DOT National Transportation Integrated Search
2011-08-01
The Backing crash Countermeasures project, part of the U.S. Department of Transportation's Advanced Crash Avoidance Technologies (ACAT) program, developed a basic methodological framework and computerbased simulation model to estimate the effectiv...
DOT National Transportation Integrated Search
2010-10-01
The Volvo-Ford-UMTRI project: Safety Impact Methodology (SIM) for Lane Departure Warning is part of the U.S. Department of Transportation's Advanced Crash Avoidance Technologies (ACAT) program. The project developed a basic analytical framework for e...
Ito, Daisuke; Hayakawa, Kosei; Kondo, Yuma; Mizuno, Koji; Thomson, Robert; Piccinini, Giulio Bianchi; Hosokawa, Naruyuki
2018-08-01
Analyzing a crash using driving recorder data makes it possible to objectively examine factors contributing to the occurrence of the crash. In this study, car-to-cyclist crashes and near crashes recorded on cars equipped with advanced driving recorders were compared with each other in order to examine the factors that differentiate near crashes from crashes, as well as identify the causes of the crashes. Focusing on cases where the car and cyclist approached each other perpendicularly, the differences in the car's and cyclist's parameters such as velocity, distance and avoidance behavior were analyzed. The results show that car-to-cyclist crashes would not be avoidable when the car approaching the cyclist enters an area where the average deceleration required to stop the car is more than 0.45 G (4.4 m/s 2 ). In order for this situation to occur, there are two types of cyclist crash scenarios. In the first scenario, the delay in the drivers' reaction in activating the brakes is the main factor responsible for the crash. In this scenario, time-to-collision when the cyclist first appears in the video is more than 2.0 s. In the second scenario, the sudden appearance of a cyclist from behind an obstacle on the street is the factor responsible for the crash. In this case, the time-to-collision is less than 1.2 s, and the crash cannot be avoided even if the driver exhibited avoidance maneuvers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yue, Lishengsa; Abdel-Aty, Mohamed; Wu, Yina; Wang, Ling
2018-08-01
The Connected Vehicle (CV) technologies together with other Driving Assistance (DA) technologies are believed to have great effects on traffic operation and safety, and they are expected to impact the future of our cities. However, few research has estimated the exact safety benefits when all vehicles are equipped with these technologies. This paper seeks to fill the gap by using a general crash avoidance effectiveness framework for major CV&DA technologies to make a comprehensive crash reduction estimation. Twenty technologies that were tested in recent studies are summarized and sensitivity analysis is used for estimating their total crash avoidance effectiveness. The results show that crash avoidance effectiveness of CV&DA technology is significantly affected by the vehicle type and the safety estimation methodology. A 70% crash avoidance rate seems to be the highest effectiveness for the CV&DA technologies operating in the real-world environment. Based on the 2005-2008 U.S. GES Crash Records, this research found that the CV&DA technologies could lead to the reduction of light vehicles' crashes and heavy trucks' crashes by at least 32.99% and 40.88%, respectively. The rear-end crashes for both light vehicles and heavy trucks have the most expected crash benefits from the technologies. The paper also studies the effectiveness of Forward Collision Warning technology (FCW) under fog conditions, and the results show that FCW could reduce 35% of the near-crash events under fog conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1995-05-01
KEYWORDS : ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, COLLISION WARNING/AVOIDANCE SYSTEMS, CRASH REDUCTION, INTELLIGENT VEHICLE INITIATIVE OR IVI : RESULTS FROM THE TESTING OF ELEVEN COLLISION AVOIDANCE SYSTEMS (CAS) FOR LANE CHANGE, ...
DOT National Transportation Integrated Search
1995-08-01
KEYWORDS : RESEARCH AND DEVELOPMENT OR R&D, CRASH REDUCTION, FATALITIES REDUCTION, LATERAL GUIDANCE, LONGITUDINAL GUIDANCE, ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, ADVANCED VEHICLE CONTROL SYSTEM OR AVCS, INTELLIGENT VEHICLE INITIATIV...
Eichelberger, Angela H; McCartt, Anne T
2016-02-01
Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Objective tests for forward looking pedestrian crash avoidance/mitigation systems.
DOT National Transportation Integrated Search
2014-06-01
This report documents the work completed by the Crash Avoidance Metrics Partnership (CAMP) Crash Imminent Braking : (CIB) Consortium during the project titled Objective Tests for Forward Looking Pedestrian Crash Avoidance/Mitigation : Systems. ...
Kaplan, Sigal; Prato, Carlo Giacomo
2012-01-01
The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems, and rethinking in-vehicle collision warning systems. Future research should address the effectiveness of crash avoidance maneuvers and joint modeling of maneuver selection and crash severity.
Pre-crash scenario typology for crash avoidance research
DOT National Transportation Integrated Search
2007-04-01
This report defines a new pre-crash scenario typology for crash avoidance research based on the 2004 General Estimates System (GES) crash database, which consists of pre-crash scenarios depicting vehicle movements and dynamics as well as the critical...
Teoh, Eric R
2018-07-04
The objective of this study was to identify and quantify the motorcycle crash population that would be potential beneficiaries of 3 crash avoidance technologies recently available on passenger vehicles. Two-vehicle crashes between a motorcycle and a passenger vehicle that occurred in the United States during 2011-2015 were classified by type, with consideration of the functionality of 3 classes of passenger vehicle crash avoidance technologies: frontal crash prevention, lane maintenance, and blind spot detection. Results were expressed as the percentage of crashes potentially preventable by each type of technology, based on all known types of 2-vehicle crashes and based on all crashes involving motorcycles. Frontal crash prevention had the largest potential to prevent 2-vehicle motorcycle crashes with passenger vehicles. The 3 technologies in sum had the potential to prevent 10% of fatal 2-vehicle crashes and 23% of police-reported crashes. However, because 2-vehicle crashes with a passenger vehicle represent fewer than half of all motorcycle crashes, these technologies represent a potential to avoid 4% of all fatal motorcycle crashes and 10% of all police-reported motorcycle crashes. Refining the ability of passenger vehicle crash avoidance systems to detect motorcycles represents an opportunity to improve motorcycle safety. Expanding the capabilities of these technologies represents an even greater opportunity. However, even fully realizing these opportunities can affect only a minority of motorcycle crashes and does not change the need for other motorcycle safety countermeasures such as helmets, universal helmet laws, and antilock braking systems.
DOT National Transportation Integrated Search
2014-04-01
Through the analysis of national crash databases from the National Highway Traffic Safety Administration, pre-crash scenarios are identified, prioritized, and described for the development of objective tests for pedestrian crash avoidance/mitigation ...
Use, perceptions, and benefits of automotive technologies among aging drivers.
Eby, David W; Molnar, Lisa J; Zhang, Liang; St Louis, Renée M; Zanier, Nicole; Kostyniuk, Lidia P; Stanciu, Sergiu
2016-12-01
Advanced in-vehicle technologies have been proposed as a potential way to keep older adults driving for as long as they can safely do so, by taking into account the common declines in functional abilities experienced by older adults. The purpose of this report was to synthesize the knowledge about older drivers and advanced in-vehicle technologies, focusing on three areas: use (how older drivers use these technologies), perception (what they think about the technologies), and outcomes (the safety and/or comfort benefits of the technologies). Twelve technologies were selected for review and grouped into three categories: crash avoidance systems (lane departure warning, curve speed warning, forward collision warning, blind spot warning, parking assistance); in-vehicle information systems (navigation assistance, intelligent speed adaptation); and other systems (adaptive cruise control, automatic crash notification, night vision enhancement, adaptive headlight, voice activated control). A comprehensive and systematic search was conducted for each technology to collect related publications. 271 articles were included into the final review. Research findings for each of the 12 technologies are synthesized in relation to how older adults use and think about the technologies as well as potential benefits. These results are presented separately for each technology. Can advanced in-vehicle technologies help extend the period over which an older adult can drive safely? This report answers this question with an optimistic "yes." Some of the technologies reviewed in this report have been shown to help older drivers avoid crashes, improve the ease and comfort of driving, and travel to places and at times that they might normally avoid.
Integration of ATIS and crash avoidance in-vehicle information : preliminary simulator study
DOT National Transportation Integrated Search
1999-12-01
This study investigated three issues relevant to Advanced Traveler Information System (ATIS) design: (1) the influence of an ATIS on driver performance in reduced visibility conditions, (2) the influence of an ATIS on drivers' reactions to unexpected...
DOT National Transportation Integrated Search
2016-08-01
This research supports establishing an updated understanding of the pedestrian crash problem and defining a way to connect the crash problem with vehicle-to-pedestrian (V2P) communication crash avoidance technology. It describes 5 priority pre-crash ...
Third annual report of the crash avoidance metrics partnership, April 2003 - March 2004
DOT National Transportation Integrated Search
2005-01-01
The Crash Avoidance Metrics Partnership (CAMP) was formed by Ford and General Motors in 1995 to accelerate the implementation of crash avoidance countermeasures in passenger vehicles to improve traffic safety. The CAMP Light Vehicle Enabling Research...
DOT National Transportation Integrated Search
2015-07-01
Advanced crash avoidance technologies (ACATs) for trucks have been developed in recent years and are beginning : to be deployed. Prior to the development of standards for heavy truck crashworthiness and occupant protection, : additional characterizat...
Pre-crash scenario framework for crash avoidance systems based on vehicle-to-vehicle communications
DOT National Transportation Integrated Search
2011-06-13
This paper prioritizes and statistically describes precrash : scenarios as a basis for the identification of : crash avoidance functions enhanced or enabled by : vehicle-to-vehicle (V2V) communication technology. : Pre-crash scenarios depict vehicle ...
Analyses of factors of crash avoidance maneuvers using the general estimates system.
Yan, Xuedong; Harb, Rami; Radwan, Essam
2008-06-01
Taking an effective corrective action to a critical traffic situation provides drivers an opportunity to avoid crash occurrence and minimize crash severity. The objective of this study is to investigate the relationship between the probability of taking corrective actions and the characteristics of drivers, vehicles, and driving environments. Using the 2004 GES crash database, this study classified drivers who encountered critical traffic events (identified as P_CRASH3 in the GES database) into two pre-crash groups: corrective avoidance actions group and no corrective avoidance actions group. Single and multiple logistic regression analyses were performed to identify potential traffic factors associated with the probability of drivers taking corrective actions. The regression results showed that the driver/vehicle factors associated with the probability of taking corrective actions include: driver age, gender, alcohol use, drug use, physical impairments, distraction, sight obstruction, and vehicle type. In particular, older drivers, female drivers, drug/alcohol use, physical impairment, distraction, or poor visibility may increase the probability of failing to attempt to avoid crashes. Moreover, drivers of larger size vehicles are 42.5% more likely to take corrective avoidance actions than passenger car drivers. On the other hand, the significant environmental factors correlated with the drivers' crash avoidance maneuver include: highway type, number of lanes, divided/undivided highway, speed limit, highway alignment, highway profile, weather condition, and surface condition. Some adverse highway environmental factors, such as horizontal curves, vertical curves, worse weather conditions, and slippery road surface conditions are correlated with a higher probability of crash avoidance maneuvers. These results may seem counterintuitive but they can be explained by the fact that motorists may be more likely to drive cautiously in those adverse driving environments. The analyses revealed that drivers' distraction could be the highest risk factor leading to the failure of attempting to avoid crashes. Further analyses entailing distraction causes (e.g., cellular phone use) and their possible countermeasures need to be conducted. The age and gender factors are overrepresented in the "no avoidance maneuver." A possible solution could involve the integration of a new function in the current ITS technologies. A personalized system, which could be related to the expected type of maneuver for a driver with certain characteristics, would assist different drivers with different characteristics to avoid crashes. Further crash database studies are recommended to investigate the association of drivers' emergency maneuvers such as braking, steering, or their combination with crash severity.
Crash avoidance potential of four large truck technologies.
Jermakian, Jessica S
2012-11-01
The objective of this paper was to estimate the maximum potential large truck crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and vehicle stability control. Estimates accounted for limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as location of damage on the vehicle, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented the crash. Of the four technologies, side view assist had the greatest potential for preventing large truck crashes of any severity; the technology is potentially applicable to 39,000 crashes in the United States each year, including 2000 serious and moderate injury crashes and 79 fatal crashes. Vehicle stability control is another promising technology, with the potential to prevent or mitigate up to 31,000 crashes per year including more serious crashes--up to 7000 moderate-to-serious injury crashes and 439 fatal crashes per year. Vehicle stability control could prevent or mitigate up to 20 and 11 percent of moderate-to-serious injury and fatal large truck crashes, respectively. Forward collision warning has the potential to prevent as many as 31,000 crashes per year, including 3000 serious and moderate injury crashes and 115 fatal crashes. Finally, 10,000 large truck crashes annually were relevant to lane departure warning/prevention systems. Of these, 1000 involved serious and moderate injuries and 247 involved fatal injuries. There is great potential effectiveness for truck-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. Actual effectiveness of crash avoidance systems will not be known until sufficient real-world experience has been gained. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crash avoidance potential of four passenger vehicle technologies.
Jermakian, Jessica S
2011-05-01
The objective was to update estimates of maximum potential crash reductions in the United States associated with each of four crash avoidance technologies: side view assist, forward collision warning/mitigation, lane departure warning/prevention, and adaptive headlights. Compared with previous estimates (Farmer, 2008), estimates in this study attempted to account for known limitations of current systems. Crash records were extracted from the 2004-08 files of the National Automotive Sampling System General Estimates System (NASS GES) and the Fatality Analysis Reporting System (FARS). Crash descriptors such as vehicle damage location, road characteristics, time of day, and precrash maneuvers were reviewed to determine whether the information or action provided by each technology potentially could have prevented or mitigated the crash. Of the four crash avoidance technologies, forward collision warning/mitigation had the greatest potential for preventing crashes of any severity; the technology is potentially applicable to 1.2 million crashes in the United States each year, including 66,000 serious and moderate injury crashes and 879 fatal crashes. Lane departure warning/prevention systems appeared relevant to 179,000 crashes per year. Side view assist and adaptive headlights could prevent 395,000 and 142,000 crashes per year, respectively. Lane departure warning/prevention was relevant to the most fatal crashes, up to 7500 fatal crashes per year. A combination of all four current technologies potentially could prevent or mitigate (without double counting) up to 1,866,000 crashes each year, including 149,000 serious and moderate injury crashes and 10,238 fatal crashes. If forward collision warning were extended to detect objects, pedestrians, and bicyclists, it would be relevant to an additional 3868 unique fatal crashes. There is great potential effectiveness for vehicle-based crash avoidance systems. However, it is yet to be determined how drivers will interact with the systems. The actual effectiveness of these systems will not be known until sufficient real-world experience has been gained. Copyright © 2010 Elsevier Ltd. All rights reserved.
Volvo and Infiniti drivers' experiences with select crash avoidance technologies.
Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah
2010-06-01
Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be examined as more vehicles with advanced technologies penetrate the fleet.
Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.
Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine
2016-10-01
Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial from an economic and social perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aviation Careers Series: Aviation Maintenance and Avionics
DOT National Transportation Integrated Search
1996-01-30
The NHTSA Office of Crash Avoidance Research is responsible for identifying and developing effective vehicle systems for helping drivers avoid crashes. Our work utilizes the expertise of human factors engineers and psychologists, mechanical engineers...
Predicting significant torso trauma.
Nirula, Ram; Talmor, Daniel; Brasel, Karen
2005-07-01
Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.
Wu, Jiawei; Yan, Xuedong; Radwan, Essam
2016-06-01
Due to comfort, convenience, and flexibility, taxis have become increasingly more prevalent in China, especially in large cities. However, many violations and road crashes that occurred frequently were related to taxi drivers. This study aimed to investigate differences in driving performance between taxi drivers and non-professional drivers from the perspectives of red-light running violation and potential crash involvement based on a driving simulation experiment. Two typical scenarios were established in a driving simulator, which includes the red-light running violation scenario and the crash avoidance scenario. There were 49 participants, including 23 taxi drivers (14 males and 9 females) and 26 non-professional drivers (13 males and 13 females) recruited for this experiment. The driving simulation experiment results indicated that non-professional drivers paid more attention to red-light running violations in comparison to taxi drivers who had a higher probability of red-light running violation. Furthermore, it was found that taxi drivers were more inclined to turn the steering wheel in an attempt to avoid a potential collision and non-professional drivers had more abrupt deceleration behaviors when facing a potential crash. Moreover, the experiment results showed that taxi drivers had a smaller crash rate compared to non-professional drivers and had a better performance in terms of crash avoidance at the intersection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of potential safety benefits for pedestrian crash avoidance/mitigation systems.
DOT National Transportation Integrated Search
2017-04-01
This report presents and exercises a methodology to estimate the effectiveness and potential safety benefits of production pedestrian crash avoidance/mitigation systems. The analysis focuses on light vehicles moving forward and striking a pedestrian ...
In-vehicle crash avoidance warning systems : human factors considerations
DOT National Transportation Integrated Search
1997-02-01
This document represents the final report of the work performed under contract DTNH22-91 C-07004, In-Vehicle Crash Avoidance Warning Systems: Human Factors Considerations. This project was performed to develop guidelines for the interface desig...
DOT National Transportation Integrated Search
1994-10-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING LVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES.
Volvo drivers' experiences with advanced crash avoidance and related technologies.
Eichelberger, Angela H; McCartt, Anne T
2014-01-01
Crash avoidance technologies can potentially prevent or mitigate many crashes, but their success depends in part on driver acceptance. Owners of 2010-2012 model Volvo vehicles with several technologies were interviewed about their experiences. Interviews were conducted in summer 2012 with 155 owners of vehicles with City Safety as a standard feature; 145 owners with an optional technology package that included adaptive cruise control, distance alert, collision warning with full auto brake (and pedestrian detection on certain models), driver alert control, and lane departure warning; and 172 owners with both City Safety and the technology package. The survey response rates were 21 percent for owners with City Safety, 30 percent for owners with the technology package, and 27 percent for owners with both. Ten percent of owners opted out before the telephone survey began, and 18 percent declined to participate when called. Despite some annoyance, most respondents always leave the systems on, although fewer do so for lane departure warning (59%). For each of the systems, at least 80 percent of respondents with the system would want it on their next vehicle. Many respondents reported safer driving habits with the systems (e.g., following less closely with adaptive cruise control, using turn signals more often with lane departure warning). Fewer respondents reported potentially unsafe behavior, such as allowing the vehicle to brake for them at least some of the time. About one third of respondents experienced autonomous braking when they believed they were at risk of crashing, and about one fifth of respondents thought it had prevented a crash. About one fifth of respondents with the technology package reported that they were confused or misunderstood which safety system had activated in their vehicle. Consistent with the results for early adopters in the previous survey of Volvo and Infiniti owners, the present survey found that driver acceptance of the technologies remains high, although less so for lane departure warning. This study is the first to report drivers' experiences with City Safety, a collision avoidance system provided as standard equipment on certain Volvo 2010-2012 models, and driver acceptance of this system was high, although not to the same extent as the optional forward collision avoidance system. Future research should continue to monitor drivers' experiences with these technologies as they become available in more vehicles.
Analysis of light vehicle crashes and pre-crash scenarios based on the 2000 General Estimates System
DOT National Transportation Integrated Search
2003-02-01
This report analyzes the problem of light vehicle crashes in the United States to support the development and assessment of effective crash avoidance systems as part of the U.S. Department of Transportation's Intelligent Vehicle Initiative. The analy...
DOT National Transportation Integrated Search
2013-04-30
This report discusses light-vehicle crash countermeasure profiles and functions for five target pre-crash scenario groups based on vehicle-to-vehicle (V2V) communications. Target pre-crash scenario groups include rear-end, lane change, opposite direc...
Analysis of Pedalcyclist Crashes
DOT National Transportation Integrated Search
2002-11-01
This report analyzes the problem of pedalcyclist crashes in the United States to support the development and assessment of effective pedalcyclist crash avoidance systems as part of the U.S. Department of Transportation's Intelligent Vehicle Initiativ...
Isaksson-Hellman, Irene; Lindman, Magdalena
2016-09-01
The aim of the present study was to evaluate the crash mitigation performance of low-speed automated emergency braking collision avoidance technologies by examining crash rates, car damage, and personal injuries. Insurance claims data were used to identify rear-end frontal collisions, the specific situations where the low-speed automated emergency braking system intervenes. We compared cars of the same model (Volvo V70) with and without the low-speed automated emergency braking system (AEB and no AEB, respectively). Distributions of spare parts required for car repair were analyzed to identify car damage, and crash severity was estimated by comparing the results with laboratory crash tests. Repair costs and occupant injuries were investigated for both the striking and the struck vehicle. Rear-end frontal collisions were reduced by 27% for cars with low-speed AEB compared to cars without the system. Those of low severity were reduced by 37%, though more severe crashes were not reduced. Accordingly, the number of injured occupants in vehicles struck by low-speed AEB cars was reduced in low-severity crashes. In offset crash configurations, the system was found to be less effective. This study adds important information about the safety performance of collision avoidance technologies, beyond the number of crashes avoided. By combining insurance claims data and information from spare parts used, the study demonstrates a mitigating effect of low-speed AEB in real-world traffic.
DOT National Transportation Integrated Search
1995-11-01
This research was directed at optimizing the auditory warnings that may be used in future crash avoidance warning applications. There is a need to standardize such warnings, so that they retain immediacy of meaning across various vehicles, situations...
DOT National Transportation Integrated Search
1995-09-05
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report documents the RORSIM comput...
DOT National Transportation Integrated Search
1995-08-01
INTELLIGENT VEHICLE INITIATIVE OR IVI : THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. :...
Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures: Task 3, Volume 1
DOT National Transportation Integrated Search
1995-08-23
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity oi these crashes. This report describes the findings of the...
Run-Off-Road Collision Avoidance Countermeasures Using IVHS Countermeasures Task 3 - Volume 2
DOT National Transportation Integrated Search
1995-08-23
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. : This report describes the findings of t...
Problem definition for pre-crash sensing advanced restraints.
DOT National Transportation Integrated Search
2009-04-01
This report presents the results of crash analyses that defined and prioritized target crashes for advanced restraint systems based on pre-crash sensors. These analyses targeted the driver and front-seat passenger 13 or older, traveling in light vehi...
DOT National Transportation Integrated Search
1995-11-01
THIS RESEARCH WAS DIRECTED AT OPTIMIZING THE AUDITORY WARNINGS THAT MAY BE USED IN FUTURE CRASH AVOIDANCE WARNING APPLICATIONS. THERE IS A NEED TO STANDARDIZE SUCH WARNINGS, SO THAT THEY RETAIN IMMEDIACY OF MEANING ACROSS VARIOUS VEHICLES, SITUATIONS...
DOT National Transportation Integrated Search
1994-10-28
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report describes and documents the a...
DOT National Transportation Integrated Search
1994-10-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
DOT National Transportation Integrated Search
1995-06-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DESCRIBES AND DOCUMENTS ...
DOT National Transportation Integrated Search
1995-09-01
THE RUN-OFF-ROAD COLLISION AVOIDANCE USING IVHS COUNTERMEASURES PROGRAM IS TO ADDRESS THE SINGLE VEHICLE CRASH PROBLEM THROUGH APPLICATION OF TECHNOLOGY TO PREVENT AND/OR REDUCE THE SEVERITY OF THESE CRASHES. : THIS REPORT DOCUMENTS THE RORSIM COM...
DOT National Transportation Integrated Search
1994-10-28
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report contains a summary of data us...
Vehicle-to-Vehicle crash avoidance technology : public acceptance final report.
DOT National Transportation Integrated Search
2015-12-01
The Vehicle-to-Vehicle (V2V) Crash Avoidance Public Acceptance report summarizes data from a survey of the current level of awareness and acceptance of V2V technology. The survey was guided by findings from prior studies and 12 focus groups. A total ...
Wang, Chen; Lu, Linjun; Lu, Jian; Wang, Tao
2016-01-01
In order to improve motorcycle safety, this article examines the correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists, under multiple precrash conditions. Ten-year crash data for single-vehicle motorcycle crashes from the General Estimates Systems (GES) were analyzed, using partial proportional odds models (i.e., generalized ordered logit models). The modeling results show that "braking (no lock-up)" is associated with a higher probability of increased severity, whereas "braking (lock-up)" is associated with a higher probability of decreased severity, under all precrash conditions. "Steering" is associated with a higher probability of reduced injury severity when other vehicles are encroaching, whereas it is correlated with high injury severity under other conditions. "Braking and steering" is significantly associated with a higher probability of low severity under "animal encounter and object presence," whereas it is surprisingly correlated with high injury severity when motorcycles are traveling off the edge of the road. The results also show that a large number of motorcyclists did not perform any crash avoidance maneuvers or conducted crash avoidance maneuvers that are significantly associated with high injury severity. In general, this study suggests that precrash maneuvers are an important factor associated with motorcyclists' injury severity. To improve motorcycle safety, training/educational programs should be considered to improve safety awareness and adjust driving habits of motorcyclists. Antilock brakes and such systems are also promising, because they could effectively prevent brake lock-up and assist motorcyclists in maneuvering during critical conditions. This study also provides valuable information for the design of motorcycle training curriculum.
Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
Scanlon, John M; Kusano, Kristofer D; Gabler, Hampton C
2015-01-01
Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes. Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver. Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers traveling through the intersection without yielding (79.0%). After accounting for uncertainty in the timing of braking and steering data, the median evasive braking time was found to be between 0.5 to 1.5 s prior to impact, and the median initial evasive steering time was found to occur between 0.5 and 0.9 s prior to impact. The median average evasive braking deceleration for all cases was found to be 0.58 g. The median of the maximum evasive vehicle yaw rates was found to be 8.2° per second. Evasive steering direction was found to be most frequently in the direction of travel of the approaching vehicle. The majority of drivers involved in intersection crashes were alert enough to perform an evasive action. Most drivers used a combination of steering and braking to avoid a crash. The average driver attempted to steer and brake at approximately the same time prior to the crash.
Bélanger, Alexandre; Gagnon, Sylvain; Stinchcombe, Arne
2015-09-01
We examined the crash avoidance behaviors of older and middle-aged drivers in reaction to six simulated challenging road events using two different driving simulator platforms. Thirty-five healthy adults aged 21-36 years old (M=28.9±3.96) and 35 healthy adults aged 65-83 years old (M=72.1±4.34) were tested using a mid-level simulator, and 27 adults aged 21-38 years old (M=28.6±6.63) and 27 healthy adults aged 65-83 years old (M=72.7±5.39) were tested on a low-cost desktop simulator. Participants completed a set of six challenging events varying in terms of the maneuvers required, avoiding space given, directional avoidance cues, and time pressure. Results indicated that older drivers showed higher crash risk when events required multiple synchronized reactions. In situations that required simultaneous use of steering and braking, older adults tended to crash significantly more frequently. As for middle-aged drivers, their crashes were attributable to faster driving speed. The same age-related driving patterns were observed across simulator platforms. Our findings support the hypothesis that older adults tend to react serially while engaging in cognitively challenging road maneuvers. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1973-05-01
Considerable effort has been expended in recent years to develop anticipatory crash sensors-effective means of detecting motor vehicle collisions immediately prior to occurrence. If the potential crash is sensed early enough, evasive action may be in...
Sander, Ulrich; Lubbe, Nils
2018-06-01
Car occupants account for one third of all junction fatalities in the European Union. Driver warning can reduce intersection accidents by up to 50 percent; adding Autonomous Emergency Braking (AEB) delivers a reduction of up to 70 percent. However, these findings are based on an assumed 100 percent equipment rate, which may take decades to achieve. Our study investigates the relationship between intersection AEB market penetration rates and avoidance of accidents and injuries in order to guide implementation strategies. Additionally, residual accident characteristics (impact configurations and severity) are analyzed to provide a basis for future in-crash protection requirements. We determined which accidents would have been avoided through the use of an Intersection AEB system with different sensor field-of-views (180° and 120°) by means of re-simulating the pre-crash phase of 792 straight crossing path (SCP) car-to-car accidents recorded in the German In-Depth Accident Study (GIDAS) and the associated Pre-Crash Matrix (PCM). Intersection AEB was activated when neither of the conflict opponents could avoid the crash through reasonable braking or steering reactions. For not-avoided accidents, we used the Kudlich-Slibar rigid body impulse model to calculate the change of velocity during the impact as a measure of impact severity and the principal direction of force. Accident avoidance over market penetration is not linear but exponential, with higher gains at low penetration rates and lower gains at higher rates. A wide field-of-view sensor (180°) substantially increased accident avoidance and injury mitigation rates compared to a 120° field-of-view sensor. For a 180° field-of-view sensor at 100 percent market penetration, about 80 percent of the accidents and 90 percent of the MAIS2 + F injuries could be avoided. For the remaining accidents, AEB intervention rarely affected side of impact. The median change of velocity (delta-V) of the remaining crashes reduces only marginally at low penetration rates but this reduction increases with higher penetration rates. With 100 percent market penetration, one quarter of the vehicles still involved in straight crossing path accidents will sustain a delta-V higher than 17 km/h. Intersection AEB is very effective. Enabling a fast initial implementation of systems with wide field-of-view sensor(s) and ensuring a high market penetration over the longer term is essential to achieve high crash avoidance and injury mitigation rates over time. The standards for in-crash protection must be high to mitigate injury in the unavoidable, residual accidents. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1999-08-01
In 1996, over 1.8 million rear-end crashes occurred in the United States with approximately 2,000 associated fatalities and 800,000 injuries. Rear-end crashes accounted for approximately 25% of all police-reported crashes and 5% of all traffic fatali...
NASA Astrophysics Data System (ADS)
Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan
2011-08-01
Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.
DOT National Transportation Integrated Search
2016-06-01
Traditional highway safety performance metrics have been largely based on fatal crashes and more recently serious injury crashes. In the near future however, there may be less severe motor vehicle crashes due to advances in driver assistance systems,...
Comparative assessment of crash causal factors and IVHS countermeasures
DOT National Transportation Integrated Search
1994-01-01
The National Highway Traffic Safety Administrations Office of Crash Avoidance Research, in : conjunction with the Research and Special Programs Administrations Volpe National : Transportation Systems Center, has underway a multi-disciplinary pr...
Evaluation of an autonomous braking system in real-world PTW crashes.
Savino, Giovanni; Pierini, Marco; Rizzi, Matteo; Frampton, Richard
2013-01-01
Powered 2-wheelers (PTWs) are becoming increasingly popular in Europe. They have the ability to get around traffic queues, thus lowering fuel consumption and increasing mobility. The risk of rider injury in a traffic crash is however much higher than that associated with car users. The European project, Powered Two Wheeler Integrated Safety (PISa), identified an autonomous braking system (AB) as a priority to reduce the injury consequences of a PTW crash. The aim of this study was to assess the potential effectiveness of the AB system developed in PISa, taking into account the specific system characteristics that emerged during the design, development and testing phases. Fifty-eight PTW cases representing European crash configurations were examined, in which 43 percent of riders sustained a Maximum Abbreviated Injury Scale (MAIS) 2+ injury. Two of the most common crash types were a PTW impacting a stationary object (car following scenario) 16% and an object pulling across the PTW path (crossing scenario) 54%. An expert team analysed the in-depth material of the sample crashes and determined a posteriori to what extent the AB would have affected the crash. For those cases where the AB was evaluated as applicable, a further quantitative evaluation of the benefits was conducted by considering a set of different possible rider reactions in addition to that exhibited in the actual crash. In 67 percent of cases, the application of AB could have mitigated the crash outcome. Analysis of those real crash cases showed the potential for an expert rider to avoid the collision. An early reaction of the rider, associated with a correct application of the brakes would have avoided 18 of the 37 car following/crossing scenarios. Conversely, according to the analysis, an expert rider would not have been able to avoid 19 of the 37 cases. In 14 of those 19 cases, the AB would have contributed to mitigating the crash outcome. This study demonstrated significant potential for application of the autonomous braking system in car following and crossing scenarios. In addition, the theoretical benefit curves for the AB globally, were able to provide good quantitative indications of its benefits in real cases where the AB was considered applicable. Further analysis with larger databases is suggested in order to confirm the magnitude of benefits in the PTW crash population.
Millimeter wave radar for automobile crash avoidance systems
NASA Astrophysics Data System (ADS)
Huguenin, G. Richard
1994-08-01
Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.
Driving safely into the future with applied technology
DOT National Transportation Integrated Search
1999-10-01
Driver error remains the leading cause of highway crashes. Through the Intelligent Vehicle Initiative (IVI), the Department of Transportation hopes to reduce crashes by helping drivers avoid hazardous mistakes. IVI aims to accelerate the development ...
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
Air quality impacts of intercity freight. Volume 1 : guidebook
DOT National Transportation Integrated Search
2000-01-01
Driver error remains the leading cause of highway crashes. Through the Intelligent Vehicle Initiative (IVI), the Department of Transportation hopes to reduce crashes by helping drivers avoid hazardous mistakes. IVI aims to accelerate the development ...
Assessment of IVHS countermeasures for collision avoidance : rear-end crashes
DOT National Transportation Integrated Search
1993-05-01
This report describe an analysis of the application of Intelligent : Vehicle Highway System (IVHS) technology to the reduction of rear-end crashes. The : principal countermeasure concept examined is a headway detection (HD) system that : would detect...
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
23 CFR 630.1104 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-aid highway funding. Exposure Control Measures means traffic management strategies to avoid work zone crashes involving workers and motorized traffic by eliminating or reducing traffic through the work zone... including uniformed law enforcement officers, used to reduce the risk of work zone crashes involving...
23 CFR 630.1104 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-aid highway funding. Exposure Control Measures means traffic management strategies to avoid work zone crashes involving workers and motorized traffic by eliminating or reducing traffic through the work zone... including uniformed law enforcement officers, used to reduce the risk of work zone crashes involving...
23 CFR 630.1104 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-aid highway funding. Exposure Control Measures means traffic management strategies to avoid work zone crashes involving workers and motorized traffic by eliminating or reducing traffic through the work zone... including uniformed law enforcement officers, used to reduce the risk of work zone crashes involving...
23 CFR 630.1104 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-aid highway funding. Exposure Control Measures means traffic management strategies to avoid work zone crashes involving workers and motorized traffic by eliminating or reducing traffic through the work zone... including uniformed law enforcement officers, used to reduce the risk of work zone crashes involving...
23 CFR 630.1104 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-aid highway funding. Exposure Control Measures means traffic management strategies to avoid work zone crashes involving workers and motorized traffic by eliminating or reducing traffic through the work zone... including uniformed law enforcement officers, used to reduce the risk of work zone crashes involving...
49 CFR 533.6 - Measurement and calculation procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technology is related to crash-avoidance technologies, safety critical systems or systems affecting safety-critical functions, or technologies designed for the purpose of reducing the frequency of vehicle crashes... improvements related to air conditioning efficiency, off-cycle technologies, and hybridization and other...
Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne
2016-06-01
Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.
Cell phone use while driving and attributable crash risk.
Farmer, Charles M; Braitman, Keli A; Lund, Adrian K
2010-10-01
Prior research has estimated that crash risk is 4 times higher when talking on a cell phone versus not talking. The objectives of this study were to estimate the extent to which drivers talk on cell phones while driving and to compute the implied annual number of crashes that could have been avoided if driver cell phone use were restricted. A national survey of approximately 1200 U.S. drivers was conducted. Respondents were asked to approximate the amount of time spent driving during a given day, number of cell phone calls made or received, and amount of driving time spent talking on a cell phone. Population attributable risk (PAR) was computed for each combination of driver gender, driver age, day of week, and time of day. These were multiplied by the corresponding crash counts to estimate the number of crashes that could have been avoided. On average, drivers were talking on cell phones approximately 7 percent of the time while driving. Rates were higher on weekdays (8%), in the afternoon and evening (8%), and for drivers younger than 30 (16%). Based on these use rates, restricting cell phones while driving could have prevented an estimated 22 percent (i.e., 1.3 million) of the crashes in 2008. Although increased rates of cell phone use while driving should be leading to increased crash rates, crash rates have been declining. Reasons for this paradox are unclear. One possibility is that the increase in cell phone use and crash risk due to cell phone use have been overestimated. Another possibility is that cell phone use has supplanted other driving distractions that were similarly hazardous.
Development of collision avoidance for light vehicles : near-crash/crash event data recorders
DOT National Transportation Integrated Search
2006-12-01
This report presents the results of an analysis effort undertaken to address the following research question: What sensor(s) can be cost effectively added to vehicles on a wide scale to significantly improve the understanding and modeling of naturali...
DOT National Transportation Integrated Search
2005-08-01
This project continues to build upon the foundation provided by the human factors experimentation conducted in the previous Crash Avoidance Metrics Partnership (CAMP) Forward Collision Warning (FCW) system efforts. As in the previous CAMP FCW researc...
Vachal, Kimberly; Tumuhairwe, Esther K; Berwick, Mark
2009-04-01
The North Dakota Legislature recently passed a law exempting the state's agricultural truck fleet from a federal safety program requirement for rear-guard equipment on large trucks. This equipment has been shown to reduce crash severity when a passenger vehicle collides with the rear of the truck. This study uses truck fleet, truck crash, and injury severity data to estimate the public safety benefit derived from passenger-vehicle underride protection during rear-end crashes involving large agricultural trucks in North Dakota. A benefit-cost analysis of crash injury avoidance is developed based on the frequency and severity of rear-end truck collisions in North Dakota between 2001 and 2007. The injury avoidance benefits and commercial vehicle safety grant benefits are estimated to be $11.4 to $20.2 million during the seven-year depreciable truck life. The public safety benefits for rear-impact guards are higher than the estimated lifetime cost for the equipment and maintenance of $8.1 million.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiNapoli, N.; Fitzpatrick, M.; Strother, C.
1977-11-01
Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidential Task Force on Motor Vehicle Goals beyond 1980.
Crash Warning Interface Metrics: Final Report
DOT National Transportation Integrated Search
2011-08-01
The Crash Warning Interface Metrics (CWIM) project addressed issues of the driver-vehicle interface (DVI) for Advanced Crash Warning Systems (ACWS). The focus was on identifying the effects of certain warning system features (e.g., warning modality) ...
Rear-End Crashes: Problem Size Assessment And Statistical Description
DOT National Transportation Integrated Search
1993-05-01
KEYWORDS : RESEARCH AND DEVELOPMENT OR R&D, ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, INTELLIGENT VEHICLE INITIATIVE OR IVI : THIS DOCUMENT PRESENTS PROBLEM SIZE ASSESSMENTS AND STATISTICAL CRASH DESCRIPTION FOR REAR-END CRASHES, INC...
Perception and biodynamics in unalerted precrash response.
McGehee, Daniel V; Carsten, Oliver M J
2010-01-01
This research seeks to better understand unalerted driver response just prior to a serious vehicle crash. Few studies have been able to view a crash from the inside-with a camera focused on the driver and occupants. Four studies are examined: 1) a high-fidelity simulator study with an unalerted intersection incursion crash among 107 drivers; 2) four crashes from the Virginia Tech Transportation Institute (VTTI) 100 car study; 3) 58 crashes from vehicles equipped with an event triggered video recorder; and 4) a custom-designed high-fidelity simulator experiment that examined unalerted driver response to a head-on crash with a heavy truck. Analyses concentrate on decomposing driver perception, action, facial and postural changes with a focus on describing the neurophysiologic mechanisms designed to respond to danger. Results indicate that drivers involved in severe crashes generally have preview that an impact is about to occur. They respond first with vehicle control inputs (accelerator pedal release) along with facial state changes and withdrawal of the head back towards the head restraint. These responses frequently occur almost simultaneously, providing safety system designers with a number of reliable driver performance measures to monitor. Understanding such mechanisms may assist future advanced driver assistance systems (ADAS), advanced restraints, model development of advanced anthropomorphic test dummies (ATDs), injury prediction and the integration of active and passive safety systems.
Teschke, Kay; Dennis, Jessica; Reynolds, Conor C O; Winters, Meghan; Harris, M Anne
2016-07-22
Streetcar or train tracks in urban areas are difficult for bicyclists to negotiate and are a cause of crashes and injuries. This study used mixed methods to identify measures to prevent such crashes, by examining track-related crashes that resulted in injuries to cyclists, and obtaining information from the local transit agency and bike shops. We compared personal, trip, and route infrastructure characteristics of 87 crashes directly involving streetcar or train tracks to 189 crashes in other circumstances in Toronto, Canada. We complemented this with engineering information about the rail systems, interviews of personnel at seven bike shops about advice they provide to customers, and width measurements of tires on commonly sold bikes. In our study, 32 % of injured cyclists had crashes that directly involved tracks. The vast majority resulted from the bike tire being caught in the rail flangeway (gap in the road surface alongside rails), often when cyclists made unplanned maneuvers to avoid a collision. Track crashes were more common on major city streets with parked cars and no bike infrastructure, with left turns at intersections, with hybrid, racing and city bikes, among less experienced and less frequent bicyclists, and among women. Commonly sold bikes typically had tire widths narrower than the smallest track flangeways. There were no track crashes in route sections where streetcars and trains had dedicated rights of way. Given our results, prevention efforts might be directed at individual knowledge, bicycle tires, or route design, but their potential for success is likely to differ. Although it may be possible to reach a broader audience with continued advice about how to avoid track crashes, the persistence and frequency of these crashes and their unpredictable circumstances indicates that other solutions are needed. Using tires wider than streetcar or train flangeways could prevent some crashes, though there are other considerations that lead many cyclists to have narrower tires. To prevent the majority of track-involved injuries, route design measures including dedicated rail rights of way, cycle tracks (physically separated bike lanes), and protected intersections would be the best strategy.
DOT National Transportation Integrated Search
1987-07-01
This report details the results of an analysis that compared the Crash Avoidance : Research Data Base (CARDfile) with the National Accident Sampling System (NASS). : CARDfile combines, in one data base, the police accident records for three years : (...
Isaksson-Hellman, Irene; Lindman, Magdalena
2018-02-28
Lane changes, which frequently occur when vehicles travel on major roads, may contribute to critical situations that significantly affect the traffic flow and traffic safety. Thus, knowledge of lane change situations is important for infrastructure improvements as well as for driver support systems and automated driving development projects. The objectives of this study were to evaluate the crash avoidance performance of a lane change driver support system, the Blind Spot Information System (BLIS) in Volvo car models, and to describe the characteristics of lane change crashes by analyzing detailed information from insurance claim reports. An overall evaluation of the safety effect of BLIS was performed by analyzing crash rate differences in lane change situations for cars with and without the optionally mounted BLIS system based on a population of 380,000 insured vehicle years. Further, crashes in which the repair cost of the host vehicle exceeded approximately US$1,250 were selected and compared. Finally, the study examined different precrash factors and crash configurations, using in-depth insurance claims data from representative lane change crash cases including all severity levels in a population of more than 200,000 insured vehicle years. The technology did not significantly reduce the overall number of crashes when all types of lane change crashes and severity levels were considered, though a significant crash-reducing effect of 31% for BLIS cars was found when more severe crashes with a repair cost exceeding US$1,250 were analysed. Cars with the BLIS technology also have a 30% lower claim cost on average for reported lane change crashes, indicating reduced crash severity. When stratifying the data into specific situations, by collecting precrash information in a case-by-case study, the influence of BLIS was indicated to differ for the evaluated situations, although no significant results were found. For example, during general lane change maneuvers (i.e., not while exiting or entering highways or during weaving/merging situations) the crash rate was reduced by 14%, whereas in weaving/merging situations the crash rate increased. The insurance data analyzed provided useful information about real-world lane change crash characteristics by covering collisions in all crash severities and thus revealed information beyond what is available in, for example, data sets of police-reported crashes. This will guide further development of driver support systems. For crashes with repair cost exceeding US$1,250, a significant crash reduction was found, although the technology did not significantly reduce the total number of lane change crashes. An average lower insurance claim cost for cars equipped with the BLIS technology also indicated that the technology contributes to reduced crash severity even if crashes were not totally avoided. Stratifying the data into different lane change crash situations gave indications of the condition-specific performance of the system, even if the results were not statistically significant at the 95% level.
DOT National Transportation Integrated Search
1996-05-24
THIS REPORT IS AN ANALYSIS OF THE BENEFITS OF A COLLISION AVOIDANCE SYSTEM IN REDUCING REAR-END CRASHES. THE COLLISION AVOIDANCE SYSTEM CONSIDERED IN THIS STUDY UTILIZES THE SIGNAL FROM A FORWARD LOOKING SENSOR TO ACTIVATE THE TRACTION CONTROL VALVE ...
49 CFR 380.503 - Entry-level driver training requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... countermeasures as a means to avoid crashes. (c) Driver wellness. Basic health maintenance including diet and exercise. The importance of avoiding excessive use of alcohol. (d) Whistleblower protection. The right of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
2016-05-20
Previous analyses have indicated that mass reduction is associated with an increase in crash frequency (crashes per VMT), but a decrease in fatality or casualty risk once a crash has occurred, across all types of light-duty vehicles. These results are counter-intuitive: one would expect that lighter, and perhaps smaller, vehicles have better handling and shorter braking distances, and thus should be able to avoid crashes that heavier vehicles cannot. And one would expect that heavier vehicles would have lower risk once a crash has occurred than lighter vehicles. However, these trends occur under several alternative regression model specifications. This reportmore » tests whether these results continue to hold after accounting for crash severity, by excluding crashes that result in relatively minor damage to the vehicle(s) involved in the crash. Excluding non-severe crashes from the initial LBNL Phase 2 and simultaneous two-stage regression models for the most part has little effect on the unexpected relationships observed in the baseline regression models. This finding suggests that other subtle differences in vehicles and/or their drivers, or perhaps biases in the data reported in state crash databases, are causing the unexpected results from the regression models.« less
DOT National Transportation Integrated Search
2003-01-01
This final report describes a follow-on study to the previous Crash Avoidance Metrics Partnership (CAMP) human factors work addressing Forward Collision Warning (FCW) timing requirements. This research extends this work by gathering not only "last-se...
DOT National Transportation Integrated Search
1997-01-01
The purpose of this Phase 2 Study is to compare national motor vehicle accident projections : made from the Crash Avoidance Research Data base (CARDfile) with national motor : vehicle accident projections made from other data bases. For the most part...
Perception and Biodynamics in Unalerted Precrash Response
McGehee, Daniel V.; Carsten, Oliver M.J.
2010-01-01
This research seeks to better understand unalerted driver response just prior to a serious vehicle crash. Few studies have been able to view a crash from the inside—with a camera focused on the driver and occupants. Four studies are examined: 1) a high-fidelity simulator study with an unalerted intersection incursion crash among 107 drivers; 2) four crashes from the Virginia Tech Transportation Institute (VTTI) 100 car study; 3) 58 crashes from vehicles equipped with an event triggered video recorder; and 4) a custom-designed high-fidelity simulator experiment that examined unalerted driver response to a head-on crash with a heavy truck. Analyses concentrate on decomposing driver perception, action, facial and postural changes with a focus on describing the neurophysiologic mechanisms designed to respond to danger. Results indicate that drivers involved in severe crashes generally have preview that an impact is about to occur. They respond first with vehicle control inputs (accelerator pedal release) along with facial state changes and withdrawal of the head back towards the head restraint. These responses frequently occur almost simultaneously, providing safety system designers with a number of reliable driver performance measures to monitor. Understanding such mechanisms may assist future advanced driver assistance systems (ADAS), advanced restraints, model development of advanced anthropomorphic test dummies (ATDs), injury prediction and the integration of active and passive safety systems. PMID:21050614
Correlation Analysis of Freeway Traffic Status and Crashes with Nevada Data.
DOT National Transportation Integrated Search
2017-11-11
This project is to study the correlation between freeway traffic status and crash risks with the historical freeway ITS data and related crash data in Nevada. With the comprehensive review of previous research results, the Center for Advanced Transpo...
FMCSA safety program effectiveness measurement: intervention model fiscal year 2009.
DOT National Transportation Integrated Search
2013-04-01
The Federal Motor Carrier Safety Administration (FMCSA), in cooperation with the researcher, has developed an analytic model to measure the effectiveness of roadside inspections and traffic enforcements in terms of crashes avoided, injuries avoided, ...
Crash probability estimation via quantifying driver hazard perception.
Li, Yang; Zheng, Yang; Wang, Jianqiang; Kodaka, Kenji; Li, Keqiang
2018-07-01
Crash probability estimation is an important method to predict the potential reduction of crash probability contributed by forward collision avoidance technologies (FCATs). In this study, we propose a practical approach to estimate crash probability, which combines a field operational test and numerical simulations of a typical rear-end crash model. To consider driver hazard perception characteristics, we define a novel hazard perception measure, called as driver risk response time, by considering both time-to-collision (TTC) and driver braking response to impending collision risk in a near-crash scenario. Also, we establish a driving database under mixed Chinese traffic conditions based on a CMBS (Collision Mitigation Braking Systems)-equipped vehicle. Applying the crash probability estimation in this database, we estimate the potential decrease in crash probability owing to use of CMBS. A comparison of the results with CMBS on and off shows a 13.7% reduction of crash probability in a typical rear-end near-crash scenario with a one-second delay of driver's braking response. These results indicate that CMBS is positive in collision prevention, especially in the case of inattentive drivers or ole drivers. The proposed crash probability estimation offers a practical way for evaluating the safety benefits in the design and testing of FCATs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potential crashworthiness benefits to general aviation from Indianapolis Motor Speedway technology.
Jennings, R T; Mohler, S R
1988-01-01
General aviation crashworthiness can potentially benefit from certain advances being accomplished by the automobile industry. Progressive improvements in crash protection technology, as documented by a dramatic reduction in crash injuries and fatalities at the Indianapolis Motor Speedway, reflect improved crashworthiness. The speeds of survivable general aviation aircraft impacts are in the range of the Indianapolis Motor Speedway crashes (200-220 mph). This paper relates the declining crash death rates at Indy by decade versus the increase in speeds. The continuous rise in speeds has prompted the development of new crashworthy designs and driver protection equipment. Crashworthiness improvements include crushable surrounding structures, high-grade restraint systems, protective head gear, fire resistant clothing, break-away structural components, and a "protective cocoon" concept. Adaptation of selected advances in crashworthiness design and operations accomplished at the Indianapolis Motor Speedway to the next generation of general aviation aircraft should provide significant dividends in survival of air crashes.
On-Board Detection of Pedestrian Intentions
Fang, Zhijie; Vázquez, David
2017-01-01
Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role. During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors. However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information. PMID:28946632
FMCSA safety program effectiveness measurement : Intervention Model in fiscal year 2007
DOT National Transportation Integrated Search
2011-04-01
This report presents results from FMCSAs Roadside Intervention Model for fiscal year 2007. The model estimates the number of crashes avoided, as well as injuries avoided and lives saved, as a result of the Agencys roadside inspection program. T...
Scott-Parker, Bridie; Watson, Barry; King, Mark J; Hyde, Melissa K
2014-09-01
Volitional risky driving behaviours such as drink- and drug-driving (i.e. substance-impaired driving) and speeding contribute to the overrepresentation of young novice drivers in road crash fatalities, and crash risk is greatest during the first year of independent driving in particular. To explore the: (1) self-reported compliance of drivers with road rules regarding substance-impaired driving and other risky driving behaviours (e.g., speeding, driving while tired), one year after progression from a Learner to a Provisional (intermediate) licence; and (2) interrelationships between substance-impaired driving and other risky driving behaviours (e.g., crashes, offences, and Police avoidance). Drivers (n=1076; 319 males) aged 18-20 years were surveyed regarding their sociodemographics (age, gender) and self-reported driving behaviours including crashes, offences, Police avoidance, and driving intentions. A relatively small proportion of participants reported driving after taking drugs (6.3% of males, 1.3% of females) and drinking alcohol (18.5% of males, 11.8% of females). In comparison, a considerable proportion of participants reported at least occasionally exceeding speed limits (86.7% of novices), and risky behaviours like driving when tired (83.6% of novices). Substance-impaired driving was associated with avoiding Police, speeding, risky driving intentions, and self-reported crashes and offences. Forty-three percent of respondents who drove after taking drugs also reported alcohol-impaired driving. Behaviours of concern include drink driving, speeding, novice driving errors such as misjudging the speed of oncoming vehicles, violations of graduated driver licensing passenger restrictions, driving tired, driving faster if in a bad mood, and active punishment avoidance. Given the interrelationships between the risky driving behaviours, a deeper understanding of influential factors is required to inform targeted and general countermeasure implementation and evaluation during this critical driving period. Notwithstanding this, a combination of enforcement, education, and engineering efforts appear necessary to improve the road safety of the young novice driver, and for the drink-driving young novice driver in particular. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bahouth, George; Digges, Kennerly; Schulman, Carl
2012-01-01
This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132
Crash risk factors for interstate large trucks in North Carolina.
