cosmic-ray irradiation of those cloud cores. These pictures reinterpret the large 26Al/27Al ratio found in the early solar accretion disk, and seem not to be relevant to the present interstellar 1.5 Msun of 26Al. These three pictures of cosmic-ray irradiation of molecular clouds accounting for their high 26Al content are: 1. High flux of low-energy cosmic ray 0, Na, Mg, and Si nuclei stopping in the clouds with partial conversion to 26Al by nuclear interactions while they stop (Clayton 1994); 2. Stopping of low-energy galactic cosmic rays, which are known (at 100 MeV nucleon-1) to carry the very large activity 26Al/27Al = 0.1 and which we argue to be absorbed by cloud cores; 3. Stopping of newly synthesized particles accelerated from local ejecta of supernovae and W-R star winds, which carry activities as great as 26Al/27Al = 0.01 from those events. In these pictures the cosmic rays may be very different in origin than the galactic cosmic rays. At low energy they are injected into clouds and stopped in the cloud cores. We normalize our expectations for massive clouds to the inelastic nuclear excitation rates of 12C*(4.43 MeV) and 16O*(6.13 MeV) gamma rays emerging from the clouds in Orion (Bloemen et al. 1994). Picture 1 is plagued by very large power requirements if the accelerated particles are predominantly hydrogen. Nonetheless, we show that several other extinct radioactivity concentrations that accompanied 26Al in the early solar system would be coproduced by ordinary cosmic-ray composition. Our most promising construction of picture 1 appears to be anomalous acceleration of 16O ions (as known from the solar wind) to several Me

  5. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGESBeta

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  6. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  7. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  8. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  9. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  10. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  11. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  12. Cosmic Rays Across the Universe

    NASA Astrophysics Data System (ADS)

    Gould Zweibel, Ellen

    2016-01-01

    Cosmic rays play an important role in the dynamics, energetics, and chemisry of gas inside and outside galaxies. It has long been recognized that gamma ray astronomy is a powerful probe of cosmic ray acceleration and propagation, and that gamma ray data, combined with other observations of cosmic rays and of the host medium and with modeling, can provide an integrated picture of cosmic rays and their environments. I will discuss the plasma physics underlying this picture, where it has been successful, and where issues remain.

  13. Cosmic ray decreases caused by interplanetary shocks observed by the Brazilian Southern Space Observatory's Multidirectional Muon Detector

    NASA Astrophysics Data System (ADS)

    Deggeroni, Vinicíus; Echer, Ezequiel; Schuch, Nelson Jorge; Dal Lago, Alisson; Da Silva, Marlos; Bremm, Tiago

    The space between the planets in the Solar System is continuously permeated by the supermagnetosonic expansion of the solar atmosphere - the solar wind. This is a magnetized plasma that carries outward the sun’s magnetic field. Furthermore, the Sun’s sporadically emits huge coronal mass ejections (CMEs) that disturb the solar wind. When the interplanetary remnants of these CMEs are faster than the local plasma magnetosonic wave speed, shock waves are driven. These shock waves are observed as abrupt variations in solar wind plasma and magnetic field parameters. As one consequence, when these shock waves pass by Earth, cosmic ray decreases are observed by ground based cosmic ray detectors. It is the aim of this work to study interplanetary shock waves effects on cosmic rays measured at ground level. Interplanetary shocks are identified and their parameters determined using the plasma and magnetic field instruments of the Advanced Composition Explorer (ACE). Cosmic rays decreases are studied using the Multidirectional Muon Detector (MMD), in operation at the Southern Space Observatory - SSO/CRS/INPE-MCTI, in São Martinho da Serra, RS, Southern Brazil. The period of analysis is from January 2006 to July 2011. In this study it is calculated the shock strength, the magnetic field and plasma density compression ratio across the shocks. Besides, the cosmic ray decrease due to the shocks is determined. Further, the amplitude of cosmic ray decreases is correlated to the shock strength. The results are compared with previous published works.

  14. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  15. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  16. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  17. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  18. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  19. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  20. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  1. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  2. Cosmic ray nuclei from extragalactic and galactic pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke

    2013-02-01

    In an extragalactic newly-born pulsar, nuclei striped off the star surface can be accelerated to extreme energies and leave the source through dense supernova surroundings. The escaped ultrahigh energy cosmic rays can explain both UHE energy spectral and atmospheric depth observations. In addition, assuming that Galactic pulsars accelerate cosmic rays with the same injection composition, very high energy cosmic rays from local pulsars can meet the flux measurements from above the knee to the ankle, and at the same time, agree with the detected composition trend.

  3. Solar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty I.

    2001-05-01

    The book summarizes the results of solar cosmic-ray (SCR) investigations since 1942. The present monograph, unlike the reviews published earlier, treats the problem in self-contained form, in all its associations - from fundamental astrophysical aspects to geophysical and astronautical applications. It includes a large amount of new data, accumulated during the last two or three decades of space research. As a result of the `information burst' in space physics, there are a lot of new interesting theoretical concepts, models, and ideas that deserve attention. The author gives an extensive bibliography which covers incompartially the main achievements and failures in this field. The book will be helpful for a wide audience of space physicists and it will be relevant to graduate and postgraduate courses.

  4. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  5. Genesis and propagation of cosmic rays

    SciTech Connect

    Shapiro, M.M.; Wefel, J.P.

    1988-01-01

    This book presents a panorama of contemporary state-of-the-art knowledge on the origin of cosmic rays and how they propagate through space. Twenty-eight articles cover such topics as objects which generate cosmic rays, processes which accelerate particles to cosmic ray energies, the interaction of cosmic rays with their environment, elementary particles in cosmic rays, how to detect cosmic rays and future experiments to measure highly energetic particles.

  6. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  7. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  8. A cosmochemical view of cosmic rays and solar particles

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1973-01-01

    The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above 15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used.

  9. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    NASA Astrophysics Data System (ADS)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  10. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  11. Cosmic ray biannual variation

    NASA Technical Reports Server (NTRS)

    Attolini, M. R.; Cecchini, S.; Cinicastagnoli, G.; Galli, M.

    1985-01-01

    The study of the cosmic ray (CR) power spectrum has revealed a significant variation with a period around 2 yr that cannot be explained as a high order harmonic of the 11 yr solar cycle. Comparative study of the correlation on different time scales between CR intensity and Rz, aa, high speed streams and polar hole size has put in evidence that a high degree of coherency exists between each couple of variables at 1.58 to 1.64 yr, except between CR and Rz. On the other hand cyclic variation on a short time scale, around 26 months, has been claimed to be present in the neutrino flux. Critical tests of this hypothesis are considered and a preliminary result seems to indicate that the hypothesis of the existence of a 1.6 yr periodicity in the neutrino data during the measurement time interval, has a significance or = 99.9%. The possible origin of this variation as due to a contribution either of CR interactions in the upper atmosphere or to the solar dynamics, are discussed.

  12. Cosmic Ray Observation for Nuclear Astrophysics:. Corona Program

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Kobayashi, M. N.

    2003-04-01

    Cosmic Ray Observation for Nuclei Astrophysics (CORONA) program is a large-scaled spacecraft or space station approach for nuclear composition of relativistic cosmic rays 10 ≦ Z ≦ 92 and of low-energy isotopes 1 ≦ Z ≦ 58 in space. A large area Spectrometer for Ultraheavy Nuclear Composition (SUNC) and a Large Isotope Telescope Array (LITA) are proposed in this program. CORONA program focuses on the composition of elements beyond the iron-peak nuclei (Z > 60) and the isotopic composition of ultraheavy particles (Z > 30) in galactic cosmic rays as well as solar and interplanetary particles. The observation of nuclear composition covers a wide range of scientific themes including studies of nucleosynthesis of cosmic ray sources, chemical evolution of galactic material, the characteristic time of cosmic rays, heating and acceleration mechanism of cosmic ray particles. Observation of solar particle events also make clear the physical process of transient solar events emitting wide range of radio, X-ray/gamma-ray, plasma and energetic particle radiation, and particle acceleration mechanism driven by CME.

  13. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  14. Numerical Cosmic-Ray Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, F.

    2009-04-01

    We present a numerical method for integrating the equations describing a system made of a fluid and cosmic-rays. We work out the modified characteristic equations that include the CR dynamical effects in smooth flows. We model the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, with a flux conserving method. For a specified shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we modify the Riemann solver to take into account the cosmic-ray mediation at shocks without resolving the cosmic-ray induced substructure. A self-consistent time-dependent shock solution is obtained by using our modified solver with Glimm's method. Godunov's method is applied in smooth parts of the flow.

  15. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables. PMID:12459578

  16. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  17. Mass composition of 10{sup 17}- to 10{sup 18}-eV primary cosmic rays according to data on the lateral distribution of radio emission from extensive air showers

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Vedeneev, O. V.

    2012-12-15

    Experimental data obtained for the lateral distribution of radio emission from extensive air showers (EAS) at the array of Moscow State University (30-34 MHz) and the LOPES array (40-80 MHz) were comparedwith the results of calculations performed within amicroscopic approach based on aMonte Carlo simulation of EAS (CORSIKA code). The same experimental data were used to reconstruct the distribution of the depth of the EAS maximum at cosmic-ray energies in the range of 1017-1018 eV. The energy dependence of the depth of the EAS maximum was constructed for the case of data from the LOPES array, and the mass composition of cosmic rays was estimated for this case. From the resulting dependences, it follows that the mass composition shows a trend toward becoming lighter in the energy range being considered.

  18. Nonlinear Transport of Cosmic Rays in Turbulent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yan, H.; Xu, S.

    2014-09-01

    Recent advances in both the MHD turbulence theory and cosmic ray observations call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulations, in which turbulence is injected at large scale and cascades to small scales. We shall present the nonlinear results for cosmic ray transport, in particular, the cross field transport of CRs. We demonstrate that the concept of cosmic ray subdiffusion in general does not apply and the perpendicular motion is well described by normal diffusion with M A4 dependence. Moreover, on scales less than the injection scale of turbulence, CRs' transport becomes super-diffusive. Quantitative predictions for both the normal diffusion on large scale and super diffusion on small scale are confirmed with recent numerical simulations. Implication for shock acceleration is briefly discussed.

  19. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  20. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  1. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.; Sigl, G.

    2013-06-01

    This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16-17) eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ˜ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  2. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  3. INSTRUMENTS AND METHODS OF INVESTIGATION: Electron-proton separation in calorimetry experiments directly measuring the composition and energy spectrum of cosmic rays

    NASA Astrophysics Data System (ADS)

    Voronov, Sergei A.; Borisov, Stanislav V.; Karelin, Aleksandr V.

    2009-09-01

    Calorimetric particle detectors that play an important role in high-energy cosmic-ray balloon and satellite experiments not only have the major task of measuring energy but also face the problem of identifying electrons and protons. This problem is usually solved by measuring the longitudinal and traverse shower profiles and the total energy release in the calorimeter, using the fact that electromagnetic and hadronic showers differ in their spatial and energy distributions. In this paper, electron and proton identification methods for different types of calorimeters used in cosmic-ray balloon- and satellite-borne experiments are discussed.

  4. The isotopic composition of cosmic rays with 5 is less than or equal to z which is less than or equal to 26

    NASA Technical Reports Server (NTRS)

    Fisher, A. J.; Hagan, F. A.; Maehl, R. C.; Ormes, J. F.; Arens, J. F.

    1975-01-01

    Results obtained from a high altitude balloon flight from Thompson, Canada in August, 1973 are reported. The instrument consisted of a spark chamber, a Lucite Gerenkov counter and thirteen layers of scintillators. For heavy particles the Cerenkov-range method of analysis was used to determine the mass of particles energetic enough to produce a Cerenkov signal and then stop in the layered scintillators. The data appear to be consistent with current cosmic-ray propagation models. Using a simple exponential path length propagation model this data is extrapolated to the cosmic-ray source and some implications of the data are discussed as to the nature of the source.

  5. Preliminary spectra of the primary cosmic ray nuclei from the first year of the NUCLEON experiment exposure time

    NASA Astrophysics Data System (ADS)

    Panov, Alexander

    2016-07-01

    The NUCLEON cosmic ray observatory is designed to measure high energy cosmic ray composition and energy distribution. Methods of identification of charge and energy measurement for primary cosmic ray nuclei are considered. C, O, Ne, Mg, Si, Fe energy spectra are presented and discussed. The results are obtained from the first year of the planned exposure time.

  6. Preliminary cosmic ray all-particle spectrum from the first year of the NUCLEON experiment exposure time

    NASA Astrophysics Data System (ADS)

    Podorozhny, Dmitry

    2016-07-01

    The NUCLEON cosmic ray observatory is designed to measure high energy cosmic ray composition and energy distributions. Methods of identification of charge and energy reconstruction and a preliminary cosmic ray all-particle spectrum are presented and discussed. The results are obtained from the first year of the planned exposure time.

  7. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  8. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  9. Nonlinear Cosmic Ray Diffusion Theories

    NASA Astrophysics Data System (ADS)

    Shalchi, Andreas

    Within cosmic ray transport theory, we investigate the interaction between energetic charged particles like electrons, protons, or heavy ions and astrophysical plasmas such as the solar wind or the interstellar medium. These particles interact with a background magnetic field B 0 and with turbulent electric and magnetic fields ýE and ýB, and they therefore experience scattering parallel and perpendicular to B 0. In this introductory chapter, general properties of cosmic rays are discussed, as well as the unperturbed motion of the particles. Furthermore, the physics of parallel and perpendicular scattering is investigated. At the end of this chapter, we consider observed mean free paths of cosmic rays in the heliosphere and in the interstel- lar medium. One aim of this book is to demonstrate that a nonlinear description of particle transport is necessary to reproduce these measurements.

  10. Charge composition of high energy heavy primary cosmic ray nuclei. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Price, R. D.

    1974-01-01

    A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.

  11. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  12. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  13. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  14. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  15. Cosmic rays from the ankle to the cutoff

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz; Tinyakov, Peter

    2014-04-01

    Recent advances in measuring and interpreting cosmic rays from the spectral ankle to the highest energies are briefly reviewed. The prime question at the highest energies is about the origin of the flux suppression observed at E≃4ṡ1019 eV. Is this the long-awaited GZK-effect or the exhaustion of sources? The key to answering this question will be provided by the largely unknown mass composition at the highest energies. The high level of isotropy observed even at the highest energies challenges models of a proton-dominated composition if extragalactic magnetic fields are on the order of a few nG or less. We shall discuss the experimental and theoretical progress in the field and the prospects for the next decade.

  16. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  17. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.

  18. Toward a descriptive model of galactic cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Cummings, A. C.; Adams, James H., Jr.; Evenson, Paul; Fillius, W.; Jokipii, J. R.; Mckibben, R. B.; Robinson, Paul A., Jr.

    1988-01-01

    Researchers review the elements that enter into phenomenological models of the composition, energy spectra, and the spatial and temporal variations of galactic cosmic rays, including the so-called anomalous cosmic ray component. Starting from an existing model, designed to describe the behavior of cosmic rays in the near-Earth environment, researchers suggest possible updates and improvements to this model, and then propose a quantitative approach for extending such a model into other regions of the heliosphere.

  19. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  20. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  1. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The 6 flights of the Cosmic Ray Energetics and Mass (CREAM) balloon payload over Antarctica accumulated 161 days of exposure. The instrument is configured with complementary and redundant particle detectors for direct measurements of high energy cosmic ray elemental spectra. The calorimeter and Silicon Charge Detectors (SCD) from one of the two instruments are being re-configured for the International Space Station, dubbed ISS-CREAM. The other calorimeter and detectors that are too large to fit in the ISS Japanese Experiment Module Exposed Facility envelope are kept for balloon flights. The large area Timing Charged Detector (TCD) and newly developed Transition Radiation Detector (TRD) will be used for studying the propagation history of cosmic rays by measuring relative abundances of secondary particles, e.g., Boron. This Boron and Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) balloon payload will provide in-flight cross calibration of the calorimeter and TRD for Z > 3 particles. The status of the payload construction and flight preparation will be reported.

