Science.gov

Sample records for advanced cyclone processes

  1. Evaluation, engineering and development of advanced cyclone processes

    SciTech Connect

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  2. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    SciTech Connect

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  3. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    SciTech Connect

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  4. Evaluation, engineering and development of advanced cyclone processes. Quarterly progress report, July 30, 1995--September 30, 1995

    SciTech Connect

    1995-12-31

    The project goal is to develop an advanced coal beneficiation technology that can achieve high recovery of the parent coal`s calorific value, while maximizing pyritic sulfur removal. Coal cleaning is to be accomplished by physical means incorporating an advanced gravimetric process. Evaluation of different media types and their attendant systems for recovery, concentration and regeneration is to be completed. Phase I, media evaluation, now completed, involved a paper study and a number of laboratory tests to eliminate all but the best media options. Phase II, media testing, involved detailed testing of the more promising media and separators in a closed-loop pilot facility. In the final phase, phase III, the optimum medium, separator, and medium recovery system(s) will be tested with commercial-size equipment. The ceramic capillary action filter was plumed and connected to power. Process chutes, sumps, piping and motors were installed and connected. Plain water was circulated through the system. Sumps were sandblasted, primed and painted with urethane paint.

  5. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  6. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char

  7. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  8. Ocean feedback to tropical cyclones: climatology and processes

    NASA Astrophysics Data System (ADS)

    Jullien, Swen; Marchesiello, Patrick; Menkes, Christophe E.; Lefèvre, Jérôme; Jourdain, Nicolas C.; Samson, Guillaume; Lengaigne, Matthieu

    2014-11-01

    This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air-sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air-sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air-sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C-1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.

  9. Budget Comparison of Parameterized Microphysical Processes in Tropical Cyclone Simulations

    NASA Astrophysics Data System (ADS)

    Michelson, Sara A.; Bao, Jian-Wen; Grell, Evelyn D.

    2015-04-01

    Despite the fact that microphysics parameterization schemes used in numerical models for tropical cyclone (TC) prediction can be as complex as being capable of resolving the evolution of hydrometeor size spectra, operational centers still cannot computationally afford to run any TC prediction models with spectrum-resolving schemes operationally. To strike an optimal balance between computational cost and physical effect, there is a need to understand what minimal complexity of microphysics parameterizations is required in operational TC prediction models that are run at affordable resolutions. In order to address this need, we have been investigating whether or not the microphysics schemes currently used in NOAA's operational TC models are complex enough to enable us to use these models for high-resolution prediction of tropical cyclones. In this study, we used the Weather Research and Forecasting (WRF) model to investigate the impact of parameterized warm-rain processes in four widely-used bulk microphysics parameterization schemes on the model-simulated tropical cyclone (TC) development. The schemes investigated, ranging from a single-moment simple 3-category scheme to a complex double-moment 6-category scheme, produce different TC intensification rates and average vertical hydrometeor distributions, as well as different accumulated precipitation. By diagnosing the source and sink terms of the hydrometeor budget equations, we found that the differences in the warm-rain production rate, particularly by conversion of cloud water to rain water, contribute significantly to the variations in the frozen hydrometeor production and in the overall latent heat release above the freezing level. These differences in parameterized warm-rain production reflect the differences of the four schemes in the definition of rain droplet size distribution and consequently in spectrum-dependent microphysical processes, such as accretion growth of frozen hydrometeors and their

  10. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  11. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  12. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    PubMed

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  13. The relevance of individual microphysical processes for potential vorticity anomalies in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Crezee, Bas; Joos, Hanna; Wernli, Heini

    2016-04-01

    Extratropical cyclones have a large impact on daily weather through their accompanying strong winds and precipitation. The latent heating and cooling associated with microphysical processes like condensation, freezing and melting, sublimation and evaporation leads to the formation of distinct cloud diabatic potential vorticity (CDPV) anomalies. Positive low-level CDPV anomalies - which typically are formed along the fronts and close to the cyclone center - have been shown to interact with upper-level PV anomalies thereby potentially enhancing storm intensification. Here a novel method is applied, which calculates backward trajectories from the mature storm stage, integrates cloud diabatic PV changes due to microphysical processes, and constructs a CDPV budget for each individual anomaly. Thereby we quantify the contributions of, e.g., cloud condensation, depositional growth of snow and melting of snow to the individual anomalies and in turn to the near-surface circulation. First, we apply this method to an idealized mid-latitude cyclone. The formation of the relatively small low-level negative CDPV anomalies is dominated each by one specific process, depending on their location relative to the front. For the large positive PV anomaly we find that the strongest contributions are from in-cloud condensation and below-cloud snow melting and rain evaporation. Although contributions of in-cloud depositional growth of ice are rather small, they cover a very large area and are therefore dynamically significant, i.e., they produce a fairly large-scale but low-amplitude anomaly. In addition the results from the idealized simulations are compared to a wintertime cyclone. It will be discussed how well the method works for real cyclones and how closely the results agree with those from the idealized channel model experiment.

  14. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  15. Energy Conservation/Waste Reduction in the Processing of Soft (Unfired) Ceramic Particles Via Dynamic Cyclone Classification

    SciTech Connect

    Wright, Steve R.

    2003-04-15

    The objective of this project was to advance the development of a novel inertial classifier technology to a full-scale industrial product by sequentially evaluating performance of pre-commercial prototypes. The technology, termed a ''Dynamic Cyclone Classifier'' (DCC), utilizes boundary layers on rotating annular disks to effect particle separation with minimal particle-rotor impaction. Although a large (2-ton/hr) DCC was originally envisioned for use within the mining industry, a smaller (kg/hr) sub-10-mm ''Fine Particle Dynamic Cyclone Classifier'' (FPDCC) was subsequently developed as a result of market research that showed higher commercialization potential for classifying ultrafine powders. Modified FPDCC prototypes were iteratively tested and evaluated in the sub-10-mm particle size range using standardized test particles (i.e., ISO Fine test dust). Classification performance tests were assessed by varying device parameters to define the operational envelope of the device to obtain sharp classification cuts, to maximize particle dispersion, to limit particle attrition and to increase production yields. The FPDCC exhibited sub-10-mm performance using both ideal (ISO test dust) and pharmaceutical excipient (calcium carbonate) ultrafine powders. Performance was compared with conventional classification technologies having the ability to process sub-10-mm ultrafine powders, specifically high-efficiency cyclones (HECs) and rotary vane classifiers (RVCs). The FPDCC can generate sharper classification cuts than high-pressure/high efficiency cyclones (HECs), since there is no turbulent particle re-entrainment, while using as much as 95% less energy. Being vaneless, particle impact with high RPM rotor components in the FPDCC is much less severe than in rotary vane classifiers (RVCs), leading to less critical component wear/erosion and concomitantly reducing potential product attrition and contamination. FPDCC energy usage is also less than in RVCs, since rotating

  16. Lower-stratospheric/upper-tropospheric exchange processes associated with tropical cyclones as observed by TOMS

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.

    1987-01-01

    Total ozone associated with western Atlantic and Pacific tropical cyclones at various stages of development were analyzed for the purpose of monitoring storm intensity and/or intensity changes. The analysis is based on total ozone measurements from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS). Since ozone may be considered a passive tracer in the lower stratosphere and the ozone gradients are strongest just above the tropopause, fluctuations of total ozone are due to variations in tropopause height and/or changes in concentration within the column caused by vertical and horizontal advection. In the subtropical northern Pacific during August and September 1981, a negative correlation greater than 0.60 was found between upper-tropospheric geopotential heights near the tropopause level and total ozone. Preliminary results suggest that TOMS can be used to resolve the upper-troposphere structure in and around tropical cyclones and can provide an indication of those processes that help to intensify and maintain these storms.

  17. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    NASA Astrophysics Data System (ADS)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and

  18. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  19. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume B. Developmental cyclone evaluation

    SciTech Connect

    Not Available

    1980-02-01

    This report summarizes the results of cold flow model testing of a conventional reverse-flow cyclone containing several developmental features designed to improve its separative performance. The four advanced features evaluated were: Outlet Scroll Skimming - to remove particles from the high dust concentration region at the periphery of the outlet dust; Base Purge - to reduce reentrainment of dust from the disengagement hopper; Increased Outlet Duct Engagement - to reduce short-circuiting of the inlet dust into the outlet; and Vortex Shield - to stabilize the point of vortex attachment at the cyclone base and thus reduce base pickup. A schematic of the advanced cyclone, showing the various developmental features, is provided. The results of the cold flow experiments showed that substantial improvement (approximately 30% reduction in exhaust emission) could be obtained from outlet skimming or from increased engagement of the exhaust dust. Furthermore, the effects of these features are additive so that about 60% overall reduction in emissions could be achieved by incorporating both of these elements. On the other hand, the vortex shield and the base purge had little effect on the separative performance. Almost all of the experimental results exhibited strong electrostatic influence. At high flowrates, the separative performance of the cyclone decreased as the flowrate was reduced, as expected from cyclone theory. Although the improvements obtained with the developmental cyclone are significant, further improvements appear possible with the Air Shield cyclone and the Electrocyclone. Consequently, subsequent efforts under the CFCC program were focused on these concepts.

  20. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    SciTech Connect

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.; Zhang, Fuqing; Abhilash, S.; Goswami, B. N.

    2014-07-16

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection. Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.

  1. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  2. Tropical cyclone formation

    SciTech Connect

    Montgomery, M.T.; Farrell, B.F. )

    1993-01-15

    The physics of tropical cyclone formation is not well understood, and more is known about the mature hurricane than the formative mechanisms that produce it. It is believed part of the reason for this can be traced to insufficient upper-level atmospheric data. Recent observations suggest that tropical cyclones are initiated by asymmetric interactions associated with migratory upper-level potential vorticity disturbances and low-level disturbances. Favored theories of cyclones formation, however, focus on internal processes associated with cumulus convection and/or air-sea interaction. This work focuses on external mechanisms of cyclone formation and, using both a two- and three-dimensional moist geostrophic momentum model, investigates the role of upper-level potential vorticity disturbances on the formation process. A conceptual model of tropical cyclone formation is proposed, and implications of the theory are discussed. 71 refs., 5 figs., 1 tab.

  3. The role of moist processes in the intrinsic predictability of Indian Ocean cyclones

    NASA Astrophysics Data System (ADS)

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; Zhang, Fuqing; Abhilash, S.; Goswami, B. N.

    2014-07-01

    The role of moist processes in short-range forecasts of Indian Ocean tropical cyclones (TCs) track and intensity and upscale error cascade from cloud-scale processes affecting the intrinsic predictability of TCs was investigated using the Weather Research and Forecasting model with parameterized and explicitly resolved convection. Comparing the results from simulations of four Indian Ocean TCs at 10 km resolution with parameterized convection and convection-permitting simulations at 1.1 km resolution, both reproduced the observed TC tracks and intensities significantly better than simulations at 30 km resolution with parameterized convection. "Identical twin" experiments were performed by introducing random perturbations to the simulations for each TC. Results show that moist convection plays a major role in intrinsic error growth that ultimately limits the intrinsic predictability of TCs, consistent with past studies of extratropical cyclones. More specifically, model intrinsic errors start to build up from the regions of convection and ultimately affect the larger scales. It is also found that the error at small scale grows faster compared to the larger scales. The gradual increase in error energy in the large scale is a manifestation of upscale cascade of error energy from convective to large scale. Rapid upscale error growth from convective scales limits the intrinsic predictability of the TCs up to 66 h. The intrinsic predictability limit estimated by the 10 km resolution runs is comparable to that estimated by the convection-permitting simulations, suggesting some usefulness of high-resolution (~10 km) models with parameterized convection for TC forecasting and predictability study.