Teoh, Eric R; Carter, Daniel L; Smith, Sarah; McCartt, Anne T
2017-09-01
Provide an updated examination of risk factors for large truck involvements in crashes resulting in injury or death. A matched case-control study was conducted in North Carolina of large trucks operated by interstate carriers. Cases were defined as trucks involved in crashes resulting in fatal or non-fatal injury, and one control truck was matched on the basis of location, weekday, time of day, and truck type. The matched-pair odds ratio provided an estimate of the effect of various driver, vehicle, or carrier factors. Out-of-service (OOS) brake violations tripled the risk of crashing; any OOS vehicle defect increased crash risk by 362%. Higher historical crash rates (fatal, injury, or all crashes) of the carrier were associated with increased risk of crashing. Operating on a short-haul exemption increased crash risk by 383%. Antilock braking systems reduced crash risk by 65%. All of these results were statistically significant at the 95% confidence level. Other safety technologies also showed estimated benefits, although not statistically significant. With the exception of the finding that short-haul exemption is associated with increased crash risk, results largely bolster what is currently known about large truck crash risk and reinforce current enforcement practices. Results also suggest vehicle safety technologies can be important in lowering crash risk. This means that as safety technology continues to penetrate the fleet, whether from voluntary usage or government mandates, reductions in large truck crashes may be achieved. Practical application: Results imply that increased enforcement and use of crash avoidance technologies can improve the large truck crash problem. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Best Practices for Crash Modeling and Simulation
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.
2002-01-01
Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.
DOT National Transportation Integrated Search
2008-09-30
The objective of the Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) Project is to develop and field-test a comprehensive system to reduce the number of crashes at intersections due to violations of traffic control device...
DOT National Transportation Integrated Search
2006-11-01
Review of the Norridgewock Intersection Collision Avoidance Warning System : demonstrates that the system appears to effectively reduce the number of potential : crashes at the intersection of River Road, Sophie May Lane and Route 201A. : Results sho...
How have changes in front air bag designs affected frontal crash death rates? An update.
Teoh, Eric R
2014-01-01
Provide updated death rates comparing latest generations of frontal air bags in fatal crashes. Rates of driver and right-front passenger deaths in frontal crashes per 10 million registered vehicle years were compared using Poisson marginal structural models for passenger vehicles equipped with air bags certified as advanced and compliant (CAC), sled-certified air bags with advanced features, and sled-certified air bags without any advanced features. Analyses of driver death rates were disaggregated by age group, gender, and belt use. CAC air bags were associated with slightly elevated frontal crash death rates for both drivers and right-front passengers compared to sled-certified air bags with advanced features, but the differences were not statistically significant. Sled-certified air bags with advanced features were associated with significant benefits for drivers and for right-front passengers compared to sled-certified air bags without advanced features. CAC air bags were associated with a significant increase in belted driver death rate and a comparable but nonsignificant decrease in unbelted driver death rate compared to sled-certified air bags with advanced features. Sled-certified air bags with advanced features were associated with a nonsignificant 2 percent increase in belted driver death rate and a significant 26 percent decrease in unbelted driver death rate, relative to sled-certified air bags without advanced features. Implementing advanced features in sled-certified air bags was beneficial overall to drivers and right-front passengers with sled-certified air bags. No overall benefit was observed for CAC air bags compared to sled-certified air bags with advanced features. Further study is needed to understand the apparent reduction in belted driver protection observed for CAC air bags.
Huisingh, Carrie; Owsley, Cynthia; Levitan, Emily B; Irvin, Marguerite R; MacLennan, Paul; McGwin, Gerald
2018-05-17
The purpose of this study was to examine the association between secondary task involvement and risk of crash and near-crash involvement among older drivers using naturalistic driving data. Data from drivers aged ≥70 years in the Strategic Highway Research Program (SHRP2) Naturalistic Driving Study database was utilized. The personal vehicle of study participants was equipped with four video cameras enabling recording of the driver and the road environment. Secondary task involvement during a crash or near-crash event was compared to periods of non-crash involvement in a case-crossover study design. Conditional logistic regression was used to generate odds ratios (OR) and 95% confidence intervals (CI). Overall, engaging in any secondary task was not associated with crash (OR=0.94, 95% CI 0.68-1.29) or near-crash (OR=1.08, 95% CI 0.79-1.50) risk. The risk of a major crash event with cell phone use was 3.79 times higher than the risk with no cell phone use (95% CI 1.00-14.37). Other glances into the interior of the vehicle were associated with an increased risk of near-crash involvement (OR=2.55, 95% CI 1.24-5.26). Other distractions external to the vehicle were associated with a decreased risk of crash involvement (OR=0.53, 95% CI 0.30-0.94). Interacting with a passenger and talking/singing were not associated with crash or near-crash risk. Older drivers should avoid any cell phone use and minimize non-driving related eye glances towards the interior of the vehicle while driving. Certain types of events external to the vehicle are associated with a reduced crash risk among older drivers.
Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo
2016-01-01
The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824
'Crashing' the rugby scrum -- an avoidable cause of cervical spinal injury. Case reports.
Scher, A T
1982-06-12
Deliberate crashing of the opposing packs prior to a rugby scrum is an illegal but commonly practised manoeuvre which can lead to abnormal flexion forces being applied to players in the front row, with resultant cervical spine and spinal cord injury. Two cases of cervical spinal cord injury sustained in this manner are presented. The mechanism of injury, the forces involved and preventive measures are discussed.
To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane
2016-08-15
Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.
Composite Material Hazard Assessment at Crash Sites
2015-01-01
advanced composite materials. All personnel involved in rescue in close crash-site proximity are required to wear self -contained breathing apparatus...close crash-site proximity are required to wear self -contained breathing apparatus, chemical protective clothing, leather gloves, and neoprene...Take extra precaution when handling these materials. Nitrile rubber gloves can be worn underneath the leather gloves to provide chemical hazard
DOT National Transportation Integrated Search
2001-11-01
This report documents the design of an on-road testbed vehicle. The purposes of this testbed are twofold: (1) Establish a foundation for estimating lane change collision avoidance effectiveness, and (2) provide information pertinent to setting perfor...
Analysis of work zone rear-end crash risk for different vehicle-following patterns.
Weng, Jinxian; Meng, Qiang; Yan, Xuedong
2014-11-01
This study evaluates rear-end crash risk associated with work zone operations for four different vehicle-following patterns: car-car, car-truck, truck-car and truck-truck. The deceleration rate to avoid the crash (DRAC) is adopted to measure work zone rear-end crash risk. Results show that the car-truck following pattern has the largest rear-end crash risk, followed by truck-truck, truck-car and car-car patterns. This implies that it is more likely for a car which is following a truck to be involved in a rear-end crash accident. The statistical test results further confirm that rear-end crash risk is statistically different between any two of the four patterns. We therefore develop a rear-end crash risk model for each vehicle-following pattern in order to examine the relationship between rear-end crash risk and its influencing factors, including lane position, the heavy vehicle percentage, lane traffic flow and work intensity which can be characterized by the number of lane reductions, the number of workers and the amount of equipment at the work zone site. The model results show that, for each pattern, there will be a greater rear-end crash risk in the following situations: (i) heavy work intensity; (ii) the lane adjacent to work zone; (iii) a higher proportion of heavy vehicles and (iv) greater traffic flow. However, the effects of these factors on rear-end crash risk are found to vary according to the vehicle-following patterns. Compared with the car-car pattern, lane position has less effect on rear-end crash risk in the car-truck pattern. The effect of work intensity on rear-end crash risk is also reduced in the truck-car pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Warner, Jennifer; Hurwitz, David S; Monsere, Christopher M; Fleskes, Kayla
2017-07-01
A right-hook crash is a crash between a right-turning motor vehicle and an adjacent through-moving bicycle. At signalized intersections, these crashes can occur during any portion of the green interval when conflicting bicycles and vehicles are moving concurrently. The objective of this research was to evaluate the effectiveness of four types of engineering countermeasures - regulatory signage, intersection pavement marking, smaller curb radius, and protected intersection design - at modifying driver behaviors that are known contributing factors in these crashes. This research focused on right-hook crashes that occur during the latter stage of the circular green indication at signalized intersections with a shared right-turn and through lane. Changes in driver performance in response to treatments were measured in a high-fidelity driving simulator. Twenty-eight participants each completed 22 right-turn maneuvers. A partially counterbalanced experimental design exposed drivers to critical scenarios, which had been determined in a previous experiment. For each turn, driver performance measures, including visual attention, crash avoidance, and potential crash severity, were collected. A total of 75 incidents (47 near-collisions and 28 collisions) were observed during the 616 right turns. All treatments had some positive effect on measured driver performance with respect to the right-turn vehicle conflicts. Further work is required to map the magnitude of these changes in driver performance to crash-based outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
O'Neill, Brian
2009-04-01
Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure-designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to reduce crash injuries, but it was not until the mid-1960s that the idea of pursuing vehicle countermeasures gained any significant momentum. In 1966, the U.S. Congress passed the National Traffic and Motor Vehicle Safety Act, requiring the government to issue a comprehensive set of vehicle safety standards. This was the first broad set of requirements issued anywhere in the world, and within a few years similar standards were adopted in Europe and Australia. Early vehicle safety standards specified a variety of safety designs resulting in cars being equipped with lap/shoulder belts, energy-absorbing steering columns, crash-resistant door locks, high-penetration-resistant windshields, etc. Later, the standards moved away from specifying particular design approaches and instead used crash tests and instrumented dummies to set limits on the potential for serious occupant injuries by crash mode. These newer standards paved the way for an approach that used the marketplace, in addition to government regulation, to improve vehicle safety designs-using crash tests and instrumented dummies to provide consumers with comparative safety ratings for new vehicles. The approach began in the late 1970s, when NHTSA started publishing injury measures from belted dummies in new passenger vehicles subjected to frontal barrier crash tests at speeds somewhat higher than specified in the corresponding regulation. This program became the world's first New Car Assessment Program (NCAP) and rated frontal crashworthiness by awarding stars (five stars being the best and one the worst) derived from head and chest injury measures recorded on driver and front-seat test dummies. NHTSA later added side crash tests and rollover ratings to the U.S. NCAP. Consumer crash testing spread worldwide in the 1990s. In 1995, the Insurance Institute for Highway Safety (IIHS) began using frontal offset crash tests to rate and compare frontal crashworthiness and later added side and rear crash assessments. Shortly after, Europe launched EuroNCAP to assesses new car performance including front, side, and front-end pedestrian tests. The influence of these consumer-oriented crash test programs on vehicle designs has been major. From the beginning, U.S. NCAP results prompted manufacturers to improve seat belt performance. Frontal offset tests from IIHS and EuroNCAP resulted in greatly improved front-end crumple zones and occupant compartments. Side impact tests have similarly resulted in improved side structures and accelerated the introduction of side impact airbags, especially those designed to protect occupant's heads. Vehicle safety designs, initially driven by regulations and later by consumer demand because of crash testing, have proven to be very successful public health measures. Since they were first introduced in the late 1960s, vehicle safety designs have saved hundreds of thousands of lives and prevented countless injuries worldwide. The designs that improved vehicle crashworthiness have been particularly effective. Some newer crash avoidance designs also have the potential to be effective-e.g., electronic stability control is already saving many lives in single-vehicle crashes. However, determining the actual effectiveness of these new technologies is a slow process and needs real-world crash experience because there are no assessment equivalent of crash tests for crash avoidance designs.
Evaluating the Potential Benefits of Advanced Automatic Crash Notification.
Plevin, Rebecca E; Kaufman, Robert; Fraade-Blanar, Laura; Bulger, Eileen M
2017-04-01
Advanced Automatic Collision Notification (AACN) services in passenger vehicles capture crash data during collisions that could be transferred to Emergency Medical Services (EMS) providers. This study explored how EMS response times and other crash factors impacted the odds of fatality. The goal was to determine if information transmitted by AACN could help decrease mortality by allowing EMS providers to be better prepared upon arrival at the scene of a collision. The Crash Injury Research and Engineering Network (CIREN) database of the US Department of Transportation/National Highway Traffic Safety Administration (USDOT/NHTSA; Washington DC, USA) was searched for all fatal crashes between 1996 and 2012. The CIREN database also was searched for illustrative cases. The NHTSA's Fatal Analysis Reporting System (FARS) and National Automotive Sampling System Crashworthiness Data System (NASS CDS) databases were queried for all fatal crashes between 2000 and 2011 that involved a passenger vehicle. Detailed EMS time data were divided into prehospital time segments and analyzed descriptively as well as via multiple logistic regression models. The CIREN data showed that longer times from the collision to notification of EMS providers were associated with more frequent invasive interventions within the first three hours of hospital admission and more transfers from a regional hospital to a trauma center. The NASS CDS and FARS data showed that rural collisions with crash-notification times >30 minutes were more likely to be fatal than collisions with similar crash-notification times occurring in urban environments. The majority of a patient's prehospital time occurred between the arrival of EMS providers on-scene and arrival at a hospital. The need for extrication increased the on-scene time segment as well as total prehospital time. An AACN may help decrease mortality following a motor vehicle collision (MVC) by alerting EMS providers earlier and helping them discern when specialized equipment will be necessary in order to quickly extricate patients from the collision site and facilitate expeditious transfer to an appropriate hospital or trauma center. Plevin RE , Kaufman R , Fraade-Blanar L , Bulger EM . Evaluating the potential benefits of advanced automatic crash notification. Prehosp Disaster Med. 2017;32(2):156-164.
Computerized crash reports usability and design investigation : final report.
DOT National Transportation Integrated Search
2016-06-01
Electronic crash reports are advantageous because they can limit missing data, transcription errors, and the space : limitations of a single sheet of paper. Advancing electronic reports through user-centered design affords an : opportunity to improve...
DOT National Transportation Integrated Search
2010-08-01
The deployment of a Cooperative Intersection Collision Avoidance System Stop Sign Assist (CICAS-SSA) can save lives by addressing the causal factor of crashes at rural thru-Stop intersection: drivers who stop on the minor leg of the intersection,...
Research safety vehicle, Phase II. Volume I. Executive summary. Final report jul 75-dec 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, D.
1976-12-01
Volume I summarizes the results of the Minicars Research Safety Vehicle Phase II program, as detailed in Volumes II and III. Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidentialmore » Task Force on Motor Vehicle Goals beyond 1980.« less
Öman, Mikael; Fredriksson, Rikard; Bylund, Per-Olof; Björnstig, Ulf
2016-12-01
The aim of this paper is to analyse and compare injuries and injury sources in pedestrian and bicyclist non-fatal real-life frontal passengercar crashes, considering in what way pedestrian injury mitigation systems also might be adequate for bicyclists. Data from 203 non-fatal vehicle-to-pedestrian and vehicle-to-bicyclist crashes from 1997 through 2006 in a city in northern Sweden were analysed by use of the hospitals injury data base in addition to interviews with the injured. In vehicle-to-pedestrian crashes (n = 103) head and neck injuries were in general due to hitting the windscreen frame, while in vehicle-to-bicycle crashes (n = 100) head and neck injuries were typically sustained by ground impact. Abdominal, pelvic and thoracic injuries in pedestrians and thoracic injuries in bicyclists were in general caused by impacting the bonnet. In vehicle-to-pedestrian crashes, energy reducing airbags at critical impact points with low yielding ability on the car, as the bonnet and the windscreen frame, might reduce injuries. As vehicle-to-bicyclist crashes occurred mostly in good lighting conditions and visibility and the ground impact causing almost four times as many injuries as an impact to the different regions of the car, crash avoidance systems as well as separating bicyclists from motor traffic, may contribute to mitigate these injuries.
Effectiveness of an improved road safety policy in Ethiopia: an interrupted time series study.
Abegaz, Teferi; Berhane, Yemane; Worku, Alemayehu; Assrat, Abebe
2014-05-31
In recent years, there has been an increasing interest in implementing road safety policy by different low income countries. However; the evidence is scarce on its success in the reduction of crashes, injuries and deaths. This study was conducted to assess whether road crashes, injuries and fatalities was reduced following the road safety regulation introduced as of September 2007 by Oromia Regional State Transport Bureau. Routine road traffic accident data for the year 2002-2011were collected from sixteen traffic police offices. Data on average daily vehicle flow was obtained from the Ethiopian Road Authority. Interrupted time series design using segmented linear regression model was applied to estimate the effect of an improved road safety policy. A total of 4,053 crashes occurred on Addis Ababa - Adama/Hawassa main road. Of these crashes, almost half 46.4% (1,880) were property damage, 29.4% (1,193) were fatal and 24.2% (980) injury crashes, resulting 1,392 fatalities and 1,749 injuries. There were statistically significant reductions in non-injury crashes and deaths. Non-injury crash was reduced by 19% and fatality by 12.4% in the first year of implementing the revised transport safety regulation. Although revised road safety policy helped in reducing motor vehicle crashes and associated fatalities, the overall incidence rate is still very high. Further action is required to avoid unnecessary loss of lives.
Chimba, Deo; Kutela, Boniphace
2014-09-01
Extent of secondary crashes derived from primary incidents involving abandoned and disabled vehicles are presented in this paper. Using years 2004 to 2010 incident and crash data on selected Tennessee freeways, the study identified secondary crashes that resulted from disabled and abandoned vehicle primary incidents. The relationship between time and distance gaps before the secondary crash with respect to individual incident characteristics were evaluated through descriptive statistics and linear regression. The time and distance gap analysis indicated that a large portion of secondary crashes occurred within 20 min after the primary incidents and within a distance of 0.5 miles upstream. While 76% of incidents involved shoulder, most secondary crashes were related to the closing of right lanes. Overall, 58% of the secondary crashes occurred within 30 min after the occurrence of the primary incidents. Most of the vehicles in the incidents that involved towing and caused secondary crashes were towed or removed out of the travel way within 60 min from the time of occurrence. The study found that most (95%) secondary crashes were property damage only (PDO), while 49% were rear-end crashes. The negative binomial model was used to evaluate the impact of roadway geometry and traffic factors associated with frequency of these secondary crashes. It was found that the posted speed limit, congested segments, segments with high percentages of trucks, and peak hour volumes increased the likelihood of secondary crash occurrence. Roadway segments with wider medians, shoulders, and multilanes decrease the likelihood of secondary crashes caused by abandoned and disabled vehicles as the primary incidents. Practical applications The paper recommends that wider shoulders be provided on any section of freeway to accommodate abandoned or disabled vehicles to avoid blocking of travel lane(s). Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
Intelligent Vehicle Initiative : business plan
DOT National Transportation Integrated Search
1997-11-01
Ongoing and recently completed research and development indicate that collision avoidance systems offer the potential for significantly reducing motor vehicle crashes. Preliminary estimates by the National Highway Traffic Safety Administration (NHTSA...
Nonfatal motor-vehicle animal crash-related injuries--United States, 2001-2002.
2004-08-06
In 2000, an estimated 6.1 million light-vehicle (e.g., passenger cars, sport utility vehicles, vans, and pickup trucks) crashes on U.S. roadways were reported to police. Of these reported crashes, 247,000 (4.0%) involved incidents in which the motor vehicle (MV) directly hit an animal on the roadway. Each year, an estimated 200 human deaths result from crashes involving animals (i.e., deaths from a direct MV animal collision or from a crash in which a driver tried to avoid an animal and ran off the roadway). To characterize nonfatal injuries from these incidents, CDC analyzed data from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP). This report summarizes the results of that analysis, which indicated that, during 2001-2002, an estimated 26,647 MV occupants per year were involved in crashes from encounters with animals (predominantly deer) in a roadway and treated for nonfatal injuries in U.S. hospital emergency departments (EDs). Cost-effective measures targeting both drivers (e.g., speed reduction and early warnings) and animals (e.g., fencing and underpasses) are needed to reduce injuries associated with MV collisions involving animals.
Bärgman, Jonas; Boda, Christian-Nils; Dozza, Marco
2017-05-01
As the development and deployment of in-vehicle intelligent safety systems (ISS) for crash avoidance and mitigation have rapidly increased in the last decades, the need to evaluate their prospective safety benefits before introduction has never been higher. Counterfactual simulations using relevant mathematical models (for vehicle dynamics, sensors, the environment, ISS algorithms, and models of driver behavior) have been identified as having high potential. However, although most of these models are relatively mature, models of driver behavior in the critical seconds before a crash are still relatively immature. There are also large conceptual differences between different driver models. The objective of this paper is, firstly, to demonstrate the importance of the choice of driver model when counterfactual simulations are used to evaluate two ISS: Forward collision warning (FCW), and autonomous emergency braking (AEB). Secondly, the paper demonstrates how counterfactual simulations can be used to perform sensitivity analyses on parameter settings, both for driver behavior and ISS algorithms. Finally, the paper evaluates the effect of the choice of glance distribution in the driver behavior model on the safety benefit estimation. The paper uses pre-crash kinematics and driver behavior from 34 rear-end crashes from the SHRP2 naturalistic driving study for the demonstrations. The results for FCW show a large difference in the percent of avoided crashes between conceptually different models of driver behavior, while differences were small for conceptually similar models. As expected, the choice of model of driver behavior did not affect AEB benefit much. Based on our results, researchers and others who aim to evaluate ISS with the driver in the loop through counterfactual simulations should be sure to make deliberate and well-grounded choices of driver models: the choice of model matters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a finite element model of the Thor crash test dummy
DOT National Transportation Integrated Search
2000-03-06
The paper describes the development of a detailed finite element model of the new advanced frontal crash test dummy, Thor. The Volpe Center is developing the model for LS-DYNA in collaboration with GESAC, the dummy hardware developer, under the direc...
Ross, Pamela; Ponsford, Jennie L; Di Stefano, Marilyn; Charlton, Judith; Spitz, Gershon
2016-01-01
To examine pre- and post-injury self-reported driver behaviour and safety in individuals with traumatic brain injury (TBI) who returned to driving after occupational therapy driver assessment and on-road rehabilitation. A self-report questionnaire, administered at an average of 4.5 years after completing an on-road driver assessment, documenting pre- and post-injury crash rates, near-crashes, frequency of driving, distances driven, driving conditions avoided and navigation skills, was completed by 106 participants, who had either passed the initial driver assessment (pass group n = 74), or required driver rehabilitation, prior to subsequent assessments (rehabilitation group n = 32). No significant difference was found between pre- and post-injury crash rates. Compared to pre-injury, 36.8% of drivers reported limiting driving time, 40.6% drove more slowly, 41.5% reported greater difficulty with navigating and 20.0% reported more near-crashes. The rehabilitation group (with greater injury severity) was significantly more likely to drive less frequently, shorter distances, avoid: driving with passengers, busy traffic, night and freeway driving than the pass group. Many drivers with moderate/severe TBI who completed a driver assessment and rehabilitation program at least 3 months post-injury, reported modifying their driving behaviour, and did not report more crashes compared to pre-injury. On-road driver training and training in navigation may be important interventions in driver rehabilitation programs. Driver assessment and on-road retraining are important aspects of rehabilitation following traumatic brain injury. Many drivers with moderate/severe TBI, reported modifying their driving behaviour to compensate for ongoing impairment and continued to drive safely in the longer term. Navigational difficulties were commonly experienced following TBI, suggesting that training in navigation may be an important aspect of driver rehabilitation.
In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas.
Weng, Jinxian; Xue, Shan; Yang, Ying; Yan, Xuedong; Qu, Xiaobo
2015-04-01
This study investigates the drivers' merging behavior and the rear-end crash risk in work zone merging areas during the entire merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. With the merging traffic data from a work zone site in Singapore, a mixed probit model is developed to describe the merging behavior, and two surrogate safety measures including the time to collision (TTC) and deceleration rate to avoid the crash (DRAC) are adopted to compute the rear-end crash risk between the merging vehicle and its neighboring vehicles. Results show that the merging vehicle has a bigger probability of completing a merging maneuver quickly under one of the following situations: (i) the merging vehicle moves relatively fast; (ii) the merging lead vehicle is a heavy vehicle; and (iii) there is a sizable gap in the adjacent through lane. Results indicate that the rear-end crash risk does not monotonically increase as the merging vehicle speed increases. The merging vehicle's rear-end crash risk is also affected by the vehicle type. There is a biggest increment of rear-end crash risk if the merging lead vehicle belongs to a heavy vehicle. Although the reduced remaining distance to work zone could urge the merging vehicle to complete a merging maneuver quickly, it might lead to an increased rear-end crash risk. Interestingly, it is found that the rear-end crash risk could be generally increased over the elapsed time after the merging maneuver being triggered. Copyright © 2015 Elsevier Ltd. All rights reserved.
Best practices for maximizing driver attention to work zone warning signs.
DOT National Transportation Integrated Search
2016-05-01
Studies have shown that rear-end crashes in the advance warning area for a work zone are the most common type of work zone crashes. Driver inattention (or distraction) is reported as the most common issue and a major contributing factor to those type...
Driver inattention and highway safety
DOT National Transportation Integrated Search
1985-01-14
The Transportation Systems Center, in support of research carried out by the : National Highway Traffic Safety Administration's Crash Avoidance Division, has : reviewed research into driver attentional processes to assess the potential for : the deve...
Driver inattention and highway safety
DOT National Transportation Integrated Search
1985-01-01
The Transportation Systems Center, in support of research carried out by the National Highway Traffic Safety Administration's Crash Avoidance Division, has reviewed research into driver attentional processes to assess the potential for the developmen...
Multivariate poisson lognormal modeling of crashes by type and severity on rural two lane highways.
Wang, Kai; Ivan, John N; Ravishanker, Nalini; Jackson, Eric
2017-02-01
In an effort to improve traffic safety, there has been considerable interest in estimating crash prediction models and identifying factors contributing to crashes. To account for crash frequency variations among crash types and severities, crash prediction models have been estimated by type and severity. The univariate crash count models have been used by researchers to estimate crashes by crash type or severity, in which the crash counts by type or severity are assumed to be independent of one another and modelled separately. When considering crash types and severities simultaneously, this may neglect the potential correlations between crash counts due to the presence of shared unobserved factors across crash types or severities for a specific roadway intersection or segment, and might lead to biased parameter estimation and reduce model accuracy. The focus on this study is to estimate crashes by both crash type and crash severity using the Integrated Nested Laplace Approximation (INLA) Multivariate Poisson Lognormal (MVPLN) model, and identify the different effects of contributing factors on different crash type and severity counts on rural two-lane highways. The INLA MVPLN model can simultaneously model crash counts by crash type and crash severity by accounting for the potential correlations among them and significantly decreases the computational time compared with a fully Bayesian fitting of the MVPLN model using Markov Chain Monte Carlo (MCMC) method. This paper describes estimation of MVPLN models for three-way stop controlled (3ST) intersections, four-way stop controlled (4ST) intersections, four-way signalized (4SG) intersections, and roadway segments on rural two-lane highways. Annual Average Daily traffic (AADT) and variables describing roadway conditions (including presence of lighting, presence of left-turn/right-turn lane, lane width and shoulder width) were used as predictors. A Univariate Poisson Lognormal (UPLN) was estimated by crash type and severity for each highway facility, and their prediction results are compared with the MVPLN model based on the Average Predicted Mean Absolute Error (APMAE) statistic. A UPLN model for total crashes was also estimated to compare the coefficients of contributing factors with the models that estimate crashes by crash type and severity. The model coefficient estimates show that the signs of coefficients for presence of left-turn lane, presence of right-turn lane, land width and speed limit are different across crash type or severity counts, which suggest that estimating crashes by crash type or severity might be more helpful in identifying crash contributing factors. The standard errors of covariates in the MVPLN model are slightly lower than the UPLN model when the covariates are statistically significant, and the crash counts by crash type and severity are significantly correlated. The model prediction comparisons illustrate that the MVPLN model outperforms the UPLN model in prediction accuracy. Therefore, when predicting crash counts by crash type and crash severity for rural two-lane highways, the MVPLN model should be considered to avoid estimation error and to account for the potential correlations among crash type counts and crash severity counts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advances in crash dynamics for aircraft safety
NASA Astrophysics Data System (ADS)
Guida, M.; Marulo, F.; Abrate, S.
2018-04-01
This paper studies the ability of the fuselage's lower lobe to absorb the energy during a crash landing, where the introduction of the composite materials can improve the crash survivability thanks to the crushing capability of structural parts to limit the effects of deceleration on the occupants. Providing a protective shell around the occupants and minimizing the risks of injuries during and immediately after the crash in the post-crash regime is a safety requirement. This study consists of: (1) numerical and experimental investigations on small components to verify design concepts using high performance composite materials; (2) analyses of full scale crashes of fuselage lower lobes. This paper outlines an approach for demonstrating the crashworthiness characteristics of the airframe performing a drop test at low velocity impact to validate a numerical model obtained by assembling structural components and materials' properties previously obtained by testing coupons and sub-elements.
AAA Foundation for Traffic Safety
... of Top Deadly Mistakes Made by Teen Drivers -- AAA AAA: Road debris causes avoidable crashes, deaths Save the ... and 500 deaths! Foundation News Stay Tuned New AAA Foundation for Traffic Safety website coming Fall 2017 ...
Comprehensive target populations for current active safety systems using national crash databases.
Kusano, Kristofer D; Gabler, Hampton C
2014-01-01
The objective of active safety systems is to prevent or mitigate collisions. A critical component in the design of active safety systems is the identification of the target population for a proposed system. The target population for an active safety system is that set of crashes that a proposed system could prevent or mitigate. Target crashes have scenarios in which the sensors and algorithms would likely activate. For example, the rear-end crash scenario, where the front of one vehicle contacts another vehicle traveling in the same direction and in the same lane as the striking vehicle, is one scenario for which forward collision warning (FCW) would be most effective in mitigating or preventing. This article presents a novel set of precrash scenarios based on coded variables from NHTSA's nationally representative crash databases in the United States. Using 4 databases (National Automotive Sampling System-General Estimates System [NASS-GES], NASS Crashworthiness Data System [NASS-CDS], Fatality Analysis Reporting System [FARS], and National Motor Vehicle Crash Causation Survey [NMVCCS]) the scenarios developed in this study can be used to quantify the number of police-reported crashes, seriously injured occupants, and fatalities that are applicable to proposed active safety systems. In this article, we use the precrash scenarios to identify the target populations for FCW, pedestrian crash avoidance systems (PCAS), lane departure warning (LDW), and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) systems. Crash scenarios were derived using precrash variables (critical event, accident type, precrash movement) present in all 4 data sources. This study found that these active safety systems could potentially mitigate approximately 1 in 5 of all severity and serious injury crashes in the United States and 26 percent of fatal crashes. Annually, this corresponds to 1.2 million all severity, 14,353 serious injury (MAIS 3+), and 7412 fatal crashes. In addition, we provide the source code for the crash scenarios as an appendix (see online supplement) to this article so that researchers can use the crash scenarios in future research.
Inappropriate Alarm Rates and Driver Annoyance
DOT National Transportation Integrated Search
1996-02-01
Future in-vehicle crash avoidance warning systems will inevitably deliver : inappropriate alarms from time to time, caused for example, by situations where : algorithms have correctly identified an object but pose no threat or danger to : the driver....
Kusano, Kristofer D; Gabler, Hampton C
2010-01-01
To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G's to 0.8 G's while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G's. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% - 50% and avoid 0% - 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%.
Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco
2017-11-17
Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.
How to determine an optimal threshold to classify real-time crash-prone traffic conditions?
Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang
2018-08-01
One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cummings, P
2002-01-01
Objective: Estimates of any protective effect of seat belts could be exaggerated if some crash survivors falsely claimed to police that they were belted in order to avoid a fine. The aim of this study was to determine whether estimates of seat belt effectiveness differed when based on belt use as recorded by the police and belt use determined by trained crash investigators. Design: Matched cohort study. Setting: United States. Subjects: Adult driver-passenger pairs in the same vehicle with at least one death (n=1689) sampled from crashes during 1988–2000; data from the National Accident Sampling System Crashworthiness Data System. Main outcome measure: Risk ratio for death among belted occupants compared with those not belted. Results: Trained investigators determined post-crash seat belt use by vehicle inspections for 92% of the occupants, confidential interviews with survivors for 5%, and medical or autopsy reports for 3%. Using this information, the adjusted risk ratio for belted persons was 0.36 (95% confidence interval 0.29 to 0.46). The risk ratio was also 0.36 using police reported belt use for the same crashes. Conclusions: Estimates of seat belt effects based upon police data were not substantially different from estimates which used data obtained by trained crash investigators who were not police officers. These results were from vehicles in which at least one front seat occupant died; these findings may not apply to estimates which use data from crashes without a death. PMID:12460976
How safe is tuning a radio?: using the radio tuning task as a benchmark for distracted driving.
Lee, Ja Young; Lee, John D; Bärgman, Jonas; Lee, Joonbum; Reimer, Bryan
2018-01-01
Drivers engage in non-driving tasks while driving, such as interactions entertainment systems. Studies have identified glance patterns related to such interactions, and manual radio tuning has been used as a reference task to set an upper bound on the acceptable demand of interactions. Consequently, some view the risk associated with radio tuning as defining the upper limit of glance measures associated with visual-manual in-vehicle activities. However, we have little knowledge about the actual degree of crash risk that radio tuning poses and, by extension, the risk of tasks that have similar glance patterns as the radio tuning task. In the current study, we use counterfactual simulation to take the glance patterns for manual radio tuning tasks from an on-road experiment and apply these patterns to lead-vehicle events observed in naturalistic driving studies. We then quantify how often the glance patterns from radio tuning are associated with rear-end crashes, compared to driving only situations. We used the pre-crash kinematics from 34 crash events from the SHRP2 naturalistic driving study to investigate the effect of radio tuning in crash-imminent situations, and we also investigated the effect of radio tuning on 2,475 routine braking events from the Safety Pilot project. The counterfactual simulation showed that off-road glances transform some near-crashes that could have been avoided into crashes, and glance patterns observed in on-road radio tuning experiment produced 2.85-5.00 times more crashes than baseline driving. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pre-crash scenarios at road junctions: A clustering method for car crash data.
Nitsche, Philippe; Thomas, Pete; Stuetz, Rainer; Welsh, Ruth
2017-10-01
Given the recent advancements in autonomous driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual simulation environments or on real-world test tracks. This paper presents a novel data analysis method including the preparation, analysis and visualization of car crash data, to identify the critical pre-crash scenarios at T- and four-legged junctions as a basis for testing the safety of automated driving systems. The presented method employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1056 junction crashes in the UK, which were exported from the in-depth "On-the-Spot" database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. The results support existing findings on road junction accidents and provide benchmark situations for safety performance tests in order to reduce the possible number parameter combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perez, Miguel A; Sudweeks, Jeremy D; Sears, Edie; Antin, Jonathan; Lee, Suzanne; Hankey, Jonathan M; Dingus, Thomas A
2017-06-01
Understanding causal factors for traffic safety-critical events (e.g., crashes and near-crashes) is an important step in reducing their frequency and severity. Naturalistic driving data offers unparalleled insight into these factors, but requires identification of situations where crashes are present within large volumes of data. Sensitivity and specificity of these identification approaches are key to minimizing the resources required to validate candidate crash events. This investigation used data from the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) and the Canada Naturalistic Driving Study (CNDS) to develop and validate different kinematic thresholds that can be used to detect crash events. Results indicate that the sensitivity of many of these approaches can be quite low, but can be improved by selecting particular threshold levels based on detection performance. Additional improvements in these approaches are possible, and may involve leveraging combinations of different detection approaches, including advanced statistical techniques and artificial intelligence approaches, additional parameter modifications, and automation of validation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rheological Tests Of Shear-Thickening-Polymer Solutions
NASA Technical Reports Server (NTRS)
Landel, Robert F.; Hvidt, Soren; Ferry, John D.
1988-01-01
Vibrational method avoids thickening during measurement. Report describes measurements of viscoelastic properties of FM-9, a polymer being considered as antimisting agent for jet fuel. Purpose of agent is to prevent formation of flammable mist during aircraft crash.
NASA Astrophysics Data System (ADS)
Kim, Do Hyun; Choi, Kyoung Ho; Kim, Kyeong Tae; Li, Ki Joune
In this letter, we propose a novel approach using wireless sensor networks (WSNs) to enhance the safety and efficiency of four-way stop-sign-controlled (FWSC) intersections. The proposed algorithm provides right of way (RoW) and crash avoidance information by means of an intelligent WSN system. The system is composed of magnetic sensors, embedded in the center of a lane, with relay nodes and a base station placed on the side of the road. The experimental results show that the vehicle detection accuracy is over 99% and the sensor node battery life expectancy is over 3 years for traffic of 5, 800 vehicles per day. For the traffic application we consider, a strong effect is observed as the projected conflict rate was reduced by 72% compared to an FWSC intersection operated with only driver perception.
NASA Astrophysics Data System (ADS)
Timi, Purnota Hannan; Shermin, Saima; Rahman, Asifur
2017-06-01
Flight data recorder is one of the most important sources of flight data in event of aviation disaster which records a wide range of flight parameters including altitude, airspeed, heading etc. and also helps monitoring and analyzing aircraft performance. Cockpit voice recorder records radio microphone transmissions and sounds in the cockpit. These devices help to find out and understand the root causes of aircraft crashes and help building better aircraft systems and technical solutions to prevent similar type of crashes in future, which lead to improvement in safety of aircrafts and passengers. There are other devices also which enhance the aircraft safety and assists in emergency or catastrophic situations. This paper discusses the concept of Flight Data Recorder (FDR), Cockpit Voice Recorder (CVR), Underwater Locator Beacon (ULB), Data logger and flarm-collision avoidance system for aircraft and their applications in aviation.
Seacrist, Thomas; Douglas, Ethan C; Huang, Elaine; Megariotis, James; Prabahar, Abhiti; Kashem, Abyaad; Elzarka, Ayya; Haber, Leora; MacKinney, Taryn; Loeb, Helen
2018-02-28
Motor vehicle crashes are the leading cause of death among young drivers. Though previous research has focused on crash events, near crashes offer additional data to help identify driver errors that could potentially lead to crashes as well as evasive maneuvers used to avoid them. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) contains extensive data on real-world driving and offers a reliable methodology to quantify and study near crashes. This article presents findings on near crashes and how they compare to crash events among teen, young adult, and experienced adult drivers. A subset from the SHRP2 database consisting of 1,653 near crashes for teen (16-19 years, n = 550), young adult (20-24 years, n = 748), and experienced adult (35-54 years, n = 591) drivers was used. Onboard instrumentation including scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to classify near crashes based on 7 types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups and between crashes and near crashes. For rear-end near crashes, vehicle dynamic variables including near crash severity, headway distance, time headway, and time to collision at the time of braking were compared across age groups. Crashes and near crashes were combined to compare the frequency of critical events across age. Teen drivers exhibited a significantly higher (P <.01) near crash rate than young adult and experienced adult drivers. The near crash rates were 81.6, 56.6, and 37.3 near crashes per million miles for teens, young adults, and experienced adults, respectively. Teens were also involved in significantly more rear-end (P <.01), road departure (P <.01), side-swipe (P <.01), and animal (P <.05) near crashes compared to young and experienced adults. Teens exhibited a significantly greater (P <.01) critical event rate of 102.2 critical events per million miles compared to 72.4 and 40.0 critical events per million miles for young adults and experienced adults, respectively; the critical event rate ratio was 2.6 and 1.8 for teens and young adults, respectively. To our knowledge, this is the first study to examine near crashes among teen, young adult, and experienced adult drivers using SHRP2 naturalistic data. Near crash and critical event rates significantly decreased with increasing age and driver experience. Overall, teens were more than twice as likely to be involved in critical events compared to experienced adults. These data can be used to develop more targeted driver training programs and help manufacturers design active safety systems based on the most common driving errors for vulnerable road users.
Avoidable Burden of Risk Factors for Serious Road Traffic Crashes in Iran: A Modeling Study.
Khosravi Shadmani, Fatemeh; Mansori, Kamyar; Karami, Manoochehr; Zayeri, Farid; Shadman, Reza Khosravi; Hanis, Shiva Mansouri; Soori, Hamid
2017-03-01
The aim of this study was to model the avoidable burden of the risk factors of road traffic crashes in Iran and to prioritize interventions to reduce that burden. The prevalence and the effect size of the risk factors were obtained from data documented by the traffic police of Iran in 2013. The effect size was estimated using an ordinal regression model. The potential impact fraction index was applied to calculate the avoidable burden in order to prioritize interventions. This index was calculated for theoretical, plausible, and feasible minimum risk level scenarios. The joint effects of the risk factors were then estimated for all the scenarios. The highest avoidable burdens in the theoretical, plausible, and feasible minimum risk level scenarios for the non-use of child restraints on urban roads were 52.25, 28.63, and 46.67, respectively. In contrast, the value of this index for speeding was 76.24, 37.00, and 62.23, respectively, for rural roads. On the basis of the different scenarios considered in this research, we suggest focusing on future interventions to decrease the prevalence of speeding, the non-use of child restraints, the use of cell phones while driving, and helmet disuse, and the laws related to these items should be considered seriously.
Prevalence of driver physical factors leading to unintentional lane departure crashes.
Cicchino, Jessica B; Zuby, David S
2017-07-04
Some lane-keeping assist systems in development and production provide autonomous braking and steering to correct unintentional lane drift but otherwise require drivers to fully control their vehicles. The goal of this study was to quantify the proportion of drivers involved in unintentional lane drift crashes who would be unable to regain control of their vehicles to inform the design of such systems. The NHTSA's National Motor Vehicle Crash Causation Survey collected in-depth, on-scene data for a nationally representative sample of 5,470 U.S. police-reported passenger vehicle crashes during 2005-2007 that occurred between 6 a.m. and midnight and for which emergency medical services were dispatched. The physical states of drivers involved in the 631 lane drift crashes in the sample, which represented 259,034 crashes nationally, were characterized. Thirty-four percent of drivers who crashed because they drifted from their lanes were sleeping or otherwise incapacitated. These drivers would be unlikely to regain full control of their vehicles if an active safety system prevented their initial drift. An additional 13% of these drivers had a nonincapacitating medical issue, blood alcohol concentration (BAC) ≥ 0.08%, or other physical factor that may not allow them to regain full vehicle control. When crashes involved serious or fatal injuries, 42% of drivers who drifted were sleeping or otherwise incapacitated, and an additional 14% were impacted by a nonincapacitating medical issue, BAC ≥ 0.08%, or other physical factor. Designers of active safety systems that provide autonomous lateral control should consider that a substantial proportion of drivers at risk of lane drift crashes are incapacitated. Systems that provide only transient corrective action may not ultimately prevent lane departure crashes for these drivers, and drivers who do avoid lane drift crashes because of these systems may be at high risk of other types of crashes when they attempt to regain control. Active lane-keeping assist systems may need to be combined with in-vehicle driver monitoring to identify incapacitated drivers and safely remove them from the roadway if the systems are to reach their maximum potential benefit.
Wu, Kun-Feng; Donnell, Eric T; Aguero-Valverde, Jonathan
2014-06-01
To approach the goal of "Toward Zero Deaths," there is a need to develop an analysis paradigm to better understand the effects of a countermeasure on reducing the number of severe crashes. One of the goals in traffic safety research is to search for an effective treatment to reduce fatal and major injury crashes, referred to as severe crashes. To achieve this goal, the selection of promising countermeasures is of utmost importance, and relies on the effectiveness of candidate countermeasures in reducing severe crashes. Although it is important to precisely evaluate the effectiveness of candidate countermeasures in reducing the number of severe crashes at a site, the current state-of-the-practice often leads to biased estimates. While there have been a few advanced statistical models developed to mitigate the problem in practice, these models are computationally difficult to estimate because severe crashes are dispersed spatially and temporally, and cannot be integrated into the Highway Safety Manual framework, which develops a series of safety performance functions and crash modification factors to predict the number of crashes. Crash severity outcomes are generally integrated into the Highway Safety Manual using deterministic distributions rather than statistical models. Accounting for the variability in crash severity as a function geometric design, traffic flow, and other roadway and roadside features is afforded by estimating statistical models. Therefore, there is a need to develop a new analysis paradigm to resolve the limitations in the current Highway Safety Manual methods. We propose an approach which decomposes the severe crash frequency into a function of the change in the total number of crashes and the probability of a crash becoming a severe crash before and after a countermeasure is implemented. We tested this approach by evaluating the effectiveness of shoulder rumble strips on reducing the number of severe crashes. A total of 310 segments that have had shoulder rumble strips installed during 2002-2009 are included in the analysis. It was found that shoulder rumble strips reduce the total number of crashes, but have no statistically significant effect on reducing the probability of a severe crash outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Project implementation plan : variable dynamic testbed vehicle
DOT National Transportation Integrated Search
1997-02-01
This document is the project implementation plan for the Variable Dynamic Testbed Vehicle (VDTV) program, sponsored by the Jet Propulsion Laboratory for the Office of Crash Avoidance Research (OCAR) programs in support of Thrust One of the National H...
Automatic intersection map generation task 10 report.
DOT National Transportation Integrated Search
2016-02-29
This report describes the work conducted in Task 10 of the V2I Safety Applications Development Project. The work was performed by the University of Michigan Transportation Research Institute (UMTRI) under contract to the Crash Avoidance Metrics Partn...
Vehicle-to-infrastructure program cooperative adaptive cruise control.
DOT National Transportation Integrated Search
2015-03-01
This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...
Legislative advocacy is key to addressing teen driving deaths
Gillan, J S
2006-01-01
The increased crash risk of young, novice drivers, especially in their teenage years, has been a growing concern at both the state and federal levels. Teenage drivers are involved in fatal crashes at more than double the rate of the rest of the population per 100 000 licensed drivers. The best way of stemming these losses is to enact laws adopting graduated licensure systems that restrict young, novice drivers to conditions that reduce crash risk exposure when they first operate motor vehicles and to educate the public on the need for this legislation. Legislated teenage driving restrictions involve night‐time vehicle driving restrictions, prohibitions on other teenage passengers, and the required presence of supervising adults. These restrictions are relaxed as teenage drivers successfully progress through initial and intermediate stages of graduated licensure before being granted unrestricted driver licenses. Unfortunately, many states have incomplete graduated licensing systems that need further legislative action to raise them to the desirable three‐stage system that has been shown repeatedly to produce the greatest safety benefits. These state efforts should be buttressed by federal legislation that has proved to be crucial in allied driver behavioral concerns. Because reducing crash risk involves other strategies, stringent enforcement of primary seat belt laws as well as improved motor vehicle crash avoidance capabilities and crashworthiness must accompany efforts to reduce young driver crash risk. PMID:16788112
Née, Mélanie; Avalos, Marta; Luxcey, Audrey; Contrand, Benjamin; Salmi, Louis-Rachid; Fourrier-Réglat, Annie; Gadegbeku, Blandine; Lagarde, Emmanuel; Orriols, Ludivine
2017-07-01
While some medicinal drugs have been found to affect driving ability, no study has investigated whether a relationship exists between these medicines and crashes involving pedestrians. The aim of this study was to explore the association between the use of medicinal drugs and the risk of being involved in a road traffic crash as a pedestrian. Data from 3 French nationwide databases were matched. We used the case-crossover design to control for time-invariant factors by using each case as its own control. To perform multivariable analysis and limit false-positive results, we implemented a bootstrap version of Lasso. To avoid the effect of unmeasured time-varying factors, we varied the length of the washout period from 30 to 119 days before the crash. The matching procedure led to the inclusion of 16,458 pedestrians involved in an injurious road traffic crash from 1 July 2005 to 31 December 2011. We found 48 medicine classes with a positive association with the risk of crash, with median odds ratios ranging from 1.12 to 2.98. Among these, benzodiazepines and benzodiazepine-related drugs, antihistamines, and anti-inflammatory and antirheumatic drugs were among the 10 medicines most consumed by the 16,458 pedestrians. Study limitations included slight overrepresentation of pedestrians injured in more severe crashes, lack of information about self-medication and the use of over-the-counter drugs, and lack of data on amount of walking. Therapeutic classes already identified as impacting the ability to drive, such as benzodiazepines and antihistamines, are also associated with an increased risk of pedestrians being involved in a road traffic crash. This study on pedestrians highlights the necessity of improving awareness of the effect of these medicines on this category of road user.
Florida's weakened motorcycle helmet law: effects on death rates in motorcycle crashes.
Kyrychenko, Sergey Y; McCartt, Anne T
2006-03-01
Effective July 1, 2000, Florida's universal helmet law was amended to exclude riders ages 21 and older with insurance coverage providing at least 10,000 US dollars in medical benefits for injuries sustained in a motorcycle crash. Observed helmet use in Florida was reported to have declined from nearly 100% in 1998, before the law change, to 53% after. This study examined the effects of the law change on the likelihood of death, given involvement in a motorcycle crash. Rates of motorcyclist deaths per crash involvement in Florida for 2001-2002 (after the law change) were compared with those for 1998-1999 (before the law change). Before/after death rate ratios (95% CIs) were examined, and logistic regression models estimated the effect of the helmet law change on the odds of death in a crash, while controlling for rider gender, age, and seating position, and number of vehicles. The motorcyclist death rate increased significantly after the law change, from 30.8 to 38.8 deaths per 1,000 crash involvements. Motorcyclist death rates increased for single- and multiple-vehicle crashes, for male and female operators, and for riders of all ages including those younger than 21. After controlling for gender and age, the likelihood of death given involvement in a motorcycle crash was 25% higher than expected after the law change. It is estimated that 117 motorcyclist deaths could have been avoided during 2001-2002 if Florida's universal helmet law had remained in place. This study provides evidence of the life-saving benefits of universal helmet laws. The results also suggest that age-specific helmet laws are not effective in protecting the youngest drivers. This is not surprising, as these laws are largely unenforceable.
The real-world safety potential of connected vehicle technology.
Doecke, Sam; Grant, Alex; Anderson, Robert W G
2015-01-01
This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes. Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing "replay" of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking. It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn-opposite crashes. These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.
DOT National Transportation Integrated Search
2005-03-01
The Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications Consortium (VSCC) comprised of BMW, DaimlerChrysler, Ford, GM, Nissan, Toyota, and Volkswagen, in partnership with USDOT, established the Vehicle Safety Communications (VSC)...
Small car exposure data project. Phase 1 : methodology
DOT National Transportation Integrated Search
1985-10-01
The Small Car Exposure Data Project represents the first phase of an effort to build a data : base of exposure variables for crash-avoidance studies. Among these are: (1) vehicle make, : model, year, body style, wheel base, weight, and horsepower; (2...
Development of Vehicle-to-Infrastructure Applications Program Second Annual Report.
DOT National Transportation Integrated Search
2016-08-31
This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the second year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participat...
49 CFR 533.6 - Measurement and calculation procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the technology is related to crash-avoidance technologies, safety critical systems or systems affecting safety-critical functions, or technologies designed for the purpose of reducing the frequency of... improvements related to air conditioning efficiency, off-cycle technologies, and hybridization and other...
Transportation Conformity : A Basic Guide for State and Local Officials
DOT National Transportation Integrated Search
2013-03-01
This document describes the Concept of Operations (ConOps) for five connected vehicle vehicle-to-infrastructure (V2I) safety applications, and the underlying connected vehicle system, for crash avoidance for the U.S. Department of Transportation (USD...
Development of vehicle-to-infrastructure applications program : first annual report.
DOT National Transportation Integrated Search
2015-08-01
This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the first year of the Development of Vehicle-to-Infrastructure Applications (V2I) Program. Participati...
Mileage, car ownership, experience of punishment avoidance, and the risky driving of young drivers.
Scott-Parker, B; Watson, B; King, M J; Hyde, M K
2011-12-01
Young drivers are at greatest risk of injury or death from a car crash in the first 6 months of independent driving. In Queensland, the graduated driver licensing (GDL) program was extensively modified in July 2007 in order to reduce this risk. Increased mileage and car ownership have been found to play a role in risky driving, offenses, and crashes; however, GDL programs typically do not consider these variables. In addition, young novice drivers' experiences of punishment avoidance have not previously been examined. This article explores the mileage (duration and distance), car ownership, and punishment avoidance behaviors of young newly licensed intermediate (provisional) drivers and their relationship to risky driving, crashes, and offenses. Drivers (n = 1032) aged 17 to 19 years recruited from across Queensland for longitudinal research completed survey 1 exploring prelicense and learner experiences and sociodemographic characteristics. survey 2 explored the same variables with a subset of these drivers (n = 341) after they had completed their first 6 months of independent driving. Most young drivers in survey 2 reported owning a vehicle and paying attention to police presence. Drivers who had their own cars reported significantly greater mileage and more risky driving. Novices who drove more kilometers, spent more hours each week driving, or avoided actual and anticipated police presence were more likely to report risky driving. These drivers were also more likely to report being detected by police for a driving-related offense. The media, parents, friends, and other drivers play a pivotal role in informing novices of on-road police enforcement operations. GDL programs should incorporate education for the parent and novice driver regarding the increased risks associated with greater driving, particularly when the novice driver owns a vehicle. Parents should be encouraged to delay exclusive access to a vehicle. Parents should also consider whether their young novices will deliberately avoid police if they are aware of their location. This may reinforce not only the risky behavior but also young novices' beliefs that their parents condone this behavior.