  2. Cosmic rays and hadronic interactions

    NASA Astrophysics Data System (ADS)

    Lipari, Paolo

    2015-08-01

    The study of cosmic rays, and more in general of the "high energy universe" is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma-rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non-perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ˜ 1020 eV, or a nucleon-nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  3. Mass composition of cosmic rays with energies E 0 ≥ 1017 eV according to the data from the ground-based detectors of the Yakutsk EAS array

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Saburov, A. V.

    2015-02-01

    The lateral distribution of charged particles measured by ground-based scintillation detectors in extensive air showers (EASs) with the energy E 0 ≥ 1017 eV at the Yakutsk EAS array in 1977-2013 has been analyzed. The experimental data have been compared to the calculations within various models of the development of EASs from the CORSIKA package. The experimental data are in the best agreement with the QGSJET-01-d and QGSJET II-04 models. The mass composition of cosmic rays in the energy range (1-20) × 1017 eV changes from to a purely proton composition.

  4. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  5. Turbulent heating in solar cosmic ray theory

    NASA Technical Reports Server (NTRS)

    Weatherall, J.

    1983-01-01

    The heating of minor ions in solar flares by wave-wave-particle interaction with Langmuir waves, or ion acoustic waves, can be described by a diffusion equation in velocity-space for the particle distribution function. The dependence of the heating on the ion charge and mass, and on the composition of the plasma, is examined in detail. It is found that the heating mechanisms proposed by Ibragimov and Kocharov cannot account for the enhanced abundances of heavy elements in the solar cosmic rays.

  6. Extensive Air Showers and Cosmic Ray Physics above 1017 eV

    NASA Astrophysics Data System (ADS)

    Bertaina, Mario

    2016-07-01

    Cosmic Rays above 1017 eV allow studying hadronic interactions at energies that can not be attained at accelerators yet. At the same time hadronic interaction models have to be applied to the cosmic-ray induced air-shower cascades in atmosphere to infer the nature of cosmic rays. The reliability of air-shower simulations has become the source of one of the largest systematic uncertainty in the interpretation of cosmic-ray data due to the uncertainties in modeling the hadronic interaction driving the air-shower development. This paper summarises in the first part the recent results on the cosmic ray energy spectrum, composition and anisotropy from the knee region to the GZK cutoff [1, 2] of the spectrum by means of ground-based experiments. Most of the information reported in this contribution is taken from [3-5]. Aspects interconnecting cosmic ray and particle physics are reviewed in the second part of the paper.

  7. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  8. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-05-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  9. High Energy Cosmic Rays and Neutrinos from Newborn Pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela

    2013-04-01

    Newborn pulsars offer favorable sites for cosmic ray acceleration and interaction. Particles could be striped off the star surface and accelerated in the pulsar wind up to PeV-100 EeV energies, depending on the pulsar's birth period and magnetic field strength. Once accelerated, the cosmic rays interact with the surrounding supernova ejecta until they escape the source. By assuming a normal distribution of pulsar birth periods centered at 300,ms, we find the combined contribution of extragalactic pulsars produce ultrahigh energy cosmic rays that agree with both the observed energy spectrum and composition trend reported by the Auger Observatory. Meanwhile, we point out their Galactic counterparts naturally give rise to a cosmic ray flux peaked at very high energies (VHE, between 10^16 and 10^18 ,eV), which can bridge the gap between predictions of cosmic rays produced by supernova remnants and the observed spectrum and composition just below the ankle. Young pulsars in the universe would also contribute to a diffuse neutrino background due to the photomeson interactions, whose detectability and typical neutrino energy are discussed. Lastly, we predict a neutrino emission level for the future birth of a nearby pulsar.

  10. Cosmic ray anisotropy as signature for the transition from galactic to extragalactic cosmic rays

    SciTech Connect

    Giacinti, G.; Kachelrieß, M.; Semikoz, D.V.; Sigl, G.

    2012-07-01

    We constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z∼>10{sup 16−17} eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. Assuming sufficiently frequent Galactic CR sources, the dipole amplitude computed for a mostly light or intermediate primary composition exceeds the dipole bounds measured by the Auger collaboration around E ≈ 10{sup 18} eV. Therefore, a transition at the ankle or above would require a heavy composition or a rather extreme Galactic magnetic field with strength ∼>10 μG. Moreover, the fast rising proton contribution suggested by KASCADE-Grande data between 10{sup 17} eV and 10{sup 18} eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E∼>10{sup 18} eV, the transition energy can be close to the ankle, if Galactic CRs are produced by sufficiently frequent transients as e.g. magnetars.

  11. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.

    2000-06-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ~3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station. .

  12. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  13. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  14. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  15. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  16. Characterising CCDs with cosmic rays

    NASA Astrophysics Data System (ADS)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-01

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. Furthermore, the small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  17. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  18. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  19. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  20. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2014-08-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for ~161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from ~ 10^10 to > 10^14 eV at an average altitude of ~38.5 km with ~3.9 g/cm2 atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  1. Galactic cosmic rays and the knee - Results from the KASCADE experiment

    SciTech Connect

    Hoerandel, J.R.; Glasstetter, R.; Kampert, K.-H.; Roth, M.; Apel, W.D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Gils, H.J.; Haungs, A.; Heck, D.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.

    2005-11-22

    Results of the KASCADE air shower experiment investigating the origin of cosmic rays in the energy region from 1013 to 1017 eV are presented. Attention is drawn on the investigation of interactions in the atmosphere and the energy spectrum and mass composition of cosmic rays.

  2. Search for the end of the cosmic ray energy spectrum

    SciTech Connect

    Linsley, John

    1998-06-15

    The title I was asked to speak about expresses an idea that occurred rather recently in the history of cosmic ray studies. I argue that the idea of a possible end of the cosmic ray energy spectrum came into being after a sequence of three rapid advances in knowledge which I describe, calling them 'breakthroughs'. I suggest that the present workshop be regarded as a step toward a fourth breakthrough. I argue that this may occur through application of the Space Airwatch concept--the earth atmosphere as target and signal generator--as embodied in the NASA OWL project.

  3. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Boncioli, D.; di Matteo, A.; Grillo, A. F.; Petrera, S.; Salamida, F.

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  4. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  5. Cosmic Rays from the Knee to the Ankle

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeV to EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to extragalactic origin of cosmic rays completes this paper.

  6. Pinpointing cosmic ray propagation with the AMS-02 experiment

    SciTech Connect

    Pato, Miguel; Hooper, Dan; Simet, Melanie E-mail: dhooper@fnal.gov

    2010-06-01

    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

  7. The survival of heavy nuclei in cosmic ray source environments

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.

    1972-01-01

    Results from the Goddard balloon spectrometer and the results reported by Soviet scientists using the Proton series of satellites are summarized. The important experimental results from the balloon spectrometer experiment are as follows: (1) On a total-energy scale, protons constitute only a minor proportion of the cosmic rays, only 20 percent. The rest of the cosmic rays are complex nuclei. (2) All the nuclei have the same power low spectrum in total energy and so the composition seems to be independent of energy.

  8. Cosmic ray primary composition in the energy range 10-1000 TeV obtained by passive balloon-borne detector: Reanalysis of the RUNJOB experiment

    SciTech Connect

    Kopenkin, V.; Sinzi, T.

    2009-04-01

    We search for a consistent view on the RUNJOB experiment and present an alternative analysis based on explicitly reported and published numerical data. Here we show that there is more than one interpretation to the reported observational data. It is demonstrated that, contrary to the wide-spread opinion, the RUNJOB data are not inconsistent with an increase of the average mass near the knee region of the cosmic ray spectrum. Considering very low statistics and systematic uncertainties, especially in the high energy region, we suggest that peculiarities of the methodical origin were the most likely source of those RUNJOB conclusions which contradicted previous observations reported by other groups.

  9. Cosmic rays: Physics and astrophysics. A research briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Some recent results in cosmic-ray physics are summarized, and how they raise new questions of interest for both physics and astrophysics is described. An important technical advance, the recently demonstrated capability of long-duration balloon flights of heavy payloads, will offer a great advantage for achieving some of these goals.

  10. Electron capture decay of cosmic rays: A model of the inhomogeneous interstellar medium

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1985-01-01

    Traditional analyses of cosmic ray composition seek to identify the sources through a determination of a the isotopic abundances of these nuclei prior to acceleration. At the same time, it is both necessary and interesting to understand the nature of the medium through which cosmic rays pass before arriving at detectors. In fact, only within a model of the interstellar medium (ISM) sampled by cosmic rays can a refined estimate of source composition be made. An elaboration of the traditional model of the ISM used in studying cosmic ray propagation is explored. Inhomogeneity of the ISM is accomodated in this model. Within this model it is found that the abundances of some electron apture isotopes, are very sensitive to density inhomogeneities which might be expected in the ISM. These nuclei therefore measure the penetration of heavy cosmic rays into interstellar clouds.

  11. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Wilson, C. W.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  12. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  13. Cosmic Rays in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, M. S.

    The international heliospheric year (IHY) has the purpose to promote research on the Sun-Heliosphere system outward to the local interstellar medium - the new frontier. This includes fostering international scientific cooperation in the study of heliophysical phenomena now and in the future. Part of this process is to communicate research done on the heliosphere, especially to the scientific community in Africa. A short review is given of the numerical modeling of the heliosphere, and of the modulation of cosmic rays and how these particles are used to probe the heliosphere to understand its basic features. Projects of both a theoretical and numerical nature are proposed for the IHY.

  14. Extragalactic cosmic rays and their signatures

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2014-01-01

    The signatures of UHE proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible manifestations of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E in integral spectrum. Observed practically in all experiments since 1963, the ankle is usually interpreted as a feature caused by transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of the dip model, the shape of the dip, is well confirmed by HiRes, Telescope Array (TA), AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy Ea≈4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy-nuclei dominance at higher energies may be provided by low-energy of acceleration for protons Epmax∼4 EeV and rigidity-dependent EAmax=ZEpmax for nuclei. The highest energy suppression may be explained as nuclei-photodisintegration cutoff.

  15. Deuterium and He-3 in cosmic rays

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1989-01-01

    Observation of a large flux of antiprotons in cosmic rays prompted many to postulate new ideas relating to the origin and propagation of cosmic rays in the Galaxy, within the framework of the secondary hypothesis. Under this hypothesis, cosmic rays traverse a large amount of matter either in the source region or in the interstellar space. As a result, large amounts of deuterium and He-3 are also produced as a consequence of spallation of helium and heavier nuclei. In this paper, the spectra of these isotopes are derived, using various models for the propagation of cosmic rays and compare with the existing observations.

  16. Ionisation as indicator for cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Röken, C.; Fedrau, N.; Becker Tjus, J.

    2014-06-01

    Astrospheres and wind bubbles of massive stars are believed to be sources of cosmic rays with energies E ≲ 1 TeV. These particles are not directly detectable, but their impact on surrounding matter, in particular ionisation of atomic and molecular hydrogen, can lead to observable signatures. A correlation study of both gamma ray emission, induced by proton-proton interactions of cosmic ray protons with kinetic energies Ep ≥ 280 MeV with ambient hydrogen, and ionisation induced by cosmic ray protons of kinetic energies Ep < 280 MeV can be performed in order to study potential sources of (sub)TeV cosmic rays.

  17. Anuradha and low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Durgaprasad, N.; Mitra, Banashree; Dutta, A.

    1993-01-01

    After critically reviewing observational results obtained by astronomical spacecraft in the interplanetary medium for several aspects of galactic cosmic rays (GCRs) and anomalous cosmic rays (ACRs), attention is given to spacecraft data gathered in the magnetosphere and a detailed description is given of the Anuradha cosmic-ray experiment carried by Spacelab-3. The Anuradha results discussed concern the orbit average flux and ionization state of ACRs, the origins of partially ionized galactic cosmic-ray sub-Fe and Fe ions, and the significance of enhanced abundance ratios of sub-Fe and Fe ions in GCRs inside the magnetosphere.

  18. A hysteresis effect in cosmic ray modulation

    NASA Technical Reports Server (NTRS)

    Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1974-01-01

    The rigidity dependence is investigated in the modulation of cosmic ray protons and alphas at intermediate (2-13 Gv) rigidities during the declines and recoveries of the cosmic ray flux near cosmic ray minimum. The results include the finding that sudden changes in the modulation of the primary cosmic rays are initiated by large solar particle outflow and begin as type I Forbush decreases. Typically, the modulation spectrum becomes flatter at intermediate rigidity below 13 Gv and steeper at rigidities above 13 Gv during early recovery.

  19. A Journey Through Researches on Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Roy, M.; Barman, P.; Mukherjee, C. D.

    2013-04-01

    Cosmic ray causes hazards to microelectronic circuits. Presence of charged particles in the atmosphere was first noticed by Coloumb in 1785. But cosmic ray was discovered by Victor Hess in 1912. However new era of particle physics was started with the invention of neutron monitor in 1948 by John A. Simpson. New information regarding the energy spectrum, anisotropy, latitudinal, longitudinal and daily variation of cosmic ray has added the scientific yield one by one from the analysis of the data of different monitors over the globe. This paper is a brief account of the striking events of cosmic ray which may be the background of future researchers.

  20. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  1. Cosmic ray propagation in galactic turbulence

    SciTech Connect

    Evoli, Carmelo; Yan, Huirong E-mail: hryan@pku.edu.cn

    2014-02-10

    We revisit propagation of galactic cosmic rays (CRs) in light of recent advances in CR diffusion theory in realistic interstellar turbulence. We use a tested model of turbulence in which it has been shown that fast modes dominate scattering of CRs. As a result, propagation becomes inhomogeneous and environment dependent. By adopting the formalism of the nonlinear theory developed by Yan and Lazarian, we calculate the diffusion of CRs self-consistently from first principles. We assume a two-phase model for the Galaxy to account for different damping mechanisms of the fast modes, and we find that the energy dependence of the diffusion coefficient is mainly affected by medium properties. We show that it gives a correct framework to interpret some of the recent CR puzzles.

  2. Muon Production in Relativistic Cosmic-Ray Interactions

    NASA Astrophysics Data System (ADS)

    Klein, Spencer R.

    2009-11-01

    Cosmic-rays with energies up to 3×1020eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is s=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with p in the pQCD regime.

  3. Cosmic Ray Variability and Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2007-05-01

    The spectral analysis of fluctuations of biodiversity (Rohde & Muller, 2005) and the subsequent re-analysis of the diversity record, species origination and extinction rates, gene duplication, etc (Melott & Liebermann, 2007) indicate the presence of a 62$\\pm$3My cyclicity, for the last 500My. Medvedev & Melott (2006) proposed that the cyclicity may be related to the periodicity of the Solar motion with respect to the Galactic plane, which exhibits a 63My oscillation, and the inhomogeneous distribution of Cosmic Rays (CR) throughout the Milky Way, which may affect the biosphere by changing mutation rate, climate, food chain, etc. Here we present a model of CR propagation in the Galactic magnetic fields, in the presence of both the mean field gradient and the strong MHD turbulence in the interstellar medium. We explore the "magnetic shielding effect" as a function of CR energy and composition and estimate the resultant flux of mutagenic secondary muons at the Earth surface.