  4. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  5. Understand cyclone design

    SciTech Connect

    Coker, A.K. )

    1993-12-01

    Cyclones are widely used for the separation and recovery of industrial dusts from air or process gases. Cyclones are the principal type of gas-solids separator using centrifugal force. They are simple to construct, of low cost, and are made from a wide range of materials with an ability to operate at high temperatures and pressure. Cyclones are suitable for separating particles where agglomeration occurs. Pollution and emission regulations have compelled designers to study the efficiency of cyclones. Cyclones offer the least expensive means of dust collection. They give low efficiency for collection of particles smaller than 5 [mu]m. A high efficiency of 98% can be achieved on dusts with particle sizes of 0.1 to 0.2 [mu]m that are highly flocculated. The paper discusses the design procedure and operating parameters.

  6. Advances in speech processing

    NASA Astrophysics Data System (ADS)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  7. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  8. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  9. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  10. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  11. Sea ice trends and cyclone activity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Coggins, Jack; McDonald, Adrian; Rack, Wolfgang; Dale, Ethan

    2015-04-01

    Significant trends in the extent of Southern Hemisphere sea ice have been noted over the course of the satellite record, with highly variable trends between different seasons and regions. In this presentation, we describe efforts to assess the impact of cyclones on these trends. Employing a maximum cross-correlation method, we derive Southern Ocean ice-motion vectors from daily gridded SSMI 85.5 GHz brightness temperatures. We then derive a sea ice budget from the NASA-Team 25 km square daily sea ice concentrations. The budget quantifies the total daily change in sea ice area, and includes terms representing the effects of ice advection and divergence. A residual term represents the processes of rafting, ridging, freezing and thawing. We employ a cyclone tracking algorithm developed at the University of Canterbury to determine the timing, location, size and strength of Southern Hemisphere cyclones from mean sea-level pressure fields of the ERA-Interim reanalysis. We then form composites of the of sea ice budget below the location of cyclones. Unsurprisingly, we find that clockwise atmospheric flow around Southern Hemisphere cyclones exerts a strong influence on the movement of sea ice, an effect which is visible in the advection and divergence terms. Further, we assess the climatological importance of cyclones by comparing seasons of sea ice advance for periods with varying numbers of cyclones. This analysis is performed independently for each sea ice concentration pixel, thus affording us insight into the geographical importance of storm systems. We find that Southern Hemisphere sea ice extent is highly sensitive to the presence of cyclones in the periphery of the pack in the advance season. Notably, the sensitivity is particularly high in the northern Ross Sea, an area with a marked positive trend in sea ice extent. We discuss whether trends in cyclone activity in the Southern Ocean may have contributed to sea ice extent trends in this region.

  12. Extratropical Cyclone

    Atmospheric Science Data Center

    2013-04-16

    ... used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical ... cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm ...

  13. Advanced Hydrogen Liquefaction Process

    SciTech Connect

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  14. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  15. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  16. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  17. Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhu, Zhenduo; Gopalakrishnan, Sundararaman; Black, Robert; Marks, Frank D.; Tallapragada, Vijay; Zhang, Jun A.; Zhang, Xuejin; Gao, Cen

    2015-11-01

    Two idealized simulations by the Hurricane Weather Research and Forecast (HWRF) model are presented to examine the impact of model physics on the simulated eyewall replacement cycle (ERC). While no ERC is produced in the control simulation that uses the operational HWRF physics, the sensitivity experiment with different model physics generates an ERC that possesses key features of observed ERCs in real tropical cyclones. Likely reasons for the control simulation not producing ERC include lack of outer rainband convection at the far radii from the eyewall, excessive ice hydrometeors in the eyewall, and enhanced moat shallow convection, which all tend to prevent the formation of a persistent moat between the eyewall and outer rainband. Less evaporative cooling from precipitation in the outer rainband region in the control simulation produces a more stable and dryer environment that inhibits the development of systematic convection at the far radii from the eyewall.

  18. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the performance of cyclones, as cyclone diameter varies. The objective of this research was to determ...

  19. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the cut point of cyclones as cyclone diameter varies. The objective of this research was to determine...

  20. New trends in the improvement of cyclones

    SciTech Connect

    Rivkinzon, I.B.; Zyuba, B.I.

    1984-05-01

    This article examines the possibilities of reducing catalyst attrition and cyclone wall erosion through optimization of the aerodynamic conditions in the cyclone. It is assumed that the disintegration of catalyst particles and erosion of the cyclone walls take place at exactly the same points (e.g. the seats of erosion in the cyclones can serve as natural indicators in determining the zones of catalyst pulverization). In catalytic cracking units, internal cyclones are used as the primary means of cleanup of the gas for process purposes. Cyclones trap out 99.8-99.95% of the catalyst entrained from the fluidized bed by the contact gas. The retrofitting of standard cyclones with chambers for preliminary aerodynamic stabilization of the flow yielded favorable results. The results of erosion tests on type TsN cyclones with and without a stabilization chamber indicate that the proposed stabilization method can give an approximately fivefold reduction of erosion of the cylindrical part of the cyclone. An important advantage of cyclones with added stabilization is the increased efficiency of dust collection. It is concluded that supplementary aerodynamic stabilization of the dust-laded gas flow and reduction of the angle of attack can give substantial improvements in the operating characteristics of cyclones, both cylindrical and spiral-conical.

  1. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  2. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  3. Advances in natural language processing.

    PubMed

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area.

  4. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  5. Practical Advances in Petroleum Processing

    NASA Astrophysics Data System (ADS)

    Hsu, Chang S.; Robinson, Paul R.

    "This comprehensive book by Robinson and Hsu will certainly become the standard text book for the oil refining business...[A] must read for all who are associated with oil refining." - Dr. Walter Fritsch, Senior Vice President Refining, OMV "This book covers a very advanced horizon of petroleum processing technology. For all refiners facing regional and global environmental concerns, and for those who seek a more sophisticated understanding of the refining of petroleum resources, this book has been long in coming." - Mr. Naomasa Kondo, Cosmo Oil Company, Ltd.

  6. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  7. Cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Maslova, V. N.; Voskresenskaya, E. N.; Yurovskiy, A. V.

    2010-09-01

    The aim of the paper is to analyze interannual and decadal variability of cyclonic activity in the Mediterranean and Black Sea regions associated with the North Atlantic Oscillation (NAO), El-Nino - Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Using daily NCEP/NCAR reanalysis data sets on the 1000 hPa geopotential height in 1948 - 2006, the main parameters of cyclones such as frequency, area, depth and intensity were calculated for the Western and Eastern Mediterranean and Black Sea region, the data sets of parameters of cyclones were created. Quality control of the detection of cyclones on the basis of reanalysis data was done. Comparison of number of cyclonic centers selected from NCEP/NCAR reanalysis and the same values obtained from cinematic maps of the Ukrainian Hydrometeorological service demonstrates quite good agreement of the analyzed series; correlation coefficient between them reaches 0.91. Interannual variability of the parameters of cyclones associated with NAO index and SOI (Southern Oscillation index) was analyzed. Correctness of the choice of these global signals is corroborated by the results of spectrum analysis of the parameters of cyclones. Particularly, it was shown that typical scales of cyclonic variability in the Mediterranean and Black Sea regions are ~2, 4.3 - 4.8 and 7 - 8 years which confirm that this variability is characterized by the same time scales as NAO (2 - 8 years) and SO (3 - 7 years). Correlation analysis of the monthly cyclonic parameters with NAO and SO indices was performed. Correlation coefficients of the winter-spring cyclonic parameters with NAO index reach -0.6; while the lagged (4 - 6 months) correlation coefficients with SOI reach 0.49. In particular, correlation analysis of the connection between parameters of cyclones and SOI has shown that ENSO variability in September causes up to 20% of anomalous weather conditions in all studied regions in winter (correlation coefficient r = 0.43); ENSO in

  8. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  9. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  10. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  11. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  12. Cyclone reactor

    DOEpatents

    Converse, Alvin O.; Grethlein, Hans E.; Holland, Joseph E.

    1989-04-04

    A system is provided to produce sugars from a liquid-solid mixture containing biomass, and an acid, wherein the mixture is heated to an appropriate temperature to achieve hydrolysis. The liquid-solid mixture is introduced as a stream into the circular-cylindrical chamber of a cyclone reaction vessel and steam is introduced to the vessel to provide the necessary heat for hydrolysis as well as to establish the liquid-solid mixture in a rotary flow field whereby the liquids and solids of the mixture move along spiral paths within the chamber. The liquid-solid mixture may be introduced at the periphery of the chamber to spiral down toward and be discharged at or near the center of the chamber. Because of differing mass, the solid particles in the mixture move radially inward at a different rate than the liquid and that rate is controlled to maximize the hydrolysis of the solids and to minimize the decomposition of sugars, thus formed.

  13. Cyclone disaster vulnerability and response experiences in coastal Bangladesh.

    PubMed

    Alam, Edris; Collins, Andrew E

    2010-10-01

    For generations, cyclones and tidal surges have frequently devastated lives and property in coastal and island Bangladesh. This study explores vulnerability to cyclone hazards using first-hand coping recollections from prior to, during and after these events. Qualitative field data suggest that, beyond extreme cyclone forces, localised vulnerability is defined in terms of response processes, infrastructure, socially uneven exposure, settlement development patterns, and livelihoods. Prior to cyclones, religious activities increase and people try to save food and valuable possessions. Those in dispersed settlements who fail to reach cyclone shelters take refuge in thatched-roof houses and big-branch trees. However, women and children are affected more despite the modification of traditional hierarchies during cyclone periods. Instinctive survival strategies and intra-community cooperation improve coping post cyclone. This study recommends that disaster reduction programmes encourage cyclone mitigation while being aware of localised realities, endogenous risk analyses, and coping and adaptation of affected communities (as active survivors rather than helpless victims).

  14. The Influence of Dust-radiation-microphysics Processes on Tropical Cyclone Development

    NASA Astrophysics Data System (ADS)

    Chen, S.; Cheng, C.; Chen, J.; Lin, Y.; Lee, H.; Tsai, I.

    2011-12-01

    Saharan dust can modify the Saharan Air Layer (SAL) and its environment by changing the energy budget through direct and indirect radiative forcing. Scattering and absorption of radiation by suspended dust directly modifies the energy budget in the atmosphere and at the surface. Smaller dust particles can remain suspended in the air for prolonged periods and propagate over the Atlantic Ocean along with SAL. These fine particles can reach an altitude of 8-9 km, where they nucleate ice crystals and transform cloud microphysical properties, indirectly changing the energy budget. Thus, the dust within the air mass is likely to affect the evolution of hurricane properties, life cycles, and the corresponding cloud systems through the dust-cloud-radiation interactions. A tracer model based on the Weather Research and Forecasting model (named WRFT) was developed to study the influence of dust-radiation-microphysics effects on hurricane activities. The dust-radiation effects and a two-moment microphysics scheme with dust particles acting as ice nuclei were implemented into WRFT. In this work, two easterly waves, which were precursors of Tropical Storm Debby and Hurricane Ernesto, during 18-25 August 2006 were studied. Four high-resolution numerical experiments were conducted with the combinations of activating/deactivating dust-radiation and/or dust-microphysics processes. Results from these four experiments are compared to investigate the influence of dust-radiation-microphysics processes on these two storm developments.