Kraemer, John D; Benton, Connor S
2015-01-01
Objective This study aims to quantify and describe the burden of fatal pedestrian crashes among persons using wheelchairs in the USA from 2006 to 2012. Design The occurrence of fatal pedestrian crashes among pedestrians using wheelchairs was assessed using two-source capture-recapture. Descriptive analysis of fatal crashes was conducted using customary approaches. Setting Two registries were constructed, both of which likely undercounted fatalities among pedestrians who use wheelchairs. The first used data from the Fatality Analysis Reporting System, and the second used a LexisNexis news search. Outcome measures Mortality rate (per 100 000 person-years) and crash-level, driver-level and pedestrian-level characteristics of fatal crashes. Results This study found that, from 2006 to 2012, the mortality rate for pedestrians using wheelchairs was 2.07/100 000 person-years (95% CI 1.60 to 2.54), which was 36% higher than the overall population pedestrian mortality rate (p=0.02). Men's risk was over fivefold higher than women's risk (p<0.001). Compared to the overall population, persons aged 50–64 using wheelchairs had a 38% increased risk (p=0.04), and men who use wheelchairs aged 50–64 had a 75% increased risk over men of the same age in the overall population (p=0.006). Almost half (47.6%; 95% CI 42.8 to 52.5) of fatal crashes occurred in intersections and 38.7% (95% CI 32.0 to 45.0) of intersection crashes occurred at locations without traffic control devices. Among intersection crashes, 47.5% (95% CI 40.6 to 54.5) involved wheelchair users in a crosswalk; no crosswalk was available for 18.3% (95% CI 13.5 to 24.4). Driver failure to yield right-of-way was noted in 21.4% (95% CI 17.7 to 25.7) of crashes, and no crash avoidance manoeuvers were detected in 76.4% (95% CI 71.0 to 81.2). Conclusions Persons who use wheelchairs experience substantial pedestrian mortality disparities calling for behavioural and built environment interventions. PMID:26589426
Special issue : safety advancements
DOT National Transportation Integrated Search
1999-04-24
This issue of 'Status Report' focuses on some of the most recent key safety technology improvements. The crash protection in passenger vehicles is improving substantially; advanced frontal airbags will soon be available in a number of models and side...
Efficacies of roadway safety improvements across functional subclasses of rural two-lane highways.
Labi, Samuel
2011-08-01
Highway crash occurrence is a leading cause of unnatural deaths, and highway agencies continually seek to identify engineering measures to reduce crashes and to assess the efficacy of such measures. Most past studies on the effectiveness of roadway improvements in terms of crash reduction considered all rural two-lane sections as a single category of roads. However, it may be hypothesized that the differences in the mobility and accessibility characteristics that are reflected in (and due to) the different design standards between different functional subclasses in the rural two-lane highway system can lead to differences in efficacies of safety improvements at these subclasses. This paper investigates the efficacy of roadway improvements, in terms of crash reduction, at the various subclasses of rural two-lane highways. An empirical analysis of safety performance at each of the three subclasses of rural two-lane highways was carried out using the negative binomial modeling technique. For each subclass, crash prediction models were developed separately for the three levels of crash severity: property-damage only, injury, and fatal/injury. The crash factors that were considered include lane width, shoulder width, pavement surface friction, pavement condition, and horizontal and vertical alignments. After having developed the safety performance functions, the effectiveness (in terms of the extent of crash reduction, for different levels of crash severity) of highway safety enhancements at each highway subclass were determined using the theoretical concepts established in past literature. These enhancements include widening lanes, widening shoulders, enhancing pavement surface friction, and improving the vertical or horizontal alignment. The study found that there is empirical evidence to justify the decomposition of the family of rural two-lane roads into its constituent subclasses for purposes of analyzing the effectiveness of safety enhancement projects and thus to avoid underestimation or overestimation of benefits of safety improvements at this class of highways. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kusano, Kristofer D.; Gabler, Hampton C.
2010-01-01
To mitigate the severity of rear-end and other collisions, Pre-Crash Systems (PCS) are being developed. These active safety systems utilize radar and/or video cameras to determine when a frontal crash, such as a front-to-back rear-end collisions, is imminent and can brake autonomously, even with no driver input. Of these PCS features, the effects of autonomous pre-crash braking are estimated. To estimate the maximum potential for injury reduction due to autonomous pre-crash braking in the striking vehicle of rear-end crashes, a methodology is presented for determining 1) the reduction in vehicle crash change in velocity (ΔV) due to PCS braking and 2) the number of injuries that could be prevented due to the reduction in collision severity. Injury reduction was only performed for belted drivers, as unbelted drivers have an unknown risk of being thrown out of position. The study was based on 1,406 rear-end striking vehicles from NASS / CDS years 1993 to 2008. PCS parameters were selected from realistic values and varied to examine the effect on system performance. PCS braking authority was varied from 0.5 G’s to 0.8 G’s while time to collision (TTC) was held at 0.45 seconds. TTC was then varied from 0.3 second to 0.6 seconds while braking authority was held constant at 0.6 G’s. A constant braking pulse (step function) and ramp-up braking pulse were used. The study found that automated PCS braking could reduce the crash ΔV in rear-end striking vehicles by an average of 12% – 50% and avoid 0% – 14% of collisions, depending on PCS parameters. Autonomous PCS braking could potentially reduce the number of injured drivers who are belted by 19% to 57%. PMID:21050603
DOT National Transportation Integrated Search
1988-08-01
This report details the results of an analysis performed to evaluate the : representativeness of the Crash Avoidance Research accident data base : (CARDfile). The accident records for 1983 and 1984 from six states (Indiana, : Maryland, Michigan, Penn...
DOT National Transportation Integrated Search
1985-12-01
This report details the results of an analysis performed to evaluate the representativeness of the Crash Avoidance Research accident data base (CARDfile). The accident records for 1983 and 1984 from six states (Indiana, Maryland, Michigan, Pennsylvan...
DOT National Transportation Integrated Search
2005-08-01
Drivers last-second braking and last-second steering judgments have been studied extensively by the Crash Avoidance Metrics Partnership (CAMP) Forward Collision Warning (FCW) Requirements project. This previous work was conducted under closed-cour...
Cicchino, Jessica B; McCartt, Anne T
2015-01-01
Crash avoidance technologies have the potential to prevent or mitigate many crashes, but their effectiveness depends on drivers' acceptance and proper use. Owners of 2011 Dodge Charger, Dodge Durango, and Jeep Grand Cherokee vehicles were interviewed about their experiences with their vehicles' technologies. Interviews were conducted in April 2013 with 215 owners of Dodge and Jeep vehicles with adaptive cruise control and forward collision warning and 215 owners with blind spot monitoring and rear cross-path detection. Most owners said that they always keep each collision avoidance technology turned on, and more than 90% of owners with each system would want the technology again on their next vehicle. The majority believed that the systems had helped prevent a collision; this ranged from 54% of drivers with forward collision warning to more than three-quarters with blind spot monitoring and rear cross-path detection. Some owners reported behavioral changes with the systems, but over-reliance on them is not prevalent. Reported use of the systems varied by the age and gender of the driver and duration of vehicle ownership to a greater degree than in previous surveys of luxury Volvo and Infiniti vehicles with collision avoidance technologies. Notably, drivers aged 40 and younger were most likely to report that forward collision warning had alerted them multiple times and that it had prevented a collision and that they follow the vehicle ahead less closely with adaptive cruise control. Reports of waiting for the alert from forward collision warning before braking were infrequent but increased with duration of ownership. However, these reports could reflect confusion of the system with adaptive cruise control, which alerts drivers when braking is necessary to maintain a preset speed or following distance but a crash is not imminent. Consistent with previous surveys of luxury vehicle owners with collision avoidance technologies, acceptance and use remains high among owners of more mainstream vehicles. Varying experiences with the technologies by driver age and gender suggest that safety benefits are not uniform for all drivers, and differential benefits may become increasingly apparent as collision avoidance technologies become available to a more heterogeneous population of drivers. The potential for over-reliance on the technologies should continue to be monitored, especially as drivers gain more experience with them.
Dawson, Jeffrey D.; Rizzo, Matthew; Anderson, Steven W.; Dastrup, Elizabeth; Uc, Ergun Y.
2011-01-01
Summary Parkinson’s disease (PD) impairs driving performance, and simulator studies have shown increased crashes compared to controls. In this pilot study, eight drivers with PD participated in three drive sessions with multiple simulator intersections of varying visibility and traffic load, where an incurring vehicle posed a crash risk. Over the course of the three sessions (once every 1–2 weeks), we observed reduction in crashes (p=0.059) and reaction times (p=0.006) to the vehicle incursion. These findings suggest that our simulator training program is feasible and potentially useful in drivers with PD. Future research questions include transfer of training to different driving tasks, duration of benefit, and the effect on long term real life outcomes in comparison to a standard intervention (e.g., driver education class) in a randomized trial. PMID:24273752
Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan
2002-01-01
A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.
DOT National Transportation Integrated Search
1995-05-15
THE OBJECTIVE AND SUBJECTIVE RESULTS OBTAINED THIS YEAR ARE FROM A POPULATION OF 36 DRIVER-PARTICIPANTS THAT WAS BALANCED FOR GENDER, AGE, AND EXPERIENCE WITH CRUISE CONTROL. THESE RESULTS INDICATE THAT THE BASELINE SYSTEM OPERATES WELL ON U.S. FREEW...
NASA Astrophysics Data System (ADS)
Markkula, G.; Benderius, O.; Wahde, M.
2014-12-01
A number of driver models were fitted to a large data set of human truck driving, from a simulated near-crash, low-friction scenario, yielding two main insights: steering to avoid a collision was best described as an open-loop manoeuvre of predetermined duration, but with situation-adapted amplitude, and subsequent vehicle stabilisation could to a large extent be accounted for by a simple yaw rate nulling control law. These two phenomena, which could be hypothesised to generalise to passenger car driving, were found to determine the ability of four driver models adopted from the literature to fit the human data. Based on the obtained results, it is argued that the concept of internal vehicle models may be less valuable when modelling driver behaviour in non-routine situations such as near-crashes, where behaviour may be better described as direct responses to salient perceptual cues. Some methodological issues in comparing and validating driver models are also discussed.
Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data
Chen, Feng; Ma, Xiaoxiang; Chen, Suren; Yang, Lin
2016-01-01
Random effect panel data hurdle models are established to research the daily crash frequency on a mountainous section of highway I-70 in Colorado. Road Weather Information System (RWIS) real-time traffic and weather and road surface conditions are merged into the models incorporating road characteristics. The random effect hurdle negative binomial (REHNB) model is developed to study the daily crash frequency along with three other competing models. The proposed model considers the serial correlation of observations, the unbalanced panel-data structure, and dominating zeroes. Based on several statistical tests, the REHNB model is identified as the most appropriate one among four candidate models for a typical mountainous highway. The results show that: (1) the presence of over-dispersion in the short-term crash frequency data is due to both excess zeros and unobserved heterogeneity in the crash data; and (2) the REHNB model is suitable for this type of data. Moreover, time-varying variables including weather conditions, road surface conditions and traffic conditions are found to play importation roles in crash frequency. Besides the methodological advancements, the proposed technology bears great potential for engineering applications to develop short-term crash frequency models by utilizing detailed data from field monitoring data such as RWIS, which is becoming more accessible around the world. PMID:27792209
NASA Technical Reports Server (NTRS)
Enders, J. H.
1978-01-01
NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.
78 FR 59866 - New Car Assessment Program (NCAP)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... because ESC is now required for all light vehicles. For many years, NCAP has provided comparative... site, www.safercar.gov . NCAP provides comparative information on the safety performance and features... Features on www.safercar.gov are designed to assist drivers in avoiding backover crashes. After considering...
Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands.
Huang, Helai; Li, Chunyang; Zeng, Qiang
2016-01-01
This study sets out to investigate vehicles' crash protectiveness on occupant injury and vehicle damage, which can be deemed as an extension of the traditional crash worthiness. A Bayesian bivariate hierarchical ordered logistic (BVHOL) model is developed to estimate the occupant protectiveness (OP) and vehicle protectiveness (VP) of 23 major car brands in Florida, with considering vehicles' crash aggressivity and controlling external factors. The proposed model not only takes over the strength of the existing hierarchical ordered logistic (HOL) model, i.e. specifying the order characteristics of crash outcomes and cross-crash heterogeneities, but also accounts for the correlation between the two crash responses, driver injury and vehicle damage. A total of 7335 two-vehicle-crash records with 14,670 cars involved in Florida are used for the investigation. From the estimation results, it's found that most of the luxury cars such as Cadillac, Volvo and Lexus possess excellent OP and VP while some brands such as KIA and Saturn perform very badly in both aspects. The ranks of the estimated safety performance indices are even compared to the counterparts in Huang et al. study [Huang, H., Hu, S., Abdel-Aty, M., 2014. Indexing crash worthiness and crash aggressivity by major car brands. Safety Science 62, 339-347]. The results show that the rank of occupant protectiveness index (OPI) is relatively coherent with that of crash worthiness index, but the ranks of crash aggressivity index in both studies is more different from each other. Meanwhile, a great discrepancy between the OPI rank and that of vehicle protectiveness index is found. What's more, the results of control variables and hyper-parameters estimation as well as comparison to HOL models with separate or identical threshold errors, demonstrate the validity and advancement of the proposed model and the robustness of the estimated OP and VP. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.
Bahouth, George; Graygo, Jill; Digges, Kennerly; Schulman, Carl; Baur, Peter
2014-01-01
The objectives of this study are to (1) characterize the population of crashes meeting the Centers for Disease Control and Prevention (CDC)-recommended 20% risk of Injury Severity Score (ISS)>15 injury and (2) explore the positive and negative effects of an advanced automatic crash notification (AACN) system whose threshold for high-risk indications is 10% versus 20%. Binary logistic regression analysis was performed to predict the occurrence of motor vehicle crash injuries at both the ISS>15 and Maximum Abbreviated Injury Scale (MAIS) 3+ level. Models were trained using crash characteristics recommended by the CDC Committee on Advanced Automatic Collision Notification and Triage of the Injured Patient. Each model was used to assign the probability of severe injury (defined as MAIS 3+ or ISS>15 injury) to a subset of NASS-CDS cases based on crash attributes. Subsequently, actual AIS and ISS levels were compared with the predicted probability of injury to determine the extent to which the seriously injured had corresponding probabilities exceeding the 10% and 20% risk thresholds. Models were developed using an 80% sample of NASS-CDS data from 2002 to 2012 and evaluations were performed using the remaining 20% of cases from the same period. Within the population of seriously injured (i.e., those having one or more AIS 3 or higher injuries), the number of occupants whose injury risk did not exceed the 10% and 20% thresholds were estimated to be 11,700 and 18,600, respectively, each year using the MAIS 3+ injury model. For the ISS>15 model, 8,100 and 11,000 occupants sustained ISS>15 injuries yet their injury probability did not reach the 10% and 20% probability for severe injury respectively. Conversely, model predictions suggested that, at the 10% and 20% thresholds, 207,700 and 55,400 drivers respectively would be incorrectly flagged as injured when their injuries had not reached the AIS 3 level. For the ISS>15 model, 87,300 and 41,900 drivers would be incorrectly flagged as injured when injury severity had not reached the ISS>15 injury level. This article provides important information comparing the expected positive and negative effects of an AACN system with thresholds at the 10% and 20% levels using 2 outcome metrics. Overall, results suggest that the 20% risk threshold would not provide a useful notification to improve the quality of care for a large number of seriously injured crash victims. Alternately, a lower threshold may increase the over triage rate. Based on the vehicle damage observed for crashes reaching and exceeding the 10% risk threshold, we anticipate that rescue services would have been deployed based on current Public Safety Answering Point (PSAP) practices.
Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed
2015-11-01
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.
Advanced Air Bag Technology Assessment
NASA Technical Reports Server (NTRS)
Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.
1998-01-01
As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.
Reducing alcohol-impaired driving crashes through the use of social marketing.
Rothschild, Michael L; Mastin, Beth; Miller, Thomas W
2006-11-01
Over the past decade there has been little decrease in the number of alcohol-related driving fatalities. During this time most interventions have been educational or legal. This paper presents the results of a field experiment that used social marketing to introduce a new ride program into three rural communities. Almost all people in the 21-34-year-old target know that they should not drive while impaired, and most agree it is not a good thing to do, but for many the opportunity to behave properly does not exist. The Road Crew program was developed using new product development techniques and implemented by developing broad coalitions within the communities. A key feature of the program included rides to, between, and home from bars in older luxury vehicles. Results showed a significant shift in riding/driving behavior, especially among 21-34-year olds, a projected 17% decline in alcohol-related crashes in the first year, no increase in drinking behavior, and large savings between the reactive cost of cleaning up after a crash and the proactive cost of avoiding a crash. Programs have become self-sustaining based on fares and tavern contributions, and have become part of the life style in the treatment communities.
Case series analysis of hindfoot injuries sustained by drivers in frontal motor vehicle crashes.
Ye, Xin; Funk, James; Forbes, Aaron; Hurwitz, Shepard; Shaw, Greg; Crandall, Jeff; Freeth, Rob; Michetti, Chris; Rudd, Rodney; Scarboro, Mark
2015-09-01
Improvements to vehicle frontal crashworthiness have led to reductions in toe pan and instrument panel intrusions as well as leg, foot, and ankle loadings in standardized crash tests. Current field data, however, suggests the proportion of foot and ankle injuries sustained by drivers in frontal crashes has not decreased over the past two decades. To explain the inconsistency between crash tests results and real world lower limb injury prevalence, this study investigated the injury causation scenario for the specific hind-foot injury patterns observed in frontal vehicle crashes. Thirty-four cases with leg, foot, and ankle injuries were selected from the Crash Injury Research and Engineering Network (CIREN) database. Talus fractures were present in 20 cases, representing the most frequent hind-foot skeletal injuries observed among the reviewed cases. While axial compression was the predominant loading mechanism causing 18 injuries, 11 injured ankles involved inversion or eversion motion, and 5 involved dorsiflexion as the injury mechanism. Injured ankles of drivers were more biased towards the right aspect with foot pedals contributing to injuries in 13 of the 34 cases. Combined, the results suggest that despite recent advancement of vehicle performance in crash tests, efforts to reduce axial forces sustained in lower extremity should be prioritized. The analysis of injury mechanisms in this study could aid in crash reconstructions and the development of safety systems for vehicles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nilsson, Daniel; Lindman, Magdalena; Victor, Trent; Dozza, Marco
2018-04-01
Single-vehicle run-off-road crashes are a major traffic safety concern, as they are associated with a high proportion of fatal outcomes. In addressing run-off-road crashes, the development and evaluation of advanced driver assistance systems requires test scenarios that are representative of the variability found in real-world crashes. We apply hierarchical agglomerative cluster analysis to define similarities in a set of crash data variables, these clusters can then be used as the basis in test scenario development. Out of 13 clusters, nine test scenarios are derived, corresponding to crashes characterised by: drivers drifting off the road in daytime and night-time, high speed departures, high-angle departures on narrow roads, highways, snowy roads, loss-of-control on wet roadways, sharp curves, and high speeds on roads with severe road surface conditions. In addition, each cluster was analysed with respect to crash variables related to the crash cause and reason for the unintended lane departure. The study shows that cluster analysis of representative data provides a statistically based method to identify relevant properties for run-off-road test scenarios. This was done to support development of vehicle-based run-off-road countermeasures and driver behaviour models used in virtual testing. Future studies should use driver behaviour from naturalistic driving data to further define how test-scenarios and behavioural causation mechanisms should be included. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1995-02-01
">IN ADDITION TO THE MOST BASIC GOAL OF ELIMINATING THE "BLIND SPOT", SIGNIFICANT CRASH AVOIDANCEOPPORTUNITIES CAN BE REALIZED BY GUARDING AGAINST "FAST CLOSING" VEHICLES DURING LANE CHANGE AND MERGING. THESE "FAST APPROACH" COLLISIONS, THOUGH INFREQ...
ERIC Educational Resources Information Center
Goldsborough, Reid
2009-01-01
It has been said that a computer lets a person make more mistakes faster than any other invention in human history, with the possible exceptions of handguns and tequila. Computers also make mistakes on their own, whether they're glitches, conflicts, bugs, crashes, or failures. Avoiding glitches is considerably less frustrating than trying to fix…
Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen
2017-10-01
Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cafiso, Salvatore; D'Agostino, Carmelo; Persaud, Bhagwant
2017-04-03
A new European Union (EU) regulation for safety barriers, which is based on performance, has encouraged road agencies to perform an upgrade of old barriers, with the expectation that there will be safety benefits at the retrofitted sites. The new class of barriers was designed and installed in compliance with the 1998 (European Norm) EN 1317 standards for road restraint systems, which lays down common requirements for the testing and certification of road restraint systems in all countries of the European Committee for Standardization (CEN). Both the older and new barriers are made of steel and are installed in such a way as to avoid vehicle intrusion, but the older ones are thought to be only effective at low speeds and large angles of impact. The new standard seeks to remedy this by providing better protection at higher speeds. This article seeks to quantify the effect on the frequency of fatal and injury crashes of retrofitting motorways with barriers meeting the new standards. The estimation of the crash modification was carried out by performing an empirical Bayes before-after analysis based on data from the A18 Messina-Catania motorway in Italy. The methodology has the great advantage to account for the regression to the mean effects. Besides, to account for time trend effects and dispersion of crash data, a modified calibration methodology of safety performance was used. This study, based on data collected on 76 km of motorway in the period 2000-2012, derived Crash Modification Factor point estimates that indicate reductions of 72% for run-off-road fatal and injury crashes and 38% in total fatal and injury crashes that could be expected by upgrading an old safety barrier by complying with new EU 1317 standards. The estimated benefit-cost ratio of 5.57 for total crashes indicates that the treatment is cost effective. The magnitude of this benefit indicates that the retrofits are cost-effective even for total crashes and should continue in any European country inasmuch as the estimated Crash Modification Factors are based on treatment sites that are reasonably representative of all European motorways.
Ferguson, Susan A; Schneider, Lawrence W
2008-10-01
In the mid-1990s, evidence emerged that air bag deployments could result in deaths to vulnerable vehicle occupants who were very close to air bag modules when they deployed. In 1997, federal frontal crash test requirements were modified to allow crash testing with unbelted dummies to be performed using sled tests. As a result, vehicle manufacturers were able to redesign air bags to deploy with less force and energy, thereby reducing the toll of air bag-induced deaths. However, there was concern that depowered air bags may not provide the same level of protection to unbelted occupants in severe frontal crashes, particularly occupants of large stature and body mass. This paper provides a summary of recent studies addressing this issue. To expedite the accrual of data regarding air bag performance, the collection of additional crash data was funded by the Alliance of Automobile Manufacturers. A panel of experts was commissioned to oversee the process and evaluate the data. During the past 6 years, a series of studies has been undertaken by panel members and others to evaluate the performance of redesigned air bags and the data are summarized here. There is now convincing evidence that the combination of air bag redesign and public education have resulted in dramatic reductions in air bag-induced infant and child deaths. In addition, the frontal crash fatality risks among children sitting in front seats have been reduced by as much as half, with younger children showing the greatest benefits. Among adult drivers and right-front passengers, there is no evidence for the predicted overall loss of protection with sled-certified air bags and there are far fewer air bag-induced deaths among this population. However, despite exhaustive analyses of frontal-crash data, the possibility of a somewhat elevated fatality risk among a subset of unbelted drivers in sled-certified 1998-1999 model vehicles cannot be ruled out. There also is some evidence that the risks of serious chest injury may be higher among unbelted drivers in frontal crashes in sled-certified vehicles with redesigned air bags. Further research is warranted to determine whether these differences remain in newer model vehicles designed to the advanced air bag rule, which took effect in 2003.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
.... 205), and occupant crash protection, specifically advanced air bags (FMVSS No. 208). The basis for the... systems (FMVSS No. 126), glazing materials (FMVSS No. 205), and advanced air bags (FMVSS No. 208). The... advanced air bags. According to the petition, the three-year requested exemption period will give the...
77 FR 52619 - Make Inoperative Exemptions; Retrofit On-Off Switches for Air Bags
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... improved frontal crash protection for all occupants, by means that include advanced air bag technology. In... of advanced air bag technology and the retrofit switch brochures and forms that were included in Part.... We will also reexamine the at-risk groups in light of advanced air bag technology, the brochures and...
Head impact contact points for restrained child occupants.
Arbogast, Kristy B; Wozniak, Samantha; Locey, Caitlin M; Maltese, Matthew R; Zonfrillo, Mark R
2012-01-01
Head injuries are the most common injuries sustained by children in motor vehicle crashes regardless of age, restraint, and crash direction. For rear seat occupants, the interaction of the subject with the seat back and the vehicle side interior structures has been previously highlighted. In order to advance this knowledge to the development of countermeasures, a summary of vehicle components that contributed to these injuries is needed. Therefore, the objective of this study was to create a contact map of the vehicle interior for head and face injuries to rear-seated restrained children in front crashes. The Crash Injury Research and Engineering Network (CIREN) was queried for rear-seated, restrained child occupants (age 0-15 years) in forward-facing child restraints, booster seats, or lap and shoulder belts who sustained an AIS2+ head and/or face injury in a frontal motor vehicle crash. Cases were analyzed to describe injury patterns and injury causation scenarios. A contact point map was developed to summarize the vehicle components related to injury causation of the head/face injury. Twenty-one cases met the combined inclusion and exclusion criteria. Seven of the child occupants were restrained in forward-facing child restraints, 2 in belt-positioning booster seats, and 12 in lap and shoulder belts. There were 28 head and 17 facial injuries. For left rear occupants, the most common contact point was the pillar in front of the occupant's seat row; that is, B-pillar for second-row occupants, indicating a leftward kinematics. For right rear occupants, due to differences in crash dynamics, the most common contact point location was the passenger's seat back, suggesting that these occupants moved predominantly forward. Contact points associated with head/face injury for restrained children 0 to 15 years in frontal crashes have been delineated. In a majority of the cases, the head/face injury was the most severe injury and severe injuries to other body regions were uncommon, suggesting that efforts to mitigate head injuries for these occupants would greatly improve their overall safety. The majority of the head/face contact points were to the first row seat back and B-pillar. In these frontal crashes, the importance of head/face contact with the vehicle side structure suggests that deploying a curtain air bag in frontal impacts may help manage the energy of impact. These data advance the current understanding of injury patterns and causation in frontal crashes involving restrained rear-row occupants and can be used to develop solutions to mitigate the injuries sustained. Copyright © 2012 Taylor & Francis Group, LLC
[Medial Stigmatization of Mentally Ill Persons after the "Germanwings"-Crash].
von Heydendorff, Steffen Conrad; Dreßing, Harald
2016-04-01
The present study was designed to investigate the frequency of media stigmatization of mentally ill persons after the crash of the "Germanwings"-aircraft on March 2015. Evaluation of 251 texts, which were published in 12 national German newspapers. Categorical distinction between risky coverage and explicit characteristics of stigmatization. In 64.1 % of the evaluated texts, a psychiatric disease of the co-pilot was discussed as the possible cause of the crash, making this the most widely-used explanation in the media that we view "risky coverage". Characteristics of explicit stigmatization were found in 31.5 % of the texts. Most prominent category of explicit stigmatization was the rubric "Metaphorical language/dramatizations". It was found in 23.5 % of the articles. Predominantly risky coverage of mentally ill persons has occured in the wake of a spectacular crime. By obtaining professional expertise of psychiatrists and consistent interpretation of journalistic guidelines, unintended effects of stigmatization could be avoided in the future. © Georg Thieme Verlag KG Stuttgart · New York.
Identifying the causes of road crashes in Europe
Thomas, Pete; Morris, Andrew; Talbot, Rachel; Fagerlind, Helen
2013-01-01
This research applies a recently developed model of accident causation, developed to investigate industrial accidents, to a specially gathered sample of 997 crashes investigated in-depth in 6 countries. Based on the work of Hollnagel the model considers a collision to be a consequence of a breakdown in the interaction between road users, vehicles and the organisation of the traffic environment. 54% of road users experienced interpretation errors while 44% made observation errors and 37% planning errors. In contrast to other studies only 11% of drivers were identified as distracted and 8% inattentive. There was remarkably little variation in these errors between the main road user types. The application of the model to future in-depth crash studies offers the opportunity to identify new measures to improve safety and to mitigate the social impact of collisions. Examples given include the potential value of co-driver advisory technologies to reduce observation errors and predictive technologies to avoid conflicting interactions between road users. PMID:24406942
Deaths from international terrorism compared with road crash deaths in OECD countries.
Wilson, N; Thomson, G
2005-12-01
To estimate the relative number of deaths in member countries of the Organisation for Economic Co-operation and Development (OECD) from international terrorism and road crashes. Data on deaths from international terrorism (US State Department database) were collated (1994-2003) and compared to the road injury deaths (year 2000 and 2001 data) from the OECD International Road Transport Accident Database. In the 29 OECD countries for which comparable data were available, the annual average death rate from road injury was approximately 390 times that from international terrorism. The ratio of annual road to international terrorism deaths (averaged over 10 years) was lowest for the United States at 142 times. In 2001, road crash deaths in the US were equal to those from a September 11 attack every 26 days. There is a large difference in the magnitude of these two causes of deaths from injury. Policy makers need to be aware of this when allocating resources to preventing these two avoidable causes of mortality.
How have changes in air bag designs affected frontal crash mortality?
Braver, Elisa R; Shardell, Michelle; Teoh, Eric R
2010-07-01
To determine whether front air bag changes have affected occupant protection, frontal crash mortality rates were compared among front outboard occupants in vehicles having certified-advanced air bags (latest generation of air bags) or sled-certified air bags with and without advanced features. Poisson marginal structural models were used to calculate standardized mortality rate ratios (MRRs) for front occupants per registered vehicle. Vehicle age-corrected mortality rates were lower for drivers of vehicles having sled-certified air bags with advanced features than for drivers having sled-certified air bags without advanced features (MRR = 0.88; 95% confidence interval [CI]: 0.81-0.95), including unbelted men and drivers younger than 60. The mortality rate was higher, though not statistically significant, for drivers having certified-advanced air bags compared with sled-certified air bags with advanced features (vehicle age-corrected MRR = 1.13; 95% CI: 0.97-1.32) and significantly higher for belted drivers (MRR = 1.21; 95% CI: 1.04-1.39). Advanced air bag features appeared protective for some occupants. However, increased mortality rates among belted drivers of vehicles having certified-advanced air bags relative to those having sled-certified air bags with advanced features suggest that further study is needed to identify any potential problems with requirements for certification. 2010 Elsevier Inc. All rights reserved.
Huang, Helai; Peng, Yunying; Wang, Jie; Luo, Qizhang; Li, Xiang
2018-02-01
Traffic safety of freeways has attracted major concerns, especially for a mountainous freeway affected by adverse terrain conditions, constrained roadway geometry and complicated driving environments. On the basis of a comprehensive dataset collected from a mountainous freeway with a length of 61km but gathering 12 tunnels, this study seeks to examining the interactive effect of mountainous freeway alignment, driving behaviors, vehicle characteristics and environmental factors on crash severity. A classification and regression tree (CART) model is employed as it can deal with high-order interactions between explanatory variables. Results show that the driving behavior is the most important determinant for injury severity of mountainous freeway crashes, followed by the crash time, grade, curve radius and vehicle type. These variables, interacted with the factors of season and crash location, may largely account for the likelihood of high risk events which may result in severe crashes. Events associated with a notably higher probability of severe crashes include coach drivers involved in improper lane changing and other improper actions, drivers involved in speeding during afternoon or evening, drivers involved in speeding along large curve and straight segment during morning, noon or night, and drivers involved in fatigue while passing along the downgrade. Safety interventions to prevent severe crashes at the mountainous freeway include hierarchical supervision in terms of hazardous driving events, enhanced enforcement for speeding and fatigue driving, deployment of advanced driving assistance systems for fatigue driving warning, and cumulative driving time monitoring for long-distance-travel freight vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2010-04-01
Wearing a seat belt has been shown effective in avoiding : or reducing serious injury due to traffic crashes. While : belt use rates in the United States increased from under : 60% in 1994 to 83% in 2008, a substantial number of drivers : still drive...
Kusano, Kristofer; Gorman, Thomas I; Sherony, Rini; Gabler, Hampton C
2014-01-01
Single-vehicle collisions involve only 10 percent of all occupants in crashes in the United States, yet these same crashes account for 31 percent of all fatalities. Along with other vehicle safety advancements, lane departure warning (LDW) systems are being introduced to mitigate the harmful effects of single-vehicle collisions. The objective of this study is to quantify the number of crashes and seriously injured drivers that could have been prevented in the United States in 2012 had all vehicles been equipped with LDW. In order to estimate the potential injury reduction benefits of LDW in the vehicle fleet, a comprehensive crash and injury simulation model was developed. The model's basis was 481 single-vehicle collisions extracted from the NASS-CDS for year 2012. Each crash was simulated in 2 conditions: (1) as it occurred and (2) as if the driver had an LDW system. By comparing the simulated vehicle's off-road trajectory before and after LDW, the reduction in the probability of a crash was determined. The probability of a seriously injured occupant (Maximum Abbreviated Injury Score [MAIS] 3+) given a crash was computed using injury risk curves with departure velocity and seat belt use as predictors. Each crash was simulated between 18 and 216 times to account for variable driver reaction, road, and vehicle conditions. Finally, the probability of a crash and seriously injured driver was summed over all simulations to determine the benefit of LDW. A majority of roads where departure crashes occurred had 2 lanes and were undivided. As a result, 58 percent of crashes had no shoulder. LDW will not be as effective on roads with no shoulder as on roads with large shoulders. LDW could potentially prevent 28.9 percent of all road departure crashes caused by the driver drifting out of his or her lane, resulting in a 24.3 percent reduction in the number of seriously injured drivers. The results of this study show that LDW, if widely adopted, could significantly mitigate a harmful crash type. Larger shoulder width and the presence of lane markings, determined by manual examination of scene photographs, increased the effectiveness of LDW. This result suggests that highway systems should be modified to maximize LDW effectiveness by expanding shoulders and regularly painting lane lines.
DOT National Transportation Integrated Search
2001-06-01
One hundred seventy five fatalities - primarily children and small women - have been attributed to the deployment of an air bag in relatively low-speed crashes as of April 2001. Advanced air bag systems tailor the deployment of the bags to the charac...
Risk-Exposure Density and Mileage Bias in Crash Risk for Older Drivers
Rolison, Jonathan J; Moutari, Salissou
2018-01-01
Abstract Crash rates per mile indicate a high risk of vehicle crash in older drivers. A reliance on mileage alone may underestimate the risk exposure of older drivers because they tend to avoid highways and travel more on nonfreeways (e.g., urban roads), which present greater hazards. We introduce risk-exposure density as an index of exposure that incorporates mileage, frequency of travel, and travel duration. Population-wide driver fatalities in the United States during 2002–2012 were assessed according to driver age range (in years: 16–20, 21–29, 30–39, 40–49, 50–59, 60–69, ≥70) and sex. Mileage, frequency, and duration of travel per person were used to assess risk exposure. Mileage-based fatal crash risk increased greatly among male (relative risk (RR) = 1.73; 95% CI: 1.62, 1.83) and female (RR = 2.08; 95% CI: 1.97, 2.19) drivers from ages 60–69 years to ages ≥70 years. Adjusting for their density of risk exposure, fatal crash risk increased only slightly from ages 60–69 years to ages ≥70 years among male (RR = 1.09; 95% CI: 1.03, 1.15) and female (RR = 1.22; 95% CI: 1.16, 1.29) drivers. While ubiquitous in epidemiologic research, mileage-based assessments can produce misleading accounts of driver risk. Risk-exposure density incorporates multiple components of travel and reduces bias caused by any single indicator of risk exposure. PMID:28605422
Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi
2016-01-01
Objective To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Methods Data for this population-based case-control study were collected from drivers of ‘case’ vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and ‘control’ vehicles representative of ‘driving time’ in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Findings Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90–11.63). The related population attributable risk was 18.37% (95% CI: 13.77–22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. Conclusion In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common. PMID:26930404
Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi
2016-01-01
To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Data for this population-based case-control study were collected from drivers of 'case' vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and 'control' vehicles representative of 'driving time' in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90-11.63). The related population attributable risk was 18.37% (95% CI: 13.77-22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2007-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Development of an in-vehicle intersection collision countermeasure
NASA Astrophysics Data System (ADS)
Pierowicz, John A.
1997-02-01
Intersection collisions constitute approximately twenty-six percent of all accidents in the United States. Because of their complexity, and demands on the perceptual and decision making abilities of the driver, intersections present an increased risk of collisions between automobiles. This situation provides an opportunity to apply advanced sensor and processing capabilities to prevent these collisions. A program to determine the characteristics of intersection collisions and identify potential countermeasures will be described. This program, sponsored by the National Highway Traffic Safety Administration, utilized accident data to develop a taxonomy of intersection crashes. This taxonomy was used to develop a concept for an intersection collision avoidance countermeasure. The concept utilizes in-vehicle position, dynamic status, and millimeter wave radar system and an in-vehicle computer system to provide inputs to an intersection collision avoidance algorithm. Detection of potential violation of traffic control device, or proceeding into the intersection with inadequate gap will lead to the presentation of a warning to the driver. These warnings are presented to the driver primarily via a head-up display and haptic feedback. Roadside to vehicle communication provides information regarding phased traffic signal information. Active control of the vehicle's brake and steering systems are described. Progress in the development of the systems will be presented along with the schedule of future activities.
Requirements of a system to reduce car-to-vulnerable road user crashes in urban intersections.
Habibovic, Azra; Davidsson, Johan
2011-07-01
Intersection crashes between cars and vulnerable road users (VRUs), such as pedestrians and bicyclists, often result in injuries and fatalities. Advanced driver assistance systems (ADASs) can prevent, or mitigate, these crashes. To derive functional requirements for such systems, an understanding of the underlying contributing factors and the context in which the crashes occur is essential. The aim of this study is to use microscopic and macroscopic crash data to explore the potential of information and warning providing ADASs, and then to derive functional sensor, collision detection, and human-machine interface (HMI) requirements. The microscopic data were obtained from the European project SafetyNet. Causation charts describing contributing factors for 60 car-to-VRU crashes had been compiled and were then also aggregated using the SafetyNet Accident Causation System (SNACS). The macroscopic data were obtained from the Swedish national crash database, STRADA. A total of 9702 crashes were analyzed. The results show that the most frequent contributing factor to the crashes was the drivers' failure to observe VRUs due to reduced visibility, reduced awareness, and/or insufficient comprehension. An ADAS should therefore help drivers to observe the VRUs in time and to enhance their ability to interpret the development of events in the near future. The system should include a combination of imminent and cautionary collision warnings, with additional support in the form of information about intersection geometry and traffic regulations. The warnings should be deployed via an in-vehicle HMI and according to the likelihood of crash risk. The system should be able to operate under a variety of weather and light conditions. It should have the capacity to support drivers when their view is obstructed by physical objects. To address problems that vehicle-based sensors may face in this regard, the use of cooperative systems is recommended. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modeling crash injury severity by road feature to improve safety.
Penmetsa, Praveena; Pulugurtha, Srinivas S
2018-01-02
The objective of this research is 2-fold: to (a) model and identify critical road features (or locations) based on crash injury severity and compare it with crash frequency and (b) model and identify drivers who are more likely to contribute to crashes by road feature. Crash data from 2011 to 2013 were obtained from the Highway Safety Information System (HSIS) for the state of North Carolina. Twenty-three different road features were considered, analyzed, and compared with each other as well as no road feature. A multinomial logit (MNL) model was developed and odds ratios were estimated to investigate the effect of road features on crash injury severity. Among the many road features, underpass, end or beginning of a divided highway, and on-ramp terminal on crossroad are the top 3 critical road features. Intersection crashes are frequent but are not highly likely to result in severe injuries compared to critical road features. Roundabouts are least likely to result in both severe and moderate injuries. Female drivers are more likely to be involved in crashes at intersections (4-way and T) compared to male drivers. Adult drivers are more likely to be involved in crashes at underpasses. Older drivers are 1.6 times more likely to be involved in a crash at the end or beginning of a divided highway. The findings from this research help to identify critical road features that need to be given priority. As an example, additional advanced warning signs and providing enlarged or highly retroreflective signs that grab the attention of older drivers may help in making locations such as end or beginning of a divided highway much safer. Educating drivers about the necessary skill sets required at critical road features in addition to engineering solutions may further help them adopt safe driving behaviors on the road.
Effects of Time of Day and Sleep Deprivation on Motorcycle-Driving Performance
Bougard, Clément; Espié, Stéphane; Larnaudie, Bruno; Moussay, Sébastien; Davenne, Damien
2012-01-01
The aim of this study was to investigate whether motorcycle handling capabilities – measured by means of the efficiency of emergency manoeuvres – were dependent on prior sleep deprivation and time of day. Twelve male participants voluntarily took part in four test sessions, starting at 6 a.m., 10 a.m., 2 p.m., and 6 p.m., following a night either with or without sleep. Each test session comprised temperature and sleepiness measurements, before three different types of motorcycling tests were initiated: (1) stability in straight ahead riding at low speed (in “slow motion” mode and in “brakes and clutch” mode), (2) emergency braking and (3) crash avoidance tasks performed at 20 kph and 40 kph. The results indicate that motorcycle control at low speed depends on time of day, with an improvement in performance throughout the day. Emergency braking performance is affected at both speeds by time of day, with poorer performance (longer total stopping distance, reaction time and braking distance) in the morning, and also by sleep deprivation, from measurements obtained at 40 kph (incorrect initial speed). Except for a tendency observed after the sleepless night to deviate from the initial speed, it seems that crash avoidance capabilities are quite unaffected by the two disturbance factors. Consequently, some motorcycle handling capabilities (stability at low speed and emergency braking) change in the same way as the diurnal fluctuation observed in body temperature and sleepiness, whereas for others (crash avoidance) the participants were able to maintain their initial performance level despite the high levels of sleepiness recorded after a sleepless night. Motorcycle riders have to be aware that their handling capabilities are limited in the early morning and/or after sleep deprivation. Both these situations can increase the risk of falls and of being involved in a road accident. PMID:22761881
Japanese high school students' usage of mobile phones while cycling.
Ichikawa, Masao; Nakahara, Shinji
2008-03-01
To investigate the perception and actual use of mobile phones among Japanese high school students while riding their bicycles, and their experience of bicycle crash/near-crash. A questionnaire survey was carried out at high schools that were, at the time of the survey, commissioned by the National Agency for the Advancement of Sports and Health to conduct school safety research. In the survey, we found that mobile phone use while riding a bicycle was quite common among the students during their commute, but those who have a higher perception of danger in this practice, and those who perceived that this practice is prohibited, were less likely to engage in this practice. Male students and students commuting to school by bicycle only were more likely to have used phones while riding. There was a significant relationship between phone usage while riding a bicycle and the experience of bicycle crash/near-crash, although its causality was not established. Bicycle crash/near-crash experienced while using a phone was less prevalent among the students who had a higher perception of danger in phone usage while riding, students who perceived that this practice is prohibited, and students with a shorter travel time by bicycle during the commute. Since mobile phone use while riding a bicycle potentially increases crash risk among cyclists, student bicycle commuters should be made aware of this risk. Moreover, they should be informed that cyclists' phone usage while riding is prohibited according to the road traffic law.
Work zone safety analysis and modeling: a state-of-the-art review.
Yang, Hong; Ozbay, Kaan; Ozturk, Ozgur; Xie, Kun
2015-01-01
Work zone safety is one of the top priorities for transportation agencies. In recent years, a considerable volume of research has sought to determine work zone crash characteristics and causal factors. Unlike other non-work zone-related safety studies (on both crash frequency and severity), there has not yet been a comprehensive review and assessment of methodological approaches for work zone safety. To address this deficit, this article aims to provide a comprehensive review of the existing extensive research efforts focused on work zone crash-related analysis and modeling, in the hopes of providing researchers and practitioners with a complete overview. Relevant literature published in the last 5 decades was retrieved from the National Work Zone Crash Information Clearinghouse and the Transport Research International Documentation database and other public digital libraries and search engines. Both peer-reviewed publications and research reports were obtained. Each study was carefully reviewed, and those that focused on either work zone crash data analysis or work zone safety modeling were identified. The most relevant studies are specifically examined and discussed in the article. The identified studies were carefully synthesized to understand the state of knowledge on work zone safety. Agreement and inconsistency regarding the characteristics of the work zone crashes discussed in the descriptive studies were summarized. Progress and issues about the current practices on work zone crash frequency and severity modeling are also explored and discussed. The challenges facing work zone safety research are then presented. The synthesis of the literature suggests that the presence of a work zone is likely to increase the crash rate. Crashes are not uniformly distributed within work zones and rear-end crashes are the most prevalent type of crashes in work zones. There was no across-the-board agreement among numerous papers reviewed on the relationship between work zone crashes and other factors such as time, weather, victim severity, traffic control devices, and facility types. Moreover, both work zone crash frequency and severity models still rely on relatively simple modeling techniques and approaches. In addition, work zone data limitations have caused a number of challenges in analyzing and modeling work zone safety. Additional efforts on data collection, developing a systematic data analysis framework, and using more advanced modeling approaches are suggested as future research tasks.
Haleem, Kirolos; Gan, Albert
2013-09-01
This study identifies geometric, traffic, environmental, vehicle-related, and driver-related predictors of crash injury severity on urban freeways. The study takes advantage of the mixed logit model's ability to account for unobserved effects that are difficult to quantify and may affect the model estimation, such as the driver's reaction at the time of crash. Crashes of 5 years occurring on 89 urban freeway segments throughout the state of Florida in the United States were used. Examples of severity predictors explored include traffic volume, distance of the crash to the nearest ramp, and detailed driver's age, vehicle types, and sides of impact. To show how the parameter estimates could vary, a binary logit model was compared with the mixed logit model. It was found that the at-fault driver's age, traffic volume, distance of the crash to the nearest ramp, vehicle type, side of impact, and percentage of trucks significantly influence severity on urban freeways. Additionally, young at-fault drivers were associated with a significant severity risk increase relative to other age groups. It was also observed that some variables in the binary logit model yielded illogic estimates due to ignoring the random variation of the estimation. Since the at-fault driver's age and side of impact were significant random parameters in the mixed logit model, an in-depth investigation was performed. It was noticed that back, left, and right impacts had the highest risk among middle-aged drivers, followed by young drivers, very young drivers, and finally, old and very old drivers. To reduce side impacts due to lane changing, two primary strategies can be recommended. The first strategy is to conduct campaigns to convey the hazardous effect of changing lanes at higher speeds. The second is to devise in-vehicle side crash avoidance systems to alert drivers of a potential crash risk. The study provided a promising approach to screening the predictors before fitting the mixed logit model using the random forest technique. Furthermore, potential countermeasures were proposed to reduce the severity of impacts. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.
2018-02-01
As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.
Effects of floor location on response of composite fuselage frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Jones, Lisa E.; Fasanella, Edwin L.
1992-01-01
Experimental and analytical results are presented which show the effect of floor placement on the structural response and strength of circular fuselage frames constructed of graphite-epoxy composite material. The research was conducted to study the behavior of conventionally designed advanced composite aircraft components. To achieve desired new designs which incorporate improved energy absorption capabilities requires an understanding of how these conventional designs behave under crash type loadings. Data are presented on the static behavior of the composite structure through photographs of the frame specimen, experimental strain distributions, and through analytical data from composite structural models. An understanding of this behavior can aid the dynamist in predicting the crash behavior of these structures and may assist the designer in achieving improved designs for energy absorption and crash behavior of future structures.
Finite Element Analysis of an Energy Absorbing Sub-floor Structure
NASA Technical Reports Server (NTRS)
Moore, Scott C.
1995-01-01
As part of the Advanced General Aviation Transportation Experiments program, the National Aeronautics and Space Administration's Langley Research Center is conducting tests to design energy absorbing structures to improve occupant survivability in aircraft crashes. An effort is currently underway to design an Energy Absorbing (EA) sub-floor structure which will reduce occupant loads in an aircraft crash. However, a recent drop test of a fuselage specimen with a proposed EA sub-floor structure demonstrated that the effects of sectioning the fuselage on both the fuselage section's stiffness and the performance of the EA structure were not fully understood. Therefore, attempts are underway to model the proposed sub-floor structure on computers using the DYCAST finite element code to provide a better understanding of the structure's behavior in testing, and in an actual crash.
NASA experiments on the B-720 structure and seats
NASA Astrophysics Data System (ADS)
Alfaro-Bou, E.
1986-01-01
Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.
Risk of thoracic injury from direct steering wheel impact in frontal crashes.
Chen, Rong; Gabler, Hampton C
2014-06-01
The combination of airbag and seat belt is considered to be the most effective vehicle safety system. However, despite the widespread availability of airbags and a belt use rate of more than 85%, US drivers involved in crashes continue to be at risk of serious thoracic injury. The objective of this study was to determine the influence of steering wheel deformation on driver injury risk in frontal automobile crash. The analysis is based on cases extracted from the National Automotive Sampling System Crashworthiness Data System database for case years 1993 to 2011. The approach was to compare the adjusted odds of frontal crash injury experienced by drivers in vehicles with and without steering wheel deformation. Among frontal crash cases with belted drivers, observable steering wheel deformation occurred in less than 4% of all cases but accounted for 30% of belted drivers with serious (Abbreviated Injury Scale [AIS] score, 3+) thoracic injuries. Similarly, steering wheel deformation occurred in approximately 13% of unbelted drivers but accounted for 60% of unbelted drivers with serious thoracic injuries. Belted drivers in frontal crashes with steering wheel deformation were found to have two times greater odds of serious thoracic injury. Unbelted drivers were found to have four times greater odds of serious thoracic injury in crashes with steering wheel deformation. In frontal crashes, steering wheel deformation was more likely to occur in unbelted drivers than belted drivers, as well as higher severity crashes and with heavier drivers. The results of the present study show that airbag deployment and seat belt restraint do not completely eliminate the possibility of steering wheel contact. Even with the most advanced restraint systems, there remains an opportunity for further reduction in thoracic injury by continued enhancement to the seat belt and airbag systems. Furthermore, the results showed that steering wheel deformation is an indicator of potential serious thoracic injury and can be useful to prehospital personnel in improving the diagnosis of serious injuries. Prognostic study, level III.
Evaluating the impact of Mobike on automobile-involved bicycle crashes at the road network level.
Li, Ye; Xing, Lu; Wang, Wei; Liang, Mingzhang; Wang, Hao
2018-03-01
As a booming system, free-floating bicycle-sharing (denoted as Mobike) attracts a large number of users due to the convenient utilization procedure. However, it brings about a rapid increase of bicycle volume on roadways, resulting in safety problems especially on road segments shared by automobiles and bikes. This study aimed to evaluate impacts of Mobike on automobile-involved bicycle crashes on shared roadways at a macro level, the network level. Relation between traffic volumes and crashes was first established. Then, the travel mode choice before and after supplying Mobike in the market was analyzed, based on which the multi-class multi-modal user equilibrium (MMUE) models were formulated and solved. Two attributes of Mobike, supply quantity and fare, were investigated via various scenarios. Results suggested the Mobike attracted more walkers than auto-users in travel mode choices, which caused the volume increase of bicycles but few volume decline of automobiles and resulted in more crashes. The supply quantity of Mobike had a negative impact on safety, while the fare had a positive effect. The total supply of Mobike in the market should be regulated by governments to avoid over-supply and reduce bicycle crashes. The fares should be also regulated by including taxes and insurances, which can be used to build up more separated bicycle facilities and cover the Mobike accidents, respectively. The findings of this study provide useful information for governments and urban transportation managers to improve bicycle safety and regulate the Mobike market. Copyright © 2018 Elsevier Ltd. All rights reserved.