  4. Underground cosmic-ray experiment EMMA

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Kalliokoski, T.; Loo, K.; Lubsandorzhiev, B.; Monto, T.; Petkov, V.; Räihä, T.; Sarkamo, J.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2013-02-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 - 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyhäsalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented.

  5. EAS Cerenkov measurements of the composition of the cosmic ray flux around 10 to the 16th power eV

    NASA Technical Reports Server (NTRS)

    Dawson, B. R.; Clay, R. W.; Prescott, J. R.

    1985-01-01

    Information can be obtained about the nature of a primary cosmic ray by looking at the way in which an extensive air shower (EAS) develops in the atmosphere. Heavy nuclei give rise to showers that develop high in the atmosphere and the depth of maximum development is subjected to much smaller fluctuations than is the case for showers originating from protons. This development is followed by optical methods based on the observations of Cerenkov light or fluorescence light. The Cerenkov observations have two complementary techniques: measurement of the time profile of the Cerenkov pulse with resolution of a few nanoseconds and measurement of the lateral distribution of the Cerenkov light. In each case the measured quantities must be related to some characteristic development parameters.

  6. Spallation processes and nuclear interaction products of cosmic rays

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.

    1990-01-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  7. Cosmic ray variations during PCA type absorption

    NASA Technical Reports Server (NTRS)

    Kozin, I. D.

    1972-01-01

    It is shown based on data on the cosmic-ray neutron component, ionospheric soundings, and measurements of cosmic radio-emission absorption at Vostok station (Antarctica) that the ionization of the lower ionosphere increases during low intensity of Forbush-type cosmic rays. This is manifested in increased absorption and the appearance of strong sporadic layers in the E-region.

  8. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  9. History of cosmic ray research in Finland

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Valtonen, E.; Vainio, R.; Tanskanen, P. J.; Aurela, A. M.

    2009-11-01

    The history of cosmic ray research in Finland can be traced back to the end of 1950s, when first ground-based cosmic ray measurements started in Turku. The first cosmic ray station was founded in Oulu in 1964 performing measurements of cosmic rays by a muon telescope, which was later complemented by a neutron monitor. Since the 1990s, several research centers and universities, such as The Finnish Meteorological Institute, Helsinki University of Technology, University of Oulu, University of Turku and University of Helsinki have been involved in space science projects, such as SOHO, AMS, Cluster, Cassini, BepiColombo, etc. At the same time, ground-based cosmic ray measurements have reached a new level, including a fully automatic on-line database in Oulu and a new muon measuring underground site in Pyhäsalmi. Research groups in Helsinki, Oulu and Turku have also extensive experience in theoretical investigations of different aspects of cosmic ray physics. Cosmic ray research has a 50-year long history in Finland, covering a wide range from basic long-running ground-based observations to high-technology space-borne instrumentation and sophisticated theoretical studies. Several generations of researchers have been involved in the study ensuring transfer of experience and building the recognized Finnish research school of cosmic ray studies.

  10. Cosmic-Ray Modulation Equations

    NASA Astrophysics Data System (ADS)

    Moraal, H.

    2013-06-01

    The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the

  11. Glimm Godunov’s method for cosmic-ray-hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2007-11-01

    A numerical method for integrating the equations describing a dynamically coupled system made of a fluid and cosmic-rays is developed. In smooth flows the effect of CR pressure is accounted for by modification of the characteristic equations and the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, is modeled with a flux conserving method. Provided the shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we show that the Riemann solver can be modified to take into account the cosmic-ray mediation without having to resolve the cosmic-ray induced substructure. Shocks are advanced with Glimm’s method which preserves their discontinuous character without any smearing, thus allowing to maintain self-consistency in the shock solutions. In smooth flows either Glimm’s or a higher order Godunov’s method can be applied, with the latter producing better results when approximations are introduced in the Riemann solver.

  12. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments. PMID:17053141

  13. Cosmic-Rays and Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  14. Investigation of Reacceleration on Cosmic Ray

    NASA Astrophysics Data System (ADS)

    Lu, Yuxi; Picot-Clemente, Nicolas; Seo, Eun-Suk

    2016-03-01

    Cosmic rays are high energy charged particles, originating from outer space, that travel at nearly the speed of light and strike the Earth from all directions. One century after the discovery of cosmic rays, their origin and propagation processes remain obscure. GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation in the Galaxy. I performed a preliminary study using two different propagation models with the GALPROP code in order to reproduce latest cosmic-ray nuclei measurements. I analyzed multiple propagation parameters for each model, studied their effect on cosmic-ray spectra, optimized and tried a preliminary modification of the code to fit cosmic-ray data such as BESS-Polar, AMS, CREAM, etc.

  15. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  17. Grandscan - AN Experiment to Study Cosmic Rays around EEV

    NASA Astrophysics Data System (ADS)

    Westerhoff, Stefan; Adams, Todd; Benzvi, Segev; Loh, Eugene C.

    For our understanding of the origin of ultra high energy cosmic rays the energy region between 1017 and 1019 eV is of crucial importance. Previous experiments have found indirect evidence that at these energies the origin of cosmic rays changes from predominantly Galactic to extragalactic. In addition weak evidence for an excess of cosmic rays from the direction of the Galactic center in a narrow energy band around 1018 eV has been claimed. However there is no additional evidence supporting this scenario. Neither Galactic nor extragalactic sources have been unambiguously established. Given the importance of this energy range there is a strong case for a dedicated experiment to study the EeV energy region with high precision. In this presentation we describe the design and capabilities of GRaNDScan a portable air fluorescence detector for stereo viewing of air showers at sub-EeV energies. Located at a site on the southern hemisphere GRaNDScan will provide an accurate map of the Galactic center region long suspected to harbor one or several sources of ultra high energy cosmic rays. It will provide information on the chemical composition of any observed excess and measure the energy spectrum in the region of the second knee. ~

  18. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  19. Galactic and solar cosmic rays - Variations and origin

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Blokh, Ia. L.; Gushchina, R. T.; Dorman, I. V.; Dorman, L. I.

    Past and current research efforts at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) on galactic and solar cosmic rays is reviewed. Particular attention is given to investigations of penumbra effects manifested in cosmic rays, long-term cosmic-ray variations, cosmic-ray anisotropy, cosmic-ray fluctuations, the possible relationship between cosmic-ray variations and atmospheric ozone, the stellar anisotropy of cosmic rays, and cosmic-ray propagation in the interstellar medium.

  20. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  1. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  2. Spectrum and Charge Ratio of Vertical Cosmic Ray Muons up to Momenta of 2.5 TeV/c

    SciTech Connect

    Schmelling, M.; Hashim, N.O.; Grupen, C.; Luitz, S.; Maciuc, F.; Mailov, A.; Muller, A.-S.; Sander, H.-G.; Schmeling, S.; Tcaciuc, R.; Wachsmuth, H.; Zuber, K.; /Dresden, Tech. U.

    2012-09-14

    The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 meter water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies up to 10{sup 15} eV.

  3. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  4. The elemental abundances of hydrogen through nickel in the low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.

    1980-01-01

    The relative abundances of the elements H through Ni in the galactic cosmic rays have been measured in the energy range 70-280 MeV/nucleon with the University of Chicago cosmic ray telescope on board the satellite IMP-8 from January 1973 to September 1978. Cosmic ray source abundances have been derived by extrapolating the measured composition back to the source. A key factor in the propagation calculation is the use of a pathlength distribution and a solar modulation level shown to be consistent with the secondary to primary ratios and their energy dependence below about 1 GeV/n.

  5. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  6. Cosmic ray measurements of light and medium nuclei using a new telescope

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Kish, J. C.; Lezniak, J. A.; Simpson, G.; Webber, W. R.

    1975-01-01

    Three separate balloon flights provided with a new multielement cosmic ray telescope are used to collect data on the isotopic composition of cosmic rays of Z equals 3 to 10 in the energy range 150-450 MeV/nuc. The discussion covers Li, Be, B, C, N, and O. The data on Ne is a new finding that suggests a possible enhancement of Ne-22 in cosmic rays relative to the normally accepted universal abundances. Other data are presented which directly verify the expected geomagnetic cutoff effects on isotopes characterized by different charge-to-mass ratio.

  7. The activity of stellar aggregates and the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Gurzadian, G. A.

    1985-07-01

    A concept of 'stellar aggregate activity' is advanced. It is shown that the aggregate activity is too high in order to generate cosmic rays. Two conditions lay claim to cosmic ray primary sources: (1) a very large number of sources (about 10,000), and (2) a homogeneous distribution of sources in the Galaxy. Supernovae do not satisfy both those conditions, but stellar aggregates do. The total interstellar medium of the aggregate identifies with a supernova remnant and possesses properties favourable for the acceleration of cosmic rays up to a high energy by statistical mechanisms. The direct suppliers of primary cosmic rays are the flare stars in the aggregates. From the point of view of energetic resources as well as the energetic consistency of cosmic rays, aggregates are equivalent with supernova remnants. The aggregate must also be the source of gamma-rays. The usual UV Cet-type flare stars in the sun's neighborhood do not play any role as sources of primary cosmic rays. The 'aggregate conception' connects the very fact of the existence of cosmic rays with the continued star-formation process in the Galaxy.

  8. Isotopic stack - measurement of heavy cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Beaujean, R.

    1981-01-01

    Heavy cosmic ray nuclei with nuclear charge, Z, equal to or greater than 3 are to be measured using an isotopic stack consisting of passive visual track detectors which remain sensitive throughout the entire mission. The scientific data are stored in latent tracks which are produced by heavy ions and which can be revealed in the investigator's laboratory after recovery. During the mission, only housekeeping data have to be collected. The exposure onboard Spacelab 1 allows the study of the chemical composition and energy spectrum of articles which have energies in the range 20 to 100 million electron volts per atomic mass unit, as well as the isotopic composition of heavy galactic cosmic rays with energies in the range 100 to 1000 million electron volts per atomic mass unit.

  9. Explaining TeV Cosmic-Ray Anisotropies with Non-diffusive Cosmic-Ray Propagation

    NASA Astrophysics Data System (ADS)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan

    2016-05-01

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the details of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.

  10. 10Be cosmic-ray exposure dating of moraines and rock avalanches in the Upper Romanche valley (French Alps): Evidence of two glacial advances during the Late Glacial/Holocene transition

    NASA Astrophysics Data System (ADS)

    Chenet, Marie; Brunstein, Daniel; Jomelli, Vincent; Roussel, Erwan; Rinterknecht, Vincent; Mokadem, Fatima; Biette, Melody; Robert, Vincent; Léanni, Laëtitia

    2016-09-01

    Cosmic-ray exposure (CRE) dating of moraines allow glacier fluctuations and past climate change reconstructions. In the French Alps, there is a lack of moraine dating for the Late Glacial/Holocene transition period. Here we present a chronology of glacier advances in the Upper Romanche valley (French Alps - Massif des Ecrins) based on 10Be CRE dating. CRE ages of moraines of 13.0 ± 1.1 ka and 12.4 ± 1.5 ka provide evidence for two stages of glacial advance or standstill at the end of the Late Glacial. The CRE dating of a rock avalanche deposit at 12.2 ± 1.5 ka is attributed to post-glacial debuttressing and reveals rapid deglaciation at the end of the Late Glacial. A CRE age of 7.1 ± 0.7 ka of a second mass-wasting, whose triggering factor is unidentified so far, indicates that up to an altitude of 2300 m a.s.l., the valley was ice-free as of ∼7 kyr at the latest. The re-evaluation of 21 moraine 10Be CRE ages from nine glacial valleys across the Alps shows multiple glacial advances occurring at the Late Glacial/Holocene transition. These results lead to a re-evaluation of the importance of cooling events during the Allerød and the Younger Dryas in the Alps.

  11. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  12. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  13. Radar Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2012-03-01

    Progress in the study of high energy cosmic ray physics is limited by low flux. In order to collect substantial statistics above 10^19 eV, the two largest ground arrays currently in operation cover 800 km^2 (Telescope Array, Utah) and 3000 km^2 (Auger Observatory, Argentina). The logistics and cost of an order-of-magnitude increase in ground array aperture is prohibitive. In the literature, radar detection experiments have been proposed but substantial results have not been reported. We have deployed a low-power (1500 W) bistatic radar facility overlapping the Telescope Array (TA) in Delta, Utah. Data acquisition systems for the radar receivers were developed in parallel. This system has taught us a great deal, but our current focus is building and deploying a 40 kW transmitter and new high-gain transmitting antenna. Theoretical simulations of CR air shower scattering of radar show that coincidences with the ground array should be detected with this new system. An FCC license for the new transmitter/antenna has been obtained. Systems monitoring and data logging systems, as well as a new, intelligent self-triggered DAQ continue to be developed. We hope to deploy the self-triggered DAQ during the first few months of 2012 and complete the transmitte

  14. Cosmic Rays and Space Weather

    NASA Astrophysics Data System (ADS)

    Dorman, Lev

    In this review-paper we consider following problems. 1. Cosmic rays (CR) as element of space weather 1.1. Influence of CR on the Earth's atmosphere and global climate change 1.2. Radia-tion hazard from galactic CR 1.3. Radiation hazard from solar CR 1.4. Radiation hazard from energetic particle precipitation from radiation belts 2. CR as tool for space weather forecasting 2.1. Forecasting of the part of global climate change caused by CR intensity variations 2.2. Forecasting of radiation hazard for aircrafts and spacecrafts caused by variations of galactic CR intensity 2.3. Forecasting of the radiation hazard from solar CR events by using on-line one-min ground neutron monitors network and satellite data 2.4. Forecasting of great magnetic storms hazard by using on-line one hour CR intensity data from ground based world-wide network of neutron monitors and muon telescopes 3. CR, space weather, and satellite anomalies 4. CR, space weather, and people health

  15. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-07-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  16. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    SciTech Connect

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-07-15

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  17. Superconducting magnets for space flight. [magnetic cosmic ray spectrometers

    NASA Technical Reports Server (NTRS)

    Golden, R. L.

    1975-01-01

    The operating principle and application of superconducting magnetic spectrometers for cosmic ray analysis are described. Magnetic spectrometer experiments are thought to be possible in the areas of charge composition and its possible energy dependence, isotopic separation up to several GeV/n, electrons and positrons energy spectra, galactic secondary antiprotons, searches for primordial antimatter, searches for substructure in energy spectra, and gamma ray astronomy. Operational problems associated with the magnets are discussed, and a possible shuttle payload is also described.

  18. WIND/EPACT observations of anomalous cosmic rays

    NASA Astrophysics Data System (ADS)

    Reames, D. V.; Barbier, L. M.; von Rosenvinge, T. T.

    1997-05-01

    The Energetic Particles, Acceleration, Composition and Transport (EPACT) Experiment on the WIND spacecraft, and especially its large-geometry Low Energy Matrix Telescope (LEMT), is capable of sensitive measurements of ions of the anomalous cosmic-ray (ACR) component above 2 MeV/amu. We report on the energy spectra of He, C, N, O, Ne, S, and Ar and estimate element abundances at the acceleration site.

  19. Possible cosmic ray signatures in clouds?

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Parsons, R. D.; Wolfendale, A. W.

    2009-11-01

    The role of cosmic rays in cloud formation, by cloud condensation nuclei, is still not fully understood. Although it has been claimed by a number of authors that cosmic ray effects should be small—or even non-existent—it is still argued by others that cosmic ray effects do occur. The present work draws attention to the fact that cosmic rays do not constitute a continuous stream of particles but are characterized by occasional near-simultaneous showers of particles. Under certain circumstances, such showers should leave a signature in clouds—near vertical 'cigar-shaped clouds'—and this work describes their properties. Our own observations have revealed no such structure, but it would be valuable to have a more careful search made.