  15. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  16. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  17. Tropical Cyclone Information System

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  18. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  19. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  20. APR-2 Tropical Cyclone Observations

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  1. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-03-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, we have been hampered somewhat by flow delivery of the bubble generation system and arc lighting system placed on order last fall. This equipment is necessary to map the flow field within cyclones using the techniques described in last quarter's report. Using the bubble generator, we completed this quarter a study of the natural length'' of cyclones of 18 different configurations, each configuration operated at five different gas flows. Results suggest that the equation by Alexander for natural length is incorrect; natural length as measured with the bubble generation system is always below the bottom of the cyclones regardless of the cyclone configuration or gas flow, within the limits of the experimental cyclones tested. This finding is important because natural length is a term in equations used to predict cyclone efficiency. 1 tab.

  2. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-09-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, an empirical model for predicting pressure drop across a cyclone was developed through a statistical analysis of pressure drop data for 98 cyclone designs. The model is shown to perform better than the pressure drop models of First (1950), Alexander (1949), Barth (1956), Stairmand (1949), and Shepherd-Lapple (1940). This model is used with the efficiency model of Iozia and Leith (1990) to develop an optimization curve which predicts the minimum pressure drop and the dimension rations of the optimized cyclone for a given aerodynamic cut diameter, d{sub 50}. The effect of variation in cyclone height, cyclone diameter, and flow on the optimization curve is determined. The optimization results are used to develop a design procedure for optimized cyclones. 37 refs., 10 figs., 4 tabs.

  3. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  4. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  5. Advanced planning for ISS payload ground processing

    NASA Astrophysics Data System (ADS)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  6. Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model.

    PubMed

    Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.

  7. Cyclone performance by velocity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  8. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. We have now received all the equipment necessary for the flow visualization studies described over the last two progress reports. We have begun more detailed studies of the gas flow pattern within cyclones as detailed below. Third, we have begun studies of the effect of particle concentration on cyclone performance. This work is critical to application of our results to commercial operations. 1 fig.

  9. Response of subsurface waters in the eastern Arabian Sea to tropical cyclones

    NASA Astrophysics Data System (ADS)

    Rao, A. D.; Joshi, Madhu; Jain, Indu; Ravichandran, M.

    2010-11-01

    Thermister chain data at different depths for June 1998 cyclone in the Arabian Sea at a location (69.2 E,15.5 N) which is about 60 km to the left of the cyclone track indicates subsurface warming below 60 m and inertial oscillations of temperature with a periodicity of about 2 days. The oscillations continued for ˜15 days even after the cyclone crossed the coast. The analysis of the buoy, DS1 located at the same position also suggests a stabilized southward flow after about two weeks of the cyclone crossed the coast. Analysis of the buoy data for May 1999 cyclone in the same region also indicates similar pattern. In order to investigate the effect of cyclone-ocean interaction and primarily to understand the process for the subsurface warming, 3-dimensional Princeton Ocean Model is configured for the eastern part of the Arabian Sea. The model uses high horizontal resolution of about 6 km near the coast and a terrain following sigma coordinate in the vertical with 26 levels. The study focuses on surface cooling and temperature rise in the underlying waters and explains its mechanism through upwelling and downwelling respectively. The simulations in concurrence with the observations suggest that the occurrence of subsurface warming precedes the surface cooling with a lag of ˜a day as the cyclone advances DS1. The simulations also demonstrate local temperature stratification plays an important role for cooling of the upper ocean and warming of the subsurface waters and extent of warming is directly related to the depth of the thermocline.

  10. Can climate models represent the precipitation associated with extratropical cyclones?

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matthew K.; Shaffrey, Len C.; Hodges, Kevin I.; Dacre, Helen F.

    2016-08-01

    Extratropical cyclones produce the majority of precipitation in many regions of the extratropics. This study evaluates the ability of a climate model, HiGEM, to reproduce the precipitation associated with extratropical cyclones. The model is evaluated using the ERA-Interim reanalysis and GPCP dataset. The analysis employs a cyclone centred compositing technique, evaluates composites across a range of geographical areas and cyclone intensities and also investigates the ability of the model to reproduce the climatological distribution of cyclone associated precipitation across the Northern Hemisphere. Using this phenomena centred approach provides an ability to identify the processes which are responsible for climatological biases in the model. Composite precipitation intensities are found to be comparable when all cyclones across the Northern Hemisphere are included. When the cyclones are filtered by region or intensity, differences are found, in particular, HiGEM produces too much precipitation in its most intense cyclones relative to ERA-Interim and GPCP. Biases in the climatological distribution of cyclone associated precipitation are also found, with biases around the storm track regions associated with both the number of cyclones in HiGEM and also their average precipitation intensity. These results have implications for the reliability of future projections of extratropical precipitation from the model.

  11. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  12. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  13. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  14. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  15. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. During the past quarter, we have nearly completed modeling work that employs the flow field measurements made during the past six months. In addition, we have begun final work using the results of this project to develop improved design methods for cyclones. This work involves optimization using the Iozia-Leith efficiency model and the Dirgo pressure drop model. This work will be completed this summer. 9 figs.

  16. Tropical Cyclone Nargis: 2008

    NASA Video Gallery

    This new animation, developed with the help of NASA's Pleiades supercomputer, illustrates how tropical cyclone Nargis formed in the Indian Ocean's Bay of Bengal over several days in late April 2008...

  17. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  18. A comparison of limited-area energetic processes between observations and primitive equation model predictions. [cyclone Numerical Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Alpert, J. C.; Chen, T.-C.

    1979-01-01

    Energetic analyses of the NMC initial conditions and NMC six-layer primitive equation operational prediction model 12-hr forecast for a developing cyclone are presented. Consideration is given to the total kinetic energy, the energetics of the divergent and nondivergent flows and the baroclinic (vertical shear flow) and barotropic (vertical mean flow) components of the kinetic energy. It is found that the model initial conditions lose 10-15% of the kinetic energy at various levels compared to a limited-area multivariate statistical analysis of the observational data, leading to a decrease in the horizontal kinetic energy flux, a misrepresentation of the synoptic scale wave system in the 12-hr forecast. Similar results are obtained for the nondivergent flow, while the divergent flow energetics are not reproduced accurately by the model. The horizontal flux terms of the vertical mean and vertical shear energetics are also not found to be reproduced in the upper levels, although horizontal flux contributions to the baroclinic component are improved at middle and lower levels. Finally, vertical shear kinetic energy generation is found to be well represented in the model prediction, however kinetic energy conversion between vertical shear and mean flow is not reproduced in the lower layer.

  19. Advanced parallel processing with supercomputer architectures

    SciTech Connect

    Hwang, K.

    1987-10-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers.

  20. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  1. Cyclone performance estimates for pressurized fluidized-bed combustion

    SciTech Connect

    Henry, R.F.; Podolski, W.F.

    1981-07-01

    Hot pressurized flue gas from pressurized fluidized-bed combustion must be cleaned up prior to its expansion in a gas turbine as part of the combined-cycle electric power generation concept. The performance of conventional cyclones in experimental tests has been compared with theory, with reasonable agreement. Prediction of the performance of a larger cyclone system shows that three stages should provide the cleanup required on the basis of current estimates of turbine tolerance of particulate matter. Advances in hot gas cleanup - optimized cyclones, augmented cyclones, and alternative devices - should provide future improvement in cycle efficiencies and costs, but simple cyclones are planned for first-generation PFB/CC pilot and demonstration plants.

  2. Cloudsat tropical cyclone database

    NASA Astrophysics Data System (ADS)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms

  3. Impact of Tropical Cyclones on the Ocean Heat Budget in the Bay of Bengal during 1999: Processes and Interpretations

    NASA Astrophysics Data System (ADS)

    Wang, J.; Han, W.; Sriver, R. L.

    2012-12-01

    The impacts of two consecutive, strong tropical cyclones (TCs) from October-November in 1999 on the Bay of Bengal (BoB) heat budget are examined using the Hybrid Coordinate Ocean Model. The model uses atmospheric conditions from reanalysis, reconstructed TC winds, and satellite-observed winds and precipitation. We conduct a series of diagnostic experiments to isolate the model's response to the individual TC-associated forcings. During the TCs, the BoB ocean heat content (OHC) is reduced, primarily due to TC-wind induced southward ocean heat transport (OHT) and a reduction in surface downward radiation due to increased cloudiness. BoB OHC is largely restored in the following months via enhanced surface heat fluxes, associated with cold wake restoration, and positive northward OHT. The TCs' downward heat pumping effect is estimated to be ~1.74×1018J near the end of February 2000, which is less than estimates using previously published methods based on surface observations. The relatively weak heat pumping results from freshwater input by intense monsoon rainfall and river discharge in the BoB, which stabilizes stratification, forms a barrier layer, and generates temperature inversions during seasonal surface cooling. As a result, early stage TC winds entrain the warm barrier layer water and enhance enthalpy loss in the southeastern Bay, while mature stage TC winds erode the barrier layer, decrease SST through upwelling and entrainment of deeper cold water and reduce enthalpy loss in the northwestern Bay. Our findings suggest TC winds may significantly alter the interseasonal BoB heat budget through OHT and surface heat fluxes.

  4. Impact of tropical cyclones on the ocean heat budget in the Bay of Bengal during 1999: 2. Processes and interpretations

    NASA Astrophysics Data System (ADS)

    Wang, Jih-Wang; Han, Weiqing; Sriver, Ryan L.

    2012-09-01

    The impacts of two consecutive, strong tropical cyclones (TCs) from October-November in 1999 on the Bay of Bengal (BoB) heat budget are examined using the Hybrid Coordinate Ocean Model. The model uses atmospheric conditions from reanalysis, reconstructed TC winds, and satellite-observed winds and precipitation. We conduct a series of diagnostic experiments to isolate the model's response to the individual TC-associated forcings. During the TCs, the BoB ocean heat content (OHC) is reduced, primarily due to TC-wind induced southward ocean heat transport (OHT) and a reduction in surface downward radiation due to increased cloudiness. BoB OHC is largely restored in the following months via enhanced surface heat fluxes, associated with cold wake restoration, and positive northward OHT. The TCs' downward heat pumping effect is estimated to be ˜1.74 × 1018 J near the end of February 2000, which is less than estimates using previously published methods based on surface observations. The relatively weak heat pumping results from freshwater input by intense monsoon rainfall and river discharge in the BoB, which stabilizes stratification, forms a barrier layer, and generates temperature inversions during seasonal surface cooling. As a result, early stage TC winds entrain the warm barrier layer water and enhance enthalpy loss in the southeastern Bay, while mature stage TC winds erode the barrier layer, decrease SST through upwelling and entrainment of deeper cold water and reduce enthalpy loss in the northwestern Bay. Our findings suggest TC winds may significantly alter the interseasonal BoB heat budget through OHT and surface heat fluxes.

  5. Improved water-cooled cyclone constructions in CFBs

    SciTech Connect

    Alliston, M.G.; Luomaharju, T.; Kokko, A.

    1999-07-01

    The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

  6. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  7. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  8. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  9. Cyclones in the thermosphere?

    NASA Astrophysics Data System (ADS)

    Burns, A.; Wang, W.; Killeen, T.

    2003-04-01

    The recovery of the thermosphere and ionosphere from geomagnetic storms is a subject that has not received the attention that it deserves. But, even with the small number of papers that have been published about these conditions, there are apparently conflicting results. Burns et al. (1989) suggested that most recovery was rapid, whereas Fuller-Rowell et al. (1994) found recovery was sufficiently slow that storm effects could be seen a full day after the end of the main phase of a geomagnetic storm. At first sight these two ideas do not seem to be easily reconciled. But, in fact, it is shown here that, while much recovery is fast at solar maximum, large, organized disturbances exist in the thermosphere and ionosphere for a long time. These disturbances, which were first proposed by Banks and Nagy (1974), are mesoscale- to large-scale in size and nature and have some characteristics of tropospheric cyclones. In this work, we discuss the nature of these disturbances, their origin and development and consider the processes that permit their long life. The major conclusions of this work are: 1) After a major geomagnetic storm neutral compositional recovery is rapid over much of the globe; 2) In certain areas, large-to-mesoscale disturbances occur that are both well organized and long lived; 3) The disturbance discussed here was "spun-off" from the dawn convection cell and then briefly formed a secondary horizontal vortex; 4) At times these disturbances are associated with pronounced vertical convection cells.