Glass half-full: On-road glance metrics differentiate crashes from near-crashes in the 100-Car data.
Seppelt, Bobbie D; Seaman, Sean; Lee, Joonbum; Angell, Linda S; Mehler, Bruce; Reimer, Bryan
2017-10-01
Much of the driver distraction and inattention work to date has focused on concerns over drivers removing their eyes from the forward roadway to perform non-driving-related tasks, and its demonstrable link to safety consequences when these glances are timed at inopportune moments. This extensive literature has established, through the analyses of glance from naturalistic datasets, a clear relationship between eyes-off-road, lead vehicle closing kinematics, and near-crash/crash involvement. This paper looks at the role of driver expectation in influencing drivers' decisions about when and for how long to remove their eyes from the forward roadway in an analysis that consider the combined role of on- and off-road glances. Using glance data collected in the 100-Car Naturalistic Driving Study (NDS), near-crashes were examined separately from crashes to examine how momentary differences in glance allocation over the 25-s prior to a precipitating event can differentiate between these two distinct outcomes. Individual glance metrics of mean single glance duration (MSGD), total glance time (TGT), and glance count for off-road and on-road glance locations were analyzed. Output from the AttenD algorithm (Kircher and Ahlström, 2009) was also analyzed as a hybrid measure; in threading together on- and off-road glances over time, its output produces a pattern of glance behavior meaningful for examining attentional effects. Individual glance metrics calculated at the epoch-level and binned by 10-s units of time across the available epoch lengths revealed that drivers in near-crashes have significantly longer on-road glances, and look less frequently between on- and off- road locations in the moments preceding a precipitating event as compared to crashes. During on-road glances, drivers in near-crashes were found to more frequently sample peripheral regions of the roadway than drivers in crashes. Output from the AttenD algorithm affirmed the cumulative net benefit of longer on-road glances and of improved attention management between on- and off-road locations. The finding of longer on-road glances differentiating between safety-critical outcomes in the 100-Car NDS data underscores the importance of attention management in how drivers look both on and off the road. It is in the pattern of glances to and from the forward roadway that drivers obtained critical information necessary to inform their expectation of hazard potential to avoid a crash. This work may have important implications for attention management in the context of the increasing prevalence of in-vehicle demands as well as of vehicle automation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Energy absorption capabilities of complex thin walled structures
NASA Astrophysics Data System (ADS)
Tarlochan, F.; AlKhatib, Sami
2017-10-01
Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.
Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis.
Benazzi, Stefano; Nguyen, Huynh Nhu; Kullmer, Ottmar; Kupczik, Kornelius
2016-01-01
Dental biomechanics based on finite element (FE) analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively) to run a non-linear dynamic FE crash colliding test. MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test. FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions. Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.
DOT National Transportation Integrated Search
1997-11-01
This report presents the findings of the study team on a Federal Highway Administration (FHWA) International Scanning Tour to the countries of Finland, Sweden, the Netherlands, and England. The tour was unique in that it represented the first time th...
DOT National Transportation Integrated Search
2000-08-01
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause(s) of the apparent increase in single-vehicle run-off-road crashes and decrea...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
... feature associated with advanced composite materials in the construction of its fuselage and wings. The... is the first airplane manufactured by Learjet Inc. to utilize advanced composite materials in the... composite materials in the construction of its fuselage and wings. In accordance with Sec. 21.16, fuselage...
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
Staubach, Maria
2009-09-01
This study aims to identify factors which influence and cause errors in traffic accidents and to use these as a basis for information to guide the application and design of driver assistance systems. A total of 474 accidents were examined in depth for this study by means of a psychological survey, data from accident reports, and technical reconstruction information. An error analysis was subsequently carried out, taking into account the driver, environment, and vehicle sub-systems. Results showed that all accidents were influenced by errors as a consequence of distraction and reduced activity. For crossroad accidents, there were further errors resulting from sight obstruction, masked stimuli, focus errors, and law infringements. Lane departure crashes were additionally caused by errors as a result of masked stimuli, law infringements, expectation errors as well as objective and action slips, while same direction accidents occurred additionally because of focus errors, expectation errors, and objective and action slips. Most accidents were influenced by multiple factors. There is a safety potential for Advanced Driver Assistance Systems (ADAS), which support the driver in information assimilation and help to avoid distraction and reduced activity. The design of the ADAS is dependent on the specific influencing factors of the accident type.
Weiss, Eve; Fisher Thiel, Megan; Sultana, Nahida; Hannan, Chloe; Seacrist, Thomas
2018-02-28
From the advent of airbags to electronic stability control, technological advances introduced into automobile design have significantly reduced injury and death from motor vehicle crashes. These advances are especially pertinent among teen drivers, a population whose leading cause of death is motor vehicle crashes. Recently developed advanced driver assistance systems (ADAS) have the potential to compensate for skill deficits and reduce overall crash risk. Yet, ADAS is only effective if drivers are willing to use it. Limited research has been conducted on the suitability of ADAS for teen drivers. The goal of this study is to identify teen drivers' perceived need for ADAS, receptiveness to in-vehicle technology, and intervention preferences. The long-term goal is to understand public perceptions and barriers to ADAS use and to help determine how these systems must evolve to meet the needs of the riskiest driving populations. Three focus groups (N = 24) were conducted with licensed teen drivers aged 16-19 years and 2 focus groups with parents of teen drivers (N = 12). Discussion topics included views on how ADAS might influence driving skills and behaviors; trust in technology; and data privacy. Discussions were transcribed; the team used conventional content analysis and open coding methods to identify 12 coding domains and code transcripts with NVivo 10. Interrater reliability testing showed moderate to high kappa scores. Overall, participants recognized potential benefits of ADAS, including improved safety and crash reduction. Teens suggested that ADAS is still developing and therefore has potential to malfunction. Many teens reported a greater trust in their own driving ability over vehicle technology. They expressed that novice drivers should learn to drive on non-ADAS-equipped cars and that ADAS should be considered a supplemental aid. Many teens felt that overreliance on ADAS may increase distracted driving or risky behaviors among teens. Parents also expressed skepticism for the technology but felt that it would likely be a useful support for teen drivers after the initial learning phase. This study elicited important end-user viewpoints by exploring the intersection between advanced automobile safety technology and human perception for the particular use case of teen drivers. For example, despite evidence that teens are the highest risk driving population, teens trust their own driving skills and competence more than in-vehicle technology. This understanding will ultimately advance the safety of teen drivers by identifying barriers to effective ADAS use.
The Rockne crash. American commercial air crash investigation in the early years.
Eckert, W G
1982-03-01
In midmorning on March 31, 1931, at Bazaar, Kansas (between Kansas City and Wichita), an F-10A air transport of the Transcontinental and Western Airline crashed in bad weather, resulting in the loss of the two crew members and six passengers. This crash brought the sensational news to the American public of the death of Knute Rockne, the lengendary football coach of Notre Dame University. It also focused the public's attention on the hazards of airline travel in America 50 years ago. The response of the Department of Commerce's Committee on aviation Safety, developing since 1926, helped assure the public that a proper investigation into questions of safety of airline transports was made. The response to the crash of the F-10A transport that killed Rockne was to ground all the planes and carefully examine the wings for defects. This resulted in the eventual removal of all wooden wings from air transports and effectively demonstrated the need for advanced aircraft design. This led to the introduction of several new concepts in aircraft design, including the Boeing Transport and the DC series of the Douglas Aircraft company, which has been a mainstay for commercial and military transportation since the early 1930s. A general review of the development of aviation is given as well as the details of the development of aircraft accident investigation by the federal government. This includes the investigation of the Rockne crash.
Determinants of pedestrian and bicyclist crash severity by party at fault in San Francisco, CA.
Salon, Deborah; McIntyre, Andrew
2018-01-01
Pedestrian and bicyclist safety is of growing concern, especially given the increasing numbers of urban residents choosing to walk and bike. Sharing the roads with automobiles, these road users are particularly vulnerable. An intuitive conceptual model is proposed of the determinants of injury severity in crashes between vehicles and nonmotorized road users. Using 10 years of crash data from San Francisco, CA, we estimate logistic regression models to illuminate key determinants of crash severity for both pedestrian and bicyclist collisions. The analyses are separated by party at fault to test the novel hypothesis that environmental factors affecting driver speed and reaction time may be especially important when the driver is not at fault. Pedestrian results are broadly consistent with prior research, and offer considerable support for this hypothesis. The strongest predictors of injury severity include pedestrian advanced age, driver sobriety, vehicle type, and a set of variables that help determine driver speed and reaction time. Bicyclist results were weaker overall, and the distinction by party at fault was less important. Copyright © 2017 Elsevier Ltd. All rights reserved.
The non-resonant kink modes triggering strong sawtooth-like crashes in the EAST tokamak
NASA Astrophysics Data System (ADS)
Li, Erzhong; Igochine, V.; Dumbrajs, O.; Xu, L.; Chen, K.; Shi, T.; Hu, L.
2014-12-01
Evolution of the safety factor (q) profile during L-H transitions in the Experimental Advanced Superconducting Tokamak (EAST) was accompanied by strong core crashes prior to regular sawtooth behavior. These crashes appeared in the absence of q = 1 (q is the safety factor) rational surface inside the plasma. Analysis indicates that the m/n = 2/1 tearing mode is destabilized and phase-locked with the m/n = 1/1 non-resonant kink mode (the q = 1 rational surface is absent) due to the self-consistent evolution of plasma profiles as the L-H transition occurs (m and n are the poloidal and toroidal mode numbers, respectively). The growing m/n = 1/1 mode destabilizes the m/n = 2/2 kink mode which eventually triggers the strong crash due to an anomalous heat conductivity, as predicted by the transport model of stochastic magnetic fields using experimental parameters. It is also shown that the magnetic topology changes with the amplitude of m/n = 2/2 mode and the value of center safety factor in a reasonable range.
Keall, Michael D; Newstead, Stuart
2016-01-01
Vehicle safety rating systems aim firstly to inform consumers about safe vehicle choices and, secondly, to encourage vehicle manufacturers to aspire to safer levels of vehicle performance. Primary rating systems (that measure the ability of a vehicle to assist the driver in avoiding crashes) have not been developed for a variety of reasons, mainly associated with the difficult task of disassociating driver behavior and vehicle exposure characteristics from the estimation of crash involvement risk specific to a given vehicle. The aim of the current study was to explore different approaches to primary safety estimation, identifying which approaches (if any) may be most valid and most practical, given typical data that may be available for producing ratings. Data analyzed consisted of crash data and motor vehicle registration data for the period 2003 to 2012: 21,643,864 observations (representing vehicle-years) and 135,578 crashed vehicles. Various logistic models were tested as a means to estimate primary safety: Conditional models (conditioning on the vehicle owner over all vehicles owned); full models not conditioned on the owner, with all available owner and vehicle data; reduced models with few variables; induced exposure models; and models that synthesised elements from the latter two models. It was found that excluding young drivers (aged 25 and under) from all primary safety estimates attenuated some high risks estimated for make/model combinations favored by young people. The conditional model had clear biases that made it unsuitable. Estimates from a reduced model based just on crash rates per year (but including an owner location variable) produced estimates that were generally similar to the full model, although there was more spread in the estimates. The best replication of the full model estimates was generated by a synthesis of the reduced model and an induced exposure model. This study compared approaches to estimating primary safety that could mimic an analysis based on a very rich data set, using variables that are commonly available when registered fleet data are linked to crash data. This exploratory study has highlighted promising avenues for developing primary safety rating systems for vehicle makes and models.
Characteristics of single-vehicle crashes with e-bikes in Switzerland.
Hertach, Patrizia; Uhr, Andrea; Niemann, Steffen; Cavegn, Mario
2018-08-01
In Switzerland, the usage and accident numbers of e-bikes have strongly increased in recent years. According to official statistics, single-vehicle accidents constitute an important crash type. Up to date, very little is known about the mechanisms and causes of these crashes. To gain more insight, a survey was conducted among 3658 e-cyclists in 2016. The crash risk and injury severity were analysed using logistic regression models. 638 (17%) e-cyclists had experienced a single-vehicle accident in road traffic since the beginning of their e-bike use. Risk factors were high riding exposure, male sex, and using the e-bike mainly for the purpose of getting to work or school. There was no effect of age on the crash risk. Skidding, falling while crossing a threshold, getting into or skidding on a tram/railway track and evasive actions were the most important accident mechanisms. The crash causes mentioned most often were a slippery road surface, riding too fast for the situation and inability to keep the balance. Women, elderly people, riders of e-bikes with a pedal support up to 45 km/h and e-cyclists who considered themselves to be less fit in comparison to people of the same age had an increased risk of injury. This study confirms the high relevance of single-vehicle crashes with e-bikes. Measures to prevent this type of accident could include the sensitisation of e-cyclists regarding the most common accident mechanisms and causes, a regular maintenance of bicycle pathways, improvements regarding tram and railway tracks and technological advancements of e-bikes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Comparison of Satellite Conjunction Analysis Screening Tools
2011-09-01
visualization tool. Version 13.1.4 for Linux was tested. The SOAP conjunction analysis function does not have the capacity to perform the large...was examined by SOAP to confirm the conjunction. STK Advanced CAT STK Advanced CAT (Conjunction Analysis Tools) is an add-on module for the STK ...run with each tool. When attempting to perform the seven day all vs all analysis with STK Advanced CAT, the program consistently crashed during report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppola, Anthony; Faruque, Omar; Truskin, James F
As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.« less
Alcohol-related hot-spot analysis and prediction : final report.
DOT National Transportation Integrated Search
2017-05-01
This project developed methods to more accurately identify alcohol-related crash hot spots, ultimately allowing for more effective and efficient enforcement and safety campaigns. Advancements in accuracy came from improving the calculation of spatial...
Development and Evaluation of Anticipatory Crash Sensors for Automobiles
DOT National Transportation Integrated Search
1974-02-01
This report delineates the preferred means, potential effectiveness, and estimated costs of carrying out anticipatory sensing of automobile collisions. Actuation of passive restraint systems requires only a small advance warning to extend the protect...
Hamann, Cara J; Peek-Asa, Corinne
2017-05-01
Among roadway users, bicyclists are considered vulnerable due to their high risk for injury when involved in a crash. Little is known about the circumstances leading to near crashes, crashes, and related injuries or how these vary by age and gender. The purpose of this study was to examine the rates and characteristics of safety-relevant events (crashes, near crashes, errors, and traffic violations) among adult and child bicyclists. Bicyclist trips were captured using Pedal Portal, a data acquisition and coding system which includes a GPS-enabled video camera and graphical user interface. A total of 179 safety-relevant events were manually coded from trip videos. Overall, child errors and traffic violations occurred at a rate of 1.9 per 100min of riding, compared to 6.3 for adults. However, children rode on the sidewalk 56.4% of the time, compared with 12.7% for adults. For both adults and children, the highest safety-relevant event rates occurred on paved roadways with no bicycle facilities present (Adults=8.6 and Children=7.2, per 100min of riding). Our study, the first naturalistic study to compare safety-relevant events among adults and children, indicates large variation in riding behavior and exposure between child and adult bicyclists. The majority of identified events were traffic violations and we were not able to code all risk-relevant data (e.g., subtle avoidance behaviors, failure to check for traffic, probability of collision). Future naturalistic cycling studies would benefit from enhanced instrumentation (e.g., additional camera views) and coding protocols able to fill these gaps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scanlon, John M; Sherony, Rini; Gabler, Hampton C
2017-05-29
Accounting for one fifth of all crashes and one sixth of all fatal crashes in the United States, intersection crashes are among the most frequent and fatal crash modes. Intersection advanced driver assistance systems (I-ADAS) are emerging vehicle-based active safety systems that aim to help drivers safely navigate intersections. The objective of this study was to estimate the number of crashes and number of vehicles with a seriously injured driver (Maximum Abbreviated Injury Scale [MAIS] 3+) that could be prevented or reduced if, for every straight crossing path (SCP) intersection crash, one of the vehicles had been equipped with an I-ADAS. This study retrospectively simulated 448 U.S. SCP crashes as if one of the vehicles had been equipped with I-ADAS. Crashes were reconstructed to determine the path and speeds traveled by the vehicles. Cases were then simulated with I-ADAS. A total of 30 variations of I-ADAS were considered in this study. These variations consisted of 5 separate activation timing thresholds, 3 separate computational latency times, and 2 different I-ADAS response modalities (i.e., a warning or autonomous braking). The likelihood of a serious driver injury was computed for every vehicle in every crash using impact delta-V. The results were then compiled across all crashes in order to estimate system effectiveness. The model predicted that an I-ADAS that delivers an alert to the driver has the potential to prevent 0-23% of SCP crashes and 0-25% of vehicles with a seriously injured driver. Conversely, an I-ADAS that autonomously brakes was found to have the potential to prevent 25-59% of crashes and 38-79% of vehicles with a seriously injured driver. I-ADAS effectiveness is a strong function of design. Increasing computational latency time from 0 to 0.5 s was found to reduce crash and injury prevention estimates by approximately one third. For an I-ADAS that delivers an alert, crash/injury prevention effectiveness was found to be very sensitive to changes in activation timing (warning delivered 1.0 to 3.0 s prior to impact). If autonomous braking was used, system effectiveness was found to largely plateau for activation timings greater than 1.5 s prior to impact. In general, the results of this study suggest that I-ADAS will be 2-3 times more effective if an autonomous braking system is utilized over a warning-based system. This study highlights the potential effectiveness of I-ADAS in the U.S. vehicle fleet, while also indicating the sensitivity of system effectiveness to design specifications. The results of this study should be considered by designers of I-ADAS and evaluators of this technology considering a future I-ADAS safety test.
Savino, Giovanni; Mackenzie, Jamie; Allen, Trevor; Baldock, Matthew; Brown, Julie; Fitzharris, Michael
2016-09-01
Autonomous emergency braking (AEB) is a safety system that detects imminent forward collisions and reacts by slowing down the host vehicle without any action from the driver. AEB effectiveness in avoiding and mitigating real-world crashes has recently been demonstrated. Research suggests that a translation of AEB to powered 2-wheelers could also be beneficial. Previous studies have estimated the effects of a motorcycle AEB system (MAEB) via computer simulations. Though effects of MAEB were computed for motorcycle crashes derived from in-depth crash investigation, there may be some inaccuracies due to limitations of postcrash investigation (e.g., inaccuracies in preimpact velocity of the motorcycle). Furthermore, ideal MAEB technology was assumed, which may lead to overestimation of the benefits. This study sought to evaluate the sensitivity of the simulations to variations in reconstructed crash cases and the capacity of the MAEB system in order to provide a more robust estimation of MAEB effects. First, a comprehensive classification of accidents was used to identify scenarios in which MAEB was likely to apply, and representative crash cases from those available for this study were populated for each crash scenario. Second, 100 variant cases were generated by randomly varying a set of simulation parameters with given normal distributions around the baseline values. Variants reflected uncertainties in the original data. Third, the effects of MAEB were estimated in terms of the difference in the impact speed of the host motorcycle with and without the system via computer simulations of each variant case. Simulations were repeated assuming both an idealized and a realistic MAEB system. For each crash case, the results in the baseline case and in the variants were compared. A total of 36 crash cases representing 11 common crash scenarios were selected from 3 Australian in-depth data sets: 12 cases from New South Wales, 13 cases from Victoria, and 11 cases from South Australia. The reduction in impact speed elicited by MAEB in the baseline cases ranged from 2.8 to 10.0 km/h. The baseline cases over- or underestimated the mean impact speed reduction of the variant cases by up to 20%. Constraints imposed by simulating more realistic capabilities for an MAEB system produced a decrease in the estimated impact speed reduction of up to 14% (mean 5%) compared to an idealized system. The small difference between the baseline and variant case results demonstrates that the potential effects of MAEB computed from the cases described in in-depth crash reports are typically a good approximation, despite limitations of postcrash investigation. Furthermore, given that MAEB intervenes very close to the point of impact, limitations of the currently available technologies were not found to have a dramatic influence on the effects of the system.
Binz, Sophia; McCollester, Jonathon; Thomas, Scott; Miller, Joseph; Pohlman, Timothy; Waxman, Dan; Shariff, Faisal; Tracy, Rebecca; Walsh, Mark
2015-01-01
This paper reviews the application of tranexamic acid, an antifibrinolytic, to trauma. CRASH-2, a large randomized controlled trial, was the first to show a reduction in mortality and recommend tranexamic acid use in bleeding trauma patients. However, this paper was not without controversy. Its patient recruitment, methodology, and conductance in moderate-to-low income countries cast doubt on its ability to be applied to trauma protocols in countries with mature trauma networks. In addition to traditional vetting in scientific, peer-reviewed journals, CRASH-2 came about at a time when advances in communication technology allowed debate and influence to be leveraged in new forms, specifically through the use of multimedia campaigns, social media, and Internet blogs. This paper presents a comprehensive view of tranexamic acid utilization in trauma from peer-reviewed evidence to novel multimedia influences. PMID:26448897
Kluger, Robert; Smith, Brian L; Park, Hyungjun; Dailey, Daniel J
2016-11-01
Recent technological advances have made it both feasible and practical to identify unsafe driving behaviors using second-by-second trajectory data. Presented in this paper is a unique approach to detecting safety-critical events using vehicles' longitudinal accelerations. A Discrete Fourier Transform is used in combination with K-means clustering to flag patterns in the vehicles' accelerations in time-series that are likely to be crashes or near-crashes. The algorithm was able to detect roughly 78% of crasjavascript:void(0)hes and near-crashes (71 out of 91 validated events in the Naturalistic Driving Study data used), while generating about 1 false positive every 2.7h. In addition to presenting the promising results, an implementation strategy is discussed and further research topics that can improve this method are suggested in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.
Binz, Sophia; McCollester, Jonathon; Thomas, Scott; Miller, Joseph; Pohlman, Timothy; Waxman, Dan; Shariff, Faisal; Tracy, Rebecca; Walsh, Mark
2015-01-01
This paper reviews the application of tranexamic acid, an antifibrinolytic, to trauma. CRASH-2, a large randomized controlled trial, was the first to show a reduction in mortality and recommend tranexamic acid use in bleeding trauma patients. However, this paper was not without controversy. Its patient recruitment, methodology, and conductance in moderate-to-low income countries cast doubt on its ability to be applied to trauma protocols in countries with mature trauma networks. In addition to traditional vetting in scientific, peer-reviewed journals, CRASH-2 came about at a time when advances in communication technology allowed debate and influence to be leveraged in new forms, specifically through the use of multimedia campaigns, social media, and Internet blogs. This paper presents a comprehensive view of tranexamic acid utilization in trauma from peer-reviewed evidence to novel multimedia influences.
ADIEM II end terminal for concrete barrier
DOT National Transportation Integrated Search
2001-03-01
On September 9, 1997, an ADIEM II (Advanced Dynamic Impact Extension Module) was installed on Interstate 5 near Salem, Oregon. The ADIEM II offered a redirecting, energy-absorbing crash cushion and end treatment for portable and permanent protection ...
Traffic & safety statewide model and GIS modeling.
DOT National Transportation Integrated Search
2012-07-01
Several steps have been taken over the past two years to advance the Utah Department of Transportation (UDOT) safety initiative. Previous research projects began the development of a hierarchical Bayesian model to analyze crashes on Utah roadways. De...
Xie, Kun; Ozbay, Kaan; Kurkcu, Abdullah; Yang, Hong
2017-08-01
This study aims to explore the potential of using big data in advancing the pedestrian risk analysis including the investigation of contributing factors and the hotspot identification. Massive amounts of data of Manhattan from a variety of sources were collected, integrated, and processed, including taxi trips, subway turnstile counts, traffic volumes, road network, land use, sociodemographic, and social media data. The whole study area was uniformly split into grid cells as the basic geographical units of analysis. The cell-structured framework makes it easy to incorporate rich and diversified data into risk analysis. The cost of each crash, weighted by injury severity, was assigned to the cells based on the relative distance to the crash site using a kernel density function. A tobit model was developed to relate grid-cell-specific contributing factors to crash costs that are left-censored at zero. The potential for safety improvement (PSI) that could be obtained by using the actual crash cost minus the cost of "similar" sites estimated by the tobit model was used as a measure to identify and rank pedestrian crash hotspots. The proposed hotspot identification method takes into account two important factors that are generally ignored, i.e., injury severity and effects of exposure indicators. Big data, on the one hand, enable more precise estimation of the effects of risk factors by providing richer data for modeling, and on the other hand, enable large-scale hotspot identification with higher resolution than conventional methods based on census tracts or traffic analysis zones. © 2017 Society for Risk Analysis.
Kusano, Kristofer D; Gabler, Hampton C
2015-01-01
The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP. To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997-2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010-2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles. The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness. The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions-for example, brake assist, automated braking, or lane-keeping assistance-were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.
NASA Astrophysics Data System (ADS)
Shahriari, Mohammadreza
2016-06-01
The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.
Rib and sternum fractures in the elderly and extreme elderly following motor vehicle crashes.
Bansal, Vishal; Conroy, Carol; Chang, David; Tominaga, Gail T; Coimbra, Raul
2011-05-01
As the population ages, the need to protect the elderly during motor vehicle crashes becomes increasingly critical. This study focuses on causation of elderly rib and sternum fractures in seriously injured elderly occupants involved in motor vehicle crashes. We used data from the Crash Injury Research and Engineering Network (CIREN) database (1997-2009). Study case criteria included occupant (≥ 65 years old) drivers (sitting in the left outboard position of the first row) or passengers (sitting in the first row right outboard position) who were in frontal or side impacts. To avoid selection bias, only occupants with a Maximum Abbreviated Injury Scale (MAIS) 3 (serious) or greater severity injury were included in this study. Odds ratios were used as a descriptive measure of the strength of association between variables and Chi square tests were used to determine if there was a statistically significant relationship between categorical variables. Of the 211 elderly (65-79 years old) occupants with thoracic injury, 92.0% had rib fractures and 19.6% had sternum fractures. For the 76 extreme elderly (80 years or older) with thoracic injury, 90.4% had rib fractures and 27.7% had sternum fractures. Except for greater mortality and more rib fractures caused by safety belts, there were no differences between the extreme elderly and the elderly occupants. Current safety systems may need to be redesigned to prevent rib and sternum fractures in occupants 80 years and older. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1999-11-01
The National Highway Traffic Safety Administration's (NHTSA) plans for upgrading the Federal Motor Vehicle Safety Standard (FMVSS) No. 208, frontal crash protection safety standard, include improving protection requirements for the normally seated mi...
Development of improved injury criteria for the assessment of advanced automotive restraint systems
DOT National Transportation Integrated Search
1998-01-01
The National Highway Traffic Safety Administration's (NHTSA) plans for upgrading the Federal Motor Vehicle Safety Standard (FMVSS) No. 208, frontal crash protection safety standard, include improving protection requirements for the normally seated mi...
Adiem II end terminal for concrete barrier : final report.
DOT National Transportation Integrated Search
2001-03-01
On September 9, 1997, an ADIEM II (Advanced Dynamic Impact Extension Module) was installed on Interstate 5 near Salem, Oregon. The ADIEM II offered a redirecting, energy-absorbing crash cushion and end treatment for portable and permanent protection ...
Recommendations of the National Mayday Readiness Initiative
DOT National Transportation Integrated Search
2000-10-23
Automobile companies are rapidly deploying millions of vehicles with increasingly advanced : abilities to detect, collect and wirelessly transmit crisis-related voice and crash data at the push of a button or the deployment of an airbag. The next gen...
ERIC Educational Resources Information Center
Wallace, Ryan J.
2013-01-01
The purpose of this study was to determine the impact of advanced search and rescue devices and techniques on search duration for general aviation aircraft crashes. The study assessed three categories of emergency locator transmitters, including 121.5 MHz, 406 MHz, and GPS-Assisted 406 MHz devices. The impact of the COSPAS-SARSAT organization…
Application of Probabilistic Analysis to Aircraft Impact Dynamics
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.
Deaths from international terrorism compared with road crash deaths in OECD countries
Wilson, N; Thomson, G
2005-01-01
Methods: Data on deaths from international terrorism (US State Department database) were collated (1994–2003) and compared to the road injury deaths (year 2000 and 2001 data) from the OECD International Road Transport Accident Database. Results: In the 29 OECD countries for which comparable data were available, the annual average death rate from road injury was approximately 390 times that from international terrorism. The ratio of annual road to international terrorism deaths (averaged over 10 years) was lowest for the United States at 142 times. In 2001, road crash deaths in the US were equal to those from a September 11 attack every 26 days. Conclusions: There is a large difference in the magnitude of these two causes of deaths from injury. Policy makers need to be aware of this when allocating resources to preventing these two avoidable causes of mortality. PMID:16326764
The European New Car Assessment Programme: A historical review.
van Ratingen, Michiel; Williams, Aled; Lie, Anders; Seeck, Andre; Castaing, Pierre; Kolke, Reinhard; Adriaenssens, Guido; Miller, Andrew
2016-04-01
Established in 1997, the European New Car Assessment Programme (Euro NCAP) provides consumers with a safety performance assessment for the majority of the most popular cars in Europe. Thanks to its rigorous crash tests, Euro NCAP has rapidly become an important driver safety improvement to new cars. After ten years of rating vehicles, Euro NCAP felt that a change was necessary to stay in tune with rapidly emerging driver assistance and crash avoidance systems and to respond to shifting priorities in road safety. A new overall rating system was introduced that combines the most important aspects of vehicle safety under a single star rating. The overall rating system has allowed Euro NCAP to continue to push for better fitment and higher performance for vehicles sold on the European market. In the coming years, the safety rating is expected to play an important role in the support of the roll-out of highly automated vehicles.
Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting
2016-12-01
Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in critical situation, they were more quickly in braking with larger maximum deceleration rate, and they tended to keep a larger safety margin with the leading vehicle compared to male drivers. The findings shed some light on the further development of advanced collision avoidance technologies and the targeted intervention strategies about cell phone use while driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protection of children restrained in child safety seats in side impact crashes.
Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R; Maltese, Matthew R
2010-10-01
The performance of child restraint systems (CRS) in side impact motor vehicle crashes has been under study due to the injury and fatality burden of these events. Although previous research has quantified injury risk or described injured body regions, safety advances require an understanding of injury causation. Therefore, the objective was to delineate injury causation scenarios for CRS-restrained children in side impacts and document probable contact points in the vehicle interior. Two in-depth crash investigation databases, the Crash Injury Research and Engineering Network and the Partners for Child Passenger Safety Study, were queried for rear-seated, CRS-restrained children in side impact crashes who sustained Abbreviated Injury Scale 2+ injury. These cases were reviewed by a multidisciplinary team of physicians and engineers to describe injury patterns, injury causation, and vehicle components that contributed to the injuries. Forty-one occupants (average age, 2.6 years) met the inclusion criteria. Twenty-four were near side to the crash, 7 were far side, and 10 were center seated. The most common injuries were to the skull and brain with an increasing proportion of skull fracture as age increased. Head and spine injuries without evidence of head contact were rare but present. All thoracic injuries were lung contusions and no rib fractures occurred. Near-side head and face contacts points were along the rear vertical plane of the window and the horizontal plane of the window sill. Head and face contact points for center- and far-side occupants were along the edges of the front seat back and front seat head restraint. Head injuries are the target for injury prevention for children in CRS in side impact crashes. Most of these injuries are due to the contact; for near-side occupants, contact with the CRS structure and the door interior, for far- or center-seated occupants, contact with the front seat back. These data are useful in developing both educational and technological interventions to reduce the burden of injury to these children.
The Influence of Depression on Cognitive Control: Disambiguating Approach and Avoidance Tendencies.
Huang, He; Movellan, Javier; Paulus, Martin P; Harlé, Katia M
2015-01-01
Dysfunctions of approach and avoidance motivation play an important role in depression, which in turn may affect cognitive control, i.e., the ability to regulate thoughts and action to achieve internal goals. We use a novel experimental paradigm, i.e. a computer simulated driving-task, to study the impact of depression on cognitive control by measuring approach and avoidance actions in continuous time. In this task, 39 subjects with minimal to severe depression symptoms were instructed to use a joystick to move a virtual car as quickly as possible to a target point without crossing a stop-sign or crashing into a wall. We recorded their continuous actions on a joystick and found that depression 1) leads to further stopping distance to task target; and 2) increases the magnitude of late deceleration (avoidance) but not early acceleration (approach), which was only observed in the stop-sign condition. Taken together, these results are consistent with the hypothesis that depressed individuals have greater avoidance motivation near stopping target, but are minimally affected by approach motivation.
Lee, Changju; So, Jaehyun Jason; Ma, Jiaqi
2018-01-02
The conflicts among motorists entering a signalized intersection with the red light indication have become a national safety issue. Because of its sensitivity, efforts have been made to investigate the possible causes and effectiveness of countermeasures using comparison sites and/or before-and-after studies. Nevertheless, these approaches are ineffective when comparison sites cannot be found, or crash data sets are not readily available or not reliable for statistical analysis. Considering the random nature of red light running (RLR) crashes, an inventive approach regardless of data availability is necessary to evaluate the effectiveness of each countermeasure face to face. The aims of this research are to (1) review erstwhile literature related to red light running and traffic safety models; (2) propose a practical methodology for evaluation of RLR countermeasures with a microscopic traffic simulation model and surrogate safety assessment model (SSAM); (3) apply the proposed methodology to actual signalized intersection in Virginia, with the most prevalent scenarios-increasing the yellow signal interval duration, installing an advance warning sign, and an RLR camera; and (4) analyze the relative effectiveness by RLR frequency and the number of conflicts (rear-end and crossing). All scenarios show a reduction in RLR frequency (-7.8, -45.5, and -52.4%, respectively), but only increasing the yellow signal interval duration results in a reduced total number of conflicts (-11.3%; a surrogate safety measure of possible RLR-related crashes). An RLR camera makes the greatest reduction (-60.9%) in crossing conflicts (a surrogate safety measure of possible angle crashes), whereas increasing the yellow signal interval duration results in only a 12.8% reduction of rear-end conflicts (a surrogate safety measure of possible rear-end crash). Although increasing the yellow signal interval duration is advantageous because this reduces the total conflicts (a possibility of total RLR-related crashes), each countermeasure shows different effects by RLR-related conflict types that can be referred to when making a decision. Given that each intersection has different RLR crash issues, evaluated countermeasures are directly applicable to enhance the cost and time effectiveness, according to the situation of the target intersection. In addition, the proposed methodology is replicable at any site that has a dearth of crash data and/or comparison sites in order to test any other countermeasures (both engineering and enforcement countermeasures) for RLR crashes.
DOT National Transportation Integrated Search
2016-05-23
In spite of various advancements in vehicle safety technologies and improved roadway design practices, roadway crashes remain a major challenge. While certain hotspots may be unsafe primarily due to the geometric features of these locations, in many ...
DOT National Transportation Integrated Search
2006-08-01
Animal-vehicle collisions affect human safety, property and wildlife. The number of these types of collisions has increased : substantially over the last decades. This report describes the results of a project that explored the prospects for a relati...
Field evaluation of the myrtle creek advanced curve warning system : final report.
DOT National Transportation Integrated Search
2006-06-01
As part of a larger study focusing on determining optimum countermeasures for speed related crashes, this report presents the results of a quantitative and qualitative before and after evaluation of a dynamic curve warning system deployed at one site...
Estimating the Injury-Reducing Benefits of Ejection-Mitigating Glazing
DOT National Transportation Integrated Search
1996-02-01
The Advanced Glazing Project of NHTSA is an initiative aimed at reducing the : number of fatalities and serious injuries in motor vehicle crashes due to : ejection. As part of the project, it was necessary to estimate the numbers of : lives saved and...
Hossain, Moinul; Muromachi, Yasunori
2012-03-01
The concept of measuring the crash risk for a very short time window in near future is gaining more practicality due to the recent advancements in the fields of information systems and traffic sensor technology. Although some real-time crash prediction models have already been proposed, they are still primitive in nature and require substantial improvements to be implemented in real-life. This manuscript investigates the major shortcomings of the existing models and offers solutions to overcome them with an improved framework and modeling method. It employs random multinomial logit model to identify the most important predictors as well as the most suitable detector locations to acquire data to build such a model. Afterwards, it applies Bayesian belief net (BBN) to build the real-time crash prediction model. The model has been constructed using high resolution detector data collected from Shibuya 3 and Shinjuku 4 expressways under the jurisdiction of Tokyo Metropolitan Expressway Company Limited, Japan. It has been specifically built for the basic freeway segments and it predicts the chance of formation of a hazardous traffic condition within the next 4-9 min for a particular 250 meter long road section. The performance evaluation results reflect that at an average threshold value the model is able to successful classify 66% of the future crashes with a false alarm rate less than 20%. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass,more » size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.« less
Evaluation of Vehicle-Based Crash Severity Metrics.
Tsoi, Ada H; Gabler, Hampton C
2015-01-01
Vehicle change in velocity (delta-v) is a widely used crash severity metric used to estimate occupant injury risk. Despite its widespread use, delta-v has several limitations. Of most concern, delta-v is a vehicle-based metric which does not consider the crash pulse or the performance of occupant restraints, e.g. seatbelts and airbags. Such criticisms have prompted the search for alternative impact severity metrics based upon vehicle kinematics. The purpose of this study was to assess the ability of the occupant impact velocity (OIV), acceleration severity index (ASI), vehicle pulse index (VPI), and maximum delta-v (delta-v) to predict serious injury in real world crashes. The study was based on the analysis of event data recorders (EDRs) downloaded from the National Automotive Sampling System / Crashworthiness Data System (NASS-CDS) 2000-2013 cases. All vehicles in the sample were GM passenger cars and light trucks involved in a frontal collision. Rollover crashes were excluded. Vehicles were restricted to single-event crashes that caused an airbag deployment. All EDR data were checked for a successful, completed recording of the event and that the crash pulse was complete. The maximum abbreviated injury scale (MAIS) was used to describe occupant injury outcome. Drivers were categorized into either non-seriously injured group (MAIS2-) or seriously injured group (MAIS3+), based on the severity of any injuries to the thorax, abdomen, and spine. ASI and OIV were calculated according to the Manual for Assessing Safety Hardware. VPI was calculated according to ISO/TR 12353-3, with vehicle-specific parameters determined from U.S. New Car Assessment Program crash tests. Using binary logistic regression, the cumulative probability of injury risk was determined for each metric and assessed for statistical significance, goodness-of-fit, and prediction accuracy. The dataset included 102,744 vehicles. A Wald chi-square test showed each vehicle-based crash severity metric estimate to be a significant predictor in the model (p < 0.05). For the belted drivers, both OIV and VPI were significantly better predictors of serious injury than delta-v (p < 0.05). For the unbelted drivers, there was no statistically significant difference between delta-v, OIV, VPI, and ASI. The broad findings of this study suggest it is feasible to improve injury prediction if we consider adding restraint performance to classic measures, e.g. delta-v. Applications, such as advanced automatic crash notification, should consider the use of different metrics for belted versus unbelted occupants.
EMERGENCY BRAKING IN ADULTS VERSUS NOVICE TEEN DRIVERS: RESPONSE TO SIMULATED SUDDEN DRIVING EVENTS.
Loeb, Helen S; Kandadai, Venk; McDonald, Catherine C; Winston, Flaura K
Motor vehicle crashes remain the leading cause of death in teens in the United States. Newly licensed drivers are the group most at risk for crashes. Their driving skills are very new, still very often untested, so that their ability to properly react in an emergency situation remains a research question. Since it is impossible to expose human subjects to critical life threatening driving scenarios, researchers have been increasingly using driving simulators to assess driving skills. This paper summarizes the results of a driving scenario in a study comparing the driving performance of novice teen drivers (n=21) 16-17 year olds with 90 days of provisional licensure with that of experienced adult drivers (n=17) 25-50 year olds with at least 5 years of PA licensure, at least 100 miles driven per week and no self-reported collisions in the previous 3 years. As part of a 30 to 35 simulated drive that encompassed the most common scenarios that result in serious crashes, participants were exposed to a sudden car event. As the participant drove on a suburban road, a car surged from a driveway hidden by a fence on the right side of the road. To avoid the crash, participants must hard brake, exhibiting dynamic control over both attentional and motor resources. The results showed strong differences between the experienced adult and novice teen drivers in the brake pressure applied. When placed in the same situation, the novice teens decelerated on average 50% less than the experienced adults (p<0.01).
EMERGENCY BRAKING IN ADULTS VERSUS NOVICE TEEN DRIVERS: RESPONSE TO SIMULATED SUDDEN DRIVING EVENTS
Kandadai, Venk; McDonald, Catherine C.; Winston, Flaura K.
2015-01-01
Motor vehicle crashes remain the leading cause of death in teens in the United States. Newly licensed drivers are the group most at risk for crashes. Their driving skills are very new, still very often untested, so that their ability to properly react in an emergency situation remains a research question. Since it is impossible to expose human subjects to critical life threatening driving scenarios, researchers have been increasingly using driving simulators to assess driving skills. This paper summarizes the results of a driving scenario in a study comparing the driving performance of novice teen drivers (n=21) 16–17 year olds with 90 days of provisional licensure with that of experienced adult drivers (n=17) 25–50 year olds with at least 5 years of PA licensure, at least 100 miles driven per week and no self-reported collisions in the previous 3 years. As part of a 30 to 35 simulated drive that encompassed the most common scenarios that result in serious crashes, participants were exposed to a sudden car event. As the participant drove on a suburban road, a car surged from a driveway hidden by a fence on the right side of the road. To avoid the crash, participants must hard brake, exhibiting dynamic control over both attentional and motor resources. The results showed strong differences between the experienced adult and novice teen drivers in the brake pressure applied. When placed in the same situation, the novice teens decelerated on average 50% less than the experienced adults (p<0.01). PMID:26709330
Phone use and crashes while driving: A representative survey of drivers in two Australian states.
McEvoy, Suzanne P; Stevenson, Mark R; Woodward, Mark
To explore the use and effects of using mobile phones while driving. Cross-sectional survey. New South Wales and Western Australia, 20 October to 7 November 2003. 1347 licensed drivers aged 18 to 65 years. Data were weighted to reflect the corresponding driving population in each state. Mobile phone use while driving (hand-held, hands-free and text messaging); adverse effects of use. While driving, an estimated 57.3% +/- 1.5% of drivers have ever used a mobile phone and 12.4% +/- 1.0% have written text messages. Men, younger drivers and metropolitan residents were more likely to use a phone while driving and to report a higher frequency of use. Enforcement of hand-held phone restrictions was perceived to be low (69.0% +/- 1.5%) and an estimated 39.4% +/- 2.1% of people who phone while driving use a hand-held phone. Half of all drivers (50.1% +/- 1.6%) did not agree with extending the ban to include hands-free phones. Among drivers aged 18-65 years in NSW and WA, an estimated 45 800 +/- 16 466 (0.9% +/- 0.3%) have ever had a crash while using a mobile phone and, in the past year, 146 762 +/- 26 856 (3.0% +/- 0.6%) have had to take evasive action to avoid a crash because of their phone use. Phone use while driving is prevalent and can result in adverse consequences, including crashes. Despite legislation, a significant proportion of drivers continue to use hand-held mobile phones while driving. Enhanced enforcement is needed.
Augenstein, Jeffrey; Digges, Kennerly
2003-01-01
The Ryder Trauma Center is a Level I trauma center that treats only the most severely injured occupants of vehicle crashes as well as other severe cases of trauma. The center investigates these crashes through funding provided by the Alliance of Automobile Manufacturers and the U.S. Department of Transportation-sponsored Crash Injury Research and Engineering Network (CIREN) program. MAIS 3+ nonfatal and fatal injuries comprise approximately 2 percent of the total NASS/CDS cases. Among the Ryder trauma center cases, 50 percent are MAIS 3+ and 25 percent are fatal. If the MAIS 3+ fatal and nonfatal injuries were considered as "failures" and the remaining 98 percent with MAIS 2 or less as successes, this could be equated to the 75 percent failure rate (MAIS 3+ and fatal) in the trauma center cases for analysis purposes. The total database of frontal cases with no rollover consists of 147 drivers with first-generation airbags and 58 cases with second-generation airbags.
Modeling Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team
2013-10-01
The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Safety analysis of urban signalized intersections under mixed traffic.
S, Anjana; M V L R, Anjaneyulu
2015-02-01
This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2018-02-01
Horizontal curves are unavoidable in rural roads and are a serious crash risk to vehicle occupants. This study investigates the impact and effectiveness of three curve-based perceptual speed-calming countermeasures (advance curve warning signs, chevr...
Design Of An ITS-Level Advanced Traffic Management System, A Human Factors Perspective
DOT National Transportation Integrated Search
1999-09-01
The incidence of motorists violating the red phase of a traffic signal has been on the rise and is a contributing factor to intersection crashes. Technology has become available that automatically detects a motorist running the red light and records ...
The Effects of Curtain Airbag on Occupant Kinematics and Injury Index in Rollover Crash
Li, Hongyun; Cui, Dong; Lu, Shuang
2018-01-01
Background Occupant injuries in rollover crashes are associated with vehicle structural performance, as well as the restraint system design. For a better understanding of the occupant kinematics and injury index in certain rollover crash, it is essential to carry out dynamic vehicle rollover simulation with dummy included. Objective This study focused on effects of curtain airbag (CAB) parameters on occupant kinematics and injury indexes in a rollover crash. Besides, optimized parameters of the CAB were proposed for the purpose of decreasing the occupant injuries in such rollover scenario. Method and Material The vehicle motion from the physical test was introduced as the input for the numerical simulation, and the 50% Hybrid III dummy model from the MADYMO database was imported into a simulation model. The restraint system, including a validated CAB module, was introduced for occupant kinematics simulation and injury evaluation. TTF setting, maximum inflator pressure, and protection area of the CAB were analysed. Results After introducing the curtain airbag, the maximum head acceleration was reduced from 91.60 g to 49.52 g, and the neck Mx and neck Fz were reduced significantly. Among these CAB parameters, the TTF setting had the largest effect on the head acceleration which could reduce 8.6 g furthermore after optimization. The neck Fz was decreased from 3766.48 N to 2571.77 N after optimization of CAB protection area. Conclusions Avoiding hard contact is critical for the occupant protection in the rollover crashes. The simulation results indicated that occupant kinematics and certain injury indexes were improved with the help of CAB in such rollover scenario. Appropriate TTF setting and inflator selection could benefit occupant kinematics and injury indexes. Besides, it was advised to optimize the curtain airbag thickness around the head contact area to improve head and neck injury indexes. PMID:29765463
Gao, Jingru; Davis, Gary A
2017-12-01
The rear-end crash is one of the most common freeway crash types, and driver distraction is often cited as a leading cause of rear-end crashes. Previous research indicates that driver distraction could have negative effects on driving performance, but the specific association between driver distraction and crash risk is still not fully revealed. This study sought to understand the mechanism by which driver distraction, defined as secondary task distraction, could influence crash risk, as indicated by a driver's reaction time, in freeway car-following situations. A statistical analysis, exploring the causal model structure regarding drivers' distraction impacts on reaction times, was conducted. Distraction duration, distraction scenario, and secondary task type were chosen as distraction-related factors. Besides, exogenous factors including weather, visual obstruction, lighting condition, traffic density, and intersection presence and endogenous factors including driver age and gender were considered. There was an association between driver distraction and reaction time in the sample freeway rear-end events from SHRP 2 NDS database. Distraction duration, the distracted status when a leader braked, and secondary task type were related to reaction time, while all other factors showed no significant effect on reaction time. The analysis showed that driver distraction duration is the primary direct cause of the increase in reaction time, with other factors having indirect effects mediated by distraction duration. Longer distraction duration, the distracted status when a leader braked, and engaging in auditory-visual-manual secondary task tended to result in longer reaction times. Given drivers will be distracted occasionally, countermeasures which shorten distraction duration or avoid distraction presence while a leader vehicle brakes are worth considering. This study helps better understand the mechanism of freeway rear-end events in car-following situations, and provides a methodology that can be adopted to study the association between driver behavior and driving features. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Patalak, John P; Stitzel, Joel D
2018-02-17
Since 2000, numerous improvements have been made to the National Association for Stock Car Auto Racing, Incorporated (NASCAR®) driver restraint system, resulting in improved crash protection for motorsports drivers. Advancements have included seats, head and neck restraints (HNRs), seat belt restraint systems, driver helmets, and others. These enhancements have increased protection for drivers from severe crash loading. Extending protection to the driver's extremities remains challenging. Though the drivers' legs are well contained for lateral and vertical crashes, they remain largely unrestrained in frontal and frontal oblique crashes. Sled testing was conducted for the evaluation of an energy-absorbing (EA) toe board material to be used as a countermeasure for leg and foot injuries. Testing included baseline rigid toe boards, tests with EA material-covered toe boards, and pretest positioning of the 50th percentile male frontal Hybrid III anthropomorphic test device (ATD) lower extremities. ATD leg and foot instrumentation included foot acceleration and tibia forces and moments. The sled test data were evaluated using established injury criteria for tibial plateau fractures, leg shaft fractures, and calcaneus, talus, ankle, and midfoot fractures. A polyurethane EA foam was found to be effective in limiting axial tibia force and foot accelerations when subjected to frontal impacts using the NASCAR motorsport restraint system.
Kusano, Kristofer; Gabler, Hampton C
2014-01-01
The odds of death for a seriously injured crash victim are drastically reduced if he or she received care at a trauma center. Advanced automated crash notification (AACN) algorithms are postcrash safety systems that use data measured by the vehicles during the crash to predict the likelihood of occupants being seriously injured. The accuracy of these models are crucial to the success of an AACN. The objective of this study was to compare the predictive performance of competing injury risk models and algorithms: logistic regression, random forest, AdaBoost, naïve Bayes, support vector machine, and classification k-nearest neighbors. This study compared machine learning algorithms to the widely adopted logistic regression modeling approach. Machine learning algorithms have not been commonly studied in the motor vehicle injury literature. Machine learning algorithms may have higher predictive power than logistic regression, despite the drawback of lacking the ability to perform statistical inference. To evaluate the performance of these algorithms, data on 16,398 vehicles involved in non-rollover collisions were extracted from the NASS-CDS. Vehicles with any occupants having an Injury Severity Score (ISS) of 15 or greater were defined as those requiring victims to be treated at a trauma center. The performance of each model was evaluated using cross-validation. Cross-validation assesses how a model will perform in the future given new data not used for model training. The crash ΔV (change in velocity during the crash), damage side (struck side of the vehicle), seat belt use, vehicle body type, number of events, occupant age, and occupant sex were used as predictors in each model. Logistic regression slightly outperformed the machine learning algorithms based on sensitivity and specificity of the models. Previous studies on AACN risk curves used the same data to train and test the power of the models and as a result had higher sensitivity compared to the cross-validated results from this study. Future studies should account for future data; for example, by using cross-validation or risk presenting optimistic predictions of field performance. Past algorithms have been criticized for relying on age and sex, being difficult to measure by vehicle sensors, and inaccuracies in classifying damage side. The models with accurate damage side and including age/sex did outperform models with less accurate damage side and without age/sex, but the differences were small, suggesting that the success of AACN is not reliant on these predictors.
Driving Behavior among Different Groups of Iranian Drivers Based on Driver Coping Styles
Lotfi, Saeid; Yazdanirad, Saeid; Pourabdiyan, Siyamak; Hassanzadeh, Akbar; Lotfi, Aliakbar
2017-01-01
Background: This study aimed to assess driving behavior of Iranian drivers based on their coping styles (problem-oriented, emotion-oriented, and avoiding). Methods: This study was conducted on 610 drivers divided into four different groups. The drivers’ behaviors and coping styles were evaluated using driver behavior questionnaire (DBQ) and coping inventory for stressful situations. Results: The results showed a significant difference among the three coping styles regarding the mean scores of DBQ dimensions (P < 0.001). In addition, the emotion-oriented drivers obtained higher mean scores compared to those with other coping styles. Conclusions: It can be concluded that emotion-oriented drivers were more susceptible to crashes compared to those with problem-solving and avoidance coping styles. PMID:28757929
77 FR 29247 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
...). ACTION: Final rule; technical amendments. SUMMARY: This final rule makes technical amendments to Federal... advanced air bag requirements. As written now, the general warning label requirements contain an explicit... equipment requirements for restraint systems. This document makes technical amendments to several of the...
DOT National Transportation Integrated Search
2009-03-01
This project was initiated in the fall of 1999. The results through the fall of 2005 (Phase I) have been documented in detail in an earlier report. The accomplishments of Phase I included the following: the identification of existing animal detection...