  20. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  1. Cosmic ray transport near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.; Potgieter, M. S.; le Roux, J. A.; Luo, X.

    2015-09-01

    In this paper we summarize our modelling efforts for cosmic rays near the heliopause, and discuss whether galactic cosmic ray modulation beyond the heliopause is possible and present an explanation for the anisotropic nature of the observed cosmic ray intensities in the very local interstellar medium. We show that (i) modulation beyond the heliopause is possible, but highly dependent on the assumed parameters (most notable, the perpendicular diffusion coefficient). Treating the heliopause as a tangential discontinuity, significantly damps this modulation effect and leads to modelled results that are similar to Voyager 1 observations. (ii) By choosing an appropriate functional form of the perpendicular diffusion coefficient on the pitch-angle level, we are able to account for the anisotropic behaviour observed for both galactic and anomalous cosmic rays in the local interstellar medium.

  2. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  3. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  4. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  5. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  6. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  7. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  8. Sulphur mountain: Cosmic ray intensity records

    SciTech Connect

    Venkatesan, D.; Mathews, T.

    1985-01-01

    This book deals with the comic ray intensity registrations at the Sulphur Mountain Cosmic Ray Laboratory. The time series of intensity form a valuable data-set, for studying cosmic ray intensity variations and their dependence on solar activity. The IGY neutron monitor started operating from July 1, 1957 and continued through 1963. Daily mean values are tabulated for the period and these are also represented in plots. This monitor was set up by the National Research Council of Canada.

  9. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  10. PICARD: A novel code for the Galactic Cosmic Ray propagation problem

    NASA Astrophysics Data System (ADS)

    Kissmann, R.

    2014-03-01

    In this manuscript we present a new approach for the numerical solution of the Galactic Cosmic Ray propagation problem. We introduce a method using advanced contemporary numerical algorithms while retaining the general complexity of other established codes. In this paper we present the underlying numerical scheme in conjunction with tests showing the correctness of the scheme. Finally we show the solution of a first example propagation problem using the new code to show its applicability to Galactic Cosmic Ray propagation.

  11. Cosmic ray transport in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2015-09-01

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  12. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  13. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  14. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  15. Preliminary cosmic ray proton and helium spectra from the first year of the NUCLEON experiment exposure time

    NASA Astrophysics Data System (ADS)

    Kovalev, Igor

    2016-07-01

    The NUCLEON cosmic ray observatory is designed to measure high energy cosmic ray composition and energy distribution. Methods of identification of charge and energy measurement are presented. Preliminary proton and helium spectra and proton to helium ratio are presented. The results are obtained from the first year of the planned exposure time.

  16. Precise measurement of cosmic ray fluxes with the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Vecchi, Manuela

    2015-12-01

    The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.

  17. Precise measurement of cosmic ray fluxes with the AMS-02 experiment

    SciTech Connect

    Vecchi, Manuela

    2015-12-17

    The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. In this document we present precise measurements of cosmic ray positrons, electrons and protons, collected during the first 30 months of operations.

  18. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  19. Cosmic Ray Energetics And Mass: First flight for 42 days

    NASA Astrophysics Data System (ADS)

    Yoon, Young Soo

    2005-04-01

    The Cosmic Ray Energetics And Mass (CREAM) balloon-borne experiment had its first flight for nearly 42 days in Antarctica from Dec 15, 2004 to Jan 26, 2005. It made three circumnavigations around the South Pole, which broke both the duration and distance records for a long-duration balloon flight. CREAM was designed to measure the energy spectra and composition of cosmic rays with energies between 1 TeV and 1000 TeV. Incident particles are identified with both a timing charge detector and a silicon charge detector. Energy measurements are made with both a tungsten/scintillating-fiber calorimeter and a transition radiation detector. During the flight about 19 GBytes of data were transmitted to the Science Operation Center at the University of Maryland through telemetry. An onboard flash disk was used to record and store about 36 GBytes of additional heavy nuclei data. Preliminary results from the flight data will be presented.

  20. Opportunities in cosmic-ray physics and astrophysics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.

  1. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  2. Ultrahigh-Energy Cosmic Rays: Results and Prospects

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-12-01

    Observations of cosmic rays have been improved at all energies, both in terms of higher statistics and reduced systematics. As a result, the all-particle cosmic ray energy spectrum starts to exhibit more structures than could be seen previously. Most importantly, a second knee in the cosmic ray spectrum—dominated by heavy primaries—is reported just below 1017 eV. The light component, on the other hand, exhibits an ankle-like feature above 1017 eV and starts to dominate the flux at the ankle. The key question at the highest energies is about the origin of the flux suppression observed at energies above 5 · 1019 eV. Is this the long-awaited Greisen-Zatsepin-Kuzmin effect or the exhaustion of sources? The key to answering this question is again given by the still largely unknown mass composition at the highest energies. Data from different observatories do not quite agree, and common efforts have been started to settle that question. The high level of isotropy observed even at the highest energies starts to challenge a proton-dominated composition if extragalactic magnetic fields are on the order of a few nanogauss or more. We shall discuss the experimental and theoretical progress in the field and the prospects for the next decade.

  3. Muon Production in Relativistic Cosmic-Ray Interactions

    SciTech Connect

    Klein, Spencer

    2009-07-27

    Cosmic-rays with energies up to 3x1020 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is sqrt snn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders.This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (pT) spectra in cosmic-ray air showers fromMACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher pT region where perturbative QCD should apply. With a 1 km2 surface area, the full IceCube detector should observe hundreds of muons/year with pT in the pQCD regime.

  4. The shape of the extragalactic cosmic ray spectrum from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2016-08-01

    We study the diffusive escape of cosmic rays from a central source inside a galaxy cluster to obtain the suppression in the outgoing flux appearing when the confinement times get comparable or larger than the age of the sources. We also discuss the attenuation of the flux due to the interactions of the cosmic rays with the cluster medium, which can be sizeable for heavy nuclei. The overall suppression in the total cosmic ray flux expected on Earth is important to understand the shape of the extragalactic contribution to the cosmic ray spectrum for E/Z < 1 EeV . This suppression can also be relevant to interpret the results of fits to composition-sensitive observables measured at ultra-high energies.

  5. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  6. Cosmic ray exposure ages of iron meteorites, complex irradiation and the constancy of cosmic ray flux in the past

    NASA Technical Reports Server (NTRS)

    Marti, K.; Lavielle, B.; Regnier, S.

    1984-01-01

    While previous calculations of potassium ages assumed a constant cosmic ray flux and a single stage (no change in size) exposure of iron meteorites, present calculations relaxed these constancy assumptions and the results reveal multistage irradiations for some 25% of the meteorites studied, implying multiple breakup in space. The distribution of exposure ages suggests several major collisions (based on chemical composition and structure), although the calibration of age scales is not yet complete. It is concluded that shielding-corrected (corrections which depend on size and position of sample) production rates are consistent for the age bracket of 300 to 900 years. These production rates differ in a systematic way from those calculated for present day fluxes of cosmic rays (such as obtained for the last few million years).

  7. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 – 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 – 1018 eV.

  8. A Cosmic Ray Telescope For Educational Purposes

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a ``telescope'' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6×1.9×3.7 cm3. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  9. A Cosmic Ray Telescope For Educational Purposes

    SciTech Connect

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-21

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm{sup 3}. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  10. Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.

  11. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  12. The first cosmic ray albedo proton map of the Moon

    NASA Astrophysics Data System (ADS)

    Wilson, Jody K.; Spence, Harlan E.; Kasper, Justin; Golightly, Michael; Bern Blake, J.; Mazur, Joe E.; Townsend, Lawrence W.; Case, Anthony W.; Dixon Looper, Mark; Zeitlin, Cary; Schwadron, Nathan A.

    2012-06-01

    Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties.

  13. Lunar surface cosmic ray experiment S-152, Apollo 16

    NASA Technical Reports Server (NTRS)

    Fleischer, R. L.; Hart, H. R., Jr.; Carter, M.; Comostock, G. M.; Renshaw, A.; Woods, R. T.

    1973-01-01

    This investigation was directed at determining the energy spectra and abundances of low energy heavy cosmic rays (0.03 E or = 150 MeV/nucleon). The cosmic rays were detected using plastic and glass particle track detectors. Particles emitted during the 17 April 1972 solar flare dominated the spectra for energies below about 70 MeV/nucleon. Two conclusions emerge from the low energy data: (1) The differential energy spectra for solar particles vary rapidly for energies as low as 0.05 MeV/nucleon for iron-group nuclei. (2) The abundance ratio of heavy elements changes with energy at low energies; heavy elements are enhanced relative to higher elements increasingly as the energy decreases. Galactic particle fluxes recorded within the spacecraft are in agreement with those predicted taking into account solar modulation and spacecraft shielding. The composition of the nuclei at energies above 70 MeV/nucleon imply that these particles originate outside the solar system and hence are galactic cosmic rays.

  14. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    SciTech Connect

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproduce the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.

  15. Unveiling the Origin of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  16. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  17. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  18. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  19. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  20. Galactic Cosmic Rays and the Light Elements

    NASA Astrophysics Data System (ADS)

    Parizot, Etienne

    2001-10-01

    The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.

  1. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  2. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  3. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  4. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  5. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  6. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  7. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  8. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  9. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  10. New aspects of heavy cosmic rays from calcium to nickel (Z = 20 to 28)

    NASA Technical Reports Server (NTRS)

    Mewaldt, Richard A.; Webber, W. R.

    1990-01-01

    Over the two year course of this grant a study was conducted to explore the implications of composition measurements of heavy cosmic rays made by the Third High Energy Astronomy Observatory (HEAO-3). To interpret these and other measurements this study combined for the first time new laboratory measurements of the fragmentation cross sections of heavy nuclei, a new semi-empirical cross section formula, and the latest in cosmic ray propagation and solar modulation models. These models were used to interpret abundance measurements from six recent satellite experiments, including, in particular, two from HEAO-3. The principal results of the study were: (1) an improved interpretation of the Mn-54 clock in cosmic rays, including predictions of the isotopic abundances of Mn for comparison with future isotope measurements; (2) the first realization of the effect of Mn-54 decay on studies of the source abundances of Fe isotopes; (3) improved source abundances of the elements Ar, Ca, Cr, Mn, Fe, and Ni in the cosmic ray source material; (4) an improved fit to the abundances of Fe secondaries in cosmic rays; and (5) additional evidence that supports the validity of the leaky-box model of cosmic ray propagation in the galaxy. This final report summarizes these new results, the new tools that were developed to obtain them, and presents a bibliography of talks and publications that resulted from this work.

  11. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  12. Estimating Cosmic Ray Spectral Parameters From Simulated Detector Responses With Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index alpha (sub 1), is believed to be an adequate description of the galactic cosmic ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy E(sub k) to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  13. Cosmic-ray backgrounds in infrared bolometers

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Radostitz, J. V.; Carlotti, M.; Carli, B.; Mencaraglia, F.

    1985-01-01

    Model calculations for the production of cosmic ray events in IR detectors by energy impulses due to fast charged particles' ionization trails are presently compared to the pulse-amplitude spectrum observed from a balloon at an altitude of 38 km. The results are pertinent to the current understanding of cosmic ray backgrounds found in all high sensitivity bolometer applications. The observed signal transients are in all details consistent with the modeling of known cosmic charged particle flux characteristics and with the detector response. Generally, the optics design should minimize detector/substrate cross section.

  14. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  15. Energy loss measurement of cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Unger, Joseph

    1993-02-01

    Measurements of energy losses of high energy cosmic ray muons in an ionization chamber are presented. The chamber consists of 16 single gap layers, and the liquid tetra methyl silane (TMS) was used as active medium. The absolute energy loss and the relativistic rise were measured and compared with theoretical calculations. The importance of the measurements within the framework of the cosmic ray experiment KASCADE (German acronym for Karlsruhe Shower Core and Array Detector) are discussed, especially with respect to energy calibration of hadrons and high energy muons above 1 TeV.

  16. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  17. Galactic cosmic ray antiprotons and supersymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Walsh, T.; Rudaz, S.

    1985-01-01

    The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.

  18. Gev-Tev Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Lavalle, Julien

    2015-03-01

    This short review aims at presenting the way we currently understand, model, and constrain the transport of cosmic rays in the GeV-TeV energy domain. This is a research field per se, but is also an important tool e.g. to improve our understanding of the cosmic-ray sources, of the diffuse non-thermal Galactic emissions (from radio wavelengths to gamma-rays), or in searches for dark matter annihilation signals. This review is mostly dedicated to particle physicists or more generally to non-experts.

  19. High resolution Cherenkov detectors for cosmic ray isotope experiment

    NASA Technical Reports Server (NTRS)

    Acharya, B. S.; Balasubrahmanyan, V. K.; Esposito, J. A.; Lloyd-Evans, J.; Ormes, J. F.; Streitmatter, R. E.

    1985-01-01

    Cerenkov detectors are used to measure the velocity of particles in configurations designed to study the isotopic composition of galactic cosmic rays. The geometrical properties of the detector are outlined. Monte-Carlo simulations of photon propagation in a diffusive detector were undertaken. The scattering properties of diffusively reflecting white paint and of surface treatments for the radiator material were measured. It is found that the absorption of light in the radiator is an important light loss mechanism. The simulations are used to find optimal mapping techniques and data reduction strategies. The application of these techniques are discussed with respect to the large area isotopic composition experiment (ALICE) Cerenkov detector.

  20. Cosmic ray telescope for OGO 2 and 4 spacecraft. [construction and flight of cosmic ray telescope on OGO-2 and 4 spacecraft

    NASA Technical Reports Server (NTRS)

    Webber, W. R.

    1974-01-01

    The construction and subsequent flight are described of a cosmic ray telescope aboard the OGO-2 and 4 Spacecraft. This instrument was a combination Cerekov-scintillation counter telescope designed to measure the cosmic ray energy spectrum from 1-15 GV and charge composition from Z=1-8. OGO-2 was launched in October 1965; however, attitude control problems caused a rapid loss of control gas, so that after approximately 2 weeks it was no longer possible to point the spacecraft. This mission was officially declared a failure. The cosmic ray instrument appeared to work well during this time. OGO-4 was launched in July 1967, with a similar telescope aboard. It operated successfully approximately one year. The details of the experiment, its operation, and the results are given.

  1. Energy Spectra of Cosmic Ray Nuclei to Above 100 Gev/nucleon. [measurement of energy spectra of cosmic ray nuclei boron to iron

    NASA Technical Reports Server (NTRS)

    Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.

    1979-01-01

    The chemical composition cosmic rays as a function of energy in the range of a few GeV/nucleon to some hundreds of GeV/nucleon for boron through iron are presented. The experiment combined an ionization spectrometer and a gas Cherenkov counter, which was flown on a balloon, to perform two different and independent energy measurements. The experimental apparatus is described in detail. The energy dependence of the cosmic ray escape length for boron and iron is reported and predicted changes in the energy dependence of the ratios of primary nuclei 0/C and iron/C+0 are discussed.

  2. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  3. Are cosmic rays modulated beyond the heliopause?

    SciTech Connect

    Kóta, J.; Jokipii, J. R.