  10. Grey swan tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lin, Ning; Emanuel, Kerry

    2016-01-01

    We define `grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be foreseeable using physical knowledge together with historical data. Here we apply a climatological-hydrodynamic method to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate storm surges of about 6 m, 5.7 m and 4 m, respectively, with estimated annual exceedance probabilities of about 1/10,000. With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100-1/1,100 in the middle and 1/2,500-1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges exceeding 11 m in Tampa and 7 m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of the century.

  11. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  12. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  13. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  14. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  15. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  16. Assessing Tropical Cyclone Damage

    NASA Astrophysics Data System (ADS)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  17. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  18. Impact of Ocean Barrier Layers on Tropical Cyclone Intensification

    NASA Astrophysics Data System (ADS)

    Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.

    2012-12-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.;

  19. Cyclone disaster vulnerability and response experiences in coastal Bangladesh.

    PubMed

    Alam, Edris; Collins, Andrew E

    2010-10-01

    For generations, cyclones and tidal surges have frequently devastated lives and property in coastal and island Bangladesh. This study explores vulnerability to cyclone hazards using first-hand coping recollections from prior to, during and after these events. Qualitative field data suggest that, beyond extreme cyclone forces, localised vulnerability is defined in terms of response processes, infrastructure, socially uneven exposure, settlement development patterns, and livelihoods. Prior to cyclones, religious activities increase and people try to save food and valuable possessions. Those in dispersed settlements who fail to reach cyclone shelters take refuge in thatched-roof houses and big-branch trees. However, women and children are affected more despite the modification of traditional hierarchies during cyclone periods. Instinctive survival strategies and intra-community cooperation improve coping post cyclone. This study recommends that disaster reduction programmes encourage cyclone mitigation while being aware of localised realities, endogenous risk analyses, and coping and adaptation of affected communities (as active survivors rather than helpless victims). PMID:20561338

  20. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    SciTech Connect

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  1. Advanced laser processing of glass materials

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Obata, Kotaro; Cheng, Ya; Midorikawa, Katsumi

    2003-09-01

    Three kinds of advanced technologies using lasers for glass microprocessing are reviewed. Simultaneous irradiation of vacuum ultraviolet (VUV) laser beam, which possesses extremely small laser fluence, with ultraviolet (UV) laser achieves enhanced high surface and edge quality ablation in fused silica and other hard materials with little debris deposition as well as high-speed and high-efficiency refractive index modification of fused silica (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials, resulting in surface microstructuring, high-speed holes drilling, crack-free marking, color marking, painting and metal interconnection for the various kinds of glass materials (laser-induced plasma-assisted ablation (LIPAA)). In the meanwhile, a nature of multiphoton absorption of femtosecond laser by transparent materials realizes fabrication of true three-dimensional microstructures embedded in photosensitive glass.

  2. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products. PMID:21726140

  3. Recent advances in EEG data processing.

    PubMed

    Zetterberg, L H

    1978-01-01

    It is argued that the most interesting advances in EEG signal processing are with methods based on descriptive mathematical models of the process. Formulation of auto-regressive (AR) and mixed autoregressive and moving average (ARMA) models is reviewed for the scalar and the multidimensional cases and extensions to allow time-varying coefficients are pointed out. Data processing with parametric models, DPPM, involves parameter estimation and a large number of algorithms are available. Emphasis is put on those that are simple to apply and require a modest amount of computation. A recursive algorithm by Levinson, Robinson and Durbin is well suited for estimation of the coefficients in the AR model and for tests of model order. It is applicable to both the scalar and multidimensional cases. The ARMA model can be handled by approximation of an AR model or by nonlinear optimization. Recursive estimation with AR and ARMA models is reviewed and the connection with the Kalman filter pointed out. In this way processes with time-varying properties may be handled and a stationarity index is defined. The recursive algorithms can deal with AR or ARMA models in the same way. A reformulation of the algorithm to include sparsely updated parameter estimates significantly speeds up the calculations. It will allow several EEG channels to be handled simultaneously in real time on a modern minicomputer installation. DPPM has been particularly successful in the areas of spectral analysis and detection of short transients such as spikes and sharp waves. Recently some interesting attempts have been made to apply classification algorithms to estimated parameters. A brief review is made of the main results in these areas.

  4. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  5. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  6. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  7. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2001-09-10

    The fieldwork associated with Task 1 (Baseline Assessment) was completed this quarter. Detailed cyclone inspections completed at all but one plant during maintenance shifts. Analysis of the test samples is also currently underway in Task 4 (Sample Analysis). A Draft Recommendation was prepared for the management at each test site in Task 2 (Circuit Modification). All required procurements were completed. Density tracers were manufactured and tested for quality control purposes. Special sampling tools were also purchased and/or fabricated for each plant site. The preliminary experimental data show that the partitioning performance for all seven HMC circuits was generally good. This was attributed to well-maintained cyclones and good operating practices. However, the density tracers detected that most circuits suffered from poor control of media cutpoint. These problems were attributed to poor x-ray calibration and improper manual density measurements. These conclusions will be validated after the analyses of the composite samples have been completed.

  8. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  9. Natural language processing and advanced information management

    NASA Technical Reports Server (NTRS)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  10. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  11. Advanced reburning with new process enhancements

    SciTech Connect

    Folsom, B.; Payne, R.; Moyeda, D.

    1996-01-01

    Advanced Reburning (AR) is a synergistic integration of reburning and selective non-catalytic reduction (SNCR) which can reduce NO{sub x} emissions by over 85% from boilers and furnaces. Reburning is used to set up conditions which optimize the performance of SNCR including broadening of the temperature window and reduction of ammonia slip. AR has been tested extensively at pilot scale as part of two DOE projects. Recently, two AR improvements have been developed and tested at bench scale: reagent injection into the reburning zone and specific promoters which enhance NO{sub x} control, broaden the SNCR temperature window, and further reduce ammonia slip. The reburning zone reagent injection can be used to eliminate the injection of urea or ammonia SNCR agents thus significantly reducing total capital cost. Alternately, two injection stages can be used to increase NO{sub x} control to 95%. This paper presents the results of pilot and bench scale tests of both the AR and the new process enhancements. Plans for additional development and a full scale field evaluation are discussed.

  12. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  13. Plan for advanced microelectronics processing technology application

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  14. Advanced Reduction Processes: A New Class of Treatment Processes

    PubMed Central

    Vellanki, Bhanu Prakash; Batchelor, Bill; Abdel-Wahab, Ahmed

    2013-01-01

    Abstract A new class of treatment processes called advanced reduction processes (ARPs) is proposed. ARPs combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. Batch screening experiments were conducted to identify effective ARPs by applying several combinations of activation methods (ultraviolet light, ultrasound, electron beam, and microwaves) and reducing agents (dithionite, sulfite, ferrous iron, and sulfide) to degradation of four target contaminants (perchlorate, nitrate, perfluorooctanoic acid, and 2,4 dichlorophenol) at three pH-levels (2.4, 7.0, and 11.2). These experiments identified the combination of sulfite activated by ultraviolet light produced by a low-pressure mercury vapor lamp (UV-L) as an effective ARP. More detailed kinetic experiments were conducted with nitrate and perchlorate as target compounds, and nitrate was found to degrade more rapidly than perchlorate. Effectiveness of the UV-L/sulfite treatment process improved with increasing pH for both perchlorate and nitrate. We present the theory behind ARPs, identify potential ARPs, demonstrate their effectiveness against a wide range of contaminants, and provide basic experimental evidence in support of the fundamental hypothesis for ARP, namely, that activation methods can be applied to reductants to form reducing radicals that degrade oxidized contaminants. This article provides an introduction to ARPs along with sufficient data to identify potentially effective ARPs and the target compounds these ARPs will be most effective in destroying. Further research will provide a detailed analysis of degradation kinetics and the mechanisms of contaminant destruction in an ARP. PMID:23840160

  15. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  16. The contribution of tropical cyclones to rainfall in Mexico

    NASA Astrophysics Data System (ADS)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  17. Sea turtle species vary in their susceptibility to tropical cyclones.

    PubMed

    Pike, David A; Stiner, John C

    2007-08-01

    Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life

  18. Sea turtle species vary in their susceptibility to tropical cyclones.

    PubMed

    Pike, David A; Stiner, John C

    2007-08-01

    Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life

  19. A tropical cyclone application for virtual globes

    NASA Astrophysics Data System (ADS)

    Joseph Turk, F.; Hawkins, Jeff; Richardson, Kim; Surratt, Mindy

    2011-01-01

    Within the past ten years, a wide variety of publicly available environmental satellite-based data have become available to users and gained popular exposure in meteorological applications. For example, the Naval Research Laboratory (NRL) has maintained a well accepted web-based tropical cyclone (TC) website (NRL TC-Web) with a diverse selection of environmental satellite imagery and products covering worldwide tropical cyclones extending back to 1997. The rapid development of virtual globe technologies provides for an effective framework to efficiently demonstrate meteorological and oceanographic concepts to not only specialized weather forecasters but also to students and the general public. With their emphasis upon geolocated data, virtual globes represent the next evolution beyond the traditional web browser by allowing one to define how, where, and when various data are displayed and dynamically updated. In this article, we describe a virtual globe implementation of the NRL TC-Web satellite data processing system. The resulting NRL Tropical Cyclones on Earth (TC-Earth) application is designed to exploit the capabilities of virtual globe technology to facilitate the display, animation, and layering of multiple environmental satellite imaging and sounding sensors for effective visualization of tropical cyclone evolution. As with the NRL TC-Web, the TC-Earth application is a dynamic, realtime application, driven by the locations of active and historical tropical cyclones. TC-Earth has a simple interface that is designed around a series of placemarks that follow the storm track history. The position coordinates along the storm track are used to map-register imagery and subset other types of information, allowing the user a wide range of freedom to choose data types, overlay combinations, and animations with a minimum number of clicks. TC-Earth enables the user to quickly select and navigate to the storm of interest from the multiple TCs active at anytime around

  20. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  1. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  2. How will precipitation change in extratropical cyclones as the planet warms?

    NASA Astrophysics Data System (ADS)

    Yettella, V. K. R.; Kay, J. E.

    2015-12-01

    The majority of midlatitude precipitation occurs in extratropical cyclones. The purpose of this study is to understand how and why precipitation changes in these cyclones due to global warming. Daily precipitation fields from the Community Earth System Model (CESM) Large Ensemble Project are used for this purpose. Extratropical cyclone centers during three periods (1986 - 2005, 2016 - 2035 and 2081 - 2100 representing the present day, the near future and the far future respectively) are identified using a filtering algorithm based on pressure gradients typical of extratropical cyclone centers. For each cyclone center, the surrounding precipitation field is interpolated from the CESM grid onto a radial cap centered on the cyclone center. Average precipitation fields are calculated for the three periods to obtain "cyclone composites". In agreement with the warm conveyor belt model, the cyclone composites for the three periods have a comma-shaped precipitation band with maximum precipitation close to the cyclone center. The near future and the far future composites are compared with the present day composite to identify locations of significant change (at 95% confidence). Statistically significant precipitation increases are found both for the near future and the far future, especially near the cyclone center. To identify the processes contributing to these changes, we decompose precipitation change into two parts - one part that is due to changes in dynamics (mean cyclone wind speed) and another part that is due to changes in thermodynamics (mean cyclone water vapor path). We find that precipitation increases occur primarily due to changes in thermodynamics. We will also present ongoing work to investigate changes in cyclone location and density in a warming climate and also investigate land-ocean and hemispheric differences in cyclone charactersitics.