Code of Federal Regulations, 2011 CFR
2011-04-01
... resulting from crashes on all public roads. (b) Under 23 U.S.C. 148(a)(3), a variety of highway safety... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HIGHWAY SAFETY HIGHWAY SAFETY IMPROVEMENT PROGRAM § 924.5 Policy. (a... advance safety. States shall fund safety projects or activities that are most likely to reduce the number...
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
NASA Astrophysics Data System (ADS)
Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.
2017-03-01
Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-05-30
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-01-01
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash. PMID:28556818
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
Stock-car racing makes intuitive physicists
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-03-01
Formula One races involve cars festooned with gadgets and complex electronic devices, in which millions of dollars are spent refining a vehicle's aerodynamics and reducing its weight. But in events run by America's National Association of Stock Car Auto Racing (NASCAR), cars hurtle round an oval track at speeds of about 300 km h-1 without the help of the complex sensors that are employed in Formula One cars. To avoid crashing, drivers must make their own adjustments to track conditions, engine problems and the traffic around them.
Optimization of Car Body under Constraints of Noise, Vibration, and Harshness (NVH), and Crash
NASA Technical Reports Server (NTRS)
Kodiyalam, Srinivas; Yang, Ren-Jye; Sobieszczanski-Sobieski, Jaroslaw (Editor)
2000-01-01
To be competitive on the today's market, cars have to be as light as possible while meeting the Noise, Vibration, and Harshness (NVH) requirements and conforming to Government-man dated crash survival regulations. The latter are difficult to meet because they involve very compute-intensive, nonlinear analysis, e.g., the code RADIOSS capable of simulation of the dynamics, and the geometrical and material nonlinearities of a thin-walled car structure in crash, would require over 12 days of elapsed time for a single design of a 390K elastic degrees of freedom model, if executed on a single processor of the state-of-the-art SGI Origin2000 computer. Of course, in optimization that crash analysis would have to be invoked many times. Needless to say, that has rendered such optimization intractable until now. The car finite element model is shown. The advent of computers that comprise large numbers of concurrently operating processors has created a new environment wherein the above optimization, and other engineering problems heretofore regarded as intractable may be solved. The procedure, shown, is a piecewise approximation based method and involves using a sensitivity based Taylor series approximation model for NVH and a polynomial response surface model for Crash. In that method the NVH constraints are evaluated using a finite element code (MSC/NASTRAN) that yields the constraint values and their derivatives with respect to design variables. The crash constraints are evaluated using the explicit code RADIOSS on the Origin 2000 operating on 256 processors simultaneously to generate data for a polynomial response surface in the design variable domain. The NVH constraints and their derivatives combined with the response surface for the crash constraints form an approximation to the system analysis (surrogate analysis) that enables a cycle of multidisciplinary optimization within move limits. In the inner loop, the NVH sensitivities are recomputed to update the NVH approximation model while keeping the Crash response surface constant. In every outer loop, the Crash response surface approximation is updated, including a gradual increase in the order of the response surface and the response surface extension in the direction of the search. In this optimization task, the NVH discipline has 30 design variables while the crash discipline has 20 design variables. A subset of these design variables (10) are common to both the NVH and crash disciplines. In order to construct a linear response surface for the Crash discipline constraints, a minimum of 21 design points would have to be analyzed using the RADIOSS code. On a single processor in Origin 2000 that amount of computing would require over 9 months! In this work, these runs were carried out concurrently on the Origin 2000 using multiple processors, ranging from 8 to 16, for each crash (RADIOSS) analysis. Another figure shows the wall time required for a single RADIOSS analysis using varying number of processors, as well as provides a comparison of 2 different common data placement procedures within the allotted memories for each analysis. The initial design is an infeasible design with NVH discipline Static Torsion constraint violations of over 10%. The final optimized design is a feasible design with a weight reduction of 15 kg compared to the initial design. This work demonstrates how advanced methodology for optimization combined with the technology of concurrent processing enables applications that until now were out of reach because of very long time-to-solution.
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Moheimani, S. O. Reza; Owen, James; Randall, John N.
2018-01-01
A common cause of tip-sample crashes in a Scanning Tunneling Microscope (STM) operating in constant current mode is the poor performance of its feedback control system. We show that there is a direct link between the Local Barrier Height (LBH) and robustness of the feedback control loop. A method known as the "gap modulation method" was proposed in the early STM studies for estimating the LBH. We show that the obtained measurements are affected by controller parameters and propose an alternative method which we prove to produce LBH measurements independent of the controller dynamics. We use the obtained LBH estimation to continuously update the gains of a STM proportional-integral (PI) controller and show that while tuning the PI gains, the closed-loop system tolerates larger variations of LBH without experiencing instability. We report experimental results, conducted on two STM scanners, to establish the efficiency of the proposed PI tuning approach. Improved feedback stability is believed to help in avoiding the tip/sample crash in STMs.
Increasing motorist compliance and caution at stop signs.
Van Houten, R; Retting, R A
2001-01-01
This study evaluated strategies to improve motorist compliance and caution at three stop-sign-controlled intersections with a history of motor vehicle crashes. The primary intervention was a light-emitting diode (LED) sign that featured animated eyes scanning left and right to prompt drivers to look left and right for approaching traffic. Data were scored from videotape on the percentage of drivers coming to a complete stop and the percentage of drivers looking right before entering the intersection. Observational data were collected on the percentage of right-angle conflicts (defined as braking suddenly or swerving from the path to avoid an intersection crash). The introduction of the LED sign according to a multiple baseline across the three intersections was associated with an increase in the percentage of vehicles coming to a complete stop at all three intersections and a small increase in the percentage of drivers looking right before entering the intersections. Conflicts between vehicles on the major and minor road were also reduced following the introduction of the animated eyes prompt. PMID:11421311
Savino, Giovanni; Giovannini, Federico; Baldanzini, Niccolò; Pierini, Marco; Rizzi, Matteo
2013-01-01
The aim of this study was to assess the feasibility and quantitative potential benefits of a motorcycle autonomous emergency braking (MAEB) system in fatal rear-end crashes. A further aim was to identify possible criticalities of this safety system in the field of powered 2-wheelers (PTWs; e.g., any additional risk introduced by the system itself). Seven relevant cases from the Swedish national in-depth fatal crash database were selected. All crashes involved car-following in which a non-anti-lock braking system (ABS)-equipped motorcycle was the bullet vehicle. Those crashes were reconstructed in a virtual environment with Prescan, simulating the road scenario, the vehicles involved, their precrash trajectories, ABS, and, alternatively, MAEB. The MAEB chosen as reference for the investigation was developed within the European Commission-funded Powered Two-Wheeler Integrated Safety (PISa) project and further detailed in later studies, with the addition of the ABS functionality. The boundary conditions of each simulation varied within a range compatible with the uncertainty of the in-depth data and also included a range of possible rider behaviors including the actual one. The benefits of the MAEB were evaluated by comparing the simulated impact speed in each configuration (no ABS/MAEB, ABS only, MAEB). The MAEB proved to be beneficial in a large number of cases. When applicable, the benefits of the system were in line with the expected values. When not applicable, there was no clear evidence of an increased risk for the rider due to the system. MAEB represents an innovative safety device in the field of PTWs, and the feasibility of such a system was investigated with promising results. Nevertheless, this technology is not mature yet for PTW application. Research in the field of passenger cars does not directly apply to PTWs because the activation logic of a braking system is more challenging on PTWs. The deployment of an autonomous deceleration would affect the vehicle dynamics, thus requesting an additional control action of the rider to keep the vehicle stable. In addition, the potential effectiveness of the MAEB should be investigated on a wider set of crash scenarios in order also to avoid false triggering of the autonomous braking.
Run-off-road and recovery - state estimation and vehicle control strategies
NASA Astrophysics Data System (ADS)
Freeman, P.; Wagner, J.; Alexander, K.
2016-09-01
Despite many advances in vehicle safety technology, traffic fatalities remain a devastating burden on society. With over two-thirds of all fatal single-vehicle crashes occurring off the roadway, run-off-road (ROR) crashes have become the focus of much roadway safety research. Current countermeasures, including roadway infrastructure modifications and some on-board vehicle safety systems, remain limited in their approach as they do not directly address the critical factor of driver behaviour. It has been shown that ROR crashes are often the result of poor driver performance leading up to the crash. In this study, the performance of two control algorithms, sliding control and linear quadratic control, was investigated for use in an autonomous ROR vehicle recovery system. The two controllers were simulated amongst a variety of ROR conditions where typical driver performance was inadequate to safely operate the vehicle. The sliding controller recovered the fastest within the nominal conditions but exhibited large variability in performance amongst the more extreme ROR scenarios. Despite some small sacrifices in lateral error and yaw rate, the linear quadratic controller demonstrated a higher level of consistency and stability amongst the various conditions examined. Overall, the linear quadratic controller recovered the vehicle 25% faster than the sliding controller while using 70% less steering, which combined with its robust performance, indicates its high potential as an autonomous ROR countermeasure.
Advanced structures technology and aircraft safety
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.
Chen, Yongsheng; Persaud, Bhagwant
2014-09-01
Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.
Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L
2018-03-01
Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.
Project Morpheus: Lessons Learned in Lander Technology Development
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.
Advanced life support equipment for nitrogen tetroxide environments
NASA Technical Reports Server (NTRS)
Bowman, G. H., III
1978-01-01
Design constraints considered in an effort to improve the self-contained atmospheric protection ensemble (SCAPE) are discussed. Emphasis is placed on overcoming the hazards of personnel engaged in orbiter crash/rescue operations. Specific topics covered include: suit material permeability; sealing of all suit penetration; and maintaining a positive pressure within the suit.
DOT National Transportation Integrated Search
1999-02-01
The goal of the Federal Highway Administration (FHWA) Expert Systems for Crash Data Collection Program was to use expert system technology to improve the accuracy and consistency of police-reported data. The program included the development and evalu...
Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Winslow, James E; Stitzel, Joel D
2017-01-01
Occult injuries are not easily detected and can be potentially life-threatening. The purpose of this study was to quantify the perceived occultness of the most frequent motor vehicle crash injuries according to emergency medical services (EMS) professionals. An electronic survey was distributed to 1,125 EMS professionals who were asked to quantify the likelihood that first responders would miss symptoms related to a particular injury on a 5-point Likert scale. The Occult Score for each injury was computed from the average of all the survey responses and normalized to be a continuous metric ranging from 0 to 1 where 0 is a non-occult (highly apparent on initial presentation) injury and 1 is an occult (unapparent on initial presentation) injury. Overall, 110,671 survey responses were collected. The Occult Score ranged from 0 to 1 with a mean, median, and standard deviation of 0.443, 0.450, and 0.233, respectively. When comparing the Occult Score of an injury to its corresponding AIS severity, there was no relationship between the metrics. When stratifying by body region, injury type, and AIS severity, it was evident that AIS 2-4 abdominal injuries with lacerations, hemorrhage, or contusions were perceived as the most occult injuries. Timely triage is key to reduce the morbidity and mortality associated with occult injuries. The Occult Score developed in this study to describe the predictability of an injury in a motor vehicle crash will be used as part of a larger effort, including incorporation into an advanced automatic crash notification (AACN) algorithm to detect crash conditions associated with a patient's need for prompt treatment at a trauma center. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim
2016-09-01
Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Sri; Enz, Bruce; Ponder, Perry L; Anderson, Bob
2009-01-01
Traffic safety has been significantly improved over the past several decades reducing injury and fatality rates. However, there is a paucity of research effort to address the safety issues in underride accidents, specifically the side underride crashes. It is well known that the compromise of occupant space in the vehicle leads to a higher probability of serious or fatal injuries. A better understanding of occupant protection and mechanism of injuries involved in side underride accidents assists in the advancement of safety measures. The present work evaluates the injury potential to occupants during side underride crashes using the car-to-trailer crash methodology. Four crash tests were conducted into the side of a stationary trailer fitted with the side underride guard system (SURG). The SURG used in these tests is 25% lighter than the previous design. A 5th percentile hybrid III female dummy was placed in the driver seat and restrained with the three-point lap and shoulder harness. The anthropometric dummy was instrumented with a head triaxial accelerometer, a chest triaxal accelerometer, a load cell to measure neck force and moment, and a load cell to measure the femur force. The vehicle acceleration was measured using a traxial accelerometer in the rear center tunnel. High speed, standard video and still photos were taken. In all tests, the intrusion was limited to the front structure of the vehicle without any significant compromise to the occupant space. Results indicate that the resultant head and chest accelerations, head injury criterion (HIC), neck force and moment, and femur force were well below the injury tolerance. The present findings support the hypothesis that the SURG not only limits or eliminates the intrusion into the occupant space but also results in biomechanical injury values well below the tolerance limit in motor vehicle crashes.
Radar sensors for intersection collision avoidance
NASA Astrophysics Data System (ADS)
Jocoy, Edward H.; Phoel, Wayne G.
1997-02-01
On-vehicle sensors for collision avoidance and intelligent cruise control are receiving considerably attention as part of Intelligent Transportation Systems. Most of these sensors are radars and `look' in the direction of the vehicle's headway, that is, in the direction ahead of the vehicle. Calspan SRL Corporation is investigating the use of on- vehicle radar for Intersection Collision Avoidance (ICA). Four crash scenarios are considered and the goal is to design, develop and install a collision warning system in a test vehicle, and conduct both test track and in-traffic experiments. Current efforts include simulations to examine ICA geometry-dependent design parameters and the design of an on-vehicle radar and tracker for threat detection. This paper discusses some of the simulation and radar design efforts. In addition, an available headway radar was modified to scan the wide angles (+/- 90 degree(s)) associated with ICA scenarios. Preliminary proof-of-principal tests are underway as a risk reduction effort. Some initial target detection results are presented.
Road safety issues for bus transport management.
Cafiso, Salvatore; Di Graziano, Alessandro; Pappalardo, Giuseppina
2013-11-01
Because of the low percentage of crashes involving buses and the assumption that public transport improves road safety by reducing vehicular traffic, public interest in bus safety is not as great as that in the safety of other types of vehicles. It is possible that less attention is paid to the significance of crashes involving buses because the safety level of bus systems is considered to be adequate. The purpose of this study was to evaluate the knowledge and perceptions of bus managers with respect to safety issues and the potential effectiveness of various technologies in achieving higher safety standards. Bus managers were asked to give their opinions on safety issues related to drivers (training, skills, performance evaluation and behaviour), vehicles (maintenance and advanced devices) and roads (road and traffic safety issues) in response to a research survey. Kendall's algorithm was used to evaluate the level of concordance. The results showed that the majority of the proposed items were considered to have great potential for improving bus safety. The data indicated that in the experience of the participants, passenger unloading and pedestrians crossing near bus stops are the most dangerous actions with respect to vulnerable users. The final results of the investigation showed that start inhibition, automatic door opening, and the materials and internal architecture of buses were considered the items most strongly related to bus passenger safety. Brake assistance and vehicle monitoring systems were also considered to be very effective. With the exception of driver assistance systems for passenger and pedestrian safety, the perceptions of the importance of other driver assistance systems for vehicle monitoring and bus safety were not unanimous among the bus company managers who participated in this survey. The study results showed that the introduction of new technologies is perceived as an important factor in improving bus safety, but a better understanding of their actual effectiveness and related risk factor avoidance must be developed to permit their useful implementation in bus fleets. Copyright © 2013 Elsevier Ltd. All rights reserved.
Viano, David C; Parenteau, Chantal S
2018-06-21
This study investigated trends in severe injury and ejection in rollover crashes involving lap-shoulder belted drivers and right-front passengers. It was conducted because of changes in 2009 to consumer information programs and regulations related to rollover protection. The data is presented by model year (MY) of the vehicle in groups from 1995-2016. NASS-CDS cases with 2010-16 MY vehicles were also evaluated to determine the crash circumstances and causes for severe injury of belted occupants in vehicles with a high strength-to-weight (SWR) roof, curtain and side airbags and other safety improvements. 1997-2015 NASS-CDS data was evaluated for severe injury and ejection of lap-shoulder belted front-outboard occupants in light vehicles. Crashes were grouped by front, side, rear and rollover. The injury and ejection data was grouped by vehicle MY: 1995-99, 2000-04, 2005-09 and 2010-16. Only drivers and right-front passengers were included if they were lap-shoulder belted and 15+ years old. Severely injured occupants were defined as those with MAIS 4-6 or fatality (MAIS 4+F). National estimates were made with weighted data using the ratio weight in NASS-CDS. All NASS-CDS electronic cases were evaluated for belted occupants with MAIS 4+F injury in rollovers involving 2010-16 MY vehicles. The crash circumstances and injuries were studied. These vehicles had high SWR roofs to meet IIHS ratings and FMVSS 216. The 1997-2015 NASS-CDS included 2,083,776 belted front occupants in rollover crashes with 24,466 (1.17%) MAIS 4+F injuries. The frequency of rollover crashes has decreased with modern vehicles (p < 0.0001). The 1995-1999 MY vehicles involved in a rollover accounted for 7.03% of all crashes (756,228/10,760,000). The corresponding proportion was 3.57% with 2010-2016 MY vehicles (81,406 v 2,282,062). The risk for MAIS 4+F was 1.325 ± 0.347% in rollover crashes with 1995-99 MY vehicles. It was 27.2% lower in 2010-16 MY vehicles at 0.964 ± 0.331% (p < 0.001). There were 42,567 (2.002%) ejections of belted occupants in rollover crashes, irrespective of injury outcome. The risk for ejection was 3.042 ± 1.44% in rollover crashes with 1995-99 MY vehicles. It was 43.6% lower in 2004-2009 MY vehicle at 1.715 ± 0.660% (p <0.001) and 83.4% lower in 2010-16 MY vehicle at 0.505 ± 0.336% (p < 0.001). There were 17 rollovers with MAIS 4+F in 2010-16 MY vehicles in NASS-CDS. Their roof strength was SWR = 4.15 ± 1.05 based on 15 vehicles. Many of the collisions involved front or side impacts and then a rollover. Four cases involved 16-30 year old drivers in extremely high-speed loss of control crashes resulting in >10 cm vertical roof deformation or substantial roof deformation based on photos. The roof strength (SWR) of 4.20 ± 1.0 was not sufficient to prevent roof deformation in these crashes. This study found a reduction in severe injury and ejection risk with modern vehicles. It indicates vehicle safety has improved in response to IIHS and NHTSA efforts to expand the array of safety requirements and increase performance so that newer models are safer than earlier ones. There has been an incremental improvement in safety by these advances.
Crash sequence based risk matrix for motorcycle crashes.
Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin
2018-04-05
Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were included in this study, weighted to represent 338,655 motorcyclists involved in traffic crashes in three years (2011-2013)(NHTSA, 2013). The top five most frequent and severe types of crash sequences were identified, accounting for 23 percent of all the motorcycle crashes included in the study, and they are (1) run-off-road crashes on the right, and hitting roadside objects, (2) cross-median crashes, and rollover, (3) left-turn oncoming crashes, and head-on, (4) crossing over (passing through) or turning into opposite direction at intersections, and (5) side-impacted. In addition to crash sequences, several other factors were also identified to have effects on crash severity: use of helmet, presence of horizontal curves, alcohol consumption, road surface condition, roadway functional class, and nighttime condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ghodsizad, Ali; Koerner, Michael M; Brehm, Christoph E; El-Banayosy, Aly
2014-05-01
In advanced cardiogenic shock, early mechanical circulatory support may prevent multiorgan failure and death. In this article, we are describing our experience with extracorporeal membrane oxygenation (ECMO) application. Venoarterial ECMO has been used successfully as a therapeutic option for patients with advanced cardiogenic shock and cardiac arrest. In this review, based on the daily routine of the Hershey group using ECMO for therapy of advanced cardiogenic shock, the application of ECMO is described. The aim is to share our hands-on experience during emergent implantation and to contribute to the knowledge within the field of mechanical circulatory support.
A Crash Course in Calcium Channels.
Zamponi, Gerald W
2017-12-20
Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.
Brubacher, Jeffrey R.; Chan, Herbert; Erdelyi, Shannon; Schuurman, Nadine; Amram, Ofer
2016-01-01
Background British Columbia, Canada is a geographically large jurisdiction with varied environmental and socio-cultural contexts. This cross-sectional study examined variation in motor vehicle crash rates across 100 police patrols to investigate the association of crashes with key explanatory factors. Methods Eleven crash outcomes (total crashes, injury crashes, fatal crashes, speed related fatal crashes, total fatalities, single-vehicle night-time crashes, rear-end collisions, and collisions involving heavy vehicles, pedestrians, cyclists, or motorcyclists) were identified from police collision reports and insurance claims and mapped to police patrols. Six potential explanatory factors (intensity of traffic law enforcement, speed limits, climate, remoteness, socio-economic factors, and alcohol consumption) were also mapped to police patrols. We then studied the association between crashes and explanatory factors using negative binomial models with crash count per patrol as the response variable and explanatory factors as covariates. Results Between 2003 and 2012 there were 1,434,239 insurance claim collisions, 386,326 police reported crashes, and 3,404 fatal crashes. Across police patrols, there was marked variation in per capita crash rate and in potential explanatory factors. Several factors were associated with crash rates. Percent roads with speed limits ≤ 60 km/hr was positively associated with total crashes, injury crashes, rear end collisions, and collisions involving pedestrians, cyclists, and heavy vehicles; and negatively associated with single vehicle night-time crashes, fatal crashes, fatal speeding crashes, and total fatalities. Higher winter temperature was associated with lower rates of overall collisions, single vehicle night-time collisions, collisions involving heavy vehicles, and total fatalities. Lower socio-economic status was associated with higher rates of injury collisions, pedestrian collisions, fatal speeding collisions, and fatal collisions. Regions with dedicated traffic officers had fewer fatal crashes and fewer fatal speed related crashes but more rear end crashes and more crashes involving cyclists or pedestrians. The number of traffic citations per 1000 drivers was positively associated with total crashes, fatal crashes, total fatalities, fatal speeding crashes, injury crashes, single vehicle night-time crashes, and heavy vehicle crashes. Possible explanations for these associations are discussed. Conclusions There is wide variation in per capita rates of motor vehicle crashes across BC police patrols. Some variation is explained by factors such as climate, road type, remoteness, socioeconomic variables, and enforcement intensity. The ability of explanatory factors to predict crash rates would be improved if considered with local traffic volume by all travel modes. PMID:27099930
The problem of suspended and revoked drivers who avoid detection at checkpoints.
Parrish, Kelly E; Masten, Scott V
2015-01-01
Although driver license suspension and revocation have been shown to improve traffic safety, suspended or revoked (SR) drivers who continue to drive-which appears to be the majority-are about 3 times more likely to be involved in crashes and to cause a fatal crash. In California and many other U.S. states, drivers are typically mailed notices requesting that they surrender their licenses when they are SR for reasons other than driving under the influence of alcohol or drugs (DUI), yet they frequently do not comply. Typical procedures at DUI checkpoints in California and other U.S. states include inspecting driver licenses and checking for signs of intoxication during brief contacts with law enforcement officers. Hence, these checkpoints are in fact DUI/license checkpoints in California and many other states. The purpose of this study was to estimate the extent to which SR drivers avoid being detected at DUI/license checkpoints for SR driving, because they illegally retained possession of their license cards. Law enforcement officers used electronic license card readers at DUI/license checkpoints in Sacramento, California, to record data for 13,705 drivers. The SR status of all contacted drivers was determined after the checkpoints and compared to law enforcement citation records from the checkpoints. Although only 3% of the drivers contacted at the checkpoints were SR, about 41% of SR drivers were able to pass through undetected because they presented license cards that they illegally retained. Drivers SR for DUI-related reasons were more likely to be detected, whereas those SR for failure to provide proof of financial responsibility (insurance) were less likely to be detected. The fact that many SR drivers are able to pass through DUI/license checkpoints undetected weakens both the specific and general impacts of checkpoints for deterring SR driving and may diminish the effectiveness of suspension and revocation actions for reducing the crash risk posed by problem drivers. Using license card readers that can quickly identify SR drivers in real time during routine traffic stops and at DUI/license checkpoints warrants further consideration.
Driving Responses of Older and Younger Drivers in a Driving Simulator
Fildes, Brian; Charlton, Judith; Muir, Carlyn; Koppel, Sjaanie
2007-01-01
This paper reports the findings of a study of younger and older driver behaviour to hazardous traffic manoeuvres in a driving simulator. Hazardous situations on a highway and residential drive were studied and drivers’ vision and vehicle performance responses were collected. While all drivers were able to avoid crashes, the finding that older drivers were consistently slower to fixate hazardous stimuli in the driving environment and were slower to respond presents a potentially serious road safety concern. Further research is warranted, especially under conditions of increasing traffic complexity. PMID:18184513
Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.
Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M
2017-06-01
General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.
Effect of electronic stability control on automobile crash risk.
Farmer, Charles
2004-12-01
Per vehicle crash involvement rates were compared for otherwise identical vehicle models with and without electronic stability control (ESC) systems. ESC was found to affect single-vehicle crashes to a greater extent than multiple-vehicle crashes, and crashes with fatal injuries to a greater extent than less severe crashes. Based on all police-reported crashes in 7 states over 2 years, ESC reduced single-vehicle crash involvement risk by approximately 41 percent (95 percent confidence limits 3348) and single-vehicle injury crash involvement risk by 41 percent (2752). This translates to an estimated 7 percent reduction in overall crash involvement risk (310) and a 9 percent reduction in overall injury crash involvement risk (314). Based on all fatal crashes in the United States over 3 years, ESC was found to have reduced single-vehicle fatal crash involvement risk by 56 percent (3968). This translates to an estimated 34 percent reduction in overall fatal crash involvement risk (2145).
"Crashing the gates" - selection criteria for television news reporting of traffic crashes.
De Ceunynck, Tim; De Smedt, Julie; Daniels, Stijn; Wouters, Ruud; Baets, Michèle
2015-07-01
This study investigates which crash characteristics influence the probability that the crash is reported in the television news. To this purpose, all news items from the period 2006-2012 about traffic crashes from the prime time news of two Belgian television channels are linked to the official injury crash database. Logistic regression models are built for the database of all injury crashes and for the subset of fatal crashes to identify crash characteristics that correlate with a lower or higher probability of being reported in the news. A number of significant biases in terms of crash severity, time, place, types of involved road users and victims' personal characteristics are found in the media reporting of crashes. More severe crashes are reported in the media more easily than less severe crashes. Significant fluctuations in media reporting probability through time are found in terms of the year and month in which the crash took place. Crashes during week days are generally less reported in the news. The geographical area (province) in which the crash takes place also has a significant impact on the probability of being reported in the news. Crashes on motorways are significantly more represented in the news. Regarding the age of the involved victims, a clear trend of higher media reporting rates of crashes involving young victims or young fatalities is observed. Crashes involving female fatalities are also more frequently reported in the news. Furthermore, crashes involving a bus have a significantly higher probability of being reported in the news, while crashes involving a motorcycle have a significantly lower probability. Some models also indicate a lower reporting rate of crashes involving a moped, and a higher reporting rate of crashes involving heavy goods vehicles. These biases in media reporting can create skewed perceptions in the general public about the prevalence of traffic crashes and eventually may influence people's behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.
A trial of retrofitted advisory collision avoidance technology in government fleet vehicles.
Thompson, James P; Mackenzie, Jamie R R; Dutschke, Jeffrey K; Baldock, Matthew R J; Raftery, Simon J; Wall, John
2018-06-01
In-vehicle collision avoidance technology (CAT) has the potential to prevent crash involvement. In 2015, Transport for New South Wales undertook a trial of a Mobileye 560 CAT system that was installed in 34 government fleet vehicles for a period of seven months. The system provided headway monitoring, lane departure, forward collision and pedestrian collision warnings, using audio and visual alerts. The purpose of the trial was to determine whether the technology could change the driving behaviour of fleet vehicle drivers and improve their safety. The evaluation consisted of three components: (1) analysis of objective data to examine effects of the technology on driving behaviour, (2) analysis of video footage taken from a sample of the vehicles to examine driving circumstances that trigger headway monitoring and forward collision warnings, and (3) a survey completed by 122 of the 199 individuals who drove the trial vehicles to examine experiences with, and attitudes to, the technology. Analysis of the objective data found that the system resulted in changes in behaviour with increased headway and improved lane keeping, but that these improvements dissipated once the warning alerts were switched off. Therefore, the system is capable of altering behaviour but only when it is actively providing alerts. In-vehicle video footage revealed that over a quarter of forward collision warnings were false alarms, in which a warning event was triggered despite there being no vehicle travelling ahead. The surveyed drivers recognised that the system could improve safety but most did not wish to use it themselves as they found it to be distracting and felt that it would not prevent them from having a crash. The results demonstrate that collision avoidance technology can improve driving behaviour but drivers may need to be educated about the potential benefits for their driving in order to accept the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Doecke, Sam D; Kloeden, Craig N; Dutschke, Jeffrey K; Baldock, Matthew R J
2018-05-19
The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data. Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels. A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes. The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design.
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
Stein, Deborah M; Kufera, Joseph A; Ho, Shiu M; Ryb, Gabriel E; Dischinger, Patricia C; O'Connor, James V; Scalea, Thomas M
2011-02-01
Motor vehicle collisions (MVCs) are the leading cause of spine and spinal cord injuries in the United States. Traumatic cervical spine injuries (CSIs) result in significant morbidity and mortality. This study was designed to evaluate both the epidemiologic and biomechanical risk factors associated with CSI in MVCs by using a population-based database and to describe occupant and crashes characteristics for a subset of severe crashes in which a CSI was sustained as represented by the Crash Injury Research Engineering Network (CIREN) database. Prospectively collected CIREN data from the eight centers were used to identify all case occupants between 1996 and November 2009. Case occupants older than 14 years and case vehicles of the four most common vehicle types were included. The National Automotive Sampling System's Crashworthiness Data System, a probability sample of all police-reported MVCs in the United States, was queried using the same inclusion criteria between 1997 and 2008. Cervical spinal cord and spinal column injuries were identified using Abbreviated Injury Scale (AIS) score codes. Data were abstracted on all case occupants, biomechanical crash characteristics, and injuries sustained. Univariate analysis was performed using a χ analysis. Logistic regression was used to identify significant risk factors in a multivariate analysis to control for confounding associations. CSIs were identified in 11.5% of CIREN case occupants. Case occupants aged 65 years or older and those occupants involved in rollover crashes were more likely to sustain a CSI. In univariate analysis of the subset of severe crashes represented by CIREN, the use of airbag and seat belt together (reference) were more protective than seat belt alone (odds ratio [OR]=1.73, 95% confidence interval [CI]=1.32-2.27) or the use of neither restraint system (OR=1.45, 95% CI=1.02-2.07). The most frequent injury sources in CIREN crashes were roof and its components (24.8%) and noncontact sources (15.5%). In multivariate analysis, age, rollover impact, and airbag-only restraint systems were associated with an increased odds of CSI. Using the population-based National Automotive Sampling System's Crashworthiness Data System data, 0.35% of occupants sustained a CSI. In univariate analysis, older age was noted to be a significant risk factor for CSI. Airbag-only restraint systems and both rollover and lateral crashes were also identified as risk factors for CSI. In addition, increasing delta v was highly associated with CSIs. In multivariate analysis, similar risk factors were noted. Of all the restraint systems, seat belt use without airbag deployment was found to be the most protective restraint system (OR=0.29, 95% CI=0.16-0.50), whereas airbag-only restraint was associated with the highest risk of CSI (OR=3.54, 95% CI=2.29-5.46). Despite advances in automotive safety, CSIs sustained in MVC continue to occur too often. Older case occupants are at an increased risk of CSI. Rollover crashes and severe crashes led to a much higher risk of CSI than other types and severity of MVCs. Seat belt use is very effective in preventing CSI, whereas airbag deployment may increase the risk of occupants sustaining a CSI. More protection for older occupants is needed and protection in both rollover and lateral crashes should remain a focus of the automotive industry. The design of airbag restraint systems should be evaluated so that they are not causative of serious injury. In addition, engineers should continue to focus on improving automotive design to minimize the risk of spinal injury to occupants in high severity crashes.
Safer Vehicles for People and the Planet: Letter to the Editor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Thomas P; Wenzel, Thomas P; Ross, Marc
Letter to the Editors from Leonard Evans, Bloomfield Hills, MI: Single-vehicle crashes, which account for half of occupant fatalities, are not mentioned in 'Safer Vehicles for People and the Planet', by Thomas P. Wenzel and Marc Ross (March-April). Simple physics shows that in such crashes risk declines as vehicle mass increases. The authors write 'driving imported luxury cars carries extremely low risk, for reasons that are not obvious'. The reasons are obvious--the cars are purchased by low-risk drivers. If they swapped vehicles with drivers of sports cars (which have high risk), the risks would stick with the drivers, not themore » vehicles. The article reflects the American belief that death on our roads can be substantially reduced by making vehicles in which it is safer to crash. From 1979 through 2002, Great Britain, Canada and Australia reduced fatalities by an average of 49 percent, compared with 16 percent in the U.S. Accumulating the differences over this time shows that by merely matching the safety performance of these other countries, about 200,000 fewer Americans would have died. These trends continue. In 2006 the U.S. recorded 42,642 traffic deaths, a modest 22 percent decline from our all-time high. Sweden recorded 445, a reduction of 66 percent from their all-time high. The obsessive focus on vehicles rather than on countermeasures that scientific research shows substantially reduce risk is at the core of our dramatic safety failure. The only way to substantially reduce deaths is to reduce the risk of crashing, not to make it safer to crash. The response from Drs. Wenzel and Ross: Of course Dr. Evans is correct in stating that driver behavior influences crash risk. In our article we made clear that our estimates of risk include how well a vehicle/driver combination avoids a crash, as well as how crash-worthy a vehicle (and robust a driver) is once a crash occurs. We also analyzed two variables that can account for driver behavior: the fraction of all driver fatalities that are young men, and a 'bad driver' rating that combines information about the current crash (drug or alcohol involvement, driving without a license, or reckless driving) as well as the operator's driving record for the previous three years. For example, the high risks of sports cars, and the low risks of minivans, are clearly influenced by who drives these types of vehicles (36 percent young males and 0.77 bad driver rating for sports cars, vs. 4 percent and 0.21 for minivans; the average values for all types of cars are 20 percent and 0.50). On the other hand, we were surprised to find that the imported luxury cars, with the lowest risks, have only average drivers (21 percent young males, 0.57 bad driver rating). That is the basis for our conclusion that the design of imported luxury vehicles, or at least specific safety features on them, overcome risky behavior taken by their drivers. The safety of vehicles has greatly improved over the years. In our studies we have found several examples of models that greatly reduced their risks over time; for example, the Ford Focus has a much better risk to its drivers (118) than the Ford Escort it replaced (148). Our data indicate that more young males drive the Focus (21 percent) than the Escort (15 percent), and that Focus drivers are perhaps slightly more risky (0.50 vs. 0.44 bad driver rating). Clearly vehicle design does not play as small a role in vehicle safety as Dr. Evans suggests. Dr. Evans asserts that we ignore single-vehicle crashes and that simple physics dictates that vehicle mass provides safety in single-vehicle crashes. By itself, additional vehicle mass does provide some protection from rapid deceleration in crashes with a movable object, particularly for an unbelted occupant. However, when it comes to vehicle safety, our research by vehicle model indicates that there is essentially no relationship between car mass and risk, even in frontal crashes. In his own papers, Dr. Evans appears to admit that it is not clear whether mass, or size (specifically crush space) is inherent to vehicle safety. Additional research indicates that it is not size per se that protects in two-vehicle crashes, but how well the stiff structures on the vehicles are aligned. The auto manufacturing industry has voluntarily made design changes to their pickup trucks to increase the likelihood that truck and car bumpers will interact in a frontal crash, reducing the aggressivity of pickup trucks in recent years. Regarding the differences in experiences between the U.S. and other countries, it is important to keep in mind that the U.S. vehicle fleet is fairly unique; about half of U.S. vehicles are light duty trucks (pickups, SUVs and minivans), which many studies have shown are dangerous to other road users.« less
NASA Technical Reports Server (NTRS)
McGreevy, Michael W.; Statler, Irving C.
1998-01-01
An exploratory study was conducted to identify commercial aviation incidents that are relevant to a "controlled flight into terrain" (CFIT) accident using a NASA-developed text processing method. The QUORUM method was used to rate 67820 incident narratives, virtually all of the narratives in the Aviation Safety Reporting System (ASRS) database, according to their relevance to two official reports on the crash of American Airlines Flight 965 near Cali, Colombia in December 1995. For comparison with QUORUM's ratings, three experienced ASRS analysts read the reports of the crash and independently rated the relevance of the 100 narratives that were most highly rated by QUORUM, as well as 100 narratives randomly selected from the database. Eighty-four of 100 QUORUM-selected narratives were rated as relevant to the Cali accident by one or more of the analysts. The relevant incidents involved a variety of factors, including, over-reliance on automation, confusion and changes during descent/approach, terrain avoidance, and operations in foreign airspace. In addition, the QUORUM collection of incidents was found to be significantly more relevant than the random collection.
First stereo video dataset with ground truth for remote car pose estimation using satellite markers
NASA Astrophysics Data System (ADS)
Gil, Gustavo; Savino, Giovanni; Pierini, Marco
2018-04-01
Leading causes of PTW (Powered Two-Wheeler) crashes and near misses in urban areas are on the part of a failure or delayed prediction of the changing trajectories of other vehicles. Regrettably, misperception from both car drivers and motorcycle riders results in fatal or serious consequences for riders. Intelligent vehicles could provide early warning about possible collisions, helping to avoid the crash. There is evidence that stereo cameras can be used for estimating the heading angle of other vehicles, which is key to anticipate their imminent location, but there is limited heading ground truth data available in the public domain. Consequently, we employed a marker-based technique for creating ground truth of car pose and create a dataset∗ for computer vision benchmarking purposes. This dataset of a moving vehicle collected from a static mounted stereo camera is a simplification of a complex and dynamic reality, which serves as a test bed for car pose estimation algorithms. The dataset contains the accurate pose of the moving obstacle, and realistic imagery including texture-less and non-lambertian surfaces (e.g. reflectance and transparency).
Collapse Mechanism Analysis in the Design of Superstructure Vehicle
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.
2016-11-01
The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Nonlinear analysis of collapse mechanism in superstructure vehicle
NASA Astrophysics Data System (ADS)
Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.
2017-04-01
The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Classification and prediction of pilot weather encounters: A discriminant function analysis.
O'Hare, David; Hunter, David R; Martinussen, Monica; Wiggins, Mark
2011-05-01
Flight into adverse weather continues to be a significant hazard for General Aviation (GA) pilots. Weather-related crashes have a significantly higher fatality rate than other GA crashes. Previous research has identified lack of situational awareness, risk perception, and risk tolerance as possible explanations for why pilots would continue into adverse weather. However, very little is known about the nature of these encounters or the differences between pilots who avoid adverse weather and those who do not. Visitors to a web site described an experience with adverse weather and completed a range of measures of personal characteristics. The resulting data from 364 pilots were carefully screened and subject to a discriminant function analysis. Two significant functions were found. The first, accounting for 69% of the variance, reflected measures of risk awareness and pilot judgment while the second differentiated pilots in terms of their experience levels. The variables measured in this study enabled us to correctly discriminate between the three groups of pilots considerably better (53% correct classifications) than would have been possible by chance (33% correct classifications). The implications of these findings for targeting safety interventions are discussed.
A comprehensive review on the quasi-induced exposure technique.
Jiang, Xinguo; Lyles, Richard W; Guo, Runhua
2014-04-01
The goal is to comprehensively examine the state-of-the-art applications and methodological development of quasi-induced exposure and consequently pinpoint the future research directions in terms of implementation guidelines, limitations, and validity tests. The paper conducts a comprehensive review on approximately 45 published papers relevant to quasi-induced exposure regarding four key topics of interest: applications, responsibility assignment, validation of assumptions, and methodological development. Specific findings include that: (1) there is no systematic data screening procedure in place and how the eliminated crash data will impact the responsibility assignment is generally unknown; (2) there is a lack of necessary efforts to assess the validity of assumptions prior to its application and the validation efforts are mostly restricted to the aggregated levels due to the limited availability of exposure truth; and (3) there is a deficiency of quantitative analyses to evaluate the magnitude and directions of bias as a result of injury risks and crash avoidance ability. The paper points out the future research directions and insights in terms of the validity tests and implementation guidelines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Sleep-related (SR) crashes are an endemic problem the world over. However, police officers report difficulties in identifying sleepiness as a crash contributing factor. One approach to improving the sensitivity of SR crash identification is by applying a proxy definition post hoc to crash reports. To identify the prominent characteristics of SR crashes and highlight the influence of proxy definitions, ten years of Queensland (Australia) police reports of crashes occurring in ≥100km/h speed zones were analysed. In Queensland, two approaches are routinely taken to identifying SR crashes. First, attending police officers identify crash causal factors; one possible option is 'fatigue/fell asleep'. Second, a proxy definition is applied to all crash reports. Those meeting the definition are considered SR and added to the police-reported SR crashes. Of the 65,204 vehicle operators involved in crashes 3449 were police-reported as SR. Analyses of these data found that male drivers aged 16-24 years within the first two years of unsupervised driving were most likely to have a SR crash. Collision with a stationary object was more likely in SR than in not-SR crashes. Using the proxy definition 9739 (14.9%) crashes were classified as SR. Using the proxy definition removes the findings that SR crashes are more likely to involve males and be of high severity. Additionally, proxy defined SR crashes are no less likely at intersections than not-SR crashes. When interpreting crash data it is important to understand the implications of SR identification because strategies aimed at reducing the road toll are informed by such data. Without the correct interpretation, funding could be misdirected. Improving sleepiness identification should be a priority in terms of both improvement to police and proxy reporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seacrist, Thomas; Belwadi, Aditya; Prabahar, Abhiti; Chamberlain, Samuel; Megariotis, James; Loeb, Helen
2016-09-01
Motor vehicle crashes are the leading cause of death for teens. Previous teen and adult crash rates have been based upon fatal crashes, police-reported crashes, and estimated miles driven. Large-scale naturalistic driving studies offer the opportunity to compute crash rates using a reliable methodology to capture crashes and driving exposure. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive real-world data on teen and adult driving. This article presents findings on the crash rates of novice teen and experienced adult drivers in naturalistic crashes. A subset from the SHRP2 database consisting of 539 crash events for novice teens (16-19 years, n = 549) and experienced adults (35-54 years, n = 591) was used. Onboard instrumentation such as scene cameras, accelerometers, and Global Positioning System logged time series data at 10 Hz. Scene videos were reviewed for all events to identify rear-end striking crashes. Dynamic variables such as acceleration and velocity were analyzed for rear-end striking events. Number of crashes, crash rates, rear-end striking crash severity, and rear-end striking impact velocity were compared between novice teens and experienced adults. Video review of the SHRP2 crashes identified significantly more crashes (P < 0.01) and rear-end striking crashes (P < 0.01) among the teen group than among the adult group. This yielded crash rates of 30.0 crashes per million miles driven for novice teens compared to 5.3 crashes per million miles driven for experienced adults. The crash rate ratio for teens vs. adults was 5.7. The rear-end striking crash rate was 13.5 and 1.8 per million miles driven for novice teens and experienced adults, respectively. The rear-end striking crash rate ratio for teens vs. adults was 7.5. The rear-end striking crash severity measured by the accelerometers was greater (P < 0.05) for the teen group (1.8 ± 0.9 g; median = 1.6 g) than for the adult group (1.1 ± 0.4 g; median = 1.0 g), suggesting that teen crashes tend to be more serious than adult crashes. Increased rear-end striking impact velocity (P < 0.01) was also observed for novice teens (18.8 ± 13.2 mph; median = 18.9 mph) compared to experienced adults (3.3 ± 1.2 mph; median = 2.8 mph). To our knowledge, this is the first study to compare crash rates between teens and adults using a large-scale naturalistic driving database. Unlike previous crash rates, the reported rates reliably control for crash type and driving exposure. These results conform to previous findings that novice teens exhibit increased crash rates compared to experienced adults.
Sternlund, Simon
2017-05-29
Lane departure crashes account for a significant proportion of passenger car occupant fatalities and serious injuries. Utilizing real-world data involving fatal passenger car crashes in Sweden, the characteristics of lane departure crashes were identified and the safety potential of lane departure warning (LDW) systems was quantified. The material consisted of 104 in-depth studies of fatal passenger car crashes in 2010. The crashes were classified as single-vehicle (n = 48), head-on (n = 52), and overtaking (n = 4) crashes. These crash types were identified as crashes that could have potentially involved lane departure. A case-by-case analysis was carried out and lane departure crashes were identified and characterized using police reports and information collected by crash investigators at the Swedish Transport Administration; for example, inspections and photographs of the crash sites and of the involved vehicles. Lane departure crashes were separated from crashes where loss of control occurred pre-lane departure. Furthermore, loss of control post-lane departures were identified. When studying the pre-stage of lane departure without prior loss of control, crashes were categorized as unintentional drifting, intentional lane change, or evasive maneuver. Using previously published effectiveness information, the potential for LDW systems to prevent crashes was estimated. Of all crashes with passenger car occupant fatalities in Sweden in 2010, 46% (63/138) were found to relate to lane departure without prior loss of control. These crashes accounted for 61% (63/104) of all single-vehicle, head-on, and overtaking crashes. The remaining 41 crashes were due to loss of control pre-lane departure. Unintentional drifting accounted for 81% (51/63) of all lane departure crashes without prior loss of control, which corresponded to 37% (51/138) of all fatal passenger car occupant crashes. LDW systems were found to potentially prevent 33-38 of the 100 fatal head-on and single vehicle crashes. These crashes involved drifting and occurred on roads with visible lane markings, signed posted speed limits ≥70 km/h, and without rumble strips on the corresponding lane departure side. The range of potentially prevented crashes (33-38) is due to the inclusion or exclusion of crashes involving excessive speeding. In this study, approximately half (51/100) of all head-on and single-vehicle crashes were identified as being a consequence of drifting, where LDW systems had the potential to prevent the majority (33-38) of these crashes. The typical lane departure crash without prior loss of control occurred on undivided roads in rural areas with signed posted speed limits ≥70 km/h, where the center and side road markings were visible.
Review of Aircraft Crash Structural Response Research.
1982-08-01
structures consisting of conventional built-up metallic construction and those consisting of advanced composite materials were of interest. The latter...increasing importance. Some recent theoretical and experimental studies of the behavior of composite - material structures subjected to severe static...dynamic, and/or impact conditions are noted. Such topics as crashworthiness testing ot composite fuselage structures, the impact resistance of graphite and
Advanced Crash Survivable Flight Data Recorder And Accident Information Retrieval System (AIRS).
1981-08-01
Costs ................................. 151 Portable Ground Unit (PGU) ............................... 151 Maintenance Readout Unit ( MRU ...95 31 NARROW-BAND CONDUCTED EMISSIONS ON THE AIRS 24 VDC POWER RETURN (CE04 TESI ) ......................... 96 32 BROAD-BAND...Shunt) N/A Any Any Change Change MRU (Shunt) N/A Any Any ...... _Change Change PGU (Shunt) N/A --- Any Any Change Change 15 .. . . .i A, TABLE 4
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Mechanisms and Mitigation of Head and Spinal Injuries Due to Motor Vehicle Crashes.
Ivancic, Paul C
2016-10-01
Synopsis Head and spinal injuries commonly occur during motor vehicle crashes (MVCs). The goal of this clinical commentary is to discuss real-life versus simulated MVCs and to present clinical, biomechanical, and epidemiological evidence of MVC-related injury mechanisms. It will also address how this knowledge may guide and inform the design of injury mitigation devices and assist in clinical decision making. Evidence indicates that there exists no universal injury tolerance applicable to the entire population of the occupants of MVCs. Injuries sustained by occupants depend on a number of factors, including occupant characteristics (age, height, weight, sex, bone mineral density, and pre-existing medical and musculoskeletal conditions), pre-MVC factors (awareness of the impending crash, occupant position, usage of and position of the seatbelt and head restraint, and vehicle specifications), and MVC-related factors (crash orientation, vehicle dynamics, type of active or passive safety systems, and occupant kinematic response). Injuries resulting from an MVC occur due to blunt impact and/or inertial loading. An S-shaped curvature of the cervical spine and associated injurious strains have been documented during rear-, frontal-, and side-impact MVCs. Data on the injury mechanism and the quantification of spinal instability guide and inform the emergent and subsequent conservative or surgical care. Such care may require determining optimal patient positioning during transport, which injuries may be treated conservatively, whether reduction should be performed, optimal patient positioning intraoperatively, and whether bracing should be worn prior to and/or following surgery. The continued improvement of traditional injury mitigation systems, such as seats, seatbelts, airbags, and head restraints, together with research of newer collision-avoidance technologies, will lead to safer motor vehicles and ultimately more effective injury management strategies. J Orthop Sports Phys Ther 2016;46(10):826-833. Epub 3 Sep 2016. doi:10.2519/jospt.2016.6716.
The importance of poisoning vs. road traffic injuries as a cause of death in rural Sri Lanka.
Eddleston, Michael; Udayakumara, Nilantha; Adhikari, Sriyantha; de Silva, Dhamika; Sheriff, M H Rezvi; Waidyaratne, Dhananjaya L
2007-07-11
Road traffic crashes are considered by the WHO to be the most important global cause of death from injury. However, this may not be true for large areas of rural Asia where road vehicles are uncommon. The issue is important, since emphasising the importance of road traffic crashes risks switching resources to urban areas, away from already underfunded rural regions. In this study, we compared the importance of road traffic crashes with other forms of injury in a poor rural region of South Asia. We collected data on all deaths from injury in the North Central Province of Sri Lanka (NCP; population 1,105,198 at 2001 census) over 18 months using coronial, hospital, and police data. We calculated the incidence of death from all forms of intentional and unintentional injury in the province. The annual incidence of death from injury in the province was high: 84.2 per 100,000 population. Half of the deaths were from self-harm (41.3/100,000). Poisoning (35.7/100,000)-in particular, pesticide self-poisoning (23.7/100,000)-was the most common cause of death, being 3.9-fold more common than road traffic crashes (9.1/100,000). In poor rural regions of South Asia, fatal self-harm and pesticide self-poisoning in particular are significantly more important than road traffic injuries as a cause of death. It is possible that the data used by the WHO to calculate global injury estimates are biased towards urban areas with better data collection but little pesticide poisoning. More studies are required to inform a debate about the importance of different forms of injury and how avoidable deaths from any cause can be prevented. In the meantime, marked improvements in the effectiveness of therapy for pesticide poisoning, safer storage, reduced pesticide use, or reductions in pesticide toxicity are required urgently to reduce the number of deaths from self-poisoning in rural Asia.
Gasoline prices and their relationship to drunk-driving crashes.
Chi, Guangqing; Zhou, Xuan; McClure, Timothy E; Gilbert, Paul A; Cosby, Arthur G; Zhang, Li; Robertson, Angela A; Levinson, David
2011-01-01
This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by several crash types and demographic groups at the monthly level from 2004 to 2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk-driving crashes among young and adult drivers, among male and female drivers, and among white and black drivers. Results from negative binomial regression models show that when gas prices are higher, there are fewer drunk-driving crashes, particularly among property-damage-only crashes. When alcohol consumption levels are higher, there are more drunk-driving crashes, particularly fatal and injury crashes. The effects of gasoline prices and alcohol consumption are stronger on drunk-driving crashes than on all crashes. The findings do not vary much across different demographic groups. Overall, gasoline prices have greater effects on less severe crashes and alcohol consumption has greater effects on more severe crashes. Copyright © 2010 Elsevier Ltd. All rights reserved.
A classification tree based modeling approach for segment related crashes on multilane highways.
Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek
2010-10-01
This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials. The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times. From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes. The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths. Copyright © 2010. Published by Elsevier Ltd.
A novel approach for analyzing severe crash patterns on multilane highways.