    2014-02-10

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈10{sup 26} cm{sup 2} s{sup –1}, a value that is two orders of magnitude smaller than the value of 10{sup 28} cm{sup 2} s{sup –1} determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈10{sup 22} cm{sup 2} s{sup –1}) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈10{sup 20} cm{sup 2} s{sup –1}; this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  4. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  5. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  6. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  7. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  8. Student Projects in Cosmic Ray Detection

    NASA Astrophysics Data System (ADS)

    Brouwer, W.; Pinfold, J.; Soluk, R.; McDonough, B.; Pasek, V.; Bao-shan, Zheng

    2009-11-01

    The Alberta Large-area Time-coincidence Array (ALTA) study has been in existence for about 10 years under the direction of Jim Pinfold of the Centre for Particle Physics at the University of Alberta. The purpose of the ALTA project is to involve Alberta high schools, and primarily their physics classes, to assist in the detection of the presence of cosmic ray bursts in different Alberta locations. These cosmic rays involve highspeed elementary particles, many from far outside our solar system and even from outside our galaxy. These particles collide with the particles in our atmosphere, break up these molecules into rather exotic elementary particles which often reach the surface of the Earth and can be detected by fairly simple equipment. One of the objectives of ALTA is to determine the nature of some of the most energetic cosmic ray particles whose origin is still not known. Recently 2the Pierre Auger Collaboration has confirmed that the highest energy cosmic rays appear to be coming from nearby galaxies. The mechanism for their production is still not well understood.

  9. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  10. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  11. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  12. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  13. The origin of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2013-11-01

    One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data. I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy. In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of

  14. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  15. Laboratory study of the cosmic-ray muon lifetime

    NASA Astrophysics Data System (ADS)

    Ward, T.; Barker, M.; Breeden, J.; Komisarcik, K.; Pickar, M.; Wark, D.; Wiggins, J.

    1985-06-01

    The cosmic-ray muon lifetime was measured with a variety of counters designed to study both the free and μ- capture lifetimes. The data were obtained using scintillation detectors and a lead glass detector. These data show the dependence of μ- capture on the atomic number of the chemical element in the detector. The Z dependence of the weak interaction capture process is discussed in terms of the familiar Fermi (ΔJ=0) and Gamow-Teller (ΔJ=1) decays. This experiment was designed for use in advanced undergraduate physics laboratories.

  16. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  17. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  18. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  19. a New Study on the Energy Spectrum and Composition of Primary Cosmic Ray Flux at Energies ~ 1014 - 1016 EV Using the GRAPES-3 Array at Ooty

    NASA Astrophysics Data System (ADS)

    Tonwar, S. C.; Gupta, S. K.; Mohanty, D. K.; Mohanty, P. K.; Sivaprasad, K.; Sreekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Nonaka, T.; Tanaka, H.; Yoshikoshi, T.

    Data collected with the 217-detector air shower array and the 560 m2 area tracking muon detector, being operated at Ooty in southern India by the India-Japan (Tata Institute-Osaka City University) collaboration, GRAPES, have been analyzed to study the shape of the energy spectrum and the composition around the knee. It is shown that the muon multiplicity distribution, observed with the highly modular muon detector, permits a relatively reliable measurement on the composition of primary flux which then helps in a more accurate reconstruction of the energy spectrum from the observed shower size spectrum. The highlights of the GRAPES array, the analysis procedure and the results are presented.

  20. Muon multiplicities measured using an underground cosmic-ray array

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Enqvist, T.; Bezrukov, L.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2016-05-01

    EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or ~ 1 — 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations ~ 15 m2 each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.

  1. Ionization states of low-energy cosmic rays - Results from Spacelab 3 cosmic-ray experiment

    NASA Technical Reports Server (NTRS)

    Dutta, A.; Goswami, J. N.; Biswas, S.; Durgaprasad, N.; Mitra, B.; Singh, R. K.

    1993-01-01

    The Indian cosmic ray experiment Anuradha, conducted onboard Spacelab 3 during April 29-May 6, 1985 was designed to obtain information on the ionization states of low-energy cosmic rays, using the geomagnetic field as a rigidity filter to place an upper limit on the ionization state of individual cosmic ray particles. This paper presents data confirming the presence of three distinct groups of energetic particles in the near-earth space: (1) low-energy (15-25 MeV/nucleon) anomalous cosmic rays that are either singly ionized or consistent with their being in singly ionized state, (2) fully ionized galactic cosmic ray ions, and (3) partially ionized iron and sub-iron group ions (which account for about 20 percent of all the iron and sub-iron group ions detected at the Spacelab 3 orbit within the magnetosphere in the energy interval 25-125 MeV/nucleon). It is argued that these partially ionized heavy ions are indeed a part of the low-energy galactic cosmic rays present in the interplanetary space.

  2. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  3. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  4. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela V.

    2013-03-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 1019 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ~ E-1) due to pulsar spin down and a maximum energy Emax ~ Z 1019 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 1016 and 1018 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy.

  5. Estimation of composition of cosmic rays with E sub zero approximately equals 10(17) - 10(18) eV

    NASA Technical Reports Server (NTRS)

    Glushkov, A. V.; Efimov, N. N.; Efremov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. I.

    1985-01-01

    Fluctuations of the shower maximum depth obtained from analysis of electron and muon fluctuations and the extensive air showers (EAS) Cerenkov light on the Yakutsk array data and data of other arrays are considered. On the basis of these the estimation of composition of primaries with E sub 0 = 5.10 to the 17th power eV is received. Estimation of gamma-quanta flux with E sub 0 10 to the 17th power eV is given on the poor-muon showers.

  6. Observations of nitrogen and oxygen isotopes in the low energy cosmic rays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vidor, S. B.

    1975-01-01

    The isotopic composition of low-energy nitrogen and oxygen cosmic rays was measured with an electron/isotope spectrometer aboard the IMP-7 satellite to determine the possible source of the particles. Instrument calibration showed the standard range-energy tables to be inadequate to calculate the isotope response, and corrections were obtained. The low-energy nitrogen and oxygen cosmic rays were found to be primarily 14N and 16O. Upper limits were obtained for the abundances of the other stable nitrogen and oxygen isotopes. The nitrogen composition differs from higher energy measurements which indicate that 15N, which is thought to be secondary, is the dominant isotope.

  7. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  8. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  9. Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2015-09-01

    We obtain the dipolar anisotropies in the arrival directions of ultrahigh energy cosmic ray nuclei diffusing from nearby extragalactic sources. We consider mixed-composition scenarios in which different cosmic ray nuclei are accelerated up to the same maximum rigidity, so that E composition above the ankle. We obtain the anisotropies through Monte Carlo simulations that implement the cosmic ray diffusion in extragalactic turbulent fields as well as the effects of photodisintegrations and other energy losses. Dipolar anisotropies at the level of 5% to 10% at energies ˜10 EeV are predicted for plausible values of the source density and magnetic fields.

  10. Cosmic Ray Mantle Visibility on Kuiper Belt Objects

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Hill, Matt E.; Richardson, J. D.; Sturner, S. J.

    2006-01-01

    Optically red objects constitute the dynamically cold, old component of the Classical Kuiper Belt (40 - 47 AU) with heliocentric orbits of low eccentricity and inclination. The red colors likely arise from primordial mixed ices processed by irradiation to meters in surface depth over the past four billion years, since the time of giant planet migration and Kuiper Belt stirring, at relatively moderate dosages of 60 gigarads provided by galactic cosmic ray protons and heavier ions. The red cosmic ray mantle is uniformly visible on the cold classical objects beneath a minimally thin eroded layer of more neutrally colored material arising from cumulative effects of heliospheric particle irradiation. The radiation fluxes are lowest in the middle heliospheric region containing the Classical Kuiper Belt and increase from there both towards and away from the Sun. Despite increasing irradiation at various times of solar system history from increases in solar and interstellar ion fluxes, the red object region has apparently never reached sufficiently high dosage levels to neutralize in color the red mantle material. Erosion processes, including plasma sputtering and micrometeroid impacts, act continuously to reduce thickness of the upper neutral crust and expose the cosmic ray mantle. A deeper layer at tens of meters and more may consist of relatively unprocessed ices that can erupt to the surface by larger impacts or cryovolcanism and account for brighter surfaces of larger objects such as 2003 UB313. Surface colors among the Kuiper Belt and other icy objects of the outer solar system are then a function, assuming uniform primordial composition, of relative thickness for the three layers and of the resurfacing age dependent on the orbital and impact history of each object.

  11. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  12. Hydromagnetic waves and cosmic ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  13. Astroparticle Physics: Detectors for Cosmic Rays

    SciTech Connect

    Salazar, Humberto; Villasenor, Luis

    2006-09-25

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  14. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  15. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  16. Antiprotons in cosmic rays and their implications

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1989-01-01

    A brief description of the experiments carried out so far to measure the energy spectrum of antiprotons is made and the reason for the excitement in this field of research is elucidated. The observed spectrum appears to be different form the other components of cosmic rays. Various physical processes by which antiprotons could be created are summarized. The equilibrium spectrum of antiprotons in the Galaxy, arising from each of these processes, is derived for different propagation models. It is shown that no single model can predict correctly the observed data over the entire energy region. However, the recent data at low energies suggest that the conventional models with large amount of matter traversal by cosmic rays, either in the source region or during propagation, can reproduce the data closely. The implications of these propagation models for other components are discussed and the need for more observations is emphasized.

  17. The HEAT Cosmic Ray Antiproton Experiment

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1998-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration is constructing a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton to proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates.

  18. Cosmic Rays, Solar Activity and the Climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.

    2013-02-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialisation is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this paper a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialisation is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  19. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  20. Search for Antihelium in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Golden, R. L.; Stochaj, S. J.; Stephens, S. A.; Moiseev, A. A.; Ormes, J. F.; Streitmatter, R. E.; Bowen, T.; Moats, A.; Lloyd-Evans, J.

    1997-04-01

    On 1987 August 22 a balloon flight was conducted using the Goddard Space Flight Center Low-Energy Antiproton configuration of the New Mexico State University balloon-borne magnet spectrometer. The launch site was Prince Albert, Saskatchewan, Canada. The balloon flew at an average atmospheric depth of 4.7 g cm-2 for more than 22 hr. During this period a sample of 4.2 × 104 helium nuclei was gathered. No antihelium candidates were found in this sample. The resultant upper limit for the ratio of antihelium to helium in cosmic rays over the rigidity interval from 1 to 25 GV/c is 9 × 10-5 at 95% confidence. This limit is below the predicted level, assuming equal matter and antimatter in the extragalactic cosmic rays.

  1. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Pu, Ge; Callaghan, Ed; Parsons, Matthew; Cribflex Team

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award.

  2. Cosmic ray studies with an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.

    1990-01-01

    Among the NASA mission concepts that have been suggested for the 21st century is an Interstellar Probe that might be accelerated to a velocity of about 10 to 20 AU/yr, allowing it to leave the heliosphere, ultimately reaching a radial distance of about 500 to 1000 AU in about 50 years. Previous studies of such a mission, and its potential significance for cosmic ray studies, both within the heliosphere, and beyond, in interstellar space are discussed.

  3. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  4. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  5. Cosmic ray gradients in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Wake, B.; Ip, W.-H.; Axford, I.

    1983-01-01

    Launched in 1972 and 1973 respectively, the Pioneer 10 and 11 spacecraft are now probing the outer heliosphere on their final escape from the sun. The data in this paper extend for almost an entire solar cycle from launch to early 1983, when Pioneer 10 was at a heliocentric distance of 29 AU and Pioneer 11, 13 AU. The UCSD instruments on board were used to study the gradient, and to look at the time and spatial variations of the cosmic ray intensities.

  6. Ultra High Energy Cosmic Rays in the North: Measurement of UHE Cosmic Rays with the High Resolution Fly's Eye (HiRes) Detector

    SciTech Connect

    Matthews, J. N.

    2006-11-17

    The High Resolution Fly's Eye (HiRes) observatory has been collecting Ultra High Energy Cosmic Ray (UHECR) data since 1997. The experiment observes cosmic ray air showers via the air fluorescence technique and consists of two observatory sites separated by 12.6 km in the western Utah desert. The two stations can each measure the cosmic rays in monocular mode. In addition, the data from the two stations can also be combined to form a stereo measurement of the air showers. The experiment measures such properties as the energy spectrum, chemical composition, and p-air cross-section of these cosmic rays. It also searches for point sources and other anisotropy. The spectrum is measured above {approx}3 x 1017 eV and shows significant structure including the 'ankle' and a steep fall off which is consistent with the expectation of the GZK. threshold. The spectrum is inconsistent with a continuing spectrum at the 5{sigma} level. The composition is measured using the Xmax technique. It was found to be predominantly light and unchanging over the range from 1018 to 3 x 1019 eV. Finally, several different styles of searches for anisotropy in the data were performed. There are some tantalizing hints including potential correlation with BL Lac objects and the 'AGASA triplet', however these will need to be confirmed with an independent data set.

  7. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  8. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  9. Erich Regener - a forgotten cosmic ray pioneer

    NASA Astrophysics Data System (ADS)

    Carlson, Per; Watson, Alan

    2013-04-01

    In the 1930s the German physicist Erich Regener (1881-1955), did important work on the measurement of the rate production of ionisation in the atmosphere and deep under-water. He discovered, along with one of his students, Georg Pfotzer, the altitude at which the production of ionisation in the atmosphere reaches a maximum, often and misleadingly called the Pfotzer maximum. He was one of the first to estimate the energy density of cosmic rays, an estimate used by Baade and Zwicky to postulate that supernovae might be the source of cosmic rays. Yet Regener's name is little known largely because he was forced to take early retirement by the National Socialists in 1937 as his wife had Jewish ancestors. In this paper we review his work on cosmic rays and the subsequent influence that he had on the subject through his son, his son-in-law, his grandson and his students. He was nominated for the Nobel Prize in Physics by Schroedinger in 1938. He died in 1955 at the age of 73.

  10. Modulation of low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1975-01-01

    The relation between the diffusion coefficient of cosmic rays in the solar wind and the power spectrum of interplanetary magnetic field fluctuations, established in recent theories, is tested directly for low energy protons (below 80 MeV). In addition, an attempt is made to determine whether the particles are scattered by magnetic field discontinuities or by fluctuations between discontinuities. Predictions of a perturbation solution of the Fokker-Planck equation are compared with observations of the cosmic ray radial gradient. It is found that at energies between 40 and 80 MeV, galactic cosmic ray protons respond to changes in the predicted diffusion coefficients (i.e., the relationship under consideration holds at these low energies). The relation between changes in the proton flux and modulation parameters is best when the contribution of discontinuities is subtracted, which means that scattering is caused by fluctuations between discontinuities. There appears to be no distinct relation between changes in the modulation parameters and changes in the intensity of 20 to 40 MeV protons.

  11. The Need for Direct High-Energy Cosmic-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  12. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  13. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    NASA Technical Reports Server (NTRS)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; deNolfo, G. A.; Rauch, B. F.; Schindler, S. M.; Scott, L. M.; Streitmatter, R. E.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  14. A Cosmic-Ray and Thermally Driven Kiloparsec-scale Outflow from the Milky Way

    NASA Astrophysics Data System (ADS)

    Everett, John; Schiller, Quintin; Zweibel, Ellen

    2009-05-01

    We review the importance of cosmic-ray pressure in helping to drive kpc-scale galactic outflows. In particular, we examine the case of the Milky Way, and outline a theory that the ``Galactic X-ray Bulge'' discovered by Snowden et al. (1997) is the signature of a large-scale outflow driven by combined thermal and cosmic-ray pressure. We confront this model with observations of the synchrotron halo from Haslam et al. (1981), and discuss the constraints that these observations place on the wind model and perhaps any model of the ``Galactic X-ray Bulge''. We also outline further advances to the model including a more detailed cosmic-ray diffusion model, and the possible role of clumping and mass loading in the outflow.