  3. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  4. Advanced materials for geothermal energy processes

    SciTech Connect

    Kukacka, L.E.

    1985-08-01

    The primary goal of the geothermal materials program is to ensure that the private sector development of geothermal energy resources is not constrained by the availability of technologically and economically viable materials of construction. This requires the performance of long-term high risk GHTD-sponsored materials R and D. Ongoing programs described include high temperature elastomers for dynamic sealing applications, advanced materials for lost circulation control, waste utilization and disposal, corrosion resistant elastomeric liners for well casing, and non-metallic heat exchangers. 9 refs.

  5. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  6. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  7. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  8. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  9. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  10. Extratropical cyclone classification and its use in climate studies

    NASA Astrophysics Data System (ADS)

    Catto, J. L.

    2016-06-01

    Extratropical cyclones have long been known to be important for midlatitude weather. It is therefore important that our current state-of-the-art climate models are able to realistically represent these features, in order that we can have confidence in how they are projected to change in a warming climate. Despite the observation that these cyclones are extremely variable in their structure and features, there have, over the years, been numerous attempts to classify or group them. Such classifications can provide insight into the different cloud structures, airflows, and dynamical forcing mechanisms within the different cyclone types. This review collects and details as many classification techniques as possible, and may therefore act as a reference guide to classifications. These classifications offer the opportunity to improve the way extratropical cyclone evaluation in climate models is currently done by giving more insight into the dynamical and physical processes that occur in climate models (rather than just evaluating the mean state over a broad region as is often done). Examples of where these ideas have been used, or could be used, are reviewed. Finally, the potential impacts of future climate changes on extratropical cyclones are detailed. The ways in which the classification techniques could improve our understanding of future changes in extratropical cyclones and their impacts are given.

  11. Tropical Cyclone Bejisa Near Madagascar

    NASA Video Gallery

    NASA's TRMM satellite flew over Cyclone Bejisa on December 29, 2013 at 1507 UTC. This 3-D animation of TRMM data revealed strong thunderstorms around Bejisa's center were reaching heights above 16....

  12. Study on advanced information processing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1992-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  13. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  14. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  15. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  16. Black Swan Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  17. The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1996-01-01

    This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.

  18. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  19. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  20. Cofiring coal-water slurry in cyclone boilers: Some combustion issues and considerations

    SciTech Connect

    Carson, W.R.; Tillman, D.

    1997-07-01

    Coal-water slurry (CWS) has become a fuel of opportunity with the ability to impact fuel cost at selected power plants; at the same time it has the potential to reduce emissions of oxides of nitrogen (NO{sub x}) by driving specific combustion mechanisms. CWS, produced from selected fines generated during coal cleaning operations, has been fired extensively at the Seward Generating Station of General Public Utilities (GPU), and testing has been initiated at cyclone plants as well. Initial combustion modeling of cyclones has shown that the critical issues associated with CWS firing in cyclones include the following: (1) the impact of CWS on fuel chemistry, with particular attention to fuel ash chemistry; (2) the impact of CWS on combustion temperatures; (3) the impact of CWS, and the consequent increased gas flow in the cyclones, on combustion processes in the cyclone barrel and potentially on combustion in the primary furnace as well; (4) the consequence of combustion process changes on patterns of heat release in the cyclone barrel and in the primary furnace; (5) the ability of the CWS to impact NO{sub x} emissions in the cyclone; and (6) the impact of CWS on the formation of trace metal emissions. This paper reviews the results of cyclone boiler modeling, and also reviews some results of initial cyclone testing related to the results of the modeling efforts.

  1. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  2. Advanced alarm systems: Display and processing issues

    SciTech Connect

    O`Hara, J.M.; Wachtel, J.; Perensky, J.

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  3. Advances in Processing of Bulk Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  4. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  5. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  6. Integration of advanced nuclear materials separation processes

    SciTech Connect

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  7. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  8. Nimbus-7 total ozone observations of western North Pacific tropical cyclones

    NASA Technical Reports Server (NTRS)

    Stout, John; Rodgers, Edward B.

    1992-01-01

    The Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) was used to map the distribution of total ozone around western North Pacific tropical cyclones from 1979 to 1982. The strong correlation between total ozone distribution and tropopause height found in the subtropical and midlatitudes made it possible for TOMS to monitor the propagation of upper-tropospheric waves and the mutual adjustment between these waves and tropical cyclones during their interaction. Changes in these total ozone patterns reflect the 3D upper-tropospheric transport processes that are involved in tropical cyclone intensity and intensity and motion changes. The total ozone distributions indicate that: (1) the mean upper-tropospheric circulations associated with western North Pacific and Atlantic tropical cyclones are similar; (2) more intense tropical cyclones have higher tropopauses around their centers; (3) more intense tropical cyclones have higher tropopauses on the anticyclonic-shear side of their outflow jets, which indicate that the more intense tropical cyclones have stronger outflow channels than less intense systems; (4) tropical cyclones that intensify (do not intensify) are within 10 deg (15 deg) latitude of weak (strong) upper-tropospheric troughs that are moderately rich (very rich) in total ozone; and (5) tropical cyclones turn to the left (right) when they move within approximately 15 deg latitude downstream of an ozone-poor (ozone-rich) upper-tropospheric ridge (trough).

  9. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    PubMed Central

    Convertino, Matteo; Elsner, James B.; Muñoz-Carpena, Rafael; Kiker, Gregory A.; Martinez, Christopher J.; Fischer, Richard A.; Linkov, Igor

    2011-01-01

    Background The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. Methodology/Principal Findings Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. Conclusions/Significance Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones. PMID:21264268

  10. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  11. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  12. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  14. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  15. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    ERIC Educational Resources Information Center

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  16. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  17. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  18. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  19. The dynamics and predictability of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Sippel, Jason Allen

    Through methodology unique for tropical cyclones in peer-reviewed literature, this study explores how the dynamics of moist convection affects the predictability of tropical cyclogenesis. Mesoscale models are used to perform short-range ensemble forecasts of a non-developing disturbance in 2004 and Hurricane Humberto in 2007; both of these cases were highly unpredictable. Taking advantage of discrepancies between ensemble members in short-range ensemble forecasts, statistical correlation is used to pinpoint sources of error in forecasts of tropical cyclone formation and intensification. Despite significant differences in methodology, storm environment and development, it is found in both situations that high convective instability (CAPE) and mid-level moisture are two of the most important factors for genesis. In the gulf low, differences in CAPE are related to variance in quasi-geostrophic lift, and in Humberto the differences are related to the degree of interaction between the cyclone and a nearby front. Regardless of the source of CAPE variance, higher CAPE and mid-level moisture combine to yield more active initial convection and more numerous and strong vortical hot towers (VHTs), which incrementally contribute to a stronger vortex. In both cases, strength differences between ensemble members are further amplified by differences in convection that are related to oceanic heat fluxes. Eventually the WISHE mechanism results in even larger ensemble spread, and in the case of Humberto, uncertainty related to the time of landfall drives spread even higher. It is also shown that initial condition differences much smaller than current analysis error can ultimately control whether or not a tropical cyclone forms. Furthermore, even smaller differences govern how the initial vortex is built. Differences in maximum winds and/or vorticity vary nonlinearly with initial condition differences and depend on the timing and intensity of small mesoscale features such as VHTs and

  20. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  1. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    NASA Technical Reports Server (NTRS)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  2. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  3. Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups

    ERIC Educational Resources Information Center

    Putz, Claus; Intveen, Geesche

    2009-01-01

    By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…

  4. Data Processing (Advanced Business Programming) Volume II. Instructor's Guide.

    ERIC Educational Resources Information Center

    Litecky, Charles R.; Lamkin, Tim

    This curriculum guide for an advanced course in data processing is for use as a companion publication to a textbook or textbooks; references to appropriate textbooks are given in most units. Student completion of assignments in Volume I, available separately (see ED 220 604), is a prerequisite. Topics covered in the 18 units are introduction,…

  5. Advanced potato breeding clones: storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  6. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  7. Tropical Cyclone Monty Strikes Western Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) acquired these natural color images and cloud top height measurements for Monty before and after the storm made landfall over the remote Pilbara region of Western Australia, on February 29 and March 2, 2004 (shown as the left and right-hand image sets, respectively). On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the cyclonic circulation had decayed considerably, although category 3 force winds were reported on the ground. Some parts of the drought-affected Pilbara region received more than 300 millimeters of rainfall, and serious and extensive flooding has occurred.

    The natural color images cover much of the same area, although the right-hand panels are offset slightly to the east. Automated stereoscopic processing of data from multiple MISR cameras was utilized to produce the cloud-top height fields. The distinctive spatial patterns of the clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. The height retrievals are at this stage uncorrected for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22335 and 22364. The panels cover an area of about 380 kilometers x 985 kilometers, and utilize data from blocks 105 to 111 within World Reference System-2 paths 115 and 113.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the

  8. Tropical cyclone intensities from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.

    1980-01-01

    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except

  9. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  10. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  11. Advanced titanium alloys and processes for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Rack, H. J.; Qazi, Javaid

    2005-11-01

    Major advances continue to be made in enhancing patient care while at the same time attempting to slow ever-rising health costs. Among the most innovative of these advances are minimally invasive surgical techniques, which allow patients to undergo life-saving and quality-of-life enhancing surgery with minimized risk and substantially reduced hospital stays. Recently this approach was introduced for orthopedic procedures (e.g., during total hip replacement surgery). In this instance, the implantable devices will bear the same loads and will therefore be subject to higher stress. This paper provides a brief overview of several potential approaches for developing new advanced titanium alloys and processes that should provide substantial benefit for this application in minimally invasive devices.

  12. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  13. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  14. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  15. Stratified coastal ocean interactions with tropical cyclones.

    PubMed

    Glenn, S M; Miles, T N; Seroka, G N; Xu, Y; Forney, R K; Yu, F; Roarty, H; Schofield, O; Kohut, J

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  16. Stratified coastal ocean interactions with tropical cyclones

    NASA Astrophysics Data System (ADS)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-03-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward.

  17. Stratified coastal ocean interactions with tropical cyclones.

    PubMed

    Glenn, S M; Miles, T N; Seroka, G N; Xu, Y; Forney, R K; Yu, F; Roarty, H; Schofield, O; Kohut, J

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward.

  18. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  19. Structural analysis of tropical cyclone using INSAT-3D observations

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.

    2016-05-01

    The continuous observations from visible and thermal infrared (TIR) channels of geostationary satellites are highly useful for obtaining the features associated with the shape and dynamics of cloud structures within the tropical cyclones (TCs). As TC develops from an unstructured cloud cluster and intensifies, the cloud structures become more axisymmetric around the centre of the TC. To better understand the structure of TC during different stages of its evolution i.e. from its cyclogenesis to maturity and dissipation, the continuous satellite observations plays a key role. The high spatial and temporal resolution observations from geostationary satellites are very useful in order to analyze the cloud organization during the cyclogenesis. The gradient of the brightness temperatures measures the level of symmetry of each structure, which characterizes the degree of cloud organization of the TC. In the present work, the structural analysis of TC during its life period using the observations from Indian geostationary satellite INSAT-3D has been discussed. The visible and TIR observations from INSAT-3D satellite were used to fix the center position of the cyclone which is an input for the cyclone track and intensity prediction models. This data is also used to estimate the intensity of cyclone in the advanced Dvorak technique (ADT), and in the estimation of radius of maximum winds (Rmax) of TC which is an essential input parameter for the prediction of storm surge associated to the cyclones. The different patterns of cloud structure during the intensification stage, eye-wall formation and dissipation have been discussed. The early identification of these features helps in predicting the rapid intensification of TC which in turn improves the intensity predictions.