Pande, Anurag; Abdel-Aty, Mohamed
2009-09-01
This study presents a novel approach for analysis of patterns in severe crashes that occur on mid-block segments of multilane highways with partially limited access. A within stratum matched crash vs. non-crash classification approach is adopted towards that end. Under this approach crashes serve as units of analysis and it does not require aggregation of crash data over arterial segments of arbitrary lengths. Also, the proposed approach does not use information on non-severe crashes and hence is not affected by under-reporting of the minor crashes. Random samples of time, day of week, and location (i.e., milepost) combinations were collected for multilane arterials in the state of Florida and matched with severe crashes from the corresponding corridor to form matched strata consisting of severe crash and non-crash cases. For these cases, geometric design/roadside and traffic characteristics were derived based on the corresponding milepost locations. Four groups of crashes, severe rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes, on multilane arterials segments were compared separately to the non-crash cases. Severe lane-change related crashes may primarily be attributed to exposure while single-vehicle crashes and pedestrian crashes have no significant relationship with the ADT (Average Daily Traffic). For severe rear-end crashes speed limit, ADT, K-factor, time of day/day of week, median type, pavement condition, and presence of horizontal curvature were significant factors. The proposed approach uses general roadway characteristics as independent variables rather than event-specific information (i.e., crash characteristics such as driver/vehicle details); it has the potential to fit within a safety evaluation framework for arterial segments.
Safety analytics for integrating crash frequency and real-time risk modeling for expressways.
Wang, Ling; Abdel-Aty, Mohamed; Lee, Jaeyoung
2017-07-01
To find crash contributing factors, there have been numerous crash frequency and real-time safety studies, but such studies have been conducted independently. Until this point, no researcher has simultaneously analyzed crash frequency and real-time crash risk to test whether integrating them could better explain crash occurrence. Therefore, this study aims at integrating crash frequency and real-time safety analyses using expressway data. A Bayesian integrated model and a non-integrated model were built: the integrated model linked the crash frequency and the real-time models by adding the logarithm of the estimated expected crash frequency in the real-time model; the non-integrated model independently estimated the crash frequency and the real-time crash risk. The results showed that the integrated model outperformed the non-integrated model, as it provided much better model results for both the crash frequency and the real-time models. This result indicated that the added component, the logarithm of the expected crash frequency, successfully linked and provided useful information to the two models. This study uncovered few variables that are not typically included in the crash frequency analysis. For example, the average daily standard deviation of speed, which was aggregated based on speed at 1-min intervals, had a positive effect on crash frequency. In conclusion, this study suggested a methodology to improve the crash frequency and real-time models by integrating them, and it might inspire future researchers to understand crash mechanisms better. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intelligent geocoding system to locate traffic crashes.
Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie
2013-01-01
State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.
The frequency--severity indeterminacy.
Hauer, Ezra
2006-01-01
Nothing is known about unreported crashes; the information we have is of reported crashes only. Whether a crash gets reported depends on its severity. It follows by logic that, using only data about reported crashes, it is impossible to say whether a change or difference in crash counts reflects a change or difference in crash frequency or in crash severity. This indeterminacy has practical implications. Examples discussed are of the misattribution of over-representation in reported crashes of older drivers and of trucks to causal factors related to the frequency of crash involvement, and of misinterpretation by researchers of findings about the rollover propensity of SUVs.
Lord, Dominique
2006-07-01
There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.
Harland, Karisa K; Greenan, Mitchell; Ramirez, Marizen
2014-09-01
Although approximately one-third of agricultural equipment-related crashes occur near town, these crashes are thought to be a rural problem. This analysis examines differences between agricultural equipment-related crashes by their urban-rural distribution and distance from a town. Agricultural equipment crashes were collected from nine Midwest Departments of Transportation (2005-2008). Crash zip code was assigned as urban or rural (large, small and isolated) using Rural-Urban Commuting Areas. Crash proximity to a town was estimated with ArcGIS. Multivariable logistic regression was used to estimate the odds of crashing in an urban versus rural zip codes and across rural gradients. ANOVA analysis estimated mean distance (miles) from a crash site to a town. Over four years, 4444 crashes involved agricultural equipment. About 30% of crashes occurred in urban zip codes. Urban crashes were more likely to be non-collisions (aOR=1.69[1.24-2.30]), involve ≥2 vehicles (2 vehicles: aOR=1.58[1.14-2.20], 3+ vehicles: aOR=1.68[0.98-2.88]), occur in a town (aOR=2.06[1.73-2.45]) and within one mile of a town (aOR=1.65[1.40-1.95]) than rural crashes. The proportion of crashes within a town differed significantly across rural gradients (P<0.0001). Small rural crashes, compared to isolated rural crashes, were 1.98 (95%CI[1.28-3.06]) times more likely to be non-collisions. The distance from the crash to town differed significantly by the urban-rural distribution (P<0.0001). Crashes with agricultural equipment are unexpectedly common in urban areas and near towns and cities. Education among all roadway users, increased visibility of agricultural equipment and the development of complete rural roads are needed to increase road safety and prevent agricultural equipment-related crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shannon, Darren; Murphy, Finbarr; Mullins, Martin; Eggert, Julian
2018-04-01
An extensive number of research studies have attempted to capture the factors that influence the severity of vehicle impacts. The high number of risks facing all traffic participants has led to a gradual increase in sophisticated data collection schemes linking crash characteristics to subsequent severity measures. This study serves as a departure from previous research by relating injuries suffered in road traffic accidents to expected trauma compensation payouts and deriving a quantitative cost function. Data from the National Highway Traffic Safety Administration's (NHTSA) Crash Injury Research (CIREN) database for the years 2005-2014 is combined with the Book of Quantum, an Irish governmental document that offers guidelines on the appropriate compensation to be awarded for injuries sustained in accidents. A multiple linear regression is carried out to identify the crash factors that significantly influence expected compensation costs and compared to ordered and multinomial logit models. The model offers encouraging results given the inherent variation expected in vehicular incidents and the subjectivity influencing compensation payout judgments, attaining an adjusted-R 2 fit of 20.6% when uninfluential factors are removed. It is found that relative speed at time of impact and dark conditions increase the expected costs, while rear-end incidents, incident sustained in van-based trucks and incidents sustained while turning result in lower expected compensations. The number of airbags available in the vehicle is also a significant factor. The scalar-outcome approach used in this research offers an alternative methodology to the discrete-outcome models that dominate traffic safety analyses. The results also raise queries on the future development of claims reserving (capital allocations earmarked for future expected claims payments) as advanced driver assistant systems (ADASs) seek to eradicate the most frequent types of crash factors upon which insurance mathematics base their assumptions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Doud, Andrea N; Schoell, Samantha L; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John K; Meredith, J Wayne; Stitzel, Joel D
2017-04-01
Advanced Automatic Crash Notification (AACN) uses vehicle telemetry data to predict risk of serious injury among motor vehicle crash occupants and can thus improve the accuracy with which injured children are triaged by first responders. To better define serious injury for AACN systems (which typically use Abbreviated Injury Scale [AIS] metrics), an age-specific approach evaluating severity, time sensitivity (TS), and predictability of injury has been developed. This study outlines the development of the TS score. The 95% most frequent AIS 2+ injuries in a national motor vehicle crash data set spanning 2000 to 2011 were determined for the following age groups: 0 to 4, 5 to 9, 10 to 14, and 15 to 18 years. For each age-specific injury, clinicians with pediatric trauma expertise were asked if treatment at a trauma center was required and were asked about the urgency of treatment. A TS score (range 0-1) was calculated by combining the mean trauma center decision and urgency scores. A total of 30 to 32 responses were obtained for each age-specific injury. The most frequent motor vehicle crash-induced injuries in the younger groups received significantly higher scores than those in the older groups (median TS score 0 to 4 years: 0.89, 5-9 years: 0.87, 10-14 years: 0.82, 15-18 years: 0.72, P < .001). Large variations in TS existed within each AIS severity level; for example, scores among AIS 2 injuries in 0- to 4-year-olds ranged from 0.12 to 0.98. The TS of common pediatric injuries varies on the basis of age and may not be accurately reflected by AIS metrics. AIS may not capture all aspects of injury that should be considered by AACN systems. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Stigson, H
2009-06-01
The objective in this study, using data from crashed cars fitted with on-board crash pulse recorders, was to present differences in average crash severity, distribution of crash severity, and injury outcomes, based on an independent safety rating of roads, also taking road type and speed limit into consideration. Furthermore, the objective was to evaluate differences in injury risk, based on the distribution of crash severity. The investigation included both frontal two-vehicle crashes and single-vehicle crashes with known injury outcome. In total, 209 real-world crashes involving cars fitted with crash pulse recorders were included. For all crashes, average mean acceleration and change of velocity of the vehicle acceleration pulse were measured and calculated. All crash spots were classified according to an independent road safety rating program (European Road Assessment Programme Road Protection Score), where the safety quality of roads is rated in relation to posted speed limits. The crash severity and injury outcome in crashes that occurred on roads with good safety ratings were compared with crashes on roads with poor safety ratings. The data were also divided into subcategories according to posted speed limit and road type, to evaluate whether there was a difference in crash severity and injury outcome within the categories. In total, crash severity was statistically significantly lower in crashes occurring on roads with good safety ratings than in crashes occurring on roads with poor safety ratings. It was found that crash severity and injury risk were lower on roads with good safety ratings with a speed limit of above 90 km/h compared with roads with poor safety ratings, irrespective of speed limit. On the other hand, crash severity was higher on roads with good safety ratings with speed limit of 70 km/h than on roads with poor safety ratings with the same speed limit. Though it was found that a higher speed limit resulted in higher crash severity on roads with poor safety ratings, the opposite was found on roads with good safety ratings. The main reason for this was that lanes for traffic traveling in opposite directions were more often separated at higher speeds on roads with good safety ratings. On divided roads with good safety ratings, there were no crashes resulting in crash severity above the level corresponding to a 10 percent risk of sustaining serious or fatal injury. This indicates that one of the most important safety measures is divided roads.
Characteristics of Single Vehicle Crashes with a Teen Driver in South Carolina, 2005-2008.
Shults, Ruth A; Bergen, Gwen; Smith, Tracy J; Cook, Larry; Kindelberger, John; West, Bethany
2017-09-22
Teens' crash risk is highest in the first years of independent driving. Circumstances surrounding fatal crashes have been widely documented, but less is known about factors related to nonfatal teen driver crashes. This study describes single vehicle nonfatal crashes involving the youngest teen drivers (15-17 years), compares these crashes to single vehicle nonfatal crashes among adult drivers (35-44 years) and examines factors related to nonfatal injury producing crashes for teen drivers. Police crash data linked to hospital inpatient and emergency department data for 2005-2008 from the South Carolina Crash Outcomes Data Evaluation System (CODES) were analyzed. Nonfatal, single vehicle crashes involving passenger vehicles occurring on public roadways for teen (15-17 years) drivers were compared with those for adult (35-44 years) drivers on temporal patterns and crash risk factors per licensed driver and per vehicle miles traveled. Vehicle miles traveled by age group was estimated using data from the 2009 National Household Travel Survey. Multivariable log-linear regression analysis was conducted for teen driver crashes to determine which characteristics were related to crashes resulting in a minor/moderate injury or serious injury to at least one vehicle occupant. Compared with adult drivers, teen drivers in South Carolina had 2.5 times the single vehicle nonfatal crash rate per licensed driver and 11 times the rate per vehicle mile traveled. Teen drivers were nearly twice as likely to be speeding at the time of the crash compared with adult drivers. Teen driver crashes per licensed driver were highest during the afternoon hours of 3:00-5:59 pm and crashes per mile driven were highest during the nighttime hours of 9:00-11:59 pm. In 66% of the teen driver crashes, the driver was the only occupant. Crashes were twice as likely to result in serious injury when teen passengers were present than when the teen driver was alone. When teen drivers crashed while transporting teen passengers, the passengers were >5 times more likely to all be restrained if the teen driver was restrained. Crashes in which the teen driver was unrestrained were 80% more likely to result in minor/moderate injury and 6 times more likely to result in serious injury compared with crashes in which the teen driver was restrained. Despite the reductions in teen driver crashes associated with Graduated Driver Licensing (GDL), South Carolina's teen driver crash rates remain substantially higher than those for adult drivers. Established risk factors for fatal teen driver crashes, including restraint nonuse, transporting teen passengers, and speeding also increase the risk of nonfatal injury in single vehicle crashes. As South Carolina examines strategies to further reduce teen driver crashes and associated injuries, the state could consider updating its GDL passenger restriction to either none or one passenger <21years and dropping the passenger restriction exemption for trips to and from school. Surveillance systems such as CODES that link crash data with health outcome data provide needed information to more fully understand the circumstances and consequences of teen driver nonfatal crashes and evaluate the effectiveness of strategies to improve teen driver safety. Published by Elsevier Ltd.
Improving client-centered brain injury rehabilitation through research-based theater.
Kontos, Pia C; Miller, Karen-Lee; Gilbert, Julie E; Mitchell, Gail J; Colantonio, Angela; Keightley, Michelle L; Cott, Cheryl
2012-12-01
Traumatic brain injury often results in physical, behavioral, and cognitive impairments perceived by health care practitioners to limit or exclude clients' full participation in treatment decision making. We used qualitative methods to evaluate the short- and long-term impact of "After the Crash: A Play About Brain Injury," a research-based drama designed to teach client-centered care principles to brain injury rehabilitation staff. We conducted interviews and observations with staff of two inpatient neurorehabilitation units in Ontario, Canada. Findings demonstrate the effectiveness of the play in influencing practice through the avoidance of medical jargon to improve clients' understanding and participation in treatment; newfound appreciation for clients' needs for emotional expression and sexual intimacy; increased involvement of family caregivers; and avoidance of staff discussions as if clients were unaware. These findings suggest that research-based drama can effect reflexivity, empathy, and practice change to facilitate a client-centered culture of practice in brain injury rehabilitation.
Crash and risky driving involvement among novice adolescent drivers and their parents.
Simons-Morton, Bruce G; Ouimet, Marie Claude; Zhang, Zhiwei; Klauer, Sheila E; Lee, Suzanne E; Wang, Jing; Albert, Paul S; Dingus, Thomas A
2011-12-01
We compared rates of risky driving among novice adolescent and adult drivers over the first 18 months of adolescents' licensure. Data-recording systems installed in participants' vehicles provided information on driving performance of 42 newly licensed adolescent drivers and their parents. We analyzed crashes and near crashes and elevated g-force event rates by Poisson regression with random effects. During the study period, adolescents were involved in 279 crashes or near crashes (1 involving injury); parents had 34 such accidents. The incidence rate ratio (IRR) comparing adolescent and parent crash and near-crash rates was 3.91. Among adolescent drivers, elevated rates of g-force events correlated with crashes and near crashes (r = 0.60; P < .001). The IRR comparing incident rates of risky driving among adolescents and parents was 5.08. Adolescents' rates of crashes and near crashes declined with time (with a significant uptick in the last quarter), but elevated g-force event rates did not decline. Elevated g-force events among adolescents may have contributed to crash and near-crash rates that remained much higher than adult levels after 18 months of driving.
Vlakveld, Willem; Romoser, Matthew R. E.; Mehranian, Hasmik; Diete, Frank; Pollatsek, Alexander; Fisher, Donald L.
2012-01-01
Young drivers (younger than 25 years of age) are overrepresented in crashes. Research suggests that a relevant cause is inadequate visual search for possible hazards that are hidden from view. The objective of this study was to develop and evaluate a low-cost, fixed-base simulator training program that would address this failure. It was hypothesized that elicited crashes in the simulator training would result in better scanning for latent hazards in scenarios that were similar to the training scenarios but situated in a different environment (near transfer), and, to a lesser degree, would result in better scanning in scenarios that had altogether different latent hazards than those contained in the training scenarios (far transfer). To test the hypotheses, 18 trained and 18 untrained young novice drivers were evaluated on an advanced driving simulator (different from the training simulator). The eye movements of both groups were measured. In near transfer scenarios, trained drivers fixated the hazardous region 84% of the time, compared with only 57% of untrained drivers. In far transfer scenarios, trained drivers fixated the hazardous region 71 % of the time, compared with only 53% of untrained drivers. The differences between trained and untrained drivers in both the near transfer scenarios and the far transfer scenarios were significant, with a large effect size in the near transfer scenarios and a medium effect size in the far transfer scenarios [respectively: U = 63.00, p(2-tailed) < .01, r = −.53, and U = 88.00, p(2-tailed)<.05,r = −.39]. PMID:23082041
Aortic injuries in newer vehicles.
Ryb, Gabriel E; Dischinger, Patricia C; Kleinberger, Michael; McGwin, Gerald; Griffin, Russell L
2013-10-01
The occurrence of AI was studied in relation to vehicle model year (MY) among front seat vehicular occupants, age≥16 in vehicles MY≥1994, entered in the National Automotive Sampling System Crashworthiness Data System between 1997 and 2010 to determine whether newer vehicles, due to their crashworthiness improvements, are linked to a lower risk of aortic injuries (AI). MY was categorized as 1994-1997, 1998-2004, or 2005-2010 reflecting the introduction of newer occupant protection technology. Logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals for the association between AI and MY independent of possible confounders. Analysis was repeated, stratified by frontal and near lateral impacts. AI occurred in 19,187 (0.06%) of the 31,221,007 (weighted) cases, and contributed to 11% of all deaths. AIs were associated with advanced age, male gender, high BMI, near-side impact, rollover, ejection, collision against a fixed object, high ΔV, vehicle mismatch, unrestrained status, and forward track position. Among frontal crashes, MY 98-04 and MY 05-10 showed increased adjusted odds of AI when compared to MY 94-97 [OR 1.84 (1.02-3.32) and 1.99 (0.93-4.26), respectively]. In contrast, among near-side impact crashes, MY 98-04 and MY 05-10 showed decreased adjusted odds of AI [OR 0.50 (0.25-0.99) and 0.27 (0.06-1.31), respectively]. While occupants of newer vehicles experience lower odds of AI in near side impact crashes, a higher AI risk is present in frontal crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Casualty Crash Types for which Teens are at Excess Risk
Bingham, C. R.; Shope, J. T.
2007-01-01
This study identified casualty crash types for which teen drivers experience excess risk relative to adults. Michigan State Police crash records were used to examine casualty crashes in two statewide populations of drivers who experienced at least one crash from 1989–1996 (pre-graduated driver licensing in Michigan): teens (ages 16–19) and adults (ages 45–65). Rates and rate ratios (RR) based on crash occurrence per 100,000 person miles driven (PMD) compared teens and adults from the two statewide populations. Excess risk was defined as a RR for a specific type of crash that was significantly greater than the RR for all crashes combined. The RRs for all crashes combined for teenage males was 2.41 and 1.75 for teenage females. RRs for teenage males ranged from a low of 2.16 for casualty crashes attributed to alcohol to 8.98 for casualty road departure crashes at night. Among teenage females, RRs ranged from 2.06 for casualty crashes on the weekend to 7.86 for casualty crashes at night with passengers. Casualty crash rates for teenage males ranged from 0.21 per 100,000 PMD for rollover crashes to 1.95 per 100,000 PMD for crashes with passengers. Among teen females, casualty crash rates ranged from 0.21 per 100,000 PMD for drink/driving with passengers to 3.31 per 100,000 PMD for crashes with passengers. Implications for graduated driver licensing, teen driver supervision, and policy are discussed. This study was funded by the National Institute on Alcohol Abuse and Alcoholism and the Centers for Disease Control and Prevention’s National Center for Injury Prevention and Control. PMID:18184510
Crashes of sightseeing helicopter tours in Hawaii.
Haaland, Wren L; Shanahan, Dennis F; Baker, Susan P
2009-07-01
Crashes of sightseeing helicopter flights in Hawaii and the resulting tourist deaths prompted the FAA to issue regulations in 1994 specific to air tours in Hawaii. Research was undertaken to examine the effect of the 1994 Rule and to describe the circumstances of such crashes. From National Transportation Safety Board data, 59 crashes of helicopter air tour flights in Hawaii during 1981-2008 were identified; crash investigation reports were read and coded. Crashes in 1995-2008 were compared with those in 1981-1994. The 1994 Rule was followed by a 47% decrease in the crash rate, from 3.4 to 1.8/100,000 flight hours. The number of crashes into the ocean decreased from eight before the Rule to one afterwards. VFR-IMC crashes increased from 5 to 32% of crashes. There were 46 tourists and 9 pilots who died in 16 fatal crashes. Aircraft malfunctions, primarily due to poor maintenance, precipitated 34 (58%) of the crashes and persisted throughout the 28-yr period. Pilot errors were apparent in 23 crashes (39%). Flight from visual to instrument conditions occurred in two cases before the Rule and seven cases after. Terrain unsuitable for landing was cited in 37 crashes (63%). Decreases occurred in the overall number and rate of crashes and in ocean crash landings. The increase in VFR-IMC crashes may be related to the requirement that tour helicopters fly at least 1500 ft. above terrain. Attention is still needed to maintenance, pilot training, and restricting flights to operating areas and conditions that enable safe emergency landings.
Sleep-related vehicle crashes on low speed roads.
Filtness, A J; Armstrong, K A; Watson, A; Smith, S S
2017-02-01
Very little is known about the characteristics of sleep related (SR) crashes occurring on low speed roads compared with current understanding of the role of sleep in crashes occurring on high speed roads e.g. motorways. To address this gap, analyses were undertaken to identify the differences and similarities between (1) SR crashes occurring on roads with low (≤60km/h) and high (≥100km/h) speed limits, and (2) SR crashes and not-SR crashes occurring on roads with low speed limits. Police reports of all crashes occurring on low and high speed roads over a ten year period between 2000 and 2009 were examined for Queensland, Australia. Attending police officers identified all crash attributes, including 'fatigue/fell asleep', which indicates that the police believe the crash to have a causal factor relating to falling asleep, sleepiness due to sleep loss, time of day, or fatigue. Driver or rider involvement in crashes was classified as SR or not-SR. All crash-associated variables were compared using Chi-square tests (Cramer's V=effect size). A series of logistic regression was performed, with driver and crash characteristics as predictors of crash category. A conservative alpha level of 0.001 determined statistical significance. There were 440,855 drivers or riders involved in a crash during this time; 6923 (1.6%) were attributed as SR. SR crashes on low speed roads have similar characteristics to those on high speed roads with young (16-24y) males consistently over represented. SR crashes on low speed roads are noticeably different to not-SR crashes in the same speed zone in that male and young novice drivers are over represented and outcomes are more severe. Of all the SR crashes identified, 41% occurred on low speed roads. SR crashes are not confined to high speed roads. Low speed SR crashes warrant specific investigation because they occur in densely populated areas, exposing a greater number of people to risk and have more severe outcomes than not-SR crashes on the same low speed roads. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cost of Crashes Related to Road Conditions, United States, 2006
Zaloshnja, Eduard; Miller, Ted R.
2009-01-01
This is the first study to estimate the cost of crashes related to road conditions in the U.S. To model the probability that road conditions contributed to the involvement of a vehicle in the crash, we used 2000–03 Large Truck Crash Causation Study (LTCCS) data, the only dataset that provides detailed information whether road conditions contributed to crash occurrence. We applied the logistic regression results to a costed national crash dataset in order to calculate the probability that road conditions contributed to the involvement of a vehicle in each crash. In crashes where someone was moderately to seriously injured (AIS-2-6) in a vehicle that harmfully impacted a large tree or medium or large non-breakaway pole, or if the first harmful event was collision with a bridge, we changed the calculated probability of being road-related to 1. We used the state distribution of costs of fatal crashes where road conditions contributed to crash occurrence or severity to estimate the respective state distribution of non-fatal crash costs. The estimated comprehensive cost of traffic crashes where road conditions contributed to crash occurrence or severity was $217.5 billion in 2006. This represented 43.6% of the total comprehensive crash cost. The large share of crash costs related to road design and conditions underlines the importance of these factors in highway safety. Road conditions are largely controllable. Road maintenance and upgrading can prevent crashes and reduce injury severity. PMID:20184840
The impact of Michigan's text messaging restriction on motor vehicle crashes.
Ehsani, Johnathon P; Bingham, C Raymond; Ionides, Edward; Childers, David
2014-05-01
The purpose of this study was to determine the effects of Michigan's universal text messaging restriction (effective July 2010) across different age groups of drivers and crash severities. Changes in monthly crash rates and crash trends per 10,000 licensed drivers aged 16, 17, 18, 19, 20-24, and 25-50 years were estimated using time series analysis for three levels of crash severity: (1) fatal/disabling injury; (2) nondisabling injury; and (3) possible injury/property damage only (PDO) crashes for the period 2005-2012. Analyses were adjusted for crash rates of drivers' aged 65-99 years, Michigan's unemployment rate, and gasoline prices. After the introduction of the texting restriction, significant increases were observed in crash rates and monthly trends in fatal/disabling injury crashes and nondisabling injury crashes, and significant decreases in possible injury/PDO crashes. The magnitude of the effects where significant changes were observed was small. The introduction of the texting restriction was not associated with a reduction in crash rates or trends in severe crash types. On the contrary, small increases in the most severe crash types (fatal/disabling and nondisabling injury) and small decreases in the least severe crash types (possible injury/PDO) were observed. These findings extend the literature on the effects of cell phone restrictions by examining the effects of the restriction on newly licensed adolescent drivers and adult drivers separately by crash severity. Published by Elsevier Inc.
Chung, Younshik
2018-02-01
In-vehicle recording devices have enabled recent changes in methodological paradigms for traffic safety research. Such devices include event data recorders (EDRs), vehicle black boxes (VBBs), and various sensors used in naturalistic driving studies (NDSs). These technologies may help improve the validity of models used to assess impacts on traffic safety. The objective of this study is to analyze the injury severity in taxi-pedestrian crashes using the accurate crash data from VBBs, such as the time-to-collision (TTC), speed, angle, and region of the crash. VBB data from a two-year period (2010-2011) were collected from taxis operating in Incheon, South Korea. An ordered probit model was then applied to analyze the injury severity in crashes. Five variables were found to have a greater effect on injury severity: crash speed, crashes in no-median sections, crashes where the secondary impact object of pedestrians was the crash vehicle, crashes where the third impact object of pedestrians was another moving vehicle, and crashes where the third impact region of pedestrians was their head. However, injuries were less severe in crashes where the first impact region on the pedestrian was their leg, crashes with the car moving in a straight line, and crashes involving junior high school students. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent Updates of A Multi-Phase Transport (AMPT) Model
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei
2008-10-01
We will present recent updates to the AMPT model, a Monte Carlo transport model for high energy heavy ion collisions, since its first public release in 2004 and the corresponding detailed descriptions in Phys. Rev. C 72, 064901 (2005). The updates often result from user requests. Some of these updates expand the physics processes or descriptions in the model, while some updates improve the usability of the model such as providing the initial parton distributions or help avoid crashes on some operating systems. We will also explain how the AMPT model is being maintained and updated.
McDonald, Catherine C; Curry, Allison E; Kandadai, Venk; Sommers, Marilyn S; Winston, Flaura K
2014-11-01
Motor vehicle crashes are the leading cause of death and acquired disability during the first four decades of life. While teen drivers have the highest crash risk, few studies examine the similarities and differences in teen and adult driver crashes. We aimed to: (1) identify and compare the most frequent crash scenarios-integrated information on a vehicle's movement prior to crash, immediate pre-crash event, and crash configuration-for teen and adult drivers involved in serious crashes, and (2) for the most frequent scenarios, explore whether the distribution of driver critical errors differed for teens and adult drivers. We analyzed data from the National Motor Vehicle Crash Causation Survey, a nationally representative study of serious crashes conducted by the U.S. National Highway Traffic Safety Administration from 2005 to 2007. Our sample included 642 16- to 19-year-old and 1167 35- to 54-year-old crash-involved drivers (weighted n=296,482 and 439,356, respectively) who made a critical error that led to their crash's critical pre-crash event (i.e., event that made the crash inevitable). We estimated prevalence ratios (PR) and 95% confidence intervals (CI) to compare the relative frequency of crash scenarios and driver critical errors. The top five crash scenarios among teen drivers, accounting for 37.3% of their crashes, included: (1) going straight, other vehicle stopped, rear end; (2) stopped in traffic lane, turning left at intersection, turn into path of other vehicle; (3) negotiating curve, off right edge of road, right roadside departure; (4) going straight, off right edge of road, right roadside departure; and (5) stopped in lane, turning left at intersection, turn across path of other vehicle. The top five crash scenarios among adult drivers, accounting for 33.9% of their crashes, included the same scenarios as the teen drivers with the exception of scenario (3) and the addition of going straight, crossing over an intersection, and continuing on a straight path. For two scenarios ((1) and (3) above), teens were more likely than adults to make a critical decision error (e.g., traveling too fast for conditions). Our findings indicate that among those who make a driver critical error in a serious crash, there are few differences in the scenarios or critical driver errors for teen and adult drivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rear seat safety: Variation in protection by occupant, crash and vehicle characteristics.
Durbin, Dennis R; Jermakian, Jessica S; Kallan, Michael J; McCartt, Anne T; Arbogast, Kristy B; Zonfrillo, Mark R; Myers, Rachel K
2015-07-01
Current information on the safety of rear row occupants of all ages is needed to inform further advances in rear seat restraint system design and testing. The objectives of this study were to describe characteristics of occupants in the front and rear rows of model year 2000 and newer vehicles involved in crashes and determine the risk of serious injury for restrained crash-involved rear row occupants and the relative risk of fatal injury for restrained rear row vs. front passenger seat occupants by age group, impact direction, and vehicle model year. Data from the National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and Fatality Analysis Reporting System (FARS) were queried for all crashes during 2007-2012 involving model year 2000 and newer passenger vehicles. Data from NASS-CDS were used to describe characteristics of occupants in the front and rear rows and to determine the risk of serious injury (AIS 3+) for restrained rear row occupants by occupant age, vehicle model year, and impact direction. Using a combined data set containing data on fatalities from FARS and estimates of the total population of occupants in crashes from NASS-CDS, logistic regression modeling was used to compute the relative risk (RR) of death for restrained occupants in the rear vs. front passenger seat by occupant age, impact direction, and vehicle model year. Among all vehicle occupants in tow-away crashes during 2007-2012, 12.3% were in the rear row where the overall risk of serious injury was 1.3%. Among restrained rear row occupants, the risk of serious injury varied by occupant age, with older adults at the highest risk of serious injury (2.9%); by impact direction, with rollover crashes associated with the highest risk (1.5%); and by vehicle model year, with model year 2007 and newer vehicles having the lowest risk of serious injury (0.3%). Relative risk of death was lower for restrained children up to age 8 in the rear compared with passengers in the right front seat (RR=0.27, 95% CI 0.12-0.58 for 0-3 years, RR=0.55, 95% CI 0.30-0.98 for 4-8 years) but was higher for restrained 9-12-year-old children (RR=1.83, 95% CI 1.18-2.84). There was no evidence for a difference in risk of death in the rear vs. front seat for occupants ages 13-54, but there was some evidence for an increased relative risk of death for adults age 55 and older in the rear vs. passengers in the right front seat (RR=1.41, 95% CI 0.94-2.13), though we could not exclude the possibility of no difference. After controlling for occupant age and gender, the relative risk of death for restrained rear row occupants was significantly higher than that of front seat occupants in model year 2007 and newer vehicles and significantly higher in rear and right side impact crashes. Results of this study extend prior research on the relative safety of the rear seat compared with the front by examining a more contemporary fleet of vehicles. The rear row is primarily occupied by children and adolescents, but the variable relative risk of death in the rear compared with the front seat for occupants of different age groups highlights the challenges in providing optimal protection to a wide range of rear seat occupants. Findings of an elevated risk of death for rear row occupants, as compared with front row passengers, in the newest model year vehicles provides further evidence that rear seat safety is not keeping pace with advances in the front seat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Costs of Alcohol-Involved Crashes, United States, 2010
Zaloshnja, Eduard; Miller, Ted R.; Blincoe, Lawrence J.
2013-01-01
This paper estimates total and unit costs of alcohol-involved crashes in the U.S. in 2010. With methods from earlier studies, we estimated costs per crash survivor by MAIS, body part, and fracture/dislocation involvement. We multiplied them times 2010 crash incidence estimates from NHTSA data sets, with adjustments for underreporting of crashes and their alcohol involvement. The unit costs are lifetime costs discounted at 3%. To develop medical costs, we combined 2008 Health Care Utilization Program national data for hospitalizations and ED visits of crash survivors with prior estimates of post-discharge costs. Productivity losses drew on Current Population Survey and American Time Use Survey data. Quality of life losses came from a 2011 AAAM paper and property damage from insurance data. We built a hybrid incidence file comprised of 2008–2010 and 1984–86 NHTSA crash surveillance data, weighted with 2010 General Estimates System weights. Fatality data came from the 2010 FARS. An estimated 12% of 2010 crashes but only 0.9% of miles driven were alcohol-involved (BAC > .05). Alcohol-involved crashes cost an estimated $125 billion. That is 22.5% of the societal cost of all crashes. Alcohol-attributable crashes accounted for an estimated 22.5% of US auto liability insurance payments. Alcohol-involved crashes cost $0.86 per drink. Above the US BAC limit of .08, crash costs were $8.37 per mile driven; 1 in 788 trips resulted in a crash and 1 in 1,016 trips in an arrest. Unit costs for crash survivors by severity are higher for impaired driving than for other crashes. That suggests national aggregate impaired driving cost estimates in other countries are substantial underestimates if they are based on all-crash unit costs. PMID:24406941
Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi
2016-12-01
There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subaiya, Saleena; Hogg, Euan; Roberts, Ian
2011-02-03
All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. CRASH-1: ISRCTN74459797CRASH-2: ISRCTN86750102.
The Pattern of Road Traffic Crashes in South East Iran
Rad, Mahdieh; Martiniuk, Alexandra LC.; Ansari-Moghaddam, Alireza; Mohammadi, Mahdi; Rashedi, Fariborz; Ghasemi, Ardavan
2016-01-01
Background: In the present study, the epidemiologic aspects of road traffic crashes in South East of Iran are described. Methods: This cross-sectional study included the profile of 2398 motor vehicle crashes recorded in the police office in one Year in South East of Iran. Data collected included: demographics, the type of crash, type of involved vehicle, location of crash and factors contributing to the crash. Descriptive statistics were used for data analysis. Results: Collisions with other vehicles or objects contributed the highest proportion (62.4%) of motor vehicle crashes. Human factors including careless driving, violating traffic laws, speeding, and sleep deprivation/fatigue were the most important causal factors accounting for 90% of road crashes. Data shows that 41% of drivers were not using a seat belt at the time of crash. One- third of the crashes resulted in injury (25%) or death (5%). Conclusions: Reckless driving such as speeding and violation of traffic laws are major risk factors for crashes in the South East of Iran. This highlights the need for education along with traffic law enforcement to reduce motor vehicle crashes in future. PMID:27157159
The Pattern of Road Traffic Crashes in South East Iran.
Rad, Mahdieh; Martiniuk, Alexandra Lc; Ansari-Moghaddam, Alireza; Mohammadi, Mahdi; Rashedi, Fariborz; Ghasemi, Ardavan
2016-09-01
In the present study, the epidemiologic aspects of road traffic crashes in South East of Iran are described. This cross-sectional study included the profile of 2398 motor vehicle crashes recorded in the police office in one Year in South East of Iran. Data collected included: demographics, the type of crash, type of involved vehicle, location of crash and factors contributing to the crash. Descriptive statistics were used for data analysis. Collisions with other vehicles or objects contributed the highest proportion (62.4%) of motor vehicle crashes. Human factors including careless driving, violating traffic laws, speeding, and sleep deprivation/fatigue were the most important causal factors accounting for 90% of road crashes. Data shows that 41% of drivers were not using a seat belt at the time of crash. One- third of the crashes resulted in injury (25%) or death (5%). Reckless driving such as speeding and violation of traffic laws are major risk factors for crashes in the South East of Iran. This highlights the need for education along with traffic law enforcement to reduce motor vehicle crashes in future.
Females do not have more injury road accidents on Friday the 13th
Radun, Igor; Summala, Heikki
2004-01-01
Background This study reinvestigated the recent finding that females – but not males – die in traffic accidents on Friday the 13th more often than on other Fridays (Näyhä S: Traffic deaths and superstition on Friday the 13th. Am J Psychiatry 2002, 159: 2110–2111). The current study used matched setting and injury accident data base that is more numerous than fatality data. If such an effect would be caused by impaired psychic and psychomotor functioning due to more frequent anxiety among women, it should also appear in injury crashes. Methods We used the national Finnish road accident database for 1989–2002. To control seasonal variation, 21 Fridays the 13th were compared in a matched design to previous and following Fridays, excluding all holidays, on number of accidents, male/female responsibility for accidents, and the number of dead, injured and overall number of active participants (drivers, pedestrians and bicyclists) as a consequence of the accident. Results There were no significant differences in any examined aspect of road injury accidents among the three Fridays, either in females or males. Women were not overrepresented in crashes that occurred on Fridays 13th. Conclusion There is no consistent evidence for females having more road traffic crashes on Fridays the 13th, based on deaths or road accident statistics. However, this does not imply a non-existent effect of superstition related anxiety on accident risk as no exposure-to-risk data are available. People who are anxious of "Black Friday" may stay home, or at least avoid driving a car. PMID:15546493
Key risk indicators for accident assessment conditioned on pre-crash vehicle trajectory.
Shi, X; Wong, Y D; Li, M Z F; Chai, C
2018-08-01
Accident events are generally unexpected and occur rarely. Pre-accident risk assessment by surrogate indicators is an effective way to identify risk levels and thus boost accident prediction. Herein, the concept of Key Risk Indicator (KRI) is proposed, which assesses risk exposures using hybrid indicators. Seven metrics are shortlisted as the basic indicators in KRI, with evaluation in terms of risk behaviour, risk avoidance, and risk margin. A typical real-world chain-collision accident and its antecedent (pre-crash) road traffic movements are retrieved from surveillance video footage, and a grid remapping method is proposed for data extraction and coordinates transformation. To investigate the feasibility of each indicator in risk assessment, a temporal-spatial case-control is designed. By comparison, Time Integrated Time-to-collision (TIT) performs better in identifying pre-accident risk conditions; while Crash Potential Index (CPI) is helpful in further picking out the severest ones (the near-accident). Based on TIT and CPI, the expressions of KRIs are developed, which enable us to evaluate risk severity with three levels, as well as the likelihood. KRI-based risk assessment also reveals predictive insights about a potential accident, including at-risk vehicles, locations and time. Furthermore, straightforward thresholds are defined flexibly in KRIs, since the impact of different threshold values is found not to be very critical. For better validation, another independent real-world accident sample is examined, and the two results are in close agreement. Hierarchical indicators such as KRIs offer new insights about pre-accident risk exposures, which is helpful for accident assessment and prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, P.S.; Young, J.R.; Lu, An
1993-08-01
American society is undergoing a major demographic transformation that is resulting in a larger proportion of older individuals in the population. Moreover, recent travel surveys show that an increasing number of older individuals are licensed to drive and that they drive more than their same age cohort a decade ago. However, they continue to take shorter trips than younger drivers and they avoid driving during congested hours. This recent demographic transformation in our society, the graying of America, coupled with the increasing mobility of the older population impose a serious highway safety issue that cannot be overlooked. Some of themore » major concerns are the identification of ``high-risk`` older drivers and the establishment of licensing guidelines and procedures that are based on conclusive scientific evidence. Oak Ridge National Laboratory`s (ORNL) objectives in this project can be characterized by the following tasks: Review and evaluate the 1980 American Association of Motor Vehicle Administrators (AAMVA) and National Highway Traffic Safety Administration (NHTSA) licensing guidelines. Determine whether the license restriction recommended in the 1980 AAMVA and NHTSA guidelines was based on scientific evidence or on judgement of medical advisors. Identify in the scientific literature any medical conditions which are found to be highly associated with highway crashes, and which are not mentioned in the 1980 guidelines. Summarize States` current licensing practices for drivers with age-related physical and mental limitations. Identify potential data sources to establish conclusive evidence on age-related functional impairments and highway crashes.« less
Vertigo in downhill mountain biking and road cycling.
Lion, Alexis; Vibert, Dominique; Bosser, Gilles; Gauchard, Gérome C; Perrin, Philippe P
2016-01-01
Vertigo has been described after the practice of mountain bike. This study aimed to investigate the prevalence of vertigo following competitions or training sessions of downhill mountain biking (DMB) or road cycling (RC). One hundred and two DMB riders, 79 road cyclists and 73 control participants filled in a survey intended to evaluate the prevalence of vertigo in daily living activities and following competitions or training sessions. Vertigo causal factors (crashes, head trauma, fatigue, characteristics of the path/road ridden) were recorded. DMB riders and road cyclists did not report more vertigo during daily living activities than controls. But DMB riders older than 30 had more risk to report vertigo than age-matched road cyclists (OR: 5.06, 95% CI: 1.23-20.62). Road cyclists aged between 20 and 29 were 2.59-fold (95% CI: 1.06-6.27) more likely to report vertigo than controls. After competitions and training sessions, DMB riders were 2.33-fold (95% CI: 1.22-4.41) more likely to report vertigo than road cyclists. Vertigo causal factors were crash with head trauma in DMB riders and fatigue in road cyclists. Vertigo during daily living activities may be of concern for cyclists, particularly older DMB riders. The accumulation of impacts (crashes, vibrations) during the career of a DMB rider may generate micro-traumatisms of the central nervous system and/or peripheral vestibular structures, particularly the otolith organs. In RC, the pathophysiological mechanisms generating vertigo might be effort-related disturbance of homeostasis. To avoid injuries, DMB riders should be aware that vertigo may occur at the end of training sessions or competitions.
2011-01-01
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems—Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest. PMID:21876382
The crash of Colgan Air flight 3407: Advanced techniques in victim identification.
Bush, Mary; Miller, Raymond
2011-12-01
Identifying disaster victims by means of dental records is a well-established technique. In cases in which high temperatures are involved, destruction of the structural relationship of the dentition necessitates that adjunctive aids be used in the identification process. Analysis of tooth fragments by means of scanning electron microscopy with energy dispersive x-ray spectroscopy can reveal evidence of restorative procedures, as well as trace amounts of dental materials remaining on tooth surfaces. In addition, dental materials can be analyzed and identified according to brand, even if the materials have been cremated. The authors describe the identification of three victims from the crash of Colgan Air flight 3407, a commuter airplane flying between Newark, N.J., and Buffalo, N.Y. The crash involved a fire, and a portion of the airplane burned for nearly 11 hours. Dental fragments that had restorative material adhering to them were recovered and analyzed. These fragments contained corroborative information that helped confirm the identity of the victims. Detailed record keeping is part of clinical practice. The level of detail present in dental records can affect the ability of forensic odontologists to determine the identity of a victim's remains. Documenting the brand names of dental materials used in restorative procedures can make the difference between identifying and not identifying a victim's remains.
Yang, Hongtai; Cherry, Christopher R; Su, Fan; Ling, Ziwen; Pannell, Zane; Li, Yanlai; Fu, Zhijian
2018-05-25
Unreported minor crashes have importance as a surrogate for more serious crashes that require infrastructure, education, and enforcement strategies; and they still inflict damages. To study factors that influence underreporting, cause, and severity of minor crashes; a survey was performed in Kunming and Beijing to collect self-reported personal characteristics and crash history data of the three major urban road users in China: automobile drivers, bicycle riders and electric bike (e-bike) riders. Underreporting rates of automobile to automobile, automobile to non-motorized vehicle, and non-motorized vehicle to non-motorized vehicle crashes are 56%, 77% and 94%, respectively. Minor crashes with higher reported injury severity levels are more likely to be reported. E-bike riders without a driver's license are more likely to cause crashes. Licensing and education could be an effective way to reduce their crashes. The party that is not at fault in a crash is more likely to sustain high level of injury.
Selection of comparison crash types for quasi-induced exposure risk estimation.
Keall, Michael; Newstead, Stuart
2009-03-01
The objective of this study was to find a comparison crash type that best represented exposure on the road and to identify situations where the induced exposure risk estimates were likely to be biased. Counts of crash involvements were compared with distance driven estimates derived from a register of licensed motor vehicles to identify the most appropriate comparison crash type for induced exposure estimation, which is the crash type whose counts are best correlated with vehicle distance driven. The best sets of comparison crashes for disaggregations by driver age and gender and vehicle type were found to be multi-vehicle crashes in which the vehicle was damaged in the rear or multi-vehicle crashes in which the driver was adjudged to be not at fault. Likely bias of induced exposure risk estimates was identified, even for these best sets of comparison crashes, according to vehicle size (with large vehicles underrepresented) and owner age and gender (with young owners and female owners overrepresented). This research identified some important features of crash occurrence useful for making choices of comparison crash types when controlling for exposure. None of the crash types considered as comparison crashes performed perfectly. Even the crash types that seemed to best reflect exposure on the road still appeared to over- or underestimate distance driven according to owner age group, gender, and vehicle size.
Death and injury in aerial spraying: pre-crash, crash, and post-crash prevention strategies.
Richter, E D; Gordon, M; Halamish, M; Gribetz, B
1981-01-01
To prevent crash-related death and injury among spray pilots, a program including pre-crash, crash and post-crash stages of intervention for aircraft, physical environment, and pilots and ground crews was proposed in accordance with a matrix of options derived from road crash epidemiology. In addition to the dangers of fixed obstacles, low-altitude runs, and heavy work schedules, work hazards included combined exposures to noise, vibration, G forces, heat stress, pesticides, and dehydration. Together, these exposures were believed to have produced slight, but crucial decreases in pilot performance, alertness and skill. For aircraft, the major pre-crash measure was cockpit air cooling, with filter technologies to prevent in-flight pesticide exposure. Crash and post-crash design changes to reduce energy transfers to the pilot's body (thermal, kinetic) were the most important recommendations, because absolute prevention of the crash event was unlikely. For the environment, pre-crash recommendations included marking fixed obstacles, such as power and telephone lines, but preferably their elimination. Other measures included drainage pits with sodium hydroxide points to neutralize parathion and prevent dispersion of parathion-containing mists. Pilot pre-crash measures (more fluid intake, biological monitoring--EMG, urinary alkyl phosphate, cholinesterase testing) required special organizational arrangements. Systematic application of options from the foregoing matrix suggest that the high risk of death and injury from aerial spraying is unnecessary.
Traffic crash statistics report, 1998
DOT National Transportation Integrated Search
1999-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law : enforcement agency long-form reports of traffic crashes. A law enforcement officer must submit a : long-form crash report when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1995
DOT National Transportation Integrated Search
1996-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1996
DOT National Transportation Integrated Search
1997-11-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashe...
Traffic crash statistics report, 1994
DOT National Transportation Integrated Search
1995-01-01
The information contained in this Traffic Crash Data booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashes...
Traffic crash statistics report, 2004
DOT National Transportation Integrated Search
2005-01-01
The information contained in this Traffic Crash Data booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report : when investigating: : Motor vehicle crashes...
Traffic crash statistics report, 1997
DOT National Transportation Integrated Search
1998-01-01
The information contained in this Traffic Crash Facts booklet is extracted from law enforcement agency : long-form reports of traffic crashes. A law enforcement officer must submit a long-form crash report when : investigating: : Motor vehicle crashe...
2018-01-01
Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267
DOT National Transportation Integrated Search
1997-01-01
Indiana Crash Facts 1997...is the fifth annual publication : of Indiana Crash Facts. This year significant changes have been made : to the book, including the consolidation of the Alcohol Crash Facts and : the Crash Facts book into one publication. A...
DOT National Transportation Integrated Search
1996-01-01
According to Indiana State Police Crash Reports, : 221,465 traffic crashes were reported in Indiana : during 1996 (Table 1). Of these, 870 were fatal : crashes in which 982 people died. There were an : additional 52,058 personal injury crashes and a ...
The trend of road traffic crashes at urban signalised intersection
NASA Astrophysics Data System (ADS)
Farhana Nasarrudin, Nurul; Razelan, Intan Suhana Mohd
2018-04-01
Road traffic crash is one of the main contributing factors for deaths in the world. Intersection is listed as the second road type which road crashes occurred frequently. Hence, the traffic light was installed to minimise the road crashes at intersection. However, the crashes are still occurring and arising. The objective of this study was to exhibit the trend of road crashes at the signalised intersections. The data of road crashes for the past 6 years were analysed using descriptive analysis. The results showed that the road traffic crashes at three- and four-legged signalised intersection recorded the increasing trend. In conclusion, this finding shows that the road traffic crashes for these types of signalised intersection in Malaysia is rising. It is also one the contributors to the increasing number of crashes in Malaysia. This finding will encourage the local authority to conduct awareness programs on the safety at the signalised intersection.
Effects of blind spot monitoring systems on police-reported lane-change crashes.
Cicchino, Jessica B
2018-06-21
To examine the effectiveness of blind spot monitoring systems in preventing police-reported lane-change crashes. Poisson regression was used to compare crash involvement rates per insured vehicle year in police-reported lane-change crashes in 26 U.S. states during 2009-2015 between vehicles with blind spot monitoring and the same vehicle models without the optional system, controlling for other factors that can affect crash risk. Crash involvement rates in lane-change crashes were 14% lower (95% confidence limits -24% to -2%) among vehicles with blind spot monitoring than those without. Blind spot monitoring systems are effective in preventing police-reported lane-change crashes when considering crashes of all severities. If every U.S. vehicle in 2015 were equipped with blind spot monitoring that performed like the study systems, it is estimated that about 50,000 crashes could have been prevented.
Identifying work-related motor vehicle crashes in multiple databases.
Thomas, Andrea M; Thygerson, Steven M; Merrill, Ray M; Cook, Lawrence J
2012-01-01
To compare and estimate the magnitude of work-related motor vehicle crashes in Utah using 2 probabilistically linked statewide databases. Data from 2006 and 2007 motor vehicle crash and hospital databases were joined through probabilistic linkage. Summary statistics and capture-recapture were used to describe occupants injured in work-related motor vehicle crashes and estimate the size of this population. There were 1597 occupants in the motor vehicle crash database and 1673 patients in the hospital database identified as being in a work-related motor vehicle crash. We identified 1443 occupants with at least one record from either the motor vehicle crash or hospital database indicating work-relatedness that linked to any record in the opposing database. We found that 38.7 percent of occupants injured in work-related motor vehicle crashes identified in the motor vehicle crash database did not have a primary payer code of workers' compensation in the hospital database and 40.0 percent of patients injured in work-related motor vehicle crashes identified in the hospital database did not meet our definition of a work-related motor vehicle crash in the motor vehicle crash database. Depending on how occupants injured in work-related motor crashes are identified, we estimate the population to be between 1852 and 8492 in Utah for the years 2006 and 2007. Research on single databases may lead to biased interpretations of work-related motor vehicle crashes. Combining 2 population based databases may still result in an underestimate of the magnitude of work-related motor vehicle crashes. Improved coding of work-related incidents is needed in current databases.
Risk and type of crash among young drivers by rurality of residence: findings from the DRIVE Study.
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Williamson, A; Norton, R
2009-07-01
Most previous literature on urban/rural differences in road crashes has a primary focus on severe injuries or deaths, which may be largely explained by variations of medical resources. Little has been reported on police-reported crashes by geographical location, or crash type and severity, especially among young drivers. DRIVE is a prospective cohort study of 20,822 drivers aged 17-24 in NSW, Australia. Information on risk factors was collected via online questionnaire and subsequently linked to police-reported crashes. Poisson regression was used to analyse risk of various crash types by three levels of rurality of residence: urban, regional (country towns and surrounds) and rural. Compared to urban drivers, risk of crash decreased with increasing rurality (regional adjusted RR: 0.7, 95% CI 0.6-0.9; rural adjusted RR: 0.5, 95% CI 0.3-0.7). Among those who crashed, risk of injurious crash did not differ by geographic location; however, regional and rural drivers had significantly higher risk of a single versus multiple vehicle crash (regional adjusted RR 1.8, 95% CI 1.3-2.5; rural adjusted RR: 2.0, 95% CI 1.1-3.6), which was explained by speeding involvement and road alignment at the time or site of crash. Although young urban drivers have a higher crash risk overall, rural and regional residents have increased risk of a single vehicle crash. Interventions to reduce single vehicle crashes should aim to address key issues affecting such crashes, including speeding and specific aspects of road geometry.
The Stock Market Crashes of 1929 and 1987: Linking History and Personal Finance Education
ERIC Educational Resources Information Center
Lopus, Jane S.
2005-01-01
This article discusses two twentieth-century stock market crashes: the crash of 1929 and the crash of 1987. When this material is presented to students, they see important parallels between the two historical events. But despite remarkable similarities in the severity and many other aspects of the two crashes, the crash of 1929 was followed by the…
Changes in fatal and nonfatal crash rates on a toll highway.