  15. Cosmic-ray abundances of elements with atomic number 26 less than or equal to 40 measured on HEAO 3

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Fickle, R. K.; Waddington, C. J.; Garrard, T. L.; Stone, E. C.; Israel, M. H.; Klarmann, J.

    1981-01-01

    Individual elements in the cosmic radiation of even atomic number (Z) in the interval 26-40 have been resolved and their relative abundances measured. The results are inconsistent with a cosmic-ray source whose composition in this charge interval is dominated by r-process nucleosynthesis. The ratios of cosmic-ray source abundances to solar system abundances in this interval follow the same general correlation with first ionization potential as for the lighter elements, although there are deviations in detail.

  16. A large light-mass component of cosmic rays at 1017-1017.5 electronvolts from radio observations

    NASA Astrophysics Data System (ADS)

    Buitink, S.; Corstanje, A.; Falcke, H.; Hörandel, J. R.; Huege, T.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; Conway, J. E.; de Gasperin, F.; de Geus, E.; Deller, A.; Dettmar, R.-J.; van Diepen, G.; Duscha, S.; Eislöffel, J.; Engels, D.; Enriquez, J. E.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Loose, G. M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mevius, M.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Scaife, A. M. M.; Schwarz, D. J.; Serylak, M.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; Vogt, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, J. A.

    2016-03-01

    Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017-1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017-1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017-1017.5 electronvolt range.

  17. A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations.

    PubMed

    Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A

    2016-03-01

    Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range. PMID:26935696

  18. LET spectra of trapped anomalous cosmic rays in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.

    1996-01-01

    Observations aboard Cosmos satelites discovered trapped anomalous cosmic rays (ACRs), tracked the variation in their intensity in 1986-1988, and measured their fluence, spectrum, and composition at solar minimum in the previous solar cycle. The MAST instrument aboard the SAMPEX satellite has observed trapped anomalous cosmic rays in the present solar cycle, confirmed the general features of the Cosmos data, and provided the first detailed observations of trapped ACRs. In this paper we apply theoretical modeling of trapped ACRs, which is shown to provide a reasonably good description of both the Cosmos and SAMPEX data, to calculate the integral linear-energy-transfer (LET) spectra due to trapped ACRs in typical low-Earth orbits. We compare these calculations with the LET spectra produced by galactic cosmic rays (GCRs) and non-trapped ACRs in order to assess the relative radiation hazard posed by trapped ACRs.

  19. The NASA cosmic ray program for the 1990's and beyond

    NASA Technical Reports Server (NTRS)

    Ahlen, S. P.; Binns, W. R.; Cherry, M. L.; Gaisser, T. K.; Jones, W. V.; Ling, J. C.; Mewaldt, R. A.; Muller, D.; Ormes, J. O.; Ramaty, R.

    1990-01-01

    The interim report of the 1989 NASA Cosmic Ray Program Working Group is presented. The report summarizes the cosmic ray program for the 1990's, including the recently approved ACE, Astromag, HNC, POEMS, and SAMPEX missions, as well as other key elements of the program. New science themes and candidate missions are identified for the first part of the 21st century, including objectives that might be addressed as part of the Human Exploration Initiative. Among the suggested new thrusts for the 21st century are: an Interstellar Probe into the nearby interstellar medium; a Lunar-Based Calorimeter to measure the cosmic ray composition near 10 exp 16 eV; high-precision element and isotope spectroscopy of ultraheavy elements; and new, more sensitive studies of impulsive solar flare events.

  20. Energy spectra of cosmic-ray nuclei from 50 to 2000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Grunsfeld, John M.; L'Heureux, Jacques; Meyer, Peter; Muller, Dietrich; Swordy, Simon P.

    1988-01-01

    A direct measurement of the elemental composition of cosmic rays up to energies of several TeV/amu was performed during the Spacelab 2 flight of the Space Shuttle. Results on the spectral shape for the elements C, O, Ne, Mg, Si, and Fe, obtained from this experiment, are presented. It was found that the C and O energy spectra retain a power-law spectrum in energy with an exponent Gamma of about 2.65. The Fe spectrum is flatter (Gamma of about 2.55) up to a particle energy of about 10 to the 14th eV, indicating a steady increase in the relative abundance of iron in cosmic rays up to this energy. The energy spectra of Ne, Mg, and Si are steeper than anticipated. This behavior is unexpected within current models of cosmic-ray acceleration.

  1. Precision Cosmic Ray Physics on the Iss with the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    2015-03-01

    One hundred years after their discovery by Victor Hess, Cosmic Rays are nowadays subject of intense research from space based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the Alpha Magnetic Spectrometer (AMS - 02), has been installed on the International Space Station, to measure with high accuracy the Cosmic Rays properties searching for rare events which could be indication of the nature of Dark Matter or presence of nuclear Antimatter. AMS - 02 is the result of nearly two decades of effort of an international collaboration, to design and build a state of the art detector capable to perform high precision Cosmic Rays measurement. In this paper I will briefly report on the first results of AMS - 02 two years after the beginning of the operations in space.

  2. Precision measurements of e+ e- in Cosmic Ray with the Alpha Magnetic Spectrometer on the ISS

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    2014-09-01

    One hundred years after their discovery by Victor Hess, Cosmic Rays are nowadays subject of intense research from space based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the Alpha Magnetic Spectrometer (AMS-02), has been installed on the International Space Station, to measure with high accuracy the Cosmic Rays properties searching for rare events which could be indication of the nature of Dark Matter or presence of nuclear Antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, to design and build a state of the art detector capable to perform high precision Cosmic Rays measurement. In this paper I will briefly report on the first results of AMS-02 two years after the beginning of the operations in space.

  3. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    NASA Technical Reports Server (NTRS)

    Nautiyal, C. M.; Rao, M. N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.

  4. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  5. Cosmic Magnetic Fields and Their Influence on Ultra-High Energy Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.

    2004-11-01

    We discuss the influence of large scale cosmic magnetic fields on the propagation of hadronic cosmic rays above 1019 eV based on large scale structure simulations. Our simulations suggest that rather substantial deflection up to several tens of degrees at 1020 eV are possible for nucleon primaries. Further, spectra and composition of cosmic rays from individual sources can depend on magnetic fields surrounding these sources in intrinsically unpredictable ways. This is true even if deflection from such individual sources is small. We conclude that the influence of large scale cosmic magnetic fields on ultra-high energy cosmic ray propagation is currently hard to quantify. We discuss possible reasons for discrepant results of simulations by Dolag et al. which predict deflections of at most a few degrees for nucleons. We finally point out that even in these latter simulations a possible heavy component would in general suffer substantial deflection.

  6. The abundance of the radioactive isotope Al-26 in galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1983-01-01

    Satellite observations of the isotopic composition of aluminum in low energy cosmic rays (E/M = 200 MeV/amu) have been used to determine the abundance of the unstable isotope Al-26 (T1/2 = 0.87 Myr). The observed abundance ratio, Al-26/Al-27 = 0.036 (+0.037, -0.022), is in good agreement with previous balloon observations and yields a cosmic ray confinement time consistent with values based on the abundance of Be-10.

  7. Empirical model for the Earth's cosmic ray shadow at 400 KM: Prohibited cosmic ray access

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Smart, D. F.; Shea, M. A.

    1985-01-01

    The possibility to construct a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft.

  8. Measurements of the cosmic-ray Be/B ratio and the age of cosmic rays

    NASA Technical Reports Server (NTRS)

    Brown, J. W.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    The ratio Be/B depends on whether the confinement time of cosmic rays in the Galaxy is long or short compared to the radioactive half-life of Be-10. We report observations of this ratio which were obtained with a dE/dx-Cerenkov detector launched into a polar orbit on OGO-6 as part of the Caltech Solar and Galactic Cosmic Ray Experiment. Be/B ratios were determined for various rigidity thresholds up to 15 GV. We find no statistically significant rigidity dependence of the ratio, which is 0.41 plus or minus 0.02 when averaged over all observed cutoffs. Additional calculations suggest that if the present fragmentation parameters are correct, then the lifetime of cosmic rays in the Galaxy is less then 10 m.y.

  9. Ionization by Cosmic Rays in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  10. Searching for Cosmic Ray Radar Echos In TARA Data

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2013-04-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation for about a year and half. This bi-static CW radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). For the majority of its operation it has been in the TARA1.5 phase in which a 1.5 kW transmitter broadcasts from a single Yagi antenna across the TA surface detector array to our receiver station 50 km away. Our initial DAQ system has obtained millions of triggers utilizing a USRP2 PC controlled radio. During recent months, we have commissioned a 250 MHz sample rate detector with an intelligent self-triggering algorithm that can detect radar echo chirp signals below the noise. I will describe the stages of analysis used for comparing TARA radar triggers with TA data and present a synopsis of the analysis of the USRP2 data and preliminary results from the more advanced DAQ system.

  11. Constraining the efficiency of cosmic ray acceleration by cluster shocks

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Wittor, D.; Gheller, C.; Eckert, D.; Stubbe, M.

    2016-06-01

    We study the acceleration of cosmic rays by collisionless structure formation shocks with ENZO grid simulations. Data from the Fermi satellite enable the use of galaxy clusters as a testbed for particle acceleration models. Based on advanced cosmological simulations that include different prescriptions for gas and cosmic rays physics, we use the predicted γ-ray emission to constrain the shock acceleration efficiency. We infer that the efficiency must be on average ≤10-3 for cosmic shocks, particularly for the M ˜ 2-5 merger shocks that are mostly responsible for the thermalization of the intracluster medium (ICM). These results emerge, both, from non-radiative and radiative runs including feedback from active galactic nuclei, as well as from zoomed resimulations of a cluster resembling MACSJ1752.0+0440. The limit on the acceleration efficiency we report is lower than what has been assumed in the literature so far. Combined with the information from radio emission in clusters, it appears that a revision of the present understanding of shock acceleration in the ICM is unavoidable.

  12. MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    NASA Technical Reports Server (NTRS)

    James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert

    2008-01-01

    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.

  13. Limits on quark nugget dark matter from cosmic ray detectors

    NASA Astrophysics Data System (ADS)

    Lawson, Kyle

    2015-08-01

    The purpose of this talk is to highlight the potential role of large scale cosmic ray detectors in constraining the presence of certain classes of high mass dark matter candidates. These models are not easily constrained by conventional dark matter searches due to their very small flux, and thus, alternative detection techniques must be considered. I will begin with a brief review of heavy compact composite dark matter and some motivation for considering this class of models. In particular I will describe a model in which the dark matter consists of heavy "nuggets" of quarks and antiquarks, and highlight its relation to baryogenesis. As this form of dark matter is based in known physics its properties, as established by arguments from nuclear physics and electrodynamics, are strongly constrained. Based on these properties I will give a primarily qualitative description of the nuggets' interaction with visible matter and of the consequences of the passage of a dark matter nugget through the earth's atmosphere. From the general scales and properties of these events I argue that they may be detectable using cosmic ray observatories and that the largest of these observatories are likely to impose the strongest known constraints on this class of dark matter candidates.

  14. Ultra high energy cosmic rays: the highest energy frontier

    NASA Astrophysics Data System (ADS)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  15. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  16. Ultraheavy cosmic ray tracks in meteorites: A reappraisal, based on calibrations with relativistic ions

    NASA Technical Reports Server (NTRS)

    Perron, C.

    1985-01-01

    Experiments were carried out on tracks of high energy U ions in olivine, a common meteoritic mineral. The results offer an explanation for the lack of success of previous attempts to derive the Ultraheavy Cosmic Ray composition from the study of tracks in meteorites. They also suggest how such experiments should be performed. The methods tested are described and illustrated.

  17. Advanced composites X

    SciTech Connect

    1994-12-31

    In the past ten years, high volume, high performance applications of advanced composites in transportation have grown substantially. The 10th annual ASM/ESD Advanced Composites Conference and Exposition presents the latest developments in composite applications and technologies with over 70 papers presented. The conference is organized in tracks covering body, chassis, powertrain and infrastructure applications, material sciences, manufacturing processes and recycling. Polymer composite and metal matrix composite technologies are included throughout. Body sessions feature adhesive bonding, analysis and test methods and crash energy absorption. The Chassis sessions showcase polymer and metal composite applications. The Powertrain/Propulsion track includes emerging materials as well as design and processing case studies. The Materials Science track features papers on new materials, their performance and theoretical treatment. Manufacturing Processes sessions cover process, modelling, fiber preforming and emerging manufacturing methods. The Infrastructure and Recycling track includes a panel discussion of infrastructure applications and technical papers on the recycling of polymer composites and nondestructive testing.

  18. UHE neutrino and cosmic ray emission from GRBs: Revising the models and clarifying the cosmic ray-neutrino connection

    SciTech Connect

    Bustamante, Mauricio Winter, Walter; Baerwald, Philipp

    2014-11-18

    Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic rays (UHECRs, above 10{sup 8} GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.

  19. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  20. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  1. How many of the observed neutrino events can be described by cosmic ray interactions in the Milky Way?

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Winter, Walter; Gupta, Nayantara

    2014-04-01

    Cosmic rays diffuse through the interstellar medium and interact with matter and radiations as long as they are trapped in the Galactic magnetic field. The IceCube experiment has detected some TeV-PeV neutrino events whose origin is yet unknown. We study if all or a fraction of these events can be described by the interactions of cosmic rays with matter. We consider the average target density needed to explain them for different halo sizes and shapes, the effect of the chemical composition of the cosmic rays, the impact of the directional information of the neutrino events, and the constraints from gamma-ray bounds and their direction. We do not require knowledge of the cosmic ray escape time or injection for our approach. We find that, given all constraints, at most 0.1 of the observed neutrino events in IceCube can be described by cosmic ray interactions with matter. In addition, we demonstrate that the currently established chemical composition of the cosmic rays contradicts a peak of the neutrino spectrum at PeV energies.

  2. Cosmic rays from the knee to the ankle

    NASA Astrophysics Data System (ADS)

    Bertaina, Mario Edoardo

    2014-04-01

    The shape and composition of the primary spectrum as well as the large-scale anisotropy in the arrival direction of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic radiation. Besides the well-known knee and ankle features, the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at ˜2×1016 eV and a steepening at ˜1017 eV. The average mass composition gets heavier after the knee till ˜1017 eV, where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017 eV has been measured as well. First indications of anisotropy of the arrival direction in the southern hemisphere have been reported at ˜1015 eV.

  3. Lunar surface cosmic ray experiment. [including solar flare studies

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1974-01-01

    The galactic cosmic ray and solar flare experiment on Apollo 16 is reported. The published papers presented describe the experiment, equipment, data processing techniques, and operational history. The principle findings include: (1) The composition of heavy ions in interplanetary space at energies between approximately 30 and 130 MeV/nucleon is the same, within experimental errors. (2) The ability of a Lexan stack to determine simultaneously the energy spectra of major elements from He up to Fe in the energy interval 0.2 to 30 MeV/nucleon revealed systematic changes in the composition of solar flare particles as a function of energy. (3) Heavy ions emitted in a solar flare appear to be completely stripped of electrons, and are not in charge equilibrium at the time of acceleration and releases from the sun.

  4. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    SciTech Connect

    Aplin, K. L.; Harrison, R. G.

    2010-12-15

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  5. The galactic origin of cosmic rays. I

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    The theoretical basis for the supernova envelope shock origin of cosmic rays is reviewed. The theoretical explanation of the SN Type I light curve requires the ejection of a relativistic mass fraction. The criterion of the adiabatic deceleration by Alfven wave trapping neither applies in theory, when beta is greater than 1, or practice, as in the Starfish high-altitude nuclear explosion experiment. Arguments of delayed acceleration due to K-capture are not applicable to SN ejecta because a period of prompt recombination exists before subsequent stripping in propagation.