  20. Model-based advanced process control of coagulation.

    PubMed

    Baxter, C W; Shariff, R; Stanley, S J; Smith, D W; Zhang, Q; Saumer, E D

    2002-01-01

    The drinking water treatment industry has seen a recent increase in the use of artificial neural networks (ANNs) for process modelling and offline process control tools and applications. While conceptual frameworks for integrating the ANN technology into the real-time control of complex treatment processes have been proposed, actual working systems have yet to be developed. This paper presents development and application of an ANN model-based advanced process control system for the coagulation process at a pilot-scale water treatment facility in Edmonton, Alberta, Canada. The system was successfully used to maintain a user-defined set point for effluent quality, by automatically varying operating conditions in response to changes in influent water quality. This new technology has the potential to realize significant operational cost saving for utilities when applied in full-scale applications.

  1. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  2. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    SciTech Connect

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-10-03

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed.

  3. Promoting the confluence of tropical cyclone research.

    PubMed

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  4. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  5. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  6. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  7. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  8. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  9. Idealised simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, Laura; Gray, Suzanne; Clark, Peter

    2010-05-01

    Extratropical cyclones often produce strong surface winds, mostly associated with low-level jets along the warm and cold fronts. Some severe extratropical cyclones have been found to produce an additional area of localised strong, and potentially very damaging, surface winds during a certain part of their development. These strong winds are associated with air that originates within the cloud head, exiting at the tip of the cloud head and descending rapidly from there to the surface. This rapidly descending air associated with the strong surface winds is known as a sting jet. Previous published work on sting jets has been limited to analyses of only a small number of case studies of observed sting jet cyclones, so a study of idealised sting jet cyclones, rather than specific cases, will be useful in determining the important features and mechanisms that lead to sting jets. This work focuses on an idealised simulation of a cyclone with a sting jet using a periodic channel configuration of the idealised nonhydrostatic Met Office Unified Model. The idealised cyclone simulation is based on baroclinic lifecycle simulations run at sufficiently high resolution for a sting jet to be generated. An analysis of the idealised cyclone and a comparison of the idealised cyclone with case studies of observed sting jet cyclones will be presented.

  10. Asymmetric and axisymmetric dynamics of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-05-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f-plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally-averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics and are generally not represented properly by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast time scales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since during the 3-D intensification process the convection has not yet organized into annular rings

  11. Asymmetric and axisymmetric dynamics of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Persing, J.; Montgomery, M. T.; McWilliams, J. C.; Smith, R. K.

    2013-12-01

    We present the results of idealized numerical experiments to examine the difference between tropical cyclone evolution in three-dimensional (3-D) and axisymmetric (AX) model configurations. We focus on the prototype problem for intensification, which considers the evolution of an initially unsaturated AX vortex in gradient-wind balance on an f plane. Consistent with findings of previous work, the mature intensity in the 3-D model is reduced relative to that in the AX model. In contrast with previous interpretations invoking barotropic instability and related horizontal mixing processes as a mechanism detrimental to the spin-up process, the results indicate that 3-D eddy processes associated with vortical plume structures can assist the intensification process by contributing to a radial contraction of the maximum tangential velocity and to a vertical extension of tangential winds through the depth of the troposphere. These plumes contribute significantly also to the azimuthally averaged heating rate and the corresponding azimuthal-mean overturning circulation. The comparisons show that the resolved 3-D eddy momentum fluxes above the boundary layer exhibit counter-gradient characteristics during a key spin-up period, and more generally are not solely diffusive. The effects of these eddies are thus not properly represented by the subgrid-scale parameterizations in the AX configuration. The resolved eddy fluxes act to support the contraction and intensification of the maximum tangential winds. The comparisons indicate fundamental differences between convective organization in the 3-D and AX configurations for meteorologically relevant forecast timescales. While the radial and vertical gradients of the system-scale angular rotation provide a hostile environment for deep convection in the 3-D model, with a corresponding tendency to strain the convective elements in the tangential direction, deep convection in the AX model does not suffer this tendency. Also, since

  12. A graphene superficial layer for the advanced electroforming process

    NASA Astrophysics Data System (ADS)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  13. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  14. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  15. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  16. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  17. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    PubMed

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-01

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk. PMID:27447291

  18. Cyclone induced Upper Ocean Cooling and Modulation of Surface Winds - A study using satellite data over tropical ocean region

    NASA Astrophysics Data System (ADS)

    Kvs, Badarinath; Kharol, Shailesh Kumar; Dileep, K. P.

    Tropical Cyclones are associated with intense winds, rain, storm surges and variations in cloud patterns. Accurate forecasting of both track and intensity of a tropical cyclone requires thorough understanding of meteorological processes. In this study, we evaluate the relationships between sea-surface temperature (SST) and meteorological parameters over Bay of Bengal region, India using microwave satellite remote sensing data. Most of the cyclones in this region occur during the pre-monsoon period from April-June and are associated with SST greater than 260 C. We have particularly analyzed the data from two recent cyclonic events, Mala that occurred during 24th April 2006 and Tropical Cyclone 01B that occurred during 11th May, 2003. Mala was a very severe cyclonic storm equal to category 4 hurricane on the Saffir-Simpson Hurricane Scale. We used two different remote sensing data sets, the Tropical Rainfall Measurement Mission Sea Surface Temperature (SST) and the NASA QuikSCAT ocean surface wind vectors to characterize the ocean-atmosphere interactions in cold SST regions formed in the trail of the above two cyclone events. Results from the satellite data analysis suggested systematic weakening of wind speed over the cold patch, along the trail of the cyclone. A cooling of around 4 to 5 degrees was observed associated with the passage of cyclone Mala. Wind speed gradually increased from 2 to 9 m/s from the center to the boundary of the cold patch and showed good correlation with SST (r=0.97). These observations have been validated with another cyclone data (Tropical Cyclone 01B) over the Bay of Bengal region that occurred during May 2003. Our results were consistent with the Wallace hypothesis that SST modulates the surface winds via stability. Mechanisms governing SST and wind speed have been highlighted utilizing data from two different tropical cyclone events and remote sensing datasets.

  19. The extratropical transition of Atlantic tropical cyclones: Climatology, lifecycle definition, and a case study

    NASA Astrophysics Data System (ADS)

    Hart, Robert Edward

    This thesis examines the conversion of Atlantic tropical cyclones (TC) into extratropical cyclones (extratropical transition; ET) and presents arguments for the climatology, lifecycle definition, and the physical processes behind ET. Extratropical transition is the conversion of a symmetric, vertically stacked, warm-core tropical cyclone with a maximum intensity in the lower troposphere into an asymmetric, cold-core and tilted extratropical cyclone with a maximum intensity in the upper troposphere. This transition usually occurs with movement into the middle latitudes, and is partially a result of the increased shear, baroclinicity and synoptic-scale disturbances at those latitudes. After an introduction to the topic in Chapter 1, a comprehensive climatology of extratropically transitioning tropical cyclones in the Atlantic basin is presented in Chapter 2. Storm tracks and intensities over a period from 1899 through 1996 are examined, with a focus on the more reliable post-1950 era database. Extratropically transitioning tropical cyclones represent 50% of landfalling tropical cyclones on the east coasts of the United States and Canada, and the west coast of Europe, combined. Atlantic transition occurs from 24°N through 55°N, with a much higher frequency between the latitudes of 35°N to 45°N. Transition occurs at lower latitudes at the beginning and end of the season, and at higher latitudes during the season peak (August-September). The structural evolution of the 61 tropical cyclones from 1979-1993 in Chapter 2 were further examined using 1.125° ECMWF reanalyses in Chapter 3. A reliable indicator for the start of extratropical transition was the mean 850-600hPa thickness difference between the semicircles right and left of storm motion. The fourth chapter examines in detail a case study of extratropical transition through an application of the diagnostics developed in the first two chapters as well as conventional measures of tropical and extratropical

  20. “Out of our control”: Living through Cyclone Yasi

    PubMed Central

    Woods, Cindy; West, Caryn; Buettner, Petra; Usher, Kim

    2014-01-01

    The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339) within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1) living in the mode of existential threat describes survivors’ sense of panic and feeling at the mercy of nature as they feared for their life; (2) unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3) centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster. PMID:24434053

  1. "Out of our control": living through Cyclone Yasi.

    PubMed

    Woods, Cindy; West, Caryn; Buettner, Petra; Usher, Kim

    2014-01-01

    The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339) within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1) living in the mode of existential threat describes survivors' sense of panic and feeling at the mercy of nature as they feared for their life; (2) unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3) centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster. PMID:24434053

  2. Calculate nonfluidized flow in cyclone diplegs and transition pipes

    SciTech Connect

    Talavera, P.G.

    1995-12-01

    A new method to calculate nonfluidized flow of solid particles accounts for varying void fractions and angle of internal friction for different particle types. Thus, it is more accurate and flexible than existing empirical equations. Nonfluidized flow of solid particles is encountered frequently in the hydrocarbon processing industry. Cyclone diplegs in a FCCU reactor and regenerator is one area where the dense flow of solids is found. Sizing these lines to handle the dense flow of solids uses mainly empirical methods. Designers presently use rules of thumb and empirical equations to determine catalyst flow in pipes and cyclone diplegs. Rates are frequently expressed in flux rates with values ranging from 50 to 350 lb/sec-ft{sup 2}. But these empirical methods do not account for varying void fractions for different types of solids. Nonfluidized dense flow of solids through pipes can be broken into three areas. The first is solids flow into a pipe in nonhindered flow. An example of this is flow from a nonflooded cyclone dust bowl. The second area is solids flow into a pipe in hindered (friction) flow. An example of this is nonfluidized flow of solids from hoppers or from a flooded cyclone bowl. Core transport of solids in a pipe is third. An example of this is solids flow through a pipe with no restrictions.

  3. "Out of our control": living through Cyclone Yasi.

    PubMed

    Woods, Cindy; West, Caryn; Buettner, Petra; Usher, Kim

    2014-01-01

    The aim of this study was to explore the experiences of people who lived through Cyclone Yasi on 3 February 2011. Data from two open-ended questions (Q1: n=344; and Q2: n=339) within a survey completed by 433 residents of cyclone-affected areas between Cairns and Townsville, Australia, were analysed using a qualitative, thematic approach. Experiences were portrayed in three main themes: (1) living in the mode of existential threat describes survivors' sense of panic and feeling at the mercy of nature as they feared for their life; (2) unforgettable memories describe feelings of emotional helplessness and the unimaginable chaos that the cyclone wrought; and (3) centrality of others shows how community support and closeness helped alleviate losses and uncertainty. A critical finding from this study was the negative role of the media in escalating fears for life prior to and during the cyclone, highlighting the need for government, community leaders, and health professionals to have a media plan in place to ensure that disaster warnings are taken seriously without inciting unnecessary panic. Although survivors experienced extreme vulnerability and a threat to life, the disaster also brought communities closer together and connected family, friends, and neighbours through the caring, support, and help they offered each other. This highlights the central role of others during the recovery process and underlines the importance of promoting and facilitating social support to aid recovery post disaster.