Doege, T C; Levy, P S
1976-02-01
Rates of crashes, crashes with injuries, and crashes with fatalities were lower during the 6 months of March 1-August 31, 1974, following a 5-15 mph (8-24 kph) decrease in speed limits on the Illinois Tollway, than the corresponding rates for any of the 6 preceding years, 1968-1973. During the same months of 1968-1974, rates of crashes and of crashes with injuries showed peaks without consistent trends, but rates and percentages of fatal crashes decreased. The data agree with the hypothesis that reducing speed limits on toll roads may lead to substantial reductions in rate of crashes and injuries.
The effect of crash experience on changes in risk taking among urban and rural young people.
Lin, Mau-Roung; Huang, Wenzheng; Hwang, Hei-Fen; Wu, Hong-Dar Isaac; Yen, Lee-Lan
2004-03-01
A 20-month prospective study was conducted to investigate the effect of motorcycle crash experience on changes in risk taking among 2514 urban and 2304 rural students in Taiwan. Risk taking was assessed using a 14-item self-administered questionnaire at the beginning and end of the study. A risk-taking score for each student at the initial and the last follow-up assessments was generated from adding up points across all 14 items. For exposure variables, the study documented past motorcycle crash history at the initial assessment and collected detailed information about any motorcycle crash involvement that occurred during the study period. A general linear mixed model was applied to assess the effects of prior and recent crash involvements on the path of risk-taking behavior. The results show that at the initial assessment, students with crash experience had higher risk-taking levels than those without crash experience. However, crash experience, irregardless of whether it was measured in terms of crash history prior to the study, crash frequency, time elapsed since the last crash, or crash severity, did not significantly change the risk-taking path among students, even though its effect differed between urban and rural areas.
Traffic environment and demographic factors affecting impaired driving and crashes
Romano, Eduardo O.; Peck, Raymond C.; Voas, Robert B.
2012-01-01
Introduction Data availability has forced researchers to examine separately the role of alcohol among drivers who crashed and drivers who did not crash. Such a separation fails to account fully for the transition from impaired driving to an alcohol-related crash. Method In this study, we analyzed recent data to investigate how traffic-related environments, conditions, and drivers’ demographics shape the likelihood of a driver being either involved in a crash (alcohol impaired or not) or not involved in a crash (alcohol impaired or not). Our data, from a recent case–control study, included a comprehensive sampling of the drivers in nonfatal crashes and a matched set of comparison drivers in two U.S. locations. Multinomial logistic regression was applied to investigate the likelihood that a driver would crash or would not crash, either with a blood alcohol concentration (BAC)=.00 or with a BAC≥.05. Conclusions To our knowledge, this study is the first to examine how different driver characteristics and environmental factors simultaneously contribute to alcohol use by crash-involved and non-crash-involved drivers. This effort calls attention to the need for research on the simultaneous roles played by all the factors that may contribute to motor vehicle crashes. PMID:22385743
Reporting on cyclist crashes in Australian newspapers.
Boufous, Soufiane; Aboss, Ahmad; Montgomery, Victoria
2016-10-01
To assess information on cyclist crashes reported in Australian newspapers. The Factiva news archive was searched for articles on cyclist crashes published in major Australian newspapers between 2010 and 2013. Information on the circumstances of cyclist crashes were extracted and coded. A total of 160 cyclist crashes were covered by 198 newspaper articles, with 44% of crashes resulting in cyclist fatalities. Crashes reported by more than one newspaper were more likely to involve public figures or protracted court cases. Individual characteristics of cyclists as well as the location of the crash were reported for more than 80% of crashes. The road user at fault was reported for more than half of crashes. In contrast, information on helmet use, alcohol and cycling lanes was mentioned for only about 10% of crashes. Fewer than one in five articles mentioned prevention strategies including education campaigns, legislative and infrastructure changes. Australian newspapers tend to focus on the most dramatic and more 'newsworthy' aspects of cyclist crashes. Cycling advocates need to work with journalists to improve the quality of this coverage. Better communication between cycling advocates and journalists is likely to have a positive impact on the safety and the uptake of cycling in the community. © 2016 Public Health Association of Australia.
Generating a city's first report on bicyclist safety: lessons from the field.
Lopez, Dahianna S; Hemenway, David
2017-08-03
For cities aiming to create a useful surveillance system for bicycle injuries, a common challenge is that city crash reporting is scattered, faulty or non-existent. We document some of the lessons we learnt in helping the city of Boston, Massachusetts, USA, do the following: (1) Create a prototype for a comprehensive police crash data set (2) Produce the city's first cyclist safety report, (3) Make crash data available to the public and (4) Generate policy recommendations for both specific roadside improvements and for sustainable changes to the police department's crash reporting database. We provided research and technical assistance to government partners to generate the report and used participant-observation field notes to generate the list of learnt lessons. After the release of the report, the city implemented immediate activities aimed at making an effort to prevent injuries, including: (1) Furnishing over 1800 taxis with stickers to prevent 'dooring,' (2) Adding pavement markings at trolley tracks to decrease the likelihood that cyclists would fall from getting their wheels lodged in the tracks, (3) Conducting targeted enforcement of traffic laws and (4) Working directly with state and federal agencies to fund a more comprehensive surveillance system. As of January of 2017, nearly 4 years after its public release, 19 170 users have viewed the crash data set 23 247 times. Some of the lessons include finding and using committed champions, prioritising the use of existing data, creating opportunities to bridge divisions between stakeholders, partnering with local universities for assistance with advanced analytics and using deliverables, such as a cyclist safety report, to advocate for sustainability. Providing an initial report on bicycle crashes in Boston served to identify specific problems, showed the value of a data system, and provided a blueprint for an improved data system. Building a useful surveillance system depends in no small part on the wise use of advocacy, group dynamics, and politics. Our hope is that the lessons learnt from our experience in Boston can help others do even better. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2011-01-01
Background All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. Methods We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. Results The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Conclusions Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. Trial Registration Numbers CRASH-1: ISRCTN74459797 CRASH-2: ISRCTN86750102 PMID:21291517
Head-on crashes on two-way interurban roads: a public health concern in road safety.
Olabarria, Marta; Santamariña-Rubio, Elena; Marí-Dell'Olmo, Marc; Gotsens, Mercè; Novoa, Ana M; Borrell, Carme; Pérez, Katherine
2015-09-01
To describe the magnitude and characteristics of crashes and drivers involved in head-on crashes on two-way interurban roads in Spain between 2007 and 2012, and to identify the factors associated with the likelihood of head-on crashes on these roads compared with other types of crash. A cross-sectional study was conducted using the National Crash Register. The dependent variables were head-on crashes with injury (yes/no) and drivers involved in head-on crashes (yes/no). Factors associated with head-on crashes and with being a driver involved in a head-on crash versus other types of crash were studied using a multivariate robust Poisson regression model to estimate proportion ratios (PR) and confidence intervals (95% CI). There were 9,192 head-on crashes on two-way Spanish interurban roads. A total of 15,412 men and 3,862 women drivers were involved. Compared with other types of crash, head-on collisions were more likely on roads 7 m or more wide, on road sections with curves, narrowings or drop changes, on wet or snowy surfaces, and in twilight conditions. Transgressions committed by drivers involved in head-on crashes were driving in the opposite direction and incorrectly overtaking another vehicle. Factors associated with a lower probability of head-on crashes were the existence of medians (PR=0.57; 95%CI: 0.48-0.68) and a paved shoulder of less than 1.5 meters (PR=0.81; 95%CI: 0.77-0.86) or from 1.5 to 2.45 meters (PR=0.90; 95%CI: 0.84-0.96). This study allowed the characterization of crashes and drivers involved in head-on crashes on two-way interurban roads. The lower probability observed on roads with median strips point to these measures as an effective way to reduce these collisions. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reductions in injury crashes associated with red light camera enforcement in oxnard, california.
Retting, Richard A; Kyrychenko, Sergey Y
2002-11-01
This study estimated the impact of red light camera enforcement on motor vehicle crashes in one of the first US communities to employ such cameras-Oxnard, California. Crash data were analyzed for Oxnard and for 3 comparison cities. Changes in crash frequencies were compared for Oxnard and control cities and for signalized and nonsignalized intersections by means of a generalized linear regression model. Overall, crashes at signalized intersections throughout Oxnard were reduced by 7% and injury crashes were reduced by 29%. Right-angle crashes, those most associated with red light violations, were reduced by 32%; right-angle crashes involving injuries were reduced by 68%. Because red light cameras can be a permanent component of the transportation infrastructure, crash reductions attributed to camera enforcement should be sustainable.
Injury Risk Functions in Frontal Impacts Using Data from Crash Pulse Recorders
Stigson, Helena; Kullgren, Anders; Rosén, Erik
2012-01-01
Knowledge of how crash severity influences injury risk in car crashes is essential in order to create a safe road transport system. Analyses of real-world crashes increase the ability to obtain such knowledge. The aim of this study was to present injury risk functions based on real-world frontal crashes where crash severity was measured with on-board crash pulse recorders. Results from 489 frontal car crashes (26 models of four car makes) with recorded acceleration-time history were analysed. Injury risk functions for restrained front seat occupants were generated for maximum AIS value of two or greater (MAIS2+) using multiple logistic regression. Analytical as well as empirical injury risk was plotted for several crash severity parameters; change of velocity, mean acceleration and peak acceleration. In addition to crash severity, the influence of occupant age and gender was investigated. A strong dependence between injury risk and crash severity was found. The risk curves reflect that small changes in crash severity may have a considerable influence on the risk of injury. Mean acceleration, followed by change of velocity, was found to be the single variable that best explained the risk of being injured (MAIS2+) in a crash. Furthermore, all three crash severity parameters were found to predict injury better than age and gender. However, age was an important factor. The very best model describing MAIS2+ injury risk included delta V supplemented by an interaction term of peak acceleration and age. PMID:23169136
Selecting exposure measures in crash rate prediction for two-lane highway segments.
Qin, Xiao; Ivan, John N; Ravishanker, Nalini
2004-03-01
A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Intersection crash prediction modeling with macro-level data from various geographic units.
Lee, Jaeyoung; Abdel-Aty, Mohamed; Cai, Qing
2017-05-01
There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.J.; Barickman, F.S.; Spelt, P.F.
1998-01-01
A two-phase, multi-year research program entitled ``development of a portable driver performance data acquisition system for human factors research`` was recently completed. The primary objective of the project was to develop a portable data acquisition system for crash avoidance research (DASCAR) that will allow drive performance data to be collected using a large variety of vehicle types and that would be capable of being installed on a given vehicle type within a relatively short-time frame. During phase 1 a feasibility study for designing and fabricating DASCAR was conducted. In phase 2 of the research DASCAR was actually developed and validated.more » This technical memorandum documents the results from the feasibility study. It is subdivided into three volumes. Volume one (this report) addresses the last five items in the phase 1 research and the first issue in the second phase of the project. Volumes two and three present the related appendices, and the design specifications developed for DASCAR respectively. The six tasks were oriented toward: identifying parameters and measures; identifying analysis tools and methods; identifying measurement techniques and state-of-the-art hardware and software; developing design requirements and specifications; determining the cost of one or more copies of the proposed data acquisition system; and designing a development plan and constructing DASCAR. This report also covers: the background to the program; the requirements for the project; micro camera testing; heat load calculations for the DASCAR instrumentation package in automobile trunks; phase 2 of the research; the DASCAR hardware and software delivered to the National Highway Traffic Safety Administration; and crash avoidance problems that can be addressed by DASCAR.« less
Lee, Chris; Li, Xuancheng
2014-10-01
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car-car crashes, and sideswipe crashes have opposite effects between car-car and truck-truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy absorption studied to reduce aircraft crash forces
NASA Technical Reports Server (NTRS)
1981-01-01
The NASA/FAA aircraft safety reseach programs for general aviation aircraft are discussed. Energy absorption of aircraft subflooring and redesign of interior flooring are being studied. The testing of energy absorbing configurations is described. The three NASA advanced concepts performed at neary the maximum possible amount of energy absorption, and one of two minimum modifications concepts performed well. Planned full scale tests are described. Airplane seat concepts are being considered.
European Scientific Notes. Volume 34, Number 10,
1980-10-31
vivo use because of its short half- According to Pfannenstiel there are life, its favorable photon emissions more than 50 different forms of known thy...of medical professionals from 3 ity, biological half-lives, dosimetry countries. (Moses A. Greenfield) (absorbed dose), and the differential di...for the Advancement The crash was a serious blow for of Siene wre tld hatther isa mjor European scientists including Britain’s ga tatisrapidly
Jet Engines - The New Masters of Advanced Flight Control
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2018-05-01
ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages
Sebego, Miriam; Naumann, Rebecca B.; Rudd, Rose A.; Voetsch, Karen; Dellinger, Ann M.; Ndlovu, Christopher
2015-01-01
In Botswana, increased development and motorization have brought increased road traffic-related death rates. Between 1981 and 2001, the road traffic-related death rate in Botswana more than tripled. The country has taken several steps over the last several years to address the growing burden of road traffic crashes and particularly to address the burden of alcohol-related crashes. This study examines the impact of the implementation of alcohol and road safety-related policies on crash rates, including overall crash rates, fatal crash rates, and single-vehicle nighttime fatal (SVNF) crash rates, in Botswana from 2004 to 2011. The overall crash rate declined significantly in June 2009 and June 2010, such that the overall crash rate from June 2010 to December 2011 was 22% lower than the overall crash rate from January 2004 to May 2009. Additionally, there were significant declines in average fatal crash and SVNF crash rates in early 2010. Botswana’s recent crash rate reductions occurred during a time when aggressive policies and other activities (e.g., education, enforcement) were implemented to reduce alcohol consumption and improve road safety. While it is unclear which of the policies or activities contributed to these declines and to what extent, these reductions are likely the result of several, combined efforts. PMID:24686164
Sebego, Miriam; Naumann, Rebecca B; Rudd, Rose A; Voetsch, Karen; Dellinger, Ann M; Ndlovu, Christopher
2014-09-01
In Botswana, increased development and motorization have brought increased road traffic-related death rates. Between 1981 and 2001, the road traffic-related death rate in Botswana more than tripled. The country has taken several steps over the last several years to address the growing burden of road traffic crashes and particularly to address the burden of alcohol-related crashes. This study examines the impact of the implementation of alcohol and road safety-related policies on crash rates, including overall crash rates, fatal crash rates, and single-vehicle nighttime fatal (SVNF) crash rates, in Botswana from 2004 to 2011. The overall crash rate declined significantly in June 2009 and June 2010, such that the overall crash rate from June 2010 to December 2011 was 22% lower than the overall crash rate from January 2004 to May 2009. Additionally, there were significant declines in average fatal crash and SVNF crash rates in early 2010. Botswana's recent crash rate reductions occurred during a time when aggressive policies and other activities (e.g., education, enforcement) were implemented to reduce alcohol consumption and improve road safety. While it is unclear which of the policies or activities contributed to these declines and to what extent, these reductions are likely the result of several, combined efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Wen; Gill, Gurdiljot Singh; Sakrani, Taha; Dasu, Mohan; Zhou, Jiao
2017-11-01
Motorcycle crashes constitute a very high proportion of the overall motor vehicle fatalities in the United States, and many studies have examined the influential factors under various conditions. However, research on the impact of weather conditions on the motorcycle crash severity is not well documented. In this study, we examined the impact of weather conditions on motorcycle crash injuries at four different severity levels using San Francisco motorcycle crash injury data. Five models were developed using Full Bayesian formulation accounting for different correlations commonly seen in crash data and then compared for fitness and performance. Results indicate that the models with serial and severity variations of parameters had superior fit, and the capability of accurate crash prediction. The inferences from the parameter estimates from the five models were: an increase in the air temperature reduced the possibility of a fatal crash but had a reverse impact on crashes of other severity levels; humidity in air was not observed to have a predictable or strong impact on crashes; the occurrence of rainfall decreased the possibility of crashes for all severity levels. Transportation agencies might benefit from the research results to improve road safety by providing motorcyclists with information regarding the risk of certain crash severity levels for special weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of roadway geometric features on crash severity on rural two-lane highways.
Haghighi, Nima; Liu, Xiaoyue Cathy; Zhang, Guohui; Porter, Richard J
2018-02-01
This study examines the impact of a wide range of roadway geometric features on the severity outcomes of crashes occurred on rural two-lane highways. We argue that crash data have a hierarchical structure which needs to be addressed in modeling procedure. Moreover, most of previous studies ignored the impact of geometric features on crash types when developing crash severity models. We hypothesis that geometric features are more likely to determine crash type, and crash type together with other occupant, environmental and vehicle characteristics determine crash severity outcome. This paper presents an application of multilevel models to successfully capture both hierarchical structure of crash data and indirect impact of geometric features on crash severity. Using data collected in Illinois from 2007 to 2009, multilevel ordered logit model is developed to quantify the impact of geometric features and environmental conditions on crash severity outcome. Analysis results revealed that there is a significant variation in severity outcomes of crashes occurred across segments which verifies the presence of hierarchical structure. Lower risk of severe crashes is found to be associated with the presence of 10-ft lane and/or narrow shoulders, lower roadside hazard rate, higher driveway density, longer barrier length, and shorter barrier offset. The developed multilevel model offers greater consistency with data generating mechanism and can be utilized to evaluate safety effects of geometric design improvement projects. Published by Elsevier Ltd.
Characteristics of cyclist crashes in Italy using latent class analysis and association rule mining
De Angelis, Marco; Marín Puchades, Víctor; Fraboni, Federico; Pietrantoni, Luca
2017-01-01
The factors associated with severity of the bicycle crashes may differ across different bicycle crash patterns. Therefore, it is important to identify distinct bicycle crash patterns with homogeneous attributes. The current study aimed at identifying subgroups of bicycle crashes in Italy and analyzing separately the different bicycle crash types. The present study focused on bicycle crashes that occurred in Italy during the period between 2011 and 2013. We analyzed categorical indicators corresponding to the characteristics of infrastructure (road type, road signage, and location type), road user (i.e., opponent vehicle and cyclist’s maneuver, type of collision, age and gender of the cyclist), vehicle (type of opponent vehicle), and the environmental and time period variables (time of the day, day of the week, season, pavement condition, and weather). To identify homogenous subgroups of bicycle crashes, we used latent class analysis. Using latent class analysis, the bicycle crash data set was segmented into 19 classes, which represents 19 different bicycle crash types. Logistic regression analysis was used to identify the association between class membership and severity of the bicycle crashes. Finally, association rules were conducted for each of the latent classes to uncover the factors associated with an increased likelihood of severity. Association rules highlighted different crash characteristics associated with an increased likelihood of severity for each of the 19 bicycle crash types. PMID:28158296
Zhang, Guangnan; Li, Yanyan; King, Mark J; Zhong, Qiaoting
2018-03-21
Motor vehicle overloading is correlated with the possibility of road crash occurrence and severity. Although overloading of motor vehicles is pervasive in developing nations, few empirical analyses have been performed on factors that might influence the occurrence of overloading. This study aims to address this shortcoming by seeking evidence from several years of crash data from Guangdong province, China. Data on overloading and other factors are extracted for crash-involved vehicles from traffic crash records for 2006-2010 provided by the Traffic Management Bureau in Guangdong province. Logistic regression is applied to identify risk factors for overloading in crash-involved vehicles and within these crashes to identify factors contributing to greater crash severity. Driver, vehicle, road and environmental characteristics and violation types are considered in the regression models. In addition to the basic logistic models, association analysis is employed to identify the potential interactions among different risk factors during fitting the logistic models of overloading and severity. Crash-involved vehicles driven by males from rural households and in an unsafe condition are more likely to be overloaded and to be involved in higher severity overloaded vehicle crashes. If overloaded vehicles speed, the risk of severe traffic crash casualties increases. Young drivers (aged under 25 years) in mountainous areas are more likely to be involved in higher severity overloaded vehicle crashes. This study identifies several factors associated with overloading in crash-involved vehicles and with higher severity overloading crashes and provides an important reference for future research on those specific risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Weather impacts on single-vehicle truck crash injury severity.
Naik, Bhaven; Tung, Li-Wei; Zhao, Shanshan; Khattak, Aemal J
2016-09-01
The focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes. Random parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity. Results showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity. The research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.
Investigations of Crashes Involving Pregnant Occupants
Klinich, Kathleen DeSantis; Schneider, Lawrence W.; Moore, Jamie L.; Pearlman, Mark D.
2000-01-01
Case reports of 16 crashes involving pregnant occupants are presented that illustrate the main conclusions of a crash-investigation program that includes 42 crashes investigated to date. Some unusual cases that are exceptions to the overall trends are also described. The study indicates a strong association between adverse fetal outcome and both crash severity and maternal injury. Proper restraint use, with and without airbag deployment, generally leads to acceptable fetal outcomes in lower severity crashes, while it does not affect fetal outcome in high-severity crashes. Compared to properly restrained pregnant occupants, improperly restrained occupants have a higher risk of adverse fetal outcome in lower severity crashes, which comprise the majority of all motor-vehicle collisions. PMID:11558095
Development of a time sensitivity score for frequently occurring motor vehicle crash injuries.
Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Martin, R Shayn; Meredith, J Wayne; Stitzel, Joel D
2015-03-01
Injury severity alone is a poor indicator of the time sensitivity of injuries. The purpose of the study was to quantify the urgency with which the most frequent motor vehicle crash injuries require treatment, according to expert physicians. The time sensitivity was quantified for the top 95% most frequently occurring Abbreviated Injury Scale (AIS) 2+ injuries in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) 2000-2011. A Time Sensitivity Score was developed using expert physician survey data in which physicians were asked to determine whether a particular injury should go to a Level I/II trauma center and the urgency with which that injury required treatment. When stratifying by AIS severity, the mean Time Sensitivity Score increased with increasing AIS severity. The mean Time Sensitivity Scores by AIS severity were as follows: 0.50 (AIS 2); 0.78 (AIS 3); 0.92 (AIS 4); 0.97 (AIS 5); and 0.97 (AIS 6). When stratifying by anatomical region, the head, thorax, and abdomen were the most time sensitive. Appropriate triage depends on multiple factors, including the severity of an injury, the urgency with which it requires treatment, and the propensity of a significant injury to be missed. The Time Sensitivity Score did not correlate highly with the widely used AIS severity scores, which highlights the inability of AIS scores to capture all aspects of injury severity. The Time Sensitivity Score can be useful in Advanced Automatic Crash Notification systems for identifying highly time sensitive injuries in motor vehicle crashes requiring prompt treatment at a trauma center. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Statistical analysis of vehicle crashes in Mississippi based on crash data from 2010 to 2014.
DOT National Transportation Integrated Search
2017-08-15
Traffic crash data from 2010 to 2014 were collected by Mississippi Department of Transportation (MDOT) and extracted for the study. Three tasks were conducted in this study: (1) geographic distribution of crashes; (2) descriptive statistics of crash ...
DOT National Transportation Integrated Search
2010-06-01
The New Jersey Crash Record Geocoding Initiative was designed as a provisional measure to address missing crash locations. The purpose of the initiative was twofold. Primarily, students worked to locate crashes that had no location information after ...
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (
Vehicular crash data used to rank intersections by injury crash frequency and severity.
Liu, Yi; Li, Zongzhi; Liu, Jingxian; Patel, Harshingar
2016-09-01
This article contains data on research conducted in "A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability" (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, moderate, and minor injury levels, property damage only (PDO), and unknown. The crash data was further used to rank intersections by equivalent injury crash frequency. The top 200 intersections with the highest number of crash occurrences identified based on crash frequency- and severity-based scenarios are shared in this brief. The provided data would be a valuable source for research in urban traffic safety analysis and could also be utilized to examine the effectiveness of traffic safety improvement planning and programming, intersection design enhancement, incident and emergency management, and law enforcement strategies.
Zaloshnja, Eduard; Miller, Ted; Council, Forrest; Persaud, Bhagwant
2004-01-01
This paper presents estimates for both the economic and comprehensive costs per crash for three police-coded severity groupings within 16 selected crash types and within two speed limit categories (<=45 and >=50 mph). The economic costs are hard dollar costs. The comprehensive costs include economic costs and quality of life losses. We merged previously developed costs per victim keyed on the Abbreviated Injury Scale (AIS) into US crash data files that scored injuries in both the AIS and police-coded severity scales to produce per crash estimates. The most costly crashes were non-intersection fatal/disabling injury crashes on a road with a speed limit of 50 miles per hour or higher where multiple vehicles crashed head-on or a single vehicle struck a human (over 1.69 and $1.16 million per crash, respectively). The annual cost of police-reported run-off-road collisions, which include both rollovers and object impacts, represented 34% of total costs. PMID:15319129
Predicting reduced visibility related crashes on freeways using real-time traffic flow data.
Hassan, Hany M; Abdel-Aty, Mohamed A
2013-06-01
The main objective of this paper is to investigate whether real-time traffic flow data, collected from loop detectors and radar sensors on freeways, can be used to predict crashes occurring at reduced visibility conditions. In addition, it examines the difference between significant factors associated with reduced visibility related crashes to those factors correlated with crashes occurring at clear visibility conditions. Random Forests and matched case-control logistic regression models were estimated. The findings indicated that real-time traffic variables can be used to predict visibility related crashes on freeways. The results showed that about 69% of reduced visibility related crashes were correctly identified. The results also indicated that traffic flow variables leading to visibility related crashes are slightly different from those variables leading to clear visibility crashes. Using time slices 5-15 minutes before crashes might provide an opportunity for the appropriate traffic management centers for a proactive intervention to reduce crash risk in real-time. Copyright © 2013 Elsevier Ltd. All rights reserved.
Levine, Zachary S.; Floridi, Luciano
2017-01-01
We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a) this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b) mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention. PMID:29091931
Kashani, Ali Tavakoli; Besharati, Mohammad Mehdi
2017-06-01
The aim of this study was to uncover patterns of pedestrian crashes. In the first stage, 34,178 pedestrian-involved crashes occurred in Iran during a four-year period were grouped into homogeneous clusters using a clustering analysis. Next, some in-cluster and inter-cluster crash patterns were analysed. The clustering analysis yielded six pedestrian crash groups. Car/van/pickup crashes on rural roads as well as heavy vehicle crashes were found to be less frequent but more likely to be fatal compared to other crash clusters. In addition, after controlling for crash frequency in each cluster, it was found that the fatality rate of each pedestrian age group as well as the fatal crash involvement rate of each driver age group varies across the six clusters. Results of present study has some policy implications including, promoting pedestrian safety training sessions for heavy vehicle drivers, imposing limitations over elderly heavy vehicle drivers, reinforcing penalties toward under 19 drivers and motorcyclists. In addition, road safety campaigns in rural areas may be promoted to inform people about the higher fatality rate of pedestrians on rural roads. The crash patterns uncovered in this study might also be useful for prioritizing future pedestrian safety research areas.
Under-reporting of road traffic crash data in Ghana.
Salifu, Mohammed; Ackaah, Williams
2012-01-01
Having reliable estimates of the shortfalls in road traffic crash data is an important prerequisite for setting more realistic targets for crash/casualty reduction programmes and for a better appreciation of the socio-economic significance of road traffic crashes. This study was carried out to establish realistic estimates of the overall shortfall (under-reporting) in the official crash statistics in Ghana over an eight-year period (1997-2004). Surveys were conducted at hospitals and among drivers to generate relevant alternative data which were then matched against records in police crash data files and the official database. Overall shortfalls came from two sources, namely, 'non-reporting' and 'under-recording'. The results show that the level of non-reporting varied significantly with the severity of the crash from about 57% for property damage crashes through 8% for serious injury crashes to 0% for fatal crashes. Crashes involving cyclists and motorcyclists were also substantially non-reported. Under-recording on the other hand declined significantly over the period from an average of 37% in 1997-1998 to 27% in 2003-2004. Thus, the official statistics of road traffic crashes in Ghana are subject to significant shortfalls that need to be accounted for. Correction factors have therefore been suggested for adjusting the official data.
Characteristics of the Injury Environment in Far-Side Crashes
Digges, K.; Gabler, H; Mohan, P.; Alonso, B.
2005-01-01
The population of occupants in far-side crashes that are documented in the US National database (NASS/CDS) was studied. The annual number of front seat occupants with serious or fatal injuries in far-side planar and rollover crashes was 17,194. The crash environment that produces serious and fatal injuries to belted front seat occupants in planar far-side crashes was investigated in detail. It was found that both the change in velocity and extent of damage were important factors that relate to crash severity. The median severity for crashes with serious or fatal injuries was a lateral delta-V of 28 kph and an extent of damage of CDC 3.6. Vehicle-to-vehicle impacts were simulated by finite element models to determine the intrusion characteristics associated with the median crash condition. These simulations indicated that the side damage caused by the IIHS barrier was representative of the damage in crashes that produce serious injuries in far-side crashes. Occupant simulations of the IIHS barrier crash at 28 kph showed that existing dummies lack biofidelity in upper body motion. The analysis suggested test conditions for studying far-side countermeasures and supported earlier studies that showed the need for an improved dummy to evaluate safety performance in the far-side crash environment. PMID:16179148
Jeppsson, Hanna; Östling, Martin; Lubbe, Nils
2018-02-01
The objective of this study is to predict the real-life benefits, namely the number of injuries avoided rather than the reduction in impact speed, offered by a Vacuum Emergency Brake (VEB) added to a pedestrian automated emergency braking (AEB) system. We achieve this through the virtual simulation of simplified mathematical models of a system which incorporates expected future advances in technology, such as a wide sensor field of view, and reductions in the time needed for detection, classification, and brake pressure build up. The German In-Depth Accident Study database and the related Pre Crash Matrix, both released in the beginning of 2016, were used for this study and resulted in a final sample of 526 collisions between passenger car fronts and pedestrians. Weight factors were calculated for both simulation model and injury risk curves to make the data representative of Germany as a whole. The accident data was used with a hypothetical AEB system in a simulation model, and injury risk was calculated from the new impact speed using injury risk curves to generate new situations using real accidents. Adding a VEB to a car with pedestrian AEB decreased pedestrian casualties by an additional 8-22%, depending on system setting and injury level, over the AEB-only system. The overall decrease in fatalities was 80-87%, an improvement of 8%. Collision avoidance was improved by 14-28%. VEB with a maximum deceleration in the middle of the modelled performance range has an effectiveness similar to that of an "early activation" system, where the AEB is triggered as early as 2 s before collision. VEB may therefore offer a substantial increase in performance without increasing false positive rates, which earlier AEB activation does. Most collisions and injuries can be avoided when AEB is supplemented by the high performance VEB; remaining cases are characterised by high pedestrian walking speed and late visibility due to view obstructions. VEB is effective in all analysed accident scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using film in multicultural and social justice faculty development: scenes from Crash.
Ross, Paula T; Kumagai, Arno K; Joiner, Terence A; Lypson, Monica L
2011-01-01
We designed a faculty development workshop integrating scene excerpts from the Academy Award-winning movie Crash and active learning methods to encourage faculty participation and generate participant dialogue. The aims of this workshop were to enhance awareness of issues related to teaching in a multicultural classroom; stimulate discussion on teaching and learning about potentially contentious issues linked to race, ethnicity, religion, gender, geographical origin, and class; and expose faculty to the use of multimedia to facilitate discussion on topics of diversity and social justice. Twenty-five faculty attended 3 workshops in various venues, 18 of whom completed workshop evaluations. The workshop evaluation revealed that all participants believed that the scene excerpts and discussions helped them to reflect on their own attitudes toward race and diversity and felt better prepared to effectively facilitate classroom discussions on similar issues. This workshop is a useful tool for helping faculty to develop the skills and confidence to facilitate, manage, and stimulate discussions on controversial issues in multicultural education that may otherwise be avoided due to lack of expertise or experience. Copyright © 2010 The Alliance for Continuing Medical Education, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.
Spatial patterns monitoring of road traffic injuries in Karachi metropolis.
Lateef, Muhammad U
2011-06-01
This article aims to assess the pattern of road traffic injuries (RTIs) and fatalities in Karachi metropolis. Assessing the pattern of RTIs in Karachi at this juncture is important for many reasons. The rapid motorisation in the recent years due to the availability of credit has significantly increased the traffic volume of the city. Since then, the roads of Karachi have continuously developed at a rapid pace. This development has come with a high human loss, because the construction of multilevel flyovers, signal-free corridors and the resulting high-speed traffic ultimately increase the severity of injuries. The reasons for this high proportion are inadequate infrastructure, poor enforcement of safety regulations, high crash severity index and greater population of vulnerable road user groups (riders and pedestrians). This research is the first of its kind in the country to have a geocoded database of fatalities and injuries in a geographical information system for the entire city of Karachi. In fact, road crashes are both predictable and preventable. Developing countries should learn from the experience of highly motorised nations to avoid the high burden of RTIs by adopting road safety and prevention measures.
[Useful assessment for identifying unsafe driving].
Gonthier, Régis; Fabrigoule, Colette; Domont, Alain
2005-03-01
Ability to drive safely is the resultant of interactions between the individual (the driver), the vector (the car) and the environment (the state of the road). For some aged drivers, an important decline of visual, musculosquelettic and cognitive performances, may affect the ability to drive and increase the rate of crashes per vehicle-kilometer-driven, and the morbidity and mortality related to crash. Therefore, each holder of a driving licence should be medically suited to control his driving ability. In case of transitory or lasting driving incapacity, drivers must, of their own initiative, stop driving according to the Highway code and the contractual obligations appearing in their vehicle insurance contract. A medical examination for aptitude to driving requires a standardized, reliable, reproducible procedure based on consensual assessment tools to avoid arbitrary decisions for driving cessation. We propose a multidisciplinary approach to detect important decline of visuospatial and motor skills, paroxystic drops of attention and vigilance, and decreased cognitive capacity to anticipate and adapt driving at every moment. This assessment is based on a semi-directed interview and simple diagnostic tests. According to the present French law, only twelve medical conditions or functional deficits are inconsistent with the retain of the driving licence for a light vehicle.
NASA Astrophysics Data System (ADS)
Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham
2010-03-01
In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.
Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2018-01-02
Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to increase the effectiveness of the countermeasures in preventing and reducing vehicle-pedestrian crashes.
Naturalistic Assessment of Novice Teenage Crash Experience
Lee, Suzanne E.; Simons-Morton, Bruce G.; Klauer, Sheila E.; Ouimet, Marie Claude; Dingus, Thomas A.
2011-01-01
Background Crash risk is highest during the first months after licensure. Current knowledge about teenagers’ driving exposure and the factors increasing their crash risk is based on self-reported data and crash database analyses. While these research tools are useful, new developments in naturalistic technologies have allowed researchers to examine newly-licensed teenagers’ exposure and crash risk factors in greater detail. The Naturalistic Teenage Driving Study (NTDS) described in this paper is the first study to follow a group of newly-licensed teenagers continuously for 18 months after licensure. The goals of this paper are to compare the crash and near-crash experience of drivers in the NTDS to national trends, to describe the methods and lessons learned in the NTDS, and to provide initial data on driving exposure for these drivers. Methods A data acquisition system was installed in the vehicles of 42 newly-licensed teenage drivers 16 years of age during their first 18 months of independent driving. It consisted of cameras, sensors (accelerometers, GPS, yaw, front radar, lane position, and various sensors obtained via the vehicle network), and a computer with removable hard drive. Data on the driving of participating parents was also collected when they drove the instrumented vehicle. Findings The primary findings after 18 months included the following: (1) crash and near-crash rates among teenage participants were significantly higher during the first six months of the study than the final 12 months, mirroring the national trends; (2) crash and near-crash rates were significantly higher for teenage than adult (parent) participants, also reflecting national trends; (3) teenaged driving exposure averaged between 507-710 kilometers (315-441 miles) per month over the study period, but varied substantially between participants with standard errors representing 8-14 percent of the mean; and (4) crash and near-crash types were very similar for male and female teenage drivers.. Discussion The findings are the first comparing crash and near-crash rates among novice teenage drivers with those of adults using the same vehicle over the same period of time. The finding of highly elevated crash rates of novice teenagers during the first six months of licensure are consistent with and confirm the archival crash data showing high crash risk for novice teenagers. The NTDS convenience sample of teenage drivers was similar to the U.S. teenage driver population in terms of exposure and crash experience. The dataset is expected be a valuable resource for future in-depth analyses of crash risk, exposure to risky driving conditions, and comparisons of teenage and adult driving performance in various driving situations. PMID:21545880
Intelligent video storage of visual evidences on site in fast deployment
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois
2004-07-01
In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.
76 FR 53660 - Federal Motor Vehicle Safety Standards; Seat Belt Assemblies
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... further require integration of electrical signals from existing front and side crash sensor information... require additional crash sensors for rollover and rear-end crash events for vehicles without such sensors. Crash imminent sensors, or sensors that detect an impending crash, may also be needed. It is also...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
49 CFR 238.403 - Crash energy management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Crash energy management. 238.403 Section 238.403... Equipment § 238.403 Crash energy management. (a) Each power car and trailer car shall be designed with a crash energy management system to dissipate kinetic energy during a collision. The crash energy...
Facilities and Methods Used in Full-scale Airplane Crash-fire Investigation
NASA Technical Reports Server (NTRS)
Black, Dugald O.
1952-01-01
The facilities and the techniques employed in the conduct of full scale airplane crash-fire studies currently being conducted at the NACA Lewis laboratory are discussed herein. This investigation is part of a comprehensive study of the airplane crash-fire problem. The crash configuration chosen, the general physical layout of the crash site, the test methods, the instrumentation, the data-recording systems, and the post-crash examination procedure are described
Comparative analysis of PA-31-350 Chieftain (N44LV) accident and NASA crash test data
NASA Technical Reports Server (NTRS)
Hayduk, R. J.
1979-01-01
A full scale, controlled crash test to simulate the crash of a Piper PA-31-350 Chieftain airplane is described. Comparisons were performed between the simulated crash and the actual crash in order to assess seat and floor behavior, and to estimate the acceleration levels experienced in the craft at the time of impact. Photographs, acceleration histories, and the tested airplane crash data is used to augment the accident information to better define the crash conditions. Measured impact parameters are presented along with flight path velocity and angle in relation to the impact surface.
Real World Crash Evaluation of Vehicle Stability Control (VSC) Technology
Bahouth, G.
2005-01-01
This study quantifies the effect of Vehicle Stability Control (VSC) in reducing crash involvement rates for a subset of vehicles in the US fleet. Crash rates for a variety of impact types before and after VSC technology was implemented are compared. Police-reported crashes from six available US state files from 1998–2002 were analyzed including 13,987 crash-involved study vehicles not equipped with the technology and 5,671 crashes of vehicles equipped with VSC as a standard feature. Overall, an 11.2% (95% CI: 2.4%, 21.1%) reduction in multi-vehicle frontal crash involvement was identified for VSC-equipped vehicles. A 52.6% (95% CI: 42.5%, 62.7%) reduction in single-vehicle crash rates was found. PMID:16179137
Real world crash evaluation of vehicle stability control (VSC) technology.
Bahouth, G
2005-01-01
This study quantifies the effect of Vehicle Stability Control (VSC) in reducing crash involvement rates for a subset of vehicles in the US fleet. Crash rates for a variety of impact types before and after VSC technology was implemented are compared. Police-reported crashes from six available US state files from 1998-2002 were analyzed including 13,987 crash-involved study vehicles not equipped with the technology and 5,671 crashes of vehicles equipped with VSC as a standard feature. Overall, an 11.2% (95% CI: 2.4%, 21.1%) reduction in multi-vehicle frontal crash involvement was identified for VSC-equipped vehicles. A 52.6% (95% CI: 42.5%, 62.7%) reduction in single-vehicle crash rates was found.
Farmer, C M
2001-05-01
Fatal crash rates for passenger cars and vans were compared for the last model year before four-wheel antilock brakes were introduced and the first model year for which antilock brakes were standard equipment. A prior study, based on fatal crash experience through 1995, reported that vehicle models with antilock brakes were more likely than identical but 1-year-earlier models to be involved in crashes fatal to their own occupants, but were less likely to be involved in crashes fatal to occupants of other vehicles. Overall, there was no significant effect of antilocks on the likelihood of fatal crashes. Similar analyses, based on fatal crash experience during 1996-98, yielded very different results. During 1996-98, vehicles with antilock brakes were again less likely than earlier models to be involved in crashes fatal to occupants of other vehicles, but they were no longer overinvolved in crashes fatal to their own occupants.
Neighborhood Influences on Vehicle-Pedestrian Crash Severity.
Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas
2017-12-01
Socioeconomic factors are known to be contributing factors for vehicle-pedestrian crashes. Although several studies have examined the socioeconomic factors related to the location of the crashes, limited studies have considered the socioeconomic factors of the neighborhood where the road users live in vehicle-pedestrian crash modelling. This research aims to identify the socioeconomic factors related to both the neighborhoods where the road users live and where crashes occur that have an influence on vehicle-pedestrian crash severity. Data on vehicle-pedestrian crashes that occurred at mid-blocks in Melbourne, Australia, was analyzed. Neighborhood factors associated with road users' residents and location of crash were investigated using boosted regression tree (BRT). Furthermore, partial dependence plots were applied to illustrate the interactions between these factors. We found that socioeconomic factors accounted for 60% of the 20 top contributing factors to vehicle-pedestrian crashes. This research reveals that socioeconomic factors of the neighborhoods where the road users live and where the crashes occur are important in determining the severity of the crashes, with the former having a greater influence. Hence, road safety countermeasures, especially those focussing on the road users, should be targeted at these high-risk neighborhoods.
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.
Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan
2014-03-01
The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p < 0.01) and medium (OR, 0.9; 95% CI, 0.8-1.0; p < 0.05) crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p < 0.001), but not at high ΔV (p ≥ 0.09). Among adults in model year 1998 to 2010 vehicles involved in medium and high severity motor vehicle crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.
Identifying crash-prone traffic conditions under different weather on freeways.
Xu, Chengcheng; Wang, Wei; Liu, Pan
2013-09-01
Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
Conner, Kristen A; Smith, Gary A
2017-05-19
Nationally, motor vehicle crashes are the leading cause of death among youth ages 16 to 20 years. Graduated driver licensing (GDL) laws have been implemented to reduce motor vehicle crashes among teen drivers. Studies have shown decreases in teen crash rates and crash-related fatality rates following enactment of GDL laws. However, GDL laws typically apply to teens only until their 18th birthday; therefore, the effect, if any, that GDL laws have on youth drivers ages 18 to 20 years and whether these programs should be extended to include these older youth warrant further study. The objective of this study was to evaluate the effects of Ohio's 2007 revised GDL law on motor vehicle crashes and crash-related injuries for crashes involving teen drivers ages 16 to 20 years, with a focus on the effects on crashes involving drivers ages 18 to 20 years. Cross-sectional analysis of motor vehicle crashes involving drivers ages 16 to 20 years in Ohio in the pre-GDL (2004-2006) and post-GDL (2008-2010) periods was performed. Descriptive statistics and population-based crash rates for drivers and occupants ages 16 to 20 years were calculated, as well as rate ratios and 95% confidence intervals (CIs) comparing crashes in the pre-GDL and post-GDL periods. Compared with the pre-GDL period, the post-GDL period was associated with lower crash rates for drivers age 16 years (relative risk [RR] = 0.94; 95% CI, 0.90-0.98), age 17 years (RR = 0.90; 95% CI, 0.88-0.93), age 18 years (RR = 0.95; 95% CI, 0.92-0.97), and ages 16-17 years combined (RR = 0.92; 95% CI, 0.90-0.95). Crash rate was higher for the post-GDL period for drivers age 19 years (RR = 1.04; 95% CI, 1.01-1.07), age 20 years (RR = 1.09; 95% CI, 1.05-1.13), and ages 18-20 years combined (RR = 1.02; 95% CI, 1.00-1.03). Unlike previous studies, this investigation used linked data to evaluate the outcomes of all occupants in crashes involving drivers ages 16-20 years. The post-GDL period was associated with lower crash, injury crash, and fatal crash involvement among drivers and occupants ages 16-17 years but higher overall crash involvement for drivers and occupants ages 19 years, 20 years, and 18-20 years combined. These findings support extending GDL restrictions to novice drivers ages 18 through 20 years to reduce crashes in that group.
Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto
2017-01-01
The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision. PMID:29186851
Sun, Rui; Cheng, Qi; Xue, Dabin; Wang, Guanyu; Ochieng, Washington Yotto
2017-11-25
The increasing number of vehicles in modern cities brings the problem of increasing crashes. One of the applications or services of Intelligent Transportation Systems (ITS) conceived to improve safety and reduce congestion is collision avoidance. This safety critical application requires sub-meter level vehicle state estimation accuracy with very high integrity, continuity and availability, to detect an impending collision and issue a warning or intervene in the case that the warning is not heeded. Because of the challenging city environment, to date there is no approved method capable of delivering this high level of performance in vehicle state estimation. In particular, the current Global Navigation Satellite System (GNSS) based collision avoidance systems have the major limitation that the real-time accuracy of dynamic state estimation deteriorates during abrupt acceleration and deceleration situations, compromising the integrity of collision avoidance. Therefore, to provide the Required Navigation Performance (RNP) for collision avoidance, this paper proposes a novel Particle Filter (PF) based model for the integration or fusion of real-time kinematic (RTK) GNSS position solutions with electronic compass and road segment data used in conjunction with an Autoregressive (AR) motion model. The real-time vehicle state estimates are used together with distance based collision avoidance algorithms to predict potential collisions. The algorithms are tested by simulation and in the field representing a low density urban environment. The results show that the proposed algorithm meets the horizontal positioning accuracy requirement for collision avoidance and is superior to positioning accuracy of GNSS only, traditional Constant Velocity (CV) and Constant Acceleration (CA) based motion models, with a significant improvement in the prediction accuracy of potential collision.
Severe injury in multiple impacts: Analysis of 1997-2015 NASS-CDS.
Viano, David C; Parenteau, Chantal S
2018-07-04
This is a descriptive study of the incidence and risk for severe injury in single-impact and multi-impact crashes by belt use and crash type using NASS-CDS. 1997-2015 NASS-CDS data were used to determine the distribution of crashes by the number of impacts and severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to >15-year-old nonejected drivers by seat belt use in 1997+ MY vehicles. It compares the risk for severe injury in a single impact and in crashes involving 2, 3, or 4+ impacts in the collision with a focus on a frontal crash followed by other impacts. Most vehicle crashes involve a single impact (75.4% of 44,889,518 vehicles), followed by 2-impact crashes (19.6%), 3-impact crashes (5.0%) and 4+ impacts (2.6%). For lap-shoulder-belted drivers, the distribution of severe injury was 42.1% in a single impact, 29.3% in 2 impacts, 13.4% in 3 impacts, and 15.1% in 4+ impact crashes. The risk for a belted driver was 0.256 ± 0.031% in a single impact, 0.564 ± 0.079% in 2 impacts, 0.880 ± 0.125% in 3 impacts, and 2.121 ± 0.646% in 4+ impact. The increase in risk from a single crash to multi-impact collisions was statistically significant (P < .001). In a single impact, 53.8% of belted drivers were in a frontal crashes, 22.4% in side crashes, 20% in rear crashes, and 1.7% in rollover crashes. The risk for severe injury was highest in a rollover at 0.677 ± 0.250%, followed by near-side impact at 0.467 ± 0.084% and far-side impact at 0.237 ± 0.071%. Seat belt use was 82.4% effective in preventing severe injury (MAIS 4+F) in a rollover, 47.9% in a near-side impact, and 74.8% in a far-side impact. In 2-impact crashes with a belted driver, the most common sequence was a rear impact followed by a frontal crash at 1,843,506 (21.5%) with a risk for severe injury of 0.100 ± 0.058%. The second most common was a frontal impact followed by another frontal crash at 1,257,264 (14.7%) with a risk of 0.401 ± 0.057%. The risk was 0.658 ± 0.271% in a frontal impact followed by a rear impact. A near-side impact followed by a rear crash had the highest risk for severe injury at 2.073 ± 1.322%. Restraint systems are generally developed for a single crash or sled test. The risk for severe injury was significantly higher in 2-, 3-, and 4+-impact crashes than a single impact. The majority (57.9%) of severe injuries occurred in multi-impact crashes with belted drivers. The evaluation of restraint performance warrants additional study in multi-impact crashes.
Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W
2006-11-01
Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control of the crash forces acting on a racing car. NASCAR (National Association for Stock Car Auto Racing, Inc) implemented crash recording in stock car racing in its three national series in 2002. Data from 2925 crashes from 2002 through the 2005 season are summarized in terms of crash severity, crash direction, injury outcome, and protective system performance.
Database improvements for motor vehicle/bicycle crash analysis
Lusk, Anne C; Asgarzadeh, Morteza; Farvid, Maryam S
2015-01-01
Background Bicycling is healthy but needs to be safer for more to bike. Police crash templates are designed for reporting crashes between motor vehicles, but not between vehicles/bicycles. If written/drawn bicycle-crash-scene details exist, these are not entered into spreadsheets. Objective To assess which bicycle-crash-scene data might be added to spreadsheets for analysis. Methods Police crash templates from 50 states were analysed. Reports for 3350 motor vehicle/bicycle crashes (2011) were obtained for the New York City area and 300 cases selected (with drawings and on roads with sharrows, bike lanes, cycle tracks and no bike provisions). Crashes were redrawn and new bicycle-crash-scene details were coded and entered into the existing spreadsheet. The association between severity of injuries and bicycle-crash-scene codes was evaluated using multiple logistic regression. Results Police templates only consistently include pedal-cyclist and helmet. Bicycle-crash-scene coded variables for templates could include: 4 bicycle environments, 18 vehicle impact-points (opened-doors and mirrors), 4 bicycle impact-points, motor vehicle/bicycle crash patterns, in/out of the bicycle environment and bike/relevant motor vehicle categories. A test of including these variables suggested that, with bicyclists who had minor injuries as the control group, bicyclists on roads with bike lanes riding outside the lane had lower likelihood of severe injuries (OR, 0.40, 95% CI 0.16 to 0.98) compared with bicyclists riding on roads without bicycle facilities. Conclusions Police templates should include additional bicycle-crash-scene codes for entry into spreadsheets. Crash analysis, including with big data, could then be conducted on bicycle environments, motor vehicle potential impact points/doors/mirrors, bicycle potential impact points, motor vehicle characteristics, location and injury. PMID:25835304
Liu, Jun; Khattak, Asad J; Richards, Stephen H; Nambisan, Shashi
2015-12-01
Crashes at highway-rail grade crossings can result in severe injuries and fatalities to vehicle occupants. Using a crash database from the Federal Railroad Administration (N=15,639 for 2004-2013), this study explores differences in safety outcomes from crashes between passive controls (Crossbucks and STOP signs) and active controls (flashing lights, gates, audible warnings and highway signals). To address missing data, an imputation model is developed, creating a complete dataset for estimation. Path analysis is used to quantify the direct and indirect associations of passive and active controls with pre-crash behaviors and crash outcomes in terms of injury severity. The framework untangles direct and indirect associations of controls by estimating two models, one for pre-crash driving behaviors (e.g., driving around active controls), and another model for injury severity. The results show that while the presence of gates is not directly associated with injury severity, the indirect effect through stopping behavior is statistically significant (95% confidence level) and substantial. Drivers are more likely to stop at gates that also have flashing lights and audible warnings, and stopping at gates is associated with lower injury severity. This indirect association lowers the chances of injury by 16%, compared with crashes at crossings without gates. Similar relationships between other controls and injury severity are explored. Generally, crashes occurring at active controls are less severe than crashes at passive controls. The results of study can be used to modify Crash Modification Factors (CMFs) to account for crash injury severity. The study contributes to enhancing the understanding of safety by incorporating pre-crash behaviors in a broader framework that quantifies correlates of crash injury severity at active and passive crossings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of four statistical and machine learning methods for crash severity prediction.