  6. Fine structure in cosmic ray spectra

    NASA Astrophysics Data System (ADS)

    Wolfendale, A. W.; Erlykin, A. D.

    2013-02-01

    The case is made for there being more 'structure' in the cosmic ray energy spectra than just the well-known knee at several PeV and the ankle at several EeV. Specifically, there seems to be a 'dip' or 'kink' at about 100 GeV/nucleon, a possible 'bump' at about 10 TeV, an 'iron peak' at 60 PeV and the possibility of further structure before the ankle is reached. The significance of the structures will be assessed.

  7. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Callaghan, Edward; Parsons, Matthew

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award. Supported by a Society of Physics Students Chapter Research Award.

  8. Cosmic ray physics with the OPERA Detector

    NASA Astrophysics Data System (ADS)

    Brugiere, T.

    2010-04-01

    OPERA is a long-baseline neutrino experiment located in the Hall C of the underground Gran Sasso Laboratory at an average depth of 3.8 km.w.e., corresponding to muon energies at surface higher than 1.5 TeV. In this paper we focus on the potentialities of OPERA used as a cosmic ray detector. We report on the measurement of the atmospheric muon charge ratio, on the analysis of upgoing muons induced by atmospheric neutrinos and on the large cosmics showers inducing coincidences between different experiments in Gran Sasso.

  9. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  10. Acceleration and propagation of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2015-12-01

    Analysis of the solar cosmic ray measurements on the Geostationary Orbital Environmental Satellite (GOES) spacecraft indicated that the duration of solar flare relativistic proton large pulses is comparable with the solar wind propagation duration from the Sun to the Earth. The front of the proton flux from flares on the western solar disk approaches the Earth with a flight time along the Archimedean spiral magnetic field line of 15-20 min. The proton flux from eastern flares is registered in the Earth's orbit 3-5 h after the flare onset. These particles apparently propagate across IMF owing to diffusion.

  11. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  12. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  13. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  14. A model for the proton spectrum and cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Xu, C.

    1985-01-01

    The problem of the origin of the cosmic rays is still uncertain. As a theory, it should explain the support of particles and energy, the mechanism of acceleration and propagation as well as some important features obtained directly from cosmic ray experiments, such as the power spectrum and the knee. There are two kinds of models for interpreting the knee of the cosmic ray spectrum. One is the leaky box model. Another model suggests that the cut-off rigidity of the main sources causes the knee. The present paper studies the spectrum and the anisotropy of cosmic rays in an isotropic diffuse model with explosive discrete sources in an infinite galaxy.

  15. Variations of the cosmic ray general component in Antarctica

    NASA Technical Reports Server (NTRS)

    Kurguzova, A. I.; Svirzhevsky, N. S.; Charakhchyan, T. N.; Krasotkin, A. F.

    1985-01-01

    A cosmic ray variations, zonal cosmic ray modulation, was found in the lower atmosphere from the sonde measurement results. The variations give rise to anomalies in the latitude distributions of the cosmic ray charged component and the anomalous north-south asymmetry. To find the nature of the variations, the cosmic ray general component was measured with the same detectors as in the sonde measurements gas discharge counters and the counter telescopes with 7-mm Al filters detecting the electrons of energy above 200 keV and 5 MeV. The measurement data obtained in Antarctica in the years 1978 to 1983 are presented and discussed.

  16. Cosmic-ray record in solar system matter

    SciTech Connect

    Reedy, R.C.; Arnold, J.R.; Lal, D.

    1983-01-14

    The energetic nuclei in cosmic rays interact with meteoroids, the moon, planets, and other solar system matter. The nucleides and heavy nuclei tracks produced by the cosmic-ray particles in these targets contain a wealth of information about the history of the objects and temporal ans spatial variations in the particle fluxes. Most lunar samples and many meteorites ahve complex histories of cosmic-ray exposure from erosion, gardening, fragmentation, orbital changes, and other processes. There appear to be variations in the past fluxes of solar particles, and possibly also galactic cosmic rays, on time scales of 10/sup 4/ to 10/sup 7/ years.

  17. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  18. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  19. Transport of cosmic rays across the heliopause

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Luo, X.; Pogorelov, N.

    2015-12-01

    The heliopause (HP) is a boundary that separates the flow with embedded magnetic field of solar origin in the inner heliosheath from that of the interstellar origin in the outer heliosheath. According to the theory of ideal MHD, it should be a tangential discontinuity, but magnetic reconnection or instability can make it more complicated. Voyager 1 crossed the HP in August 2012 at a radial distance of 122 AU from the Sun. The behaviors of Galactic cosmic rays (GCR) and anomalous cosmic rays (ACR) at the HP crossing are very complex. The intensity of GCR experiences step-like increases to reach a nearly steady interstellar level in the outer heliosheath. Its angular distribution changes from isotropic inside the HP to bidirectional anisotropy that appear on and off for several periods of time in the outer heliosheath. The ACR intensity experiences several episodes of decreases near the HP before it eventually disappears. The anisotropy of ACR in the partial depression regions is pancake-like, indicating there is some temporary trapping of particles of near-90° pitch angles. The information has provided us clues for understanding the properties of particle transport in the turbulence of the interstellar magnetic field. In this paper, we review results of model calculations of GCR and ACR transport across the HP. With the observations and modeling results, we can now establish constraints on the properties of particle scattering, diffusion, and interstellar magnetic field turbulence level.

  20. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  1. Radiation Hazard from Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf

    2006-03-01

    Space radiation is a major hazard to astronauts in long-duration human space explosion. Astronauts are exposed to an enormous amount of radiation during their missions away from the Earth in outer space. Deep space is a rich environment of protons, gamma rays and cosmic rays. A healthy 40 years old man staying on Earth away from large doses of radiation stands a 20% chance of dying from cancer. If the same person travels into a 3- year Mars mission, the added risk should increase by 19%. This indicates that there is 39% chance of having cancer after he comes back to Earth. Female astronaut chances to get cancer is even almost double the above percentage. The greatest threat to astronauts en route to the red planet is galactic cosmic rays (GCR). GCRs penetrate through the skin of spaceships and people like tiny firearm bullets, breaking the strands of DNA molecules, damaging genes, and killing cells. Understanding the nature of the GCRs, their effect on biological cells, and their interactions with different shielding materials is the key point to shield against them in long space missions. In this paper we will present a model to evaluate the biological effects of GCRs and suggestion different ways to shield against them.

  2. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  3. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  4. Studies of the cosmic ray penumbra

    NASA Astrophysics Data System (ADS)

    Cooke, David J.

    1988-08-01

    The penumbra is the term used to refer to the interval of space which lies, for any given particle rigidity, between the solid angle zone within which all such particles have free access, and the region within which particle access is completely forbidden. The term is also used to refer, in a specific direction, to the rigidity interval between the lowest rigidity for which any particle may enter in the given direction, and the rigidity below which particle access is completely forbidden in the same direction. Typically the penumbra consists of a mixture of allowed and forbidden trajectories. This question of access of charged primary cosmic rays to points within the magnetic field of a plant is of great interest in numbers of areas of physics. It is very difficult, however, to map the allowed and forbidden regions of access, because of the time-consuming nature of the calculations involved. The present research has involved a systematic study of the nature of the characteristic zones of access in order to produce techniques by which information about the cosmic ray penumbra may efficiently be derived. The work has then focused on the mapping and study of the phenomenology of the penumbra.

  5. Time Variation of Cosmic Ray Arrival Directions

    NASA Astrophysics Data System (ADS)

    Corbett, Henry; Desiati, P.

    2014-01-01

    Experimental data from the IceCube Neutrino Observatory have been used to characterize the anisotropy in the arrival directions of muons produced in cosmic ray air showers. The anisotropy can be fairly well described as a superposition of a dipole and quadrupole of unknown origin in celestial equatorial coordinates. It is also expected to be described as a dipole associated with the Compton-Getting effect in a coordinate system fixed with respect to the Sun. We utilized IceCube data collected from 2008 through 2011, containing 3.69 x 10^10 events with a median cosmic ray particle energy of 20 TeV. We limited our analysis to data from four azimuthal regions, allowing the rotation of the Earth to trace out a periodic signal. We used a Lomb-Scargle periodogram to approximate a frequency spectrum from the event rates. The frequency spectrum contained four peaks with a significance level greater than 5σ, including a peak at 0.997 day^-1 that is consistent with a sideband caused by modulation of the solar dipole. If further analysis confirms this modulation, interference between the solar and sidereal time frames will need to be considered in future analyses of the anisotropy. This work was partially supported by the National Science Foundation's REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  6. Acceleration of cosmic rays in Tycho's SNR.

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Caprioli, D.

    We apply the non-linear diffusive shock acceleration theory in order to describe the properties of SN 1572 (G120.1+1.4, hereafter simply Tycho). By analyzing its multi-wavelength spectrum, we show how Tycho's forward shock (FS) is accelerating protons up to ˜ 500 TeV, channeling into cosmic rays more than 10 per cent of its kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ˜ 300 mu G), in particular the X-ray morphology of the remnant. We are able to explain the gamma-ray spectrum from the GeV up to the TeV band, recently measured respectively by Fermi-LAT and VERITAS, as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. We also show that emission due to the accelerated electrons does not play a relevant role in the observed gamma-ray spectrum.

  7. Recent results from cosmic-ray measurements with LOFAR

    NASA Astrophysics Data System (ADS)

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Krause, M.; Nelles, A.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.

    2014-04-01

    LOFAR, the Low Frequency Array, is currently the world's largest distributed radio telescope observing at frequencies below 240 MHz. LOFAR is measuring cosmic-ray induced air-showers since June 2011 and has collected several hundreds of events with hundreds of antennas per individual event. We present measurements of the radio signal strength as well as high-precision measurements of wavefront curvature and polarization. These will enable us to disentangle the different emission mechanisms at play, such as geomagnetic radiation, charge excess, and Askaryan or Cherenkov effects, leading to a full understanding of the air-shower radio emission. Furthermore we give a first example on how the full complexity of the signal enables radio measurements to be used to study primary particle composition.

  8. A new transition radiation detector for cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Meyer, P.; Muller, D.; Swordy, S.

    1981-01-01

    Test measurements on materials for transition radiation detectors at a low Lorentz factor are reported. The materials will be based on board Spacelab-2 for determining the composition and energy spectra of nuclear cosmic rays in the 1 TeV/nucleon range. The transition radiation detectors consist of a sandwich of radiator-photon detector combinations. The radiators emit X-rays and are composed of polyolefin fibers used with Xe filled multiwired proportional chamber (MWPC) detectors capable of detecting particle Lorentz factors of several hundred. The sizing of the detectors is outlined, noting the requirement of a thickness which provides a maximum ratio of transition radiation to total signal in the chambers. The fiber radiator-MWPC responses were tested at Fermilab and in an electron cyclotron. An increase in transition radiation detection was found as a square power law of Z, and the use of six radiator-MWPC on board the Spacelab-2 is outlined.

  9. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  10. Abundances of cosmic ray nuclei heavier than 50 Sn

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Fickle, R. K.; Garrard, T. L.; Stone, E. C.; Binns, W. R.; Israel, M. H.; Klarmann, J.

    1982-01-01

    Preliminary results are reported from 430 days of exposure of the heavy nuclei experiment on the HEAO-3 spacecraft. These results are confined to the heavy nuclei with Z equal to or greater than 50 and emphasize the conclusions obtained on the relative numbers of actinides and heavy stable elements in the lead-platinum region. The extreme paucity of actinides found is inconsistent with the predictions of a cosmic ray source that is highly enriched in r-process material, but quite consistent with a source whose composition is similar to that of normal solar system material. An upper limit, at the 95 percent confidence level, is placed in the ratio of nuclei with Z equal to or greater than 88/(Z in the range from 74 to 87) of 0.03.

  11. Percolation effects in very-high-energy cosmic rays.

    PubMed

    Dias de Deus, J; Santo, M C Espírito; Pimenta, M; Pajares, C

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E approximately 10(20) eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum Xmax with the primary energy shows a change in slope (E approximately 10(17) eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E approximately 10(17) eV. PMID:16712214

  12. Percolation Effects in Very-High-Energy Cosmic Rays

    SciTech Connect

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E{approx}10{sup 20} eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X{sub max} with the primary energy shows a change in slope (E{approx}10{sup 17} eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E{approx_equal}10{sup 17} eV.

  13. NUCLEON-mission: A New Approach to Cosmic Rays Investigation

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Korotkova, N.; Mashkantcev, A.; Nanjo, H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A new approach to Cosmic Rays Investigation is proposed. The main idea is to combine two experimental methods (KLEM and UHIS) for the NUCLEON Project. The KLEM (Kinematic Lightweight Energy Meter) method is used for the study of chemical composition and elemental energy spectra of galactic CRs in extremely wide energy range 10(exp 11)-10(exp 15) eV. The UHIS (Ultra Heavy Isotope Spectrometer) method is used for the ultra heavy CR nuclei fluxes registration nuclei beyond the iron peak. Combination of the two techniques will lead not to simple mechanical unification of two instruments in one block, but lead to the creation of a unique instrument, with a number of advantages.

  14. On the cosmic ray diffusion in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Toptygin, I. N.

    1985-08-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  15. A proposed performance index for galactic cosmic ray shielding materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.

    1993-01-01

    In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.

  16. Particle astrophysics - The NASA cosmic ray program for the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Jones, W. V. (Editor); Kerr, Frank J. (Editor); Ormes, Jonathan F. (Editor)

    1990-01-01

    Various papers on particle astrophysics are presented. Individual topics addressed include: the NASA cosmic ray (CR) program for the 1990s and beyond, SAMPEX Mission overview, the Advanced Composition Explorer, Positron Electron Magnet Spectrometer for the Eos Mission, Heavy Nucleus Collector for Space Station, the Astromag Facility, Large Isotope Spectrometer for Astromag, the Solar Probe Mission, the Mercury Dual Orbiter Mission, CRs in the heliosphere, origin of high-energy Galactic CRs, CR studies with the Gamma-Ray Observatory, gamma-ray astronomy at 1 TeV, experimental search for point sources above 1 TeV, the UMC Extensive Air Shower Array, status of the MACRO experiment. Also discussed are: CRs above 1 TeV/n and neutrino astronomy, abundance of ultraheavy nuclei in solar energetic particles, CR studies with an interstellar probe, isotopic composition of CR nuclei beyond the iron peak, experimental studies of CR isotopic composition up to Zr-40, use of accelerators in particle astrophysics, development of long-duration ballooning in Antarctica, Lunar-Based Heavy Nucleus Detector, neutrino astronomy on the moon, gamma rays at airplane altitudes, source composition of CRs.

  17. APL workers install CRIS on the Advanced Composition Explorer (ACE) in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers from the Johns Hopkins University's Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A.

  18. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  19. From cosmic ray source to the Galactic pool

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  20. Cosmic ray sampling of a clumpy interstellar medium

    SciTech Connect

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S. III; Yoast-Hull, Tova M.

    2013-12-10

    How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.

  1. Using the information of cosmic rays to predict influence epidemic

    NASA Astrophysics Data System (ADS)

    Yu, Z. D.