  4. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  5. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  6. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  7. Advanced process control with design-based metrology

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  8. H Scan/AHP advanced technology proposal evaluation process

    SciTech Connect

    Mack, S.; Valladares, M.R.S. de

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  9. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit

  10. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  11. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    SciTech Connect

    Budrevich, Andre; Hunter, Jerry

    1998-11-24

    As the semiconductor industry roadmap passes through the 0.1 {mu}m technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 {mu}m in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied.

  12. Numerical prediction of the Mid-Atlantic states cyclone of 18-19 February 1979

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Rosenberg, R.

    1982-01-01

    A series of forecast experiments was conducted to assess the accuracy of the GLAS model, and to determine the importance of large scale dynamical processes and diabatic heating to the cyclogenesis. The GLAS model correctly predicted intense coastal cyclogenesis and heavy precipitation. Repeated without surface heat and moisture fluxes, the model failed to predict any cyclone development. An extended range forecast, a forecast from the NMC analysis interpolated to the GLAS grid, and a forecast from the GLAS analysis with the surface moisture flux excluded predicted weak coastal low development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic. As an upper level short wave trough approached this ridge, diabatic heating associated with the release of latent heat intensified, and the gradient of vorticity, vorticity advection and upper level divergence in advance of the trough were greatly increased, providing strong large scale forcing for the surface cyclogenesis.

  13. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  14. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  15. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2002-01-14

    During the past quarter, float-sink analyses were completed for four of seven circuits evaluated in this project. According to the commercial laboratory, the analyses for the remaining three sites will be finished by mid February 2002. In addition, it was necessary to repeat several of the float-sink tests to resolve problems identified during the analysis of the experimental data. In terms of accomplishments, a website is being prepared to distribute project findings and software to the public. This site will include (i) an operators manual for HMC operation and maintenance (already available in hard copy), (ii) an expert system software package for evaluating and optimizing HMC performance (in development), and (iii) a spreadsheet-based process model for plant designers (in development). Several technology transfer activities were also carried out including the publication of project results in proceedings and the training of plant operations via workshops.

  16. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  17. GPM Rain Rates in Tropical Cyclone Pam

    NASA Video Gallery

    NASA-JAXA's GPM Satellite Close-up of Cyclone Pam's Rainfall NASA-JAXA's GPM core satellite captured rain rates in Tropical Cyclone Pam at 03:51 UTC (2:51 p.m. local time) on March 14, 2015. Heavie...

  18. Good field practice helps cyclones do job

    SciTech Connect

    White, D.L.

    1982-11-08

    This article examines use of hydrocyclones in mud equipment operations involving desilters, desanders, shale shakers and degassers for unweighted mud. Presents a diagram of ideal equipment placement, a table sizing cyclones considering mud guns, and a graph sizing cyclones to a drilling rig. Suggests checklists for troubleshooting and operation based on hydrocyclone capacity, plugging, head and flow rates, mud weight and viscosity.

  19. Objective identification of cyclones in GCM simulations

    SciTech Connect

    Koenig, W.; Sielmann, F. ); Sausen, R. )

    1993-12-01

    An objective routine for identifying the individual cyclones has been developed. The procedure was designed with the aim to keep the input expenditure low. The method ensures a complete collection of cyclones and an exclusion of short time fluctuations attributed to numerical effects. The cyclones are identified as relative minima of the geopotential height field in 1000 hPa. The initial stages of the cyclones are found by locating relative maxima in the 850-hPa vorticity field. Further on the temporal development of the extrema is taken into consideration. An individual cyclone is regarded only if it exists for at least 24 h and if it attains a mature stage at least once, where a certain margin of the geopotential gradient to the surroundings is exceeded. The identification routine is applied to simulations with the Hamburg general circulation model ECHAM in T21 resolution. Also, cyclone tracks based on ECMWF analyses are evaluated, to which the model results are compared. The effect of different climate conditions, for example, global warming, on cyclone frequency and track location is investigated. It is found that a warmer SST distribution leads to a slight reduction of cyclone frequency in the Southern Hemisphere in fall (March, April, May) and winter (June, July, August); elsewhere the differences are not significant. 25 refs., 9 figs., 1 tab.

  20. Changes in North Atlantic Sea Surface Temperatures and Tropical Cyclones Activity

    NASA Astrophysics Data System (ADS)

    Andronache, C.; Phillips, V.

    2009-12-01

    The variability in the activity of North Atlantic tropical cyclones at seasonal scales, and beyond, has been linked to significant changes in the ocean - atmosphere system. The dominant factors affecting the development of North Atlantic tropical cyclones are: sea surface temperature (SST), surface pressure, atmospheric instability, humidity, and vertical shear of the mean flow. Changes in such factors at climate time-scales modulate the frequency of tropical cyclones and their most destructive manifestation, namely the hurricanes. Some of these changes have been observed to be linked to large-scale perturbations, such as ENSO, and other ocean - atmosphere oscillations and teleconnections. This study reports findings on changes in SST anomalies and their possible links to tropical cyclones. Using SST data over the last six decades, we illustrate statistical connections by applying novel mathematical techniques between the Atlantic Multi-decadal Oscillation (AMO) and tropical cyclones. Possible interactions between AMO, climate change and the fate of tropical cyclones are discussed in the context of recent advances in climate research.

  1. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  2. Tropical Cyclone Vulnerability Mapping Using Geospatial Techniques: Application to a Coastal Upazila in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A. A.; Phinn, S. R.; Roelfsema, C. M.; Childs, I.

    2015-12-01

    Cyclones are one of the most catastrophic natural disasters. Globally, many coastal regions are vulnerable to different categories cyclones. In Bangladesh, disasters from tropical cyclones are annual occurrences in coastal areas. The intensity and extent of damage due to tropical cyclones are very high. An appropriate mapping approach is essential for producing detail vulnerability assessments to deliver useful information for reducing the impacts of cyclones on people, property and environment. The present study developed and tested a vulnerability mapping approach for tropical cyclone impacts in Sarankhola upazila a 151 km2 local government area located in coastal Bangladesh. The study applied the approach by integrating remote sensing, field data and multi-criteria evaluation at regional scales covering <1000 km2. Seven criteria concerned with cyclone impacts were considered for the study: elevation, slope, geomorphology, proximity to coastline, proximity to cyclone track, land uses and population density. Thematic raster map layers were prepared for every criterion and weighted using Analytical Hierarchy Process (AHP) with sensitivity analysis. Weighted Linear Combination (WLC) technique was used for overlaying standardized criteria maps with their weights to produce the vulnerability map. Our results indicated that 15% of the study area had very high vulnerability; mostly close to the river and densely populated areas, with 40 % area as high vulnerability on cropped grounds. Around 25% area was classified at moderate vulnerability covering most of the forests. The low and very low vulnerable area accounts the 12% and 8% respectively. This approach provided very promising result and it was verified by field survey. The result provides the strong applicability of this approach to assess the vulnerability of coastal Bangladesh to tropical cyclones.

  3. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  4. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  5. Advanced biological unit processes for domestic water recycling.

    PubMed

    Jefferson, B; Laine, A L; Stephenson, T; Judd, S J

    2001-01-01

    The potential of advanced biological unit operations for the recycling of grey and black waters has been evaluated. The membrane bioreactor (MBR) demonstrated the greatest efficacy towards water recycling in terms of all the quality determinants. Both the biologically aerated filter (BAF) and the MBR were able to effectively treat the organic and physical pollutants in all the types of wastewater tested. The main difference was observed in terms of the microbiological quality, measured as total coliforms. The open bed structure of the BAF enabled passage of coliforms whereas the complete barrier of the MBR produced a non detectable level in the effluent. The MBR process complied with commonly adopted water recycling quality standards for the all determinants during the grey water trials and failed only in terms of total coliform counts once black water had been introduced into the feed. The MBR was seen as a particularly suitable advanced biological process as it was very effective at stabilising out the considerable load variations encountered during the trial.

  6. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    PubMed

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  7. Source of microbaroms from tropical cyclone waves

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Cheung, Kwok Fai; GarcéS, Milton A.; Fee, David

    2011-03-01

    Microbaroms are continuous infrasonic signals with a dominant frequency around 0.2 Hz produced by ocean surface waves. Monitoring stations around the globe routinely detect strong microbaroms in the lee of tropical cyclones. We utilize a parametric wind model and a spectral wave model to construct the tropical cyclone wave field and a theoretical acoustic source model to describe the intensity, spatial distribution, and dynamics of microbarom sources. This approach excludes ambient wave conditions and facilitates a parametric analysis to elucidate the source mechanism within the storm. A stationary tropical cyclone produces the strongest microbarom signals at the center, where the waves generated by the cyclonic winds converge. As the tropical cyclone moves forward, the converging wave field becomes less coherent and lags and expands behind the storm center. The models predict a direct relation between the storm forward speed and the location of maximum microbarom source intensity consistent with the infrasonic observations from Hurricane Felicia 2009 in the North Central Pacific.

  8. Reconstruction and use of battery cyclones

    SciTech Connect

    Nazarov, V.D.; Zabrodnii, I.V.; Kolomoiskii, V.G.; Dodik, G.A.; Afanas'ev, O.K.; Gusarov, N.I.; Strakhov, A.B.

    1988-03-01

    The authors discuss a sinter plant where reliable and stable operation of its modernized cyclones has made it possible to improve the performance of the gas-cleaning system as a whole, while increasing the life of the exhauster rotors to one year and improving the performance indices of the sintering machines. The battery cyclones were modernized by replacing the existing elements with consolidated cyclone elements and the elements were provided with four-pipe semihelical swirlers. The elements were made of ordinary steel pipes 530 and 273 mm in diameter. During manufacture and installation of the cyclone elements, special attention was given to the coaxiality of the housings and the outlet pipes of the elements, the hermeticity and density of the welds, the dimensional accuracy of the elements, the perpendicularity of the bearing flange and outlet-pipe axis, and the finish of the inside surfaces of the cyclone elements.

  9. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  10. Predictability of Frontal Waves and Cyclones

    NASA Astrophysics Data System (ADS)

    Frame, Thomas; Methven, John; Roberts, Nigel; Titley, Helen

    2016-04-01

    The practical limit of predictability of the occurrence extra-tropical cyclonic features (frontal waves and cyclones) is estimated using the Brier Skill of "strike probability" from the fifteen-day Met Office Global and Regional Ensemble Prediction System (MOGREPS-15). An upper limit of 14 days is found for the prediction of the occurrence of the centres of strong cyclonic features (vorticity above the 90th percentile) within a region of about 1000km radius. However when weaker cyclonic features are considered skill is lost within 8 days. The statistics of features in the model show some systematic biases relative to the analysis climatology, in particular a reduction in the number features with increasing lead time and a sensitivity of the number of cyclonic features to the presence (or not) of stochastics physics, meaning that the actual limit of predictability is quite possibly longer than our estimate.

  11. Global trends in tropical cyclone risk

    NASA Astrophysics Data System (ADS)

    Peduzzi, P.; Chatenoux, B.; Dao, H.; de Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O.

    2012-04-01

    The impact of tropical cyclones on humans depends on the number of people exposed and their vulnerability, as well as the frequency and intensity of storms. How will the cumulative effects of climate change, demography and vulnerability affect risk? Conventionally, reports assessing tropical cyclone risk trends are based on reported losses, but these figures are biased by improvements to information access. Here we present a new methodology based on thousands of physically observed events and related contextual parameters. We show that mortality risk depends on tropical cyclone intensity, exposure, levels of poverty and governance. Despite the projected reduction in the frequency of tropical cyclones, projected increases in both demographic pressure and tropical cyclone intensity over the next 20 years can be expected to greatly increase the number of people exposed per year and exacerbate disaster risk, despite potential progression in development and governance.