Iranitalab, Amirfarrokh; Khattak, Aemal
2017-11-01
Crash severity prediction models enable different agencies to predict the severity of a reported crash with unknown severity or the severity of crashes that may be expected to occur sometime in the future. This paper had three main objectives: comparison of the performance of four statistical and machine learning methods including Multinomial Logit (MNL), Nearest Neighbor Classification (NNC), Support Vector Machines (SVM) and Random Forests (RF), in predicting traffic crash severity; developing a crash costs-based approach for comparison of crash severity prediction methods; and investigating the effects of data clustering methods comprising K-means Clustering (KC) and Latent Class Clustering (LCC), on the performance of crash severity prediction models. The 2012-2015 reported crash data from Nebraska, United States was obtained and two-vehicle crashes were extracted as the analysis data. The dataset was split into training/estimation (2012-2014) and validation (2015) subsets. The four prediction methods were trained/estimated using the training/estimation dataset and the correct prediction rates for each crash severity level, overall correct prediction rate and a proposed crash costs-based accuracy measure were obtained for the validation dataset. The correct prediction rates and the proposed approach showed NNC had the best prediction performance in overall and in more severe crashes. RF and SVM had the next two sufficient performances and MNL was the weakest method. Data clustering did not affect the prediction results of SVM, but KC improved the prediction performance of MNL, NNC and RF, while LCC caused improvement in MNL and RF but weakened the performance of NNC. Overall correct prediction rate had almost the exact opposite results compared to the proposed approach, showing that neglecting the crash costs can lead to misjudgment in choosing the right prediction method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harland, Karisa K; Carney, Cher; McGehee, Daniel
2016-07-03
The objective of this study was to estimate the prevalence and odds of fleet driver errors and potentially distracting behaviors just prior to rear-end versus angle crashes. Analysis of naturalistic driving videos among fleet services drivers for errors and potentially distracting behaviors occurring in the 6 s before crash impact. Categorical variables were examined using the Pearson's chi-square test, and continuous variables, such as eyes-off-road time, were compared using the Student's t-test. Multivariable logistic regression was used to estimate the odds of a driver error or potentially distracting behavior being present in the seconds before rear-end versus angle crashes. Of the 229 crashes analyzed, 101 (44%) were rear-end and 128 (56%) were angle crashes. Driver age, gender, and presence of passengers did not differ significantly by crash type. Over 95% of rear-end crashes involved inadequate surveillance compared to only 52% of angle crashes (P < .0001). Almost 65% of rear-end crashes involved a potentially distracting driver behavior, whereas less than 40% of angle crashes involved these behaviors (P < .01). On average, drivers spent 4.4 s with their eyes off the road while operating or manipulating their cell phone. Drivers in rear-end crashes were at 3.06 (95% confidence interval [CI], 1.73-5.44) times adjusted higher odds of being potentially distracted than those in angle crashes. Fleet driver driving errors and potentially distracting behaviors are frequent. This analysis provides data to inform safe driving interventions for fleet services drivers. Further research is needed in effective interventions to reduce the likelihood of drivers' distracting behaviors and errors that may potentially reducing crashes.
Prevalence of teen driver errors leading to serious motor vehicle crashes.
Curry, Allison E; Hafetz, Jessica; Kallan, Michael J; Winston, Flaura K; Durbin, Dennis R
2011-07-01
Motor vehicle crashes are the leading cause of adolescent deaths. Programs and policies should target the most common and modifiable reasons for crashes. We estimated the frequency of critical reasons for crashes involving teen drivers, and examined in more depth specific teen driver errors. The National Highway Traffic Safety Administration's (NHTSA) National Motor Vehicle Crash Causation Survey collected data at the scene of a nationally representative sample of 5470 serious crashes between 7/05 and 12/07. NHTSA researchers assigned a single driver, vehicle, or environmental factor as the critical reason for the event immediately leading to each crash. We analyzed crashes involving 15-18 year old drivers. 822 teen drivers were involved in 795 serious crashes, representing 335,667 teens in 325,291 crashes. Driver error was by far the most common reason for crashes (95.6%), as opposed to vehicle or environmental factors. Among crashes with a driver error, a teen made the error 79.3% of the time (75.8% of all teen-involved crashes). Recognition errors (e.g., inadequate surveillance, distraction) accounted for 46.3% of all teen errors, followed by decision errors (e.g., following too closely, too fast for conditions) (40.1%) and performance errors (e.g., loss of control) (8.0%). Inadequate surveillance, driving too fast for conditions, and distracted driving together accounted for almost half of all crashes. Aggressive driving behavior, drowsy driving, and physical impairments were less commonly cited as critical reasons. Males and females had similar proportions of broadly classified errors, although females were specifically more likely to make inadequate surveillance errors. Our findings support prioritization of interventions targeting driver distraction and surveillance and hazard awareness training. Copyright © 2010 Elsevier Ltd. All rights reserved.
Assessing the role of pavement macrotexture in preventing crashes on highways.
Pulugurtha, Srinivas S; Kusam, Prasanna R; Patel, Kuvleshay J
2010-02-01
The objective of this article is to assess the role of pavement macrotexture in preventing crashes on highways in the State of North Carolina. Laser profilometer data obtained from the North Carolina Department of Transportation (NCDOT) for highways comprising four corridors are processed to calculate pavement macrotexture at 100-m (approximately 330-ft) sections according to the American Society for Testing and Materials (ASTM) standards. Crash data collected over the same lengths of the corridors were integrated with the calculated pavement macrotexture for each section. Scatterplots were generated to assess the role of pavement macrotexture on crashes and logarithm of crashes. Regression analyses were conducted by considering predictor variables such as million vehicle miles of travel (as a function of traffic volume and length), the number of interchanges, the number of at-grade intersections, the number of grade-separated interchanges, and the number of bridges, culverts, and overhead signs along with pavement macrotexture to study the statistical significance of relationship between pavement macrotexture and crashes (both linear and log-linear) when compared to other predictor variables. Scatterplots and regression analysis conducted indicate a more statistically significant relationship between pavement macrotexture and logarithm of crashes than between pavement macrotexture and crashes. The coefficient for pavement macrotexture, in general, is negative, indicating that the number of crashes or logarithm of crashes decreases as it increases. The relation between pavement macrotexture and logarithm of crashes is generally stronger than between most other predictor variables and crashes or logarithm of crashes. Based on results obtained, it can be concluded that maintaining pavement macrotexture greater than or equal to 1.524 mm (0.06 in.) as a threshold limit would possibly reduce crashes and provide safe transportation to road users on highways.
Spinal injury in car crashes: crash factors and the effects of occupant age.
Bilston, Lynne E; Clarke, Elizabeth C; Brown, Julie
2011-08-01
Motor vehicle crashes are the leading cause of serious spinal injury in most developed nations. However, since these injuries are rare, systematic analyses of the crash factors that are predictive of spinal injury have rarely been performed. This study aimed to use a population-reference crash sample to identify crash factors associated with moderate to severe spinal injury, and how these vary with occupant age. The US National Automotive Sampling System Crashworthiness Data System (NASS) data for 1993-2007 were analysed using logistic regression to identify crash factors associated with Abbreviated Injury Scale (AIS)2+ spinal injury among restrained vehicle passengers. Risk of moderate or severe spinal injury (AIS2+) was associated with higher severity crashes (OR=3.5 (95% CI 2.6 to 4.6)), intrusion into an occupant's seating position (OR=2.7 (95% CI 1.9 to 3.7)), striking a fixed object rather than another car (OR=1.7 (95% CI 1.3 to 2.1)), and use of a shoulder-only belt (OR=2.7 (95% CI 1.5 to 4.8)). Older occupants (65 years or older) were at higher risk of spinal injury than younger adults in frontal, side and rollover crashes. Children under 16 were at a lower risk of spinal injury than adults in all crash types except frontal crashes. While the risk of serious spinal injury in motor vehicle crashes is low, these injuries are more common in crashes of higher severity or into fixed objects, and in the presence of intrusion. There are elevated risks of spinal injury for older occupants compared with younger adults, which may reflect changes in biomechanical tolerances with age. Children appear to be at lower risk of serious spinal injury than adults except in frontal crashes.
Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A
2017-01-01
Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.
Abdel-Aty, Mohamed; Chundi, Sai Srinivas; Lee, Chris
2007-01-01
There is a growing concern with the safety of school-aged children. This study identifies the locations of pedestrian/bicyclist crashes involving school-aged children and examines the conditions when these crashes are more likely to occur. The 5-year records of crashes in Orange County, Florida where school-aged children were involved were used. The spatial distribution of these crashes was investigated using the Geographic Information Systems (GIS) and the likelihoods of crash occurrence under different conditions were estimated using log-linear models. A majority of school-aged children crashes occurred in the areas near schools. Although elementary school children were generally very involved, middle and high school children were more involved in crashes, particularly on high-speed multi-lane roadways. Driver's age, gender, and alcohol use, pedestrian's/bicyclist's age, number of lanes, median type, speed limits, and speed ratio were also found to be correlated with the frequency of crashes. The result confirms that school-aged children are exposed to high crash risk near schools. High crash involvement of middle and high school children reflects that middle and high schools tend to be located near multi-lane high-speed roads. The pedestrian's/bicyclist's demographic factors and geometric characteristics of the roads adjacent to schools associated with school children's crash involvement are of interest to school districts.
Helicopter crashes related to oil and gas operations in the Gulf of Mexico.
Baker, Susan P; Shanahan, Dennis F; Haaland, Wren; Brady, Joanne E; Li, Guohua
2011-09-01
The hazards inherent in flight operations in the Gulf of Mexico prompted investigation of the number and circumstances of crashes related to oil and gas operations in the region. The National Transportation Safety Board (NTSB) database was queried for helicopter crashes during 1983 through 2009 related to Gulf of Mexico oil or gas production. The crashes were identified based on word searches confirmed by a narrative statement indicating that the flight was related to oil or gas operations. During 1983-2009, the NTSB recorded a total of 178 helicopter crashes related to oil and gas operations in the Gulf of Mexico, with an average of 6.6 crashes per year (5.6 annually during 1983-1999 vs. 8.2 during 2000-2009). The crashes resulted in a total of 139 fatalities, including 41 pilots. Mechanical failure was the most common precipitating factor, accounting for 68 crashes (38%). Bad weather led to 29 crashes (16%), in which 40% of the 139 deaths occurred. Pilot error was cited by the NTSB in 83 crashes (47%). After crashes or emergency landings on water, 15 helicopters sank when flotation devices were not activated automatically or by pilots. Mechanical failure, non-activation of flotation, and pilot error are major problems to be addressed if crashes and deaths in this lethal environment are to be reduced.
Applying face identification to detecting hijacking of airplane
NASA Astrophysics Data System (ADS)
Luo, Xuanwen; Cheng, Qiang
2004-09-01
That terrorists hijacked the airplanes and crashed the World Trade Center is disaster to civilization. To avoid the happening of hijack is critical to homeland security. To report the hijacking in time, limit the terrorist to operate the plane if happened and land the plane to the nearest airport could be an efficient way to avoid the misery. Image processing technique in human face recognition or identification could be used for this task. Before the plane take off, the face images of pilots are input into a face identification system installed in the airplane. The camera in front of pilot seat keeps taking the pilot face image during the flight and comparing it with pre-input pilot face images. If a different face is detected, a warning signal is sent to ground automatically. At the same time, the automatic cruise system is started or the plane is controlled by the ground. The terrorists will have no control over the plane. The plane will be landed to a nearest or appropriate airport under the control of the ground or cruise system. This technique could also be used in automobile industry as an image key to avoid car stealth.
When the firm prevents the crash: Avoiding market collapse with partial control.
Levi, Asaf; Sabuco, Juan; A F Sanjuán, Miguel
2017-01-01
Market collapse is one of the most dramatic events in economics. Such a catastrophic event can emerge from the nonlinear interactions between the economic agents at the micro level of the economy. Transient chaos might be a good description of how a collapsing market behaves. In this work, we apply a new control method, the partial control method, with the goal of avoiding this disastrous event. Contrary to common control methods that try to influence the system from the outside, here the market is controlled from the bottom up by one of the most basic components of the market-the firm. This is the first time that the partial control method is applied on a strictly economical system in which we also introduce external disturbances. We show how the firm is capable of controlling the system avoiding the collapse by only adjusting the selling price of the product or the quantity of production in accordance to the market circumstances. Additionally, we demonstrate how a firm with a large market share is capable of influencing the demand achieving price stability across the retail and wholesale markets. Furthermore, we prove that the control applied in both cases is much smaller than the external disturbances.
DOT National Transportation Integrated Search
1998-10-01
The report uses police-reported crash data that have been linked to hospital discharge data to evaluate charges for hospital care provided to motor vehicle crash victims in Pennsylvania. Approximately 17,000 crash victims were hospitalized in Pennsyl...
Injury severity data for front and second row passengers in frontal crashes.
Atkinson, Theresa; Leszek Gawarecki; Tavakoli, Massoud
2016-06-01
The data contained here were obtained from the National Highway Transportation Safety Administration׳s National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) for the years 2008-2014. This publically available data set monitors motor vehicle crashes in the United States, using a stratified random sample frame, resulting in information on approximately 5000 crashes each year that can be utilized to create national estimates for crashes. The NASS-CDS data sets document vehicle, crash, and occupant factors. These data can be utilized to examine public health, law enforcement, roadway planning, and vehicle design issues. The data provided in this brief are a subset of crash events and occupants. The crashes provided are exclusively frontal crashes. Within these crashes, only restrained occupants who were seated in the right front seat position or the second row outboard seat positions were included. The front row and second row data sets were utilized to construct occupant pairs crashes where both a right front seat occupant and a second row occupant were available. Both unpaired and paired data sets are provided in this brief.
Injury severity data for front and second row passengers in frontal crashes
Atkinson, Theresa; Leszek Gawarecki; Tavakoli, Massoud
2016-01-01
The data contained here were obtained from the National Highway Transportation Safety Administration׳s National Automotive Sampling System – Crashworthiness Data System (NASS-CDS) for the years 2008–2014. This publically available data set monitors motor vehicle crashes in the United States, using a stratified random sample frame, resulting in information on approximately 5000 crashes each year that can be utilized to create national estimates for crashes. The NASS-CDS data sets document vehicle, crash, and occupant factors. These data can be utilized to examine public health, law enforcement, roadway planning, and vehicle design issues. The data provided in this brief are a subset of crash events and occupants. The crashes provided are exclusively frontal crashes. Within these crashes, only restrained occupants who were seated in the right front seat position or the second row outboard seat positions were included. The front row and second row data sets were utilized to construct occupant pairs crashes where both a right front seat occupant and a second row occupant were available. Both unpaired and paired data sets are provided in this brief. PMID:27077084
Perception-based road hazard identification with Internet support.
Tarko, Andrew P; DeSalle, Brian R
2003-01-01
One of the most important tasks faced by highway agencies is identifying road hazards. Agencies use crash statistics to detect road intersections and segments where the frequency of crashes is excessive. With the crash-based method, a dangerous intersection or segment can be pointed out only after a sufficient number of crashes occur. A more proactive method is needed, and motorist complaints may be able to assist agencies in detecting road hazards before crashes occur. This paper investigates the quality of safety information reported by motorists and the effectiveness of hazard identification based on motorist reports, which were collected with an experimental Internet website. It demonstrates that the intersections pointed out by motorists tended to have more crashes than other intersections. The safety information collected through the website was comparable to 2-3 months of crash data. It was concluded that although the Internet-based method could not substitute for the traditional crash-based methods, its joint use with crash statistics might be useful in detecting new hazards where crash data had been collected for a short time.
Tay, Richard; Rifaat, Shakil Mohammad; Chin, Hoong Chor
2008-07-01
Leaving the scene of a crash without reporting it is an offence in most countries and many studies have been devoted to improving ways to identify hit-and-run vehicles and the drivers involved. However, relatively few studies have been conducted on identifying factors that contribute to the decision to run after the crash. This study identifies the factors that are associated with the likelihood of hit-and-run crashes including driver characteristics, vehicle types, crash characteristics, roadway features and environmental characteristics. Using a logistic regression model to delineate hit-and-run crashes from nonhit-and-run crashes, this study found that drivers were more likely to run when crashes occurred at night, on a bridge and flyover, bend, straight road and near shop houses; involved two vehicles, two-wheel vehicles and vehicles from neighboring countries; and when the driver was a male, minority, and aged between 45 and 69. On the other hand, collisions involving right turn and U-turn maneuvers, and occurring on undivided roads were less likely to be hit-and-run crashes.
Identifying the Factors That Facilitate or Hinder Advance Planning by Persons With Dementia
Hirschman, Karen B.; Kapo, Jennifer M.; Karlawish, Jason H. T.
2009-01-01
We performed semistructured interviews with 30 family members of patients with advanced dementia to identify the factors that facilitate or hinder advance planning by persons with dementia. All interviews were analyzed using qualitative data analysis techniques. The majority (77%) of family members reported that their relative had some form of written advance directive, and at least half reported previous discussions about health care preferences (57%), living situation or placement issues (50%), and finances or estate planning (60%) with the patient. Family members reported some themes that prompted planning and others that were barriers to planning. Events that most often triggered planning were medical, living situation, or financial issues associated with a friend or family member of the patient (57%). Barriers to planning included both passive and active avoidance. The most common form of passive avoidance was not realizing the importance of planning until it was too late to have the discussion (63%). The most common form of active avoidance was avoiding the discussion (53%). These data suggest potentially remediable strategies to address barriers to advance planning discussions. PMID:18580595
Spatial panel analyses of alcohol outlets and motor vehicle crashes in California: 1999–2008
Ponicki, William R.; Gruenewald, Paul J.; Remer, Lillian G.
2014-01-01
Although past research has linked alcohol outlet density to higher rates of drinking and many related social problems, there is conflicting evidence of density’s association with traffic crashes. An abundance of local alcohol outlets simultaneously encourages drinking and reduces driving distances required to obtain alcohol, leading to an indeterminate expected impact on alcohol-involved crash risk. This study separately investigates the effects of outlet density on (1) the risk of injury crashes relative to population and (2) the likelihood that any given crash is alcohol-involved, as indicated by police reports and single-vehicle nighttime status of crashes. Alcohol outlet density effects are estimated using Bayesian misalignment Poisson analyses of all California ZIP codes over the years 1999–2008. These misalignment models allow panel analysis of ZIP-code data despite frequent redefinition of postal-code boundaries, while also controlling for overdispersion and the effects of spatial autocorrelation. Because models control for overall retail density, estimated alcohol-outlet associations represent the extra effect of retail establishments selling alcohol. The results indicate a number of statistically well-supported associations between retail density and crash behavior, but the implied effects on crash risks are relatively small. Alcohol-serving restaurants have a greater impact on overall crash risks than on the likelihood that those crashes involve alcohol, whereas bars primarily affect the odds that crashes are alcohol-involved. Off-premise outlet density is negatively associated with risks of both crashes and alcohol involvement, while the presence of a tribal casino in a ZIP code is linked to higher odds of police-reported drinking involvement. Alcohol outlets in a given area are found to influence crash risks both locally and in adjacent ZIP codes, and significant spatial autocorrelation also suggests important relationships across geographical units. These results suggest that each type of alcohol outlet can have differing impacts on risks of crashing as well as the alcohol involvement of those crashes. PMID:23537623
Incidence and crash mechanisms of aortic injury during the past decade.
Schulman, Carl I; Carvajal, Daniel; Lopez, Peter P; Soffer, Dror; Habib, Fahim; Augenstein, Jeffrey
2007-03-01
Aortic injuries were traditionally thought to be the result of severe frontal crashes. Newer data has suggested other crash types such as nearside crashes may also be important in aortic injury. We hypothesized the implementation of recent safety measures would decrease the incidence of aortic injury associated with fatal motor vehicle crashes. The autopsy reports of all traffic fatalities for motor vehicle occupants in a large urban county for the years 1993 to 2004 were examined. The demographics, impact types, safety measures used, and the presence of any aortic injury were recorded. Trends were evaluated for significance by weighted linear regression. The incidence of aortic injury associated with fatal motor vehicle crashes has remained unchanged during the past 12 years (r = 0.057, p = 0.45). There is a trend toward decreased aortic injuries associated with frontal crashes (r = 0.26, p = 0.089) but no change in aortic injuries associated with nearside or farside crashes (r = 0.053, p = 0.47), when the crash resulted in a fatality. This is despite an increase in seat belt use and increased presence of airbags during the same time period. Despite improved safety measures designed to minimize the occurrence of aortic injuries, the incidence of blunt aortic injury in fatal motor vehicle crashes has not decreased during the past decade. Although not statistically significant, there is a trend toward decreased frontal impacts in fatal motor vehicle crashes associated with aortic injuries. The nearside crash mechanism continues to play a prominent role, and efforts at improving vehicle safety should be focused on crash mechanisms as they relate to aortic injury.
Investigation of pedestrian crashes on two-way two-lane rural roads in Ethiopia.
Tulu, Getu Segni; Washington, Simon; Haque, Md Mazharul; King, Mark J
2015-05-01
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements. Copyright © 2015. Published by Elsevier Ltd.
Epidemiology of pedestrian–MVCs by road type in Cluj, Romania
Hamann, Cara; Peek-Asa, Corinne; Rus, Diana
2017-01-01
Objective Pedestrian–motor vehicle (PMV) crash rates in Romania are among the highest in all of Europe. The purpose of this study was to examine the characteristics of pedestrian–MVCs in Cluj County, Romania, on the two major types of roadways: national or local. Methods Cluj County police crash report data from 2010 were used to identify pedestrian, driver and crash characteristics of pedestrian–MVCs. Crashes with available location data were geocoded and road type (national or local) for each crash was determined. Distributions of crash characteristics were examined by road type and multivariable logistic regression models were built to determine predictors of crash road type. Results Crashes occurring on national roads involved more teenagers and adults, while those on local roads involved more young children (0–12) and older adults (65+) (p<0.01). Crashes on national roads were more likely to have marked pedestrian crossings and shoulders compared with local crashes. Pedestrian–MVCs that involved a moving violation by the motorist were more likely to occur on national roadways (adjusted OR=1.93, 95% CI 1.07 to 3.49). Conclusions Pedestrian–MVCs pose a considerable health burden in Romania. Results from this study suggest that factors leading to PMV crashes on national roads are more likely to involve driver-related causes compared with local roads. Intervention priorities to reduce pedestrian crashes on national roads should be directed towards driver behaviour on national roads. Further examination of driver and pedestrian behaviours related to crash risk on both national and local roads, such as distraction and speeding, is warranted. PMID:25178278
Costs of Crashes to Government, United States, 2008
Miller, Ted R; Bhattacharya, Soma; Zaloshnja, Eduard; Taylor, Dexter; Bahar, Geni; David, Iuliana
2011-01-01
We estimated how much the Federal government and state/local government pay for different kinds of crashes in the United States. Government costs include reductions in an array of public services (emergency, incident management, vocational rehabilitation, coroner court processing of liability litigation), medical payments, social safety net assistance to the injured and their families, and taxes foregone because victims miss work. Government also pays when its employees crash while working and covers fringe benefits for crash-involved employees and their benefit-eligible dependents in non-work hours. We estimated government shares of crash costs by component. We applied those estimates to existing US Department of Transportation estimates of crash costs to society and employers. Government pays an estimated $35 billion annually because of crashes, an estimated 12.6% of the economic cost of crashes (Federal 7.1%, State/local 5.5%). Government bears a higher percentage of the monetary costs of injury crashes than fatal crashes or crashes involving property damage only. Government is increasingly recovering the medical cost of crashes from auto insurers. Nevertheless, medical costs and income and sales tax losses account for 75% of government's crash costs. For State/local government to break even on a 100%-State funded investment in road safety, the intervention would need to have an unrealistically high benefit-cost ratio of 34. Government invests in medical treatment of illness to save lives and improve quality of life. Curing a child's leukemia, for example, is not less costly than leaving that leukemia untreated. Safety should not be held to a different standard. PMID:22105409
af Wåhlberg, Anders; Freeman, James; Watson, Barry; Watson, Angela
2016-01-01
Background Traffic offences have been considered an important predictor of crash involvement, and have often been used as a proxy safety variable for crashes. However the association between crashes and offences has never been meta-analysed and the population effect size never established. Research is yet to determine the extent to which this relationship may be spuriously inflated through systematic measurement error, with obvious implications for researchers endeavouring to accurately identify salient factors predictive of crashes. Methodology and Principal Findings Studies yielding a correlation between crashes and traffic offences were collated and a meta-analysis of 144 effects drawn from 99 road safety studies conducted. Potential impact of factors such as age, time period, crash and offence rates, crash severity and data type, sourced from either self-report surveys or archival records, were considered and discussed. After weighting for sample size, an average correlation of r = .18 was observed over the mean time period of 3.2 years. Evidence emerged suggesting the strength of this correlation is decreasing over time. Stronger correlations between crashes and offences were generally found in studies involving younger drivers. Consistent with common method variance effects, a within country analysis found stronger effect sizes in self-reported data even controlling for crash mean. Significance The effectiveness of traffic offences as a proxy for crashes may be limited. Inclusion of elements such as independently validated crash and offence histories or accurate measures of exposure to the road would facilitate a better understanding of the factors that influence crash involvement. PMID:27128093
Non-axisymmetric Flows and Transport in the Edge of MST
NASA Astrophysics Data System (ADS)
Miller, Matthew Charles
Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.
Ehrlich, Peter F; Brown, J Kristine; Sochor, Mark R; Wang, Stewart C; Eichelberger, Martin E
2006-11-01
Motor vehicle crashes account for more than 50% of pediatric injuries. Triage of pediatric patients to appropriate centers can be based on the crash/injury characteristics. Pediatric motor vehicle crash/injury characteristics can be determined from an in vitro laboratory using child crash dummies. However, to date, no detailed data with respect to outcomes and crash mechanism have been presented with a pediatric in vivo model. The Crash Injury Research Engineering Network is comprised of 10 level 1 trauma centers. Crashes were examined with regard to age, crash severity (DeltaV), crash direction, restraint use, and airbag deployment. Multiple logistic regression analysis was performed with Injury Severity Score (ISS) and Glasgow Coma Scale (GCS) as outcomes. Standard age groupings (0-4, 5-9, 10-14, and 15-18) were used. The database is biases toward a survivor population with few fatalities. Four hundred sixty-one motor vehicle crashes with 2500 injuries were analyzed (242 boys, 219 girls). Irrespective of age, DeltaV > 30 mph resulted in increased ISS and decreased GCS (eg, for 0-4 years, DeltaV < 30: ISS = 10, GCS = 13.5 vs DeltaV > 30: ISS = 19.5, GCS = 10.6; P < .007, < .002, respectively). Controlling for DeltaV, children in lateral crashes had increased ISS and decreased GCS versus those in frontal crashes. Airbag deployment was protective for children 15 to 18 years old and resulted in a lower ISS and higher GCS (odds ratio, 2.1; 95% confidence interval, 0.9-4.6). Front-seat passengers suffered more severe (ISS > 15) injuries than did backseat passengers (odds ratio, 1.7; 95% confidence interval, 0.7-3.4). A trend was noted for children younger than 12 years sitting in the front seat to have increased ISS and decreased GCS with airbag deployment but was limited by case number. A reproducible pattern of increased ISS and lower GCS characterized by high severity, lateral crashes in children was noted. Further analysis of the specific injuries as a function and the crash characteristic can help guide management and prevention strategies.
Dezman, Zachary; de Andrade, Luciano; Vissoci, Joao Ricardo; El-Gabri, Deena; Johnson, Abree; Hirshon, Jon Mark; Staton, Catherine A.
2017-01-01
Introduction Road traffic injuries are a leading killer of youth (aged 15–29) and are projected to be the 7th leading cause of death by 2030. To better understand road traffic crash locations and characteristics in the city of Baltimore, we used police and census data, to describe the epidemiology, hotspots, and modifiable risk factors involved to guide further interventions. Materials and methods Data on all crashes in Baltimore City from 2009 to 2013 were made available from the Maryland Automated Accident Reporting System. Socioeconomic data collected by the US CENSUS 2010 were obtained. A time series analysis was conducted using an ARIMA model. We analyzed the geographical distribution of traffic crashes and hotspots using exploratory spatial data analysis and spatial autocorrelation. Spatial regression was performed to evaluate the impact of socioeconomic indicators on hotspots. Results In Baltimore City, between 2009 and 2013, there were a total of 100,110 crashes reported, with 1% of crashes considered severe. Of all crashes, 7% involved vulnerable road users and 12% had elderly or youth involvement. Reasons for crashes included: distracted driving (31%), speeding (6%), and alcohol or drug use (5%). After 2010, we observed an increasing trend in all crashes especially from March to June. Distracted driving then youth and elderly drivers were consistently the highest risk factors over time. Multivariate spatial regression model including socioeconomic indicators and controlling for age, gender and population size did not show a distinct predictor of crashes explaining only 20% of the road crash variability, indicating crashes are not geographically explained by socioeconomic indicators alone. Conclusion In Baltimore City, road traffic crashes occurred predominantly in the high density center of the city, involved distracted driving and extremes of age with an increase in crashes from March to June. There was no association between socioeconomic variables where crashes occurred and hotspots. In depth analysis of how modifiable risk factors are impacted by geospatial characteristics and the built environment is warranted in Baltimore to tailor interventions. PMID:27614672
Dezman, Zachary; de Andrade, Luciano; Vissoci, Joao Ricardo; El-Gabri, Deena; Johnson, Abree; Hirshon, Jon Mark; Staton, Catherine A
2016-11-01
Road traffic injuries are a leading killer of youth (aged 15-29) and are projected to be the 7th leading cause of death by 2030. To better understand road traffic crash locations and characteristics in the city of Baltimore, we used police and census data, to describe the epidemiology, hotspots, and modifiable risk factors involved to guide further interventions. Data on all crashes in Baltimore City from 2009 to 2013 were made available from the Maryland Automated Accident Reporting System. Socioeconomic data collected by the US CENSUS 2010 were obtained. A time series analysis was conducted using an ARIMA model. We analyzed the geographical distribution of traffic crashes and hotspots using exploratory spatial data analysis and spatial autocorrelation. Spatial regression was performed to evaluate the impact of socioeconomic indicators on hotspots. In Baltimore City, between 2009 and 2013, there were a total of 100,110 crashes reported, with 1% of crashes considered severe. Of all crashes, 7% involved vulnerable road users and 12% had elderly or youth involvement. Reasons for crashes included: distracted driving (31%), speeding (6%), and alcohol or drug use (5%). After 2010, we observed an increasing trend in all crashes especially from March to June. Distracted driving then youth and elderly drivers were consistently the highest risk factors over time. Multivariate spatial regression model including socioeconomic indicators and controlling for age, gender and population size did not show a distinct predictor of crashes explaining only 20% of the road crash variability, indicating crashes are not geographically explained by socioeconomic indicators alone. In Baltimore City, road traffic crashes occurred predominantly in the high density center of the city, involved distracted driving and extremes of age with an increase in crashes from March to June. There was no association between socioeconomic variables where crashes occurred and hotspots. In depth analysis of how modifiable risk factors are impacted by geospatial characteristics and the built environment is warranted in Baltimore to tailor interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
Wynn, Melissa L; Clemente, Christofer; Nasir, Ami Fadhillah Amir Abdul; Wilson, Robbie S
2015-02-01
Movement speed is fundamental to all animal behaviour, yet no general framework exists for understanding why animals move at the speeds they do. Even during fitness-defining behaviours like running away from predators, an animal should select a speed that balances the benefits of high speed against the increased probability of mistakes. In this study, we explored this idea by quantifying trade-offs between speed, manoeuvrability and motor control in wild northern quolls (Dasyurus hallucatus) - a medium-sized carnivorous marsupial native to northern Australia. First, we quantified how running speed affected the probability of crashes when rounding corners of 45, 90 and 135 deg. We found that the faster an individual approached a turn, the higher the probability that they would crash, and these risks were greater when negotiating tighter turns. To avoid crashes, quolls modulated their running speed when they moved through turns of varying angles. Average speed for quolls when sprinting along a straight path was around 4.5 m s(-1) but this decreased linearly to speeds of around 1.5 m s(-1) when running through 135 deg turns. Finally, we explored how an individual's morphology affects their manoeuvrability. We found that individuals with larger relative foot sizes were more manoeuvrable than individuals with smaller relative foot sizes. Thus, movement speed, even during extreme situations like escaping predation, should be based on a compromise between high speed, manoeuvrability and motor control. We advocate that optimal - rather than maximal - performance capabilities underlie fitness-defining behaviours such as escaping predators and capturing prey. © 2015. Published by The Company of Biologists Ltd.
Habibovic, Azra; Tivesten, Emma; Uchida, Nobuyuki; Bärgman, Jonas; Ljung Aust, Mikael
2013-01-01
To develop relevant road safety countermeasures, it is necessary to first obtain an in-depth understanding of how and why safety-critical situations such as incidents, near-crashes, and crashes occur. Video-recordings from naturalistic driving studies provide detailed information on events and circumstances prior to such situations that is difficult to obtain from traditional crash investigations, at least when it comes to the observable driver behavior. This study analyzed causation in 90 video-recordings of car-to-pedestrian incidents captured by onboard cameras in a naturalistic driving study in Japan. The Driving Reliability and Error Analysis Method (DREAM) was modified and used to identify contributing factors and causation patterns in these incidents. Two main causation patterns were found. In intersections, drivers failed to recognize the presence of the conflict pedestrian due to visual obstructions and/or because their attention was allocated towards something other than the conflict pedestrian. In incidents away from intersections, this pattern reoccurred along with another pattern showing that pedestrians often behaved in unexpected ways. These patterns indicate that an interactive advanced driver assistance system (ADAS) able to redirect the driver's attention could have averted many of the intersection incidents, while autonomous systems may be needed away from intersections. Cooperative ADAS may be needed to address issues raised by visual obstructions. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2007-01-01
Idaho Traffic Crashes 2007 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred within the State of Idaho. This document is used by state and local : transportation, law enforcement, health, and other...
Crash countermeasure and mobility effects.
DOT National Transportation Integrated Search
2012-04-19
The Michigan Department of Transportation (MDOT) has undertaken several initiatives to reduce crashes on its roadway network. In 2009, there were 2,201 reported crashes involving pedestrians and 866 reported crashes involving bicyclists in Michigan. ...
Traffic crash statistics report, 2005
DOT National Transportation Integrated Search
2006-01-01
The information contained in this Traffic Crash Statistics booklet is extracted from law enforcement : agency long-form reports of traffic crashes. A law enforcement officer must submit a long-form : crash report when investigating: : Motor vehic...
DOT National Transportation Integrated Search
2007-02-01
This annual edition of Large Truck Crash Facts contains descriptive statistics about fatal, injury, and property damage only crashes involving large trucks in 2005. Selected crash statistics on passenger vehicles are also presented for comparison pur...
Cell phone use and traffic crash risk: a culpability analysis.
Asbridge, Mark; Brubacher, Jeff R; Chan, Herbert
2013-02-01
The use of a cell phone or communication device while driving is illegal in many jurisdictions, yet evidence evaluating the crash risk associated with cell phone use in naturalistic settings is limited. This article aims to determine whether cell phone use while driving increases motor vehicle crash culpability. Method Drivers involved in crashes where police reported cell phone use (n = 312) and propensity matched drivers (age, sex, suspect alcohol/drug impairment, crash type, date, time of day, geographical location) without cell phone use (n = 936) were drawn from Insurance Corporation of British Columbia Traffic Accident System data. A standardized scoring tool, modified to account for Canadian driving conditions, was used to determine crash culpability from police reports on all drivers from the crashes. The association between crash culpability and cell phone use was determined, with additional subgroup analyses based on crash severity, driver characteristics and type of licence. A comparison of crashes with vs without cell phones revealed an odds ratio of 1.70 (95% confidence interval 1.22-2.36; P = 0.002). This association was consistent after adjustment for matching variables and other covariates. Subgroup analyses demonstrated an association for male drivers, unimpaired drivers, injured and non-injured drivers, and for drivers aged between 26 and 65 years. Crash culpability was found to be significantly associated with cell phone use by drivers, increasing the odds of a culpable crash by 70% compared with drivers who did not use a cell phone. This increased risk was particularly high for middle-aged drivers.
Impact of pavement conditions on crash severity.
Li, Yingfeng; Liu, Chunxiao; Ding, Liang
2013-10-01
Pavement condition has been known as a key factor related to ride quality, but it is less clear how exactly pavement conditions are related to traffic crashes. The researchers used Geographic Information System (GIS) to link Texas Department of Transportation (TxDOT) Crash Record Information System (CRIS) data and Pavement Management Information System (PMIS) data, which provided an opportunity to examine the impact of pavement conditions on traffic crashes in depth. The study analyzed the correlation between several key pavement condition ratings or scores and crash severity based on a large number of crashes in Texas between 2008 and 2009. The results in general suggested that poor pavement condition scores and ratings were associated with proportionally more severe crashes, but very poor pavement conditions were actually associated with less severe crashes. Very good pavement conditions might induce speeding behaviors and therefore could have caused more severe crashes, especially on non-freeway arterials and during favorable driving conditions. In addition, the results showed that the effects of pavement conditions on crash severity were more evident for passenger vehicles than for commercial vehicles. These results provide insights on how pavement conditions may have contributed to crashes, which may be valuable for safety improvement during pavement design and maintenance. Readers should notice that, although the study found statistically significant effects of pavement variables on crash severity, the effects were rather minor in reality as suggested by frequency analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fatal crashes involving large numbers of vehicles and weather.
Wang, Ying; Liang, Liming; Evans, Leonard
2017-12-01
Adverse weather has been recognized as a significant threat to traffic safety. However, relationships between fatal crashes involving large numbers of vehicles and weather are rarely studied according to the low occurrence of crashes involving large numbers of vehicles. By using all 1,513,792 fatal crashes in the Fatality Analysis Reporting System (FARS) data, 1975-2014, we successfully described these relationships. We found: (a) fatal crashes involving more than 35 vehicles are most likely to occur in snow or fog; (b) fatal crashes in rain are three times as likely to involve 10 or more vehicles as fatal crashes in good weather; (c) fatal crashes in snow [or fog] are 24 times [35 times] as likely to involve 10 or more vehicles as fatal crashes in good weather. If the example had used 20 vehicles, the risk ratios would be 6 for rain, 158 for snow, and 171 for fog. To reduce the risk of involvement in fatal crashes with large numbers of vehicles, drivers should slow down more than they currently do under adverse weather conditions. Driver deaths per fatal crash increase slowly with increasing numbers of involved vehicles when it is snowing or raining, but more steeply when clear or foggy. We conclude that in order to reduce risk of involvement in crashes involving large numbers of vehicles, drivers must reduce speed in fog, and in snow or rain, reduce speed by even more than they already do. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Moradi, Ali; Soori, Hamid; Kavousi, Amir; Eshghabadi, Farshid; Jamshidi, Ensiyeh; Zeini, Salahdien
2016-01-01
Background: More than 20% of deaths from traffic crashes are related to pedestrians. This figure in Tehran, the capital of Iran, reaches to 40%. This study aimed to determine the high-risk areas and spatially analyze the traffic crashes, causing death to pedestrians in Tehran. Methods: Mapping was used to display the distribution of the crashes. Determining the distribution pattern of crashes and the hot spots/ low-risk areas were done, using Moran’s I index and Getis-Ord G, respectively. Results: A total of 198 crashes were studied; 92 of which, (46.4%) occurred in 2013 to 2014 and other 106 cases (63.6%) occurred in 2014 to 2015. The highest and the lowest frequency of crashes was related to January (26 cases) and June (10 cases), respectively. One hundred fifty- eight cases (79.8%) of crashes occurred in Tehran highways. Moran’s index showed that the studied traffic crashes had a cluster distribution (p<0.001). Getis- Ord General G index indicated that the distribution of hot and cold spots of the studied crashes was statistically significant (p<0.001). Conclusion: The majority of traffic crashes causing death to pedestrians occurred in highways located in the main entrances and exits of Tehran. Given the important role of environmental factors in the occurrence of traffic crashes related to pedestrians, identification of these factors requires more studies with casual inferences. PMID:28210615
NASA Astrophysics Data System (ADS)
Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.
2017-09-01
Many studies have utilized the spatial correlations among traffic crash data to develop crash prediction models with the aim to investigate the influential factors or predict crash counts at different sites. The spatial correlation have been observed to account for heterogeneity in different forms of weight matrices which improves the estimation performance of models. But very rarely have the weight matrices been compared for the prediction accuracy for estimation of crash counts. This study was targeted at the comparison of two different approaches for modelling the spatial correlations among crash data at macro-level (County). Multivariate Full Bayesian crash prediction models were developed using Decay-50 (distance-based) and Queen-1 (adjacency-based) weight matrices for simultaneous estimation crash counts of four different modes: vehicle, motorcycle, bike, and pedestrian. The goodness-of-fit and different criteria for accuracy at prediction of crash count reveled the superiority of Decay-50 over Queen-1. Decay-50 was essentially different from Queen-1 with the selection of neighbors and more robust spatial weight structure which rendered the flexibility to accommodate the spatially correlated crash data. The consistently better performance of Decay-50 at prediction accuracy further bolstered its superiority. Although the data collection efforts to gather centroid distance among counties for Decay-50 may appear to be a downside, but the model has a significant edge to fit the crash data without losing the simplicity of computation of estimated crash count.
Improving Client-Centered Brain Injury Rehabilitation Through Research-Based Theater
Kontos, Pia C.; Miller, Karen-Lee; Gilbert, Julie E.; Mitchell, Gail J.; Colantonio, Angela; Keightley, Michelle L.; Cott, Cheryl
2013-01-01
Traumatic brain injury often results in physical, behavioral, and cognitive impairments perceived by health care practitioners to limit or exclude clients’ full participation in treatment decision making. We used qualitative methods to evaluate the short- and long-term impact of “After the Crash: A Play About Brain Injury”, a research-based drama designed to teach client-centered care principles to brain injury rehabilitation staff. We conducted interviews and observations with staff of two inpatient neurorehabilitation units in Ontario, Canada. Findings demonstrate the effectiveness of the play in influencing practice through the avoidance of medical jargon to improve clients’ understanding and participation in treatment; newfound appreciation for clients’ needs for emotional expression and sexual intimacy; increased involvement of family caregivers; and avoidance of staff discussions as if clients were unaware. These findings suggest that research-based drama can effect reflexivity, empathy, and practice change to facilitate a client-centered culture of practice in brain injury rehabilitation. PMID:22941919
Identification of CRASH, a gene deregulated in gynecological tumors.
Evtimova, Vesna; Zeillinger, Robert; Kaul, Sepp; Weidle, Ulrich H
2004-01-01
We have identified CRASH, a human asparaginase-like protein which is composed of 308 amino acids and exhibits 32% homology to human aspartylglucosaminadase at the amino acid level. Database analysis revealed that the gene corresponding to CRASH is composed of 7 exons and 6 introns. Steady-state level of CRASH mRNA was found to be increased in 5 cell lines derived from metastatic lesions compared with 2 cell lines derived from primary mammary carcinoma and HMEC (human mammary epithelial cells). We found that the mRNA level of CRASH correlates with the metastatic propensity of several isogenic human colon cancer and pancreatic carcinoma cell lines. CRASH corresponds to a recently identified sperm autoantigen and furthermore we have demonstrated inducibility of CRASH mRNA by androgen and progesterone. Investigation of several types of human cancers and their corresponding normal tissues revealed high levels of CRASH mRNA in uterine, mammary and ovarian tumors compared with the corresponding normal tissues. CRASH mRNA expression was analysed in breast cancer samples with disclosed clinico-pathological features and corresponding normal tissues. The levels of CRASH mRNA were significantly up-regulated in tumors compared with normal breast tissues and correlate with lack of estrogen receptor expression of the tumors.
Prevalence and factors associated with road traffic crash among taxi drivers in Hanoi, Vietnam.
La, Quang Ngoc; Lee, Andy H; Meuleners, Lynn B; Van Duong, Dat
2013-01-01
Injury due to road traffic crash is a major cause of ill health and premature deaths in developing countries. Taxis provide a main mode of public transport in Vietnam but there has been little research on the risk of crash for taxi drivers. This retrospective study collected information on taxi crashes for the period 2006-2009 by interviewing drivers from five taxi companies in Hanoi, Vietnam, using a structured questionnaire. Of the total 1214 participants recruited, 276 drivers reported at least one crash, giving an overall crash prevalence of 22.7%. Among the crashed group, 50 drivers (18.1%) were involved in two to four crashes. Logistic regression analysis further identified age of driver, type of driving licence, employment status, perceived sufficiency of income, seat-belt usage, and traffic infringement history to be significantly associated with the crash risk. Further prospective and qualitative studies are recommended to provide detailed crash characteristics as well as behaviour and perception of taxi drivers, so that an effective intervention can be developed to improve road safety and to prevent injury of these commercial drivers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Road traffic crashes among farm vehicle drivers in southern China: A cross-sectional survey.
Zhang, Xujun; Yang, Yaming; Chen, Yu; Yao, Hongyan; Wu, Ming; Cui, Mengjing; Li, Yang; Hu, Jie; Zhang, Cong; Li, Zhen; Stallones, Lorann; Xiang, Huiyun
2017-01-02
The objective of this study was to identify the prevalence and potential risk factors of farm vehicle-related road traffic crashes among farm vehicle drivers in southern China. A cross-sectional study was used to interview 1,422 farm vehicle drivers in southern China. Farm vehicle-related road traffic crashes that occurred from December 2013 to November 2014 were investigated. Data on farm vehicle-related road traffic crashes and related factors were collected by face-to-face interviews. The prevalence of farm vehicle-related road traffic crashes among the investigated drivers was 7.2%. Farm vehicle-related road traffic crashes were significantly associated with self-reported vision problem (adjusted odds ratio [AOR] = 6.48, 95% confidence interval [CI], 3.86-10.87), self-reported sleep disorders (AOR = 10.03, 95% CI, 6.28-15.99), self-reported stress (AOR = 20.47, 95% CI, 9.96-42.08), reported history of crashes (AOR = 5.40, 95% CI, 3.47-8.42), reported history of drunk driving (AOR = 5.07, 95% CI, 2.97-8.65), and reported history of fatigued driving (AOR = 5.72, 95% CI, 3.73-8.78). The number of road traffic crashes was highest in the daytime and during harvest season. In over 96% of farm vehicle-related road traffic crashes, drivers were believed to be responsible for the crash. Major crash-causing factors included improper driving, careless driving, violating of traffic signals or signs, and being in the wrong lane. Findings of this study suggest that farm vehicle-related road traffic crashes have become a burgeoning public health problem in China. Programs need to be developed to prevent farm vehicle-related road traffic crashes in this emerging country.
Epidemiology of pedestrian-MVCs by road type in Cluj, Romania.
Hamann, Cara; Peek-Asa, Corinne; Rus, Diana
2015-04-01
Pedestrian-motor vehicle (PMV) crash rates in Romania are among the highest in all of Europe. The purpose of this study was to examine the characteristics of pedestrian-MVCs in Cluj County, Romania, on the two major types of roadways: national or local. Cluj County police crash report data from 2010 were used to identify pedestrian, driver and crash characteristics of pedestrian-MVCs. Crashes with available location data were geocoded and road type (national or local) for each crash was determined. Distributions of crash characteristics were examined by road type and multivariable logistic regression models were built to determine predictors of crash road type. Crashes occurring on national roads involved more teenagers and adults, while those on local roads involved more young children (0-12) and older adults (65+) (p<0.01). Crashes on national roads were more likely to have marked pedestrian crossings and shoulders compared with local crashes. Pedestrian-MVCs that involved a moving violation by the motorist were more likely to occur on national roadways (adjusted OR=1.93, 95% CI 1.07 to 3.49). Pedestrian-MVCs pose a considerable health burden in Romania. Results from this study suggest that factors leading to PMV crashes on national roads are more likely to involve driver-related causes compared with local roads. Intervention priorities to reduce pedestrian crashes on national roads should be directed towards driver behaviour on national roads. Further examination of driver and pedestrian behaviours related to crash risk on both national and local roads, such as distraction and speeding, is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Geographic Region, Weather, Pilot Age and Air Carrier Crashes: a Case-Control Study
Li, Guohua; Pressley, Joyce C.; Qiang, Yandong; Grabowski, Jurek G.; Baker, Susan P.; Rebok, George W.
2009-01-01
Background Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis and commuter air carriers. Methods A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (n=373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus, recorded in the National Transportation Safety Board’s aviation crash database during 1983 through 2002, and controls (n=746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration’s aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. Results With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions [adjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35 – 7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15 – 4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.57, 95% CI 0.40 – 0.87). Neither pilot age nor total flight time was significantly associated with the risk of air carrier crashes. Conclusions The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety. PMID:19378910
Geographic region, weather, pilot age, and air carrier crashes: a case-control study.
Li, Guohua; Pressley, Joyce C; Qiang, Yandong; Grabowski, Jurek G; Baker, Susan P; Rebok, George W
2009-04-01
Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis, and commuter air carriers. A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (N = 373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus recorded in the National Transportation Safety Board's aviation crash database during 1983 through 2002, and controls (N = 746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration's aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions ladjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35-7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15-4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.60, 95% CI 0.37-0.96). Neither pilot age nor total flight time were significantly associated with the risk of air carrier crashes. The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety.
Bajaj, Jasmohan S; Saeian, Kia; Schubert, Christine M; Hafeezullah, Muhammad; Franco, Jose; Varma, Rajiv R; Gibson, Douglas P; Hoffmann, Raymond G; Stravitz, R Todd; Heuman, Douglas M; Sterling, Richard K; Shiffman, Mitchell; Topaz, Allyne; Boyett, Sherry; Bell, Debulon; Sanyal, Arun J
2009-01-01
Patients with minimal hepatic encephalopathy (MHE) have impaired driving skills, but association of MHE with motor vehicle crashes is unclear. Standard psychometric tests (SPT) or inhibitory control test (ICT) can be used to diagnose MHE. The aim was to determine the association of MHE with crashes and traffic violations over the preceding year and on 1-year follow-up. Cirrhotics were diagnosed with MHE by ICT (MHEICT) and SPT (MHESPT). Self and department-of-transportation (DOT)-reports were used to determine crashes and violations over the preceding year. Agreement between self and DOT-reports was analyzed. Patients then underwent 1 year follow-up for crash/violation occurrence. Crashes in those with/without MHEICT and MHESPT were compared. 167 cirrhotics had DOT-reports, of which 120 also had self-reports. A significantly higher proportion of MHEICT cirrhotics experienced crashes in the preceding year compared to those without MHE by self-report (17% vs. 0%, p=0.0004) and DOT-reports (17% vs. 3%, p=0.004, relative risk:5.77). SPT did not differentiate between those with/without crashes. A significantly higher proportion of patients with crashes had MHEICT compared to MHESPT, both self-reported (100% vs. 50%, p=0.03) and DOT-reported (89% vs. 44%, p=0.01). There was excellent agreement between self and DOT-reports for crashes and violations (Kappa 0.90 and 0.80). 109 patients were followed prospectively. MHEICT patients had a significantly higher future crashes/violations compared to those without (22% vs. 7%, p=0.03) but MHESPT did not. MHEICT (Odds ratio:4.51) and prior year crash/violation (Odds ratio:2.96) were significantly associated with future crash/violation occurrence. PMID:19670416
Analysis of the frequency and severity of rear-end crashes in work zones.
Qi, Yi; Srinivasan, Raghavan; Teng, Hualiang; Baker, Robert
2013-01-01
The objective of this study was to identify the factors that influence the frequency and severity of rear-end crashes in work zones because rear-end crashes represent a significant proportion of crashes that occur in work zones. Truncated count data models were developed to identify influencing factors on the frequency of read-end crashes in work zones and ordered probit models were developed to evaluate influencing factors on the severity of rear-end crashes in work zones. Most of the variables identified in this study for these 2 models were significant at the 95 percent level. The statistics for models indicate that the 2 developed models are appropriate compared to alternative models. Major findings related to the frequency of rear-end crashes include the following: (1) work zones for capacity and pavement improvements have the highest frequency compared to other types of work zones; (2) work zones controlled by flaggers are associated with more rear-end crashes compared to those controlled by arrow boards; and (3) work zones with alternating one-way traffic tended to have more rear-end crashes compared to those with lane shifts. Major findings related to the severity of the rear-end crashes include the following: (1) rear-end crashes associated with alcohol, night, pedestrians, and roadway defects are more severe, and those associated with careless backing, stalled vehicles, slippery roadways, and misunderstanding flagging signals are less severe; (2) truck involvement and a large number of vehicles in a crash are both associated with increased severity, and (3) rear-end crashes that happened in work zones for bridge, capacity, and pavement are likely to be more severe than others.
Omitted variable bias in crash reduction factors.
DOT National Transportation Integrated Search
2015-09-01
Transportation planners and traffic engineers are increasingly turning to crash reduction factors to evaluate changes in road : geometric and design features in order to reduce crashes. Crash reduction factors are typically estimated based on segment...
DOT National Transportation Integrated Search
2009-01-01
Idaho Traffic Crashes 2009 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred on public roads within the State of Idaho. This document is used by state and : local transportation, law enforcement, h...
DOT National Transportation Integrated Search
2008-01-01
Idaho Traffic Crashes 2008 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred on public roads within the State of Idaho. This document is used by state and : local transportation, law enforcement, h...