    1985-08-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  2. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  3. Using the information of cosmic rays to predict influence epidemic

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  4. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  5. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  6. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  7. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  8. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  9. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  10. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yamashita, Y.; Imaeda, K.; Wada, T.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  11. A search for microwave emission from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Lee

    At the highest energies, the sources of cosmic rays should be among the most powerful extragalactic accelerators. Large observatories have revealed a flux suppression above a few 1019 eV, similar to the expected effect of the interaction of ultrahigh energy cosmic rays (UHECR) with the cosmic microwave background. The Pierre Auger Observatory has measured the largest sample of cosmic ray induced extensive air showers (EAS) at the highest energies leading to a precise measurement of the energy spectrum, hints of spatial anisotropy, and a surprising change in the chemical composition at the highest energies. To answer the question of the origin of UHECRs a larger sample of high quality data will be required to reach a statistically significant result. One of the possible techniques suggested to achieve this much larger data sample, in a cost effective way, is ultra-wide field of view microwave telescopes which would operate in an analogous way to the already successful fluorescence detection (FD) technique. Detecting EAS in microwaves could be done with 100% duty cycle and essentially no atmospheric effects. This presents many advantages over the FD which has a 10% duty cycle and requires extensive atmospheric monitoring for calibration. We have pursued both prototype detector designs and improved laboratory measurements, the results of which are reported herein, and published in (Alvarez-Muniz et al., 2013; Alvarez-Muniz et al., 2012a; Williams et al., 2013; Alvarez-Muniz et al., 2013). The Microwave Detection of Air Showers (MIDAS) experiment is the first ultra-wide field of view imaging telescope deployed to detect isotropic microwave emission from EAS. With 61 days of livetime data operating on the University of Chicago campus we were able to set new limits on isotropic microwave emission from extensive air showers. The new limits rule out current laboratory air plasma measurements (Gorham et al., 2008) by more than five sigma. The MIDAS experiment continues to

  12. SPECTRA OF COSMIC-RAY PROTONS AND HELIUM PRODUCED IN SUPERNOVA REMNANTS

    SciTech Connect

    Ptuskin, Vladimir; Zirakashvili, Vladimir; Seo, Eun-Suk

    2013-01-20

    Data obtained in the Advanced Thin Ionization Calorimeter (ATIC-2), Cosmic Ray Energetics and Mass (CREAM), and Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiments suggest that the elemental interstellar spectra of cosmic rays below the knee at a few times 10{sup 6} GeV are not simple power laws, but that they experience hardening at a magnetic rigidity of about 240 GV. Another essential feature is the difference between proton and helium energy spectra, such that the He/p ratio increases by more than 50% in the energy range from 10{sup 2} to 10{sup 4} GV. We consider the concavity of the particle spectrum resulting from the nonlinear nature of diffusive shock acceleration in supernova remnants (SNRs) as a possible reason for the observed spectrum hardening. The increase of the helium-to-proton ratio with energy can be interpreted as a consequence of cosmic-ray acceleration by forward and reverse shocks in SNRs. The contribution of particles accelerated by reverse shocks makes the concavity of the produced overall cosmic-ray spectrum more pronounced. The spectra of protons and helium nuclei accelerated in SNRs and released into the interstellar medium are calculated. The derived steady-state interstellar spectra are in reasonably good agreement with observations.

  13. Radio detection of cosmic ray air showers in the digital era

    NASA Astrophysics Data System (ADS)

    Huege, Tim

    2016-03-01

    In 1965 it was discovered that cosmic ray air showers emit impulsive radio signals at frequencies below 100 MHz. After a period of intense research in the 1960s and 1970s, however, interest in the detection technique faded almost completely. With the availability of powerful digital signal processing techniques, new attempts at measuring cosmic ray air showers via their radio emission were started at the beginning of the new millennium. Starting with modest, small-scale digital prototype setups, the field has evolved, matured and grown very significantly in the past decade. Today's second-generation digital radio detection experiments consist of up to hundreds of radio antennas or cover areas of up to 17 km2. We understand the physics of the radio emission in extensive air showers in detail and have developed analysis strategies to accurately derive from radio signals parameters which are related to the astrophysics of the primary cosmic ray particles, in particular their energy, arrival direction and estimators for their mass. In parallel to these successes, limitations inherent in the physics of the radio signals have also become increasingly clear. In this article, we review the progress of the past decade and the current state of the field, discuss the current paradigm of the radio emission physics and present the experimental evidence supporting it. Finally, we discuss the potential for future applications of the radio detection technique to advance the field of cosmic ray physics.

  14. The cosmic ray interplanetary radial gradient from 1972 - 1985

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lockwood, J. A.

    1985-01-01

    It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon.

  15. PREFACE: 24th European Cosmic Ray Symposium (ECRS)

    NASA Astrophysics Data System (ADS)

    2015-08-01

    The 24th European Cosmic Ray Symposium (ECRS) took place in Kiel, Germany, at the Christian-Albrechts-Universität zu Kiel from September 1 - 5, 2014, The first symposium was held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two "strands" joined together in 1976 with the meeting in Leeds. The 24th ECRS covered a wide range of scientific issues divided into the following topics: HECR-I Primary cosmic rays I (experiments) HECR-II Primary cosmic rays II (theory) MN Cosmic ray muons and neutrinos GR GeV and TeV gamma astronomy SH Energetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEO Cosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) INS Future Instrumentation DM Dark Matter The organizers are very grateful to the Deutsche Forschungs Gemeinschaft for supporting the symposium.

  16. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  17. Secondary antiprotons - A valuable cosmic-ray probe

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1977-01-01

    Even in the absence of antiprotons in the primary cosmic rays, a flux of secondary antiprotons will be produced in collisions between cosmic rays and interstellar gas. The predicted antiproton fraction increases with increasing cosmic-ray confinement, so that observations of antiprotons will provide a probe of models of cosmic-ray confinement. It is shown that the expected antiproton fraction (for energies of at least about 10 GeV) ranges between 0.00023 for the 'leaky box' model and 0.0018 for the 'closed box' model. In addition, attention is called to the fact that a detection of cosmic-ray antiprotons at or above a level of 0.0002 will provide a valuable lower limit to the antiproton lifetime.

  18. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  19. CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE

    SciTech Connect

    Biermann, Peter L.; De Souza, Vitor E-mail: vitor@ifsc.usp.br

    2012-02-10

    The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.

  20. Solar modulation of low energy galactic cosmic rays in the near-earth space environment

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; González, L. X.

    2016-03-01

    This is an overview of the solar modulation of galactic cosmic rays as seen from the Earth and spacecrafts closeby, where we have put the contributions of Latin-American researchers in the global context in the last five to ten years. It is a broad topic with numerous intriguing aspects so that a research framework has to be chosen to concentrate on, therefore we have put our emphasis on measurements of the cosmic ray flux, without attempting to review all details or every contribution made in this field of research. In consequence, after establishing the basic characteristics of the cosmic radiation such as composition and energy spectrum, we focus on a few selected subjects, almost all within the framework of solar modulation of galactic cosmic rays such as Forbush decreases, periodic variations, space and atmospheric weather cosmic ray relationships, to which we add a general description of ground level enhancement observations. Controversial aspects are discussed where the appropriate results are presented, some of the challenges and prospects of key issues are also pointed out. At the end of the paper, a brief summary of the last decade Latin-American contributions to the subjects treated is given.

  1. Secondary-Particle Production in Organic Material by Cosmic Rays: Simulations and CRaTER Observations

    NASA Astrophysics Data System (ADS)

    Looper, M. D.; Blake, J. B.; Mazur, J. E.; Spence, H. E.

    2009-12-01

    It is well known that material between a radiation environment and a sensitive target, whether the target is an electronic device or living tissue, can enhance the dose received by the target instead of shielding it, depending on the characteristics of the material and of the radiation. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) is designed to measure this effect on the dose that would be received from the space radiation environment by an astronaut on or near the lunar surface. In between its silicon solid-state detectors are two pieces of Tissue-Equivalent Plastic (TEP) with a density and composition similar to muscle tissue, in which interacting primary cosmic-ray nuclei will produce secondary particles that increase dose in an underlying target beyond the base LET of the cosmic-ray particle itself. We will present results of Geant4 simulations of this effect given an incident cosmic-ray spectrum, and will compare those results with observations from CRaTER's first months in lunar orbit.

  2. All-Particle Cosmic Ray Energy Spectrum Measured with 26 Icetop Stations

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Stamatikos, M.

    2013-01-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, thesurface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysiswere taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 square kilometers.The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenithangle ranges between 0 and 46. Because of the isotropy of cosmic rays in this energy range the spectrafrom all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under differentassumptions on the primary mass composition. Good agreement of spectra in the three zenithangle ranges was found for the assumption of pure proton and a simple two-component model. Forzenith angles theta less than 30 deg., where the mass dependence is smallest, the knee in the cosmic ray energy spectrumwas observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indicationof a flattening of the spectrum above 22 PeV was observed.

  3. Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM)

    NASA Astrophysics Data System (ADS)

    Seo, E. S.; Anderson, T.; Angelaszek, D.; Baek, S. J.; Baylon, J.; Buénerd, M.; Copley, M.; Coutu, S.; Derome, L.; Fields, B.; Gupta, M.; Han, J. H.; Howley, I. J.; Huh, H. G.; Hwang, Y. S.; Hyun, H. J.; Jeong, I. S.; Kah, D. H.; Kang, K. H.; Kim, D. Y.; Kim, H. J.; Kim, K. C.; Kim, M. H.; Kwashnak, K.; Lee, J.; Lee, M. H.; Link, J. T.; Lutz, L.; Malinin, A.; Menchaca-Rocha, A.; Mitchell, J. W.; Nutter, S.; Ofoha, O.; Park, H.; Park, I. H.; Park, J. M.; Patterson, P.; Smith, J. R.; Wu, J.; Yoon, Y. S.

    2014-05-01

    The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1-26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.

  4. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  5. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  6. TIROS-N Cosmic Ray study

    NASA Technical Reports Server (NTRS)

    Blandford, J. T., Jr.; Pickel, J. C.

    1980-01-01

    An experimental and analytical study was performed on the impact of galactic cosmic rays on the TIROS-N satellite memory in orbit. Comparisons were made of systems equipped with the Harris HMI-6508 1 x 1024 CMOS/bulk RAM and the RCA CDP-1821 1 x 1024 bit CMOS/SOS RAM. Based upon the experimental results, estimated bit error rates were determined. These were at least 8.0 bit errors/day for a 300 kilobit memory with the HMI-6508 and .014 bit errors/day with the CDF-1821. It was also estimated that the HMI-6508 latchup rate in orbit is at least two orders of magnitude less than the bit error rates; the CDP-1821 will not latchup.

  7. Cosmic rays in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Persic, Massimo; Rephaeli, Yoel

    2012-03-01

    The energy density of cosmic ray protons (CRp) in star-forming environments can be (i) measured from γ-ray πo-decay emission, (ii) inferred from the measured radio non-thermal synchrotron emission (once a theoretical p/e ratio and particle-field equipartition have been assumed), and (iii) estimated from the observed supernova rate and the deduced CRp residency time. For most of the currently available galaxies where these methods can be simultaneously applied, the results of the various methods agree and suggest that CRp energy densities range from Script O(10-1) eV cm-3 in very quiet environments up to Script O(102) eV cm-3 in very active ones. The only case for which the methods do not agree is the Small Magellanic Cloud, where the discrepancy between measured and estimated CRp energy density may be due to a smaller characteristic CR confinement volume.

  8. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1993-01-01

    A study has been made of energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the postshock region, although some shocks will be followed by an ejecta with a high field. Each event is different. The lower-energy particles can help in identifying the dominant processes in individual events.

  9. Strong earthquakes, novae and cosmic ray environment

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    Observations about the relationship between seismic activity and astronomical phenomena are discussed. First, after investigating the seismic data (magnitude 7.0 and over) with the method of superposed epochs it is found that world seismicity evidently increased after the occurring of novae with apparent magnitude brighter than 2.2. Second, a great many earthquakes of magnitude 7.0 and over occurred in the 13th month after two of the largest ground level solar cosmic ray events (GLEs). The causes of three high level phenomena of global seismic activity in 1918-1965 can be related to these, and it is suggested that according to the information of large GLE or bright nova predictions of the times of global intense seismic activity can be made.

  10. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1992-01-01

    Energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds was studied. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the post-shock region although some shocks will be followed by an ejecta with a high field. Each event is different. The lower energy particles can help in identifying the dominant processes in individual events.

  11. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  12. The Skylab ultraheavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Price, P. B.; Shirk, E. K.

    1975-01-01

    Cosmic-ray nuclides of charge Z from 65 to 110 were detected with a Lexan sheet array mounted on the spacecraft. The charge distribution showed 83 nuclei of Z not less than 65, 6 nuclei of charge not less than 90, one with Z not less than 93, and no superheavy nuclei (Z not less than 110). Measured Pb/Pt and U/Pt abundance ratios are examined for information on a possible r-process, on solar system abundances, and on the time and time scale of the related nucleosynthesis events. The resolution of the experiment is deemed adequate to rule out the presence of superheavy nuclei. Experimental procedures, statistical treatment, and correlation with balloon data are discussed.

  13. Early Cosmic Ray Research with Balloons

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  14. Directional clustering in highest energy cosmic rays

    SciTech Connect

    Goldberg, Haim; Weiler, Thomas J.

    2001-09-01

    An unexpected degree of small-scale clustering is observed in highest-energy cosmic ray events. Some directional clustering can be expected due to purely statistical fluctuations for sources distributed randomly in the sky. This creates a background for events originating in clustered sources. We derive analytic formulas to estimate the probability of random cluster configurations, and use these formulas to study the strong potential of the HiRes, Auger, Telescope Array and EUSO-OWL-AirWatch facilities for deciding whether any observed clustering is most likely due to nonrandom sources. For a detailed comparison to data, our analytical approach cannot compete with Monte Carlo simulations, including experimental systematics. However, our derived formulas do offer two advantages: (i) easy assessment of the significance of any observed clustering, and most importantly, (ii) an explicit dependence of cluster probabilities on the chosen angular bin size.

  15. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  16. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  17. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  18. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  19. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  20. Lunar monitoring outpost of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail; Kalmykov, Nikolai; Turundaevskiy, Andrey; Chubenko, Alexander; Podorozhny, Dmitry; Mukhamedshin, Rauf; Sveshnikova, Lubov; Tkachev, Leonid; Konstantinov, Andrey

    The basic purpose of the planned NEUTRONIUM-100 experiment considers expansion of the direct measurements of cosmic rays spectra and anisotropy to the energy range of ~1017 eV with element-by-element resolution of the nuclear component. These measurements will make it possible to solve the problem of the “knee” of the spectrum and to make choice between the existing models of the cosmic rays origin and propagation. The proposed innovative method of energy measurements is based on the simultaneous detection of different components of back scattered radiation generated by showers produced by the primary particle in the regolyth (neutrons, gamma rays and radio waves). A multi-module system disposed on the Moon's surface is proposed for particles registration. Each module consists of a radio antenna, contiguous to the regolyth, scintillation detectors with gadolinium admixture and silicon charge detectors. Scintillation detectors record electrons and gamma-rays of back scattered radiation and delayed neutrons. The area of the experimental facility will be at least ~100 m2, suitable for upgrading. Average density of the detecting equipment is evaluated as 10-20 g/m2. Taking into account the weight of the equipment delivered from the Earth will be about 10 tons it is possible to compose an eqperimental facility with geometric factor of 150-300 m2sr. The Moon provides unique conditions for this experiment due to presence of the absorbing material and absence of atmosphere. The experiment will allow expansion of the measurements up to ~1017 eV with element-by-element resolution of the nuclear component. Currently direct measurements reach energy range of up to ~1015 eV, and Auger shower method does not provide information about the primary particle's charge. It is expected that ~15 particles with energy >1017 eV will be detected by the proposed experimental equipment per year. It will provide an opportunity to solve the problems of the current high-energy astrophysics.