  12. Application of advanced oxidation processes for TNT removal: A review.

    PubMed

    Ayoub, Kaidar; van Hullebusch, Eric D; Cassir, Michel; Bermond, Alain

    2010-06-15

    Nowadays, there are increasingly stringent regulations requiring drastic treatment of 2,4,6-trinitrotoluene (TNT) contaminated waters to generate treated waters which could be easily reused or released into the environment without any harmful effects. TNT is among the most highly suspected explosive compounds that interfere with groundwater system due to its high toxicity and low biodegradability. The present work is an overview of the literature on TNT removal from polluted waters and soils and, more particularly, its treatability by advanced oxidation processes (AOPs). Among the remediation technologies, AOPs constitute a promising technology for the treatment of wastewaters containing non-easily biodegradable organic compounds. Data concerning the degradation of TNT reported during the period 1990-2009 are evaluated in this review. Among the AOPs, the following techniques are successively debated: processes based on hydrogen peroxide (H(2)O(2)+UV, Fenton, photo-Fenton and Fenton-like processes), photocatalysis, processes based on ozone (O(3), O(3)+UV) and electrochemical processes. Kinetic constants related to TNT degradation and the different mechanistic degradation pathways are discussed. Possible future treatment strategies, such as, coupling AOP with biological treatment is also considered as a mean to improve TNT remediation efficiency and kinetic.

  13. Tropical cyclone/upper-atmospheric interaction as inferred from satellite total ozone observations

    SciTech Connect

    Rodgers, E.B.

    1992-01-01

    The Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) was used to map the distribution of total ozone within and surrounding western North Atlantic and North Pacific tropical cyclones that occurred from 1979-1982. It was found from numerical model simulations and diagnostics and satellite observations that the distribution of total ozone within the subtropical upper-tropospheric waves during the tropical cyclone season corresponded well with the variation of thermodynamic parameters (i.e., temperature, thickness, geopotential heights) near the tropopause and the regions of strong stratospheric and tropospheric exchange processes. These results are similar to previous middle latitudinal observations. It was also found that the three-dimensional transport processes associated with both the western North Atlantic and Pacific tropical cyclone's outflow jet induced secondary circulation and the strong vertical motions associated with active deep convective and eye regions helped to modify the total ozone distribution that is usually observed within these subtropical upper-tropospheric waves. The tropical cyclone induced modifications of the total ozone in the upper-tropospheric waves became greater as the tropical cyclone became more intense and the three-dimensional transpost processes associated with the outflow jet, convection and eye strengthened. The strong relationship between total ozone distribution and the variation of the tropopause topography, made it possible to use TOMS to monitor the propagation of the subtropical upper-tropospheric waves and the mutual adjustment between tropical cyclones and their upper-tropospheric and lower-stratospheric environment when these tropical cyclones and the upper-tropospheric waves interacted. These total ozone patterns during tropical cyclone and upper-tropospheric wave interaction reflected the three-dimensional upper-tropospheric transport processes that were conducive for storm intensification, weakening, or recurvature.

  14. An Exploration of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Reed, Kevin A.

    Using General Circulation Models (GCMs) for tropical cyclone studies is challenging due to the relatively small size of the storms, the intense convection and a host of scale interactions. However, with the advancement of computer architectures, GCMs are becoming capable of running at high horizontal resolutions with grid spacings of less than 60 km. As a result, high-resolution GCMs are becoming a tool of choice to evaluate tropical cyclones in current and future climate conditions. This raises questions concerning the fidelity of GCMs for tropical cyclone assessments. The physical and dynamical components of GCMs need to be evaluated to assess their reliability for tropical cyclone studies. An idealized tropical cyclone test case for high-resolution GCMs is developed and implemented in aqua-planet mode with constant sea surface temperatures. The initial conditions are based on an analytic initial vortex seed that is in gradient-wind and hydrostatic balance and intensifies over a 10-day period. The influence of the model parameterization package on the development of the tropical cyclone is assessed. In particular, different physics parameterization suites are investigated within the National Center for Atmospheric Research's Community Atmosphere Model CAM, including physics versions 3.1, 4 and 5. The choice of the CAM physics suite has a significant impact on the evolution of the idealized vortex into a tropical cyclone. In addition, a test case of intermediate complexity is introduced. Therein it is suggested that a GCM dynamical core be paired with simple moist physics to test the evolution of the test vortex. This simple-physics configuration includes important driving mechanisms for tropical cyclones, including surface fluxes, boundary layer diffusion and large-scale condensation. The impact of the CAM dynamical core (the resolved fluid flow component) on the tropical cyclone intensity and size is evaluated. In particular, the finite-volume, spectral element

  15. LCSs in tropical cyclone genesis

    NASA Astrophysics Data System (ADS)

    Rutherford, B.; Montgomery, M. T.

    2011-12-01

    The formation of tropical cyclones in the Atlantic most often occurs at the intersection of the wave trough axis of a westward propagating African easterly wave and the wave critical latitude. Viewed in a moving reference frame with the wave, a cat's eye region of cyclonic recirculation can be seen in streamlines prior to genesis. The cat's eye recirculation region has little strain deformation and its center serves as the focal point for aggregation of convectively generated vertical vorticity. Air inside the cat's eye is repeatedly moistened by convection and is protected from the lateral intrusion of dry air. Since the flow is inherently time-dependent, we contrast the time-dependent structures with Eulerian structures of the wave-relative frame. Time-dependence complicates the kinematic structure of the recirculation region as air masses from the outer environment are allowed to interact with the interior of the cat's eye. LCSs show different boundaries of the cat's eye than the streamlines in the wave-relative frame. These LCSs are particularly important for showing the pathways of air masses that interact with the developing vortex, as moist air promotes development by supporting deep convection, while interaction with dry air impedes development. We primarily use FTLEs to locate the LCSs, and show the role of LCSs in both developing and non-developing storms. In addition, we discuss how the vertical coherence of LCSs is important for resisting the effects of vertical wind shear.

  16. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  17. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  18. How can tropical cyclones survive?

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi

    2013-04-01

    How can tropical cyclones survive? It is important for understanding the development of tropical cyclones to be able to quantify the exchange of enthalpy and momentum between air and water. Air-sea fluxes are often formulated as drag CD and enthalpy CK exchange coefficients. Emanuel, 1986, derived an expression for potential intensity that depends on local environment parameters and is proportional to the ratio of enthalpy and drag coefficients. This ratio should be larger than 0.75 for a cyclone to develop. There are no direct surface measurements of CK/ CD under hurricane conditions and extrapolation from most open-ocean measurements at 25 m/s gives values of CK/ CD< 0.75 and in that case no cyclone could survive and Emanuel's theory must be wrong. However there are measurements of CK taken over the Baltic Sea and Lake Ontario showing increasing values of CK up to 2.5 for wind speeds around 12 m/s. If this can be implemented for hurricane conditions the ratio CK/ CD>0.75 is in accordance with Emanuel's prediction. The high CK values are observed during situations when there is a regime shift of the structure of turbulence in the boundary layer. From spectral analysis it was found that as the boundary layer approaches neutral stratification, smaller-scale eddies become increasingly important in the turbulent transport of humidity and sensible heat and thus enhance the exchange coefficient CK. This turbulence regime is called the UVCN regime and require high wind speed, small temperature difference between air and water, sufficiently strong wind gradients and growing sea condition ( Smedman et al., 2007, Sahlee et al., 2008). What is the difference between world oceans and enclosed seas? The answer is the waves. The wave field over the open oceans is swell dominated but in enclosed seas and coastal areas swell is restricted mainly to low wind speed conditions, and swell is short lived because of short distances to the shores. When swell is present the MABL will be

  19. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  20. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    2016-01-01

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. PMID:27452170

  1. [Application of BAF-BAC process in advanced treatment of secondary effluent of refinery processing factory].

    PubMed

    Wu, Jiangjin; Sun, Changhong; Ma, Jianju; Qin, Yongsheng

    2003-11-01

    To find a new advanced technology for wastewater reuse in refinery processing factory, a pilot test using BAF-BAC process was carried out. The results revealed that when the COD concentration of the influent was less than 130 mg/L and BAF filtration rate was lower than 4.24 m/h, the average effluent COD concentration of BAF-BAC process was less than 50 mg/L, average turbidity was 4.46 NTU. At the same time this process has some effective removal rate on ammonia-nitrogen.

  2. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  3. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  4. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  5. Secondary hospital wastewater detoxification and disinfection by advanced oxidation processes.

    PubMed

    Machado, E L; Kist, L T; Schmidt, R; Hoeltz, J M; Dalberto, D; Alcayaga, E L A

    2007-10-01

    Secondary hospital wastewater treatment was investigated as an alternative to detoxification and disinfection after anaerobic digestion in a hospital located in southern Brazil. Tertiary and secondary effluents were assessed by general parameters. The use of advanced oxidation processes (UV/O3 and UV/TiO2/O3) showed potential capacity for disinfection and detoxification of wastewater effluents. The UV/TiO2/O3 method yielded the best results, decreasing toxicity of EC50 = 65 to nontoxic levels, also reducing MPN/100ml of 1.1 x 10(6) to values less than 2 and increasing wastewater biodegradability. The low energetic consumption of the proposed UV/TiO2/O3 method can be considered operationally advantageous.

  6. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  7. Evaluation methodologies for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  8. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  9. Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western Kuroshio-Oyashio confluence region

    NASA Astrophysics Data System (ADS)

    Hirata, Hidetaka; Kawamura, Ryuichi; Kato, Masaya; Shinoda, Taro

    2016-04-01

    The dynamical response of rapidly developing extratropical cyclones to sea surface temperature (SST) variations over the western Kuroshio-Oyashio confluence (WKOC) region was examined by using regional cloud-resolving simulations. This study specifically highlights an explosive cyclone that occurred in early February 2014 and includes a real SST experiment (CNTL run) and two sensitivity experiments with warm and cool SST anomalies over the WKOC region (warm and cool runs). The results derived from the CNTL run indicated that moisture supply from the ocean was enhanced when the dry air associated with the cold conveyor belt (CCB) overlapped with warm currents. Further, the evaporated moisture contributed substantially to latent heat release over the bent-back front with the aid of the CCB, leading to cyclone intensification and strengthening of the asymmetric structure around the cyclone's center. Such successive processes were more active in the warm run than in the cool run. The dominance of the zonally asymmetric structure resulted in a difference in sea level pressure around the bent-back front between the two runs. The WKOC SST variations have the potential to affect strong wind distributions along the CCB through modification of the cyclone's inner system. Additional experiments with two other cyclones showed that the cyclone response to the WKOC SST variations became evident when the CCB north of the cyclone's center overlapped with that region, confirming that the dry nature of the CCB plays an important role in latent heat release by allowing for larger moisture supply from the ocean.

  10. Influence of sea surface temperature variations over the western Kuroshio-Oyashio confluence region on explosively developing extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Hirata, Hidetaka; Kawamura, Ryuichi; Kato, Masaya; Shinoda, Taro

    2016-04-01

    This study investigated how explosively developing extratropical cyclones respond to sea surface temperature (SST) variations over the western Kuroshio-Oyashio confluence (WKOC) region using regional cloud resolving simulations. We focused specifically on an explosive cyclone that moved along the southern side of the Kuroshio/Kuroshio Extension in early February 2014 and conducted a real SST experiment (CNTL run) and two SST sensitivity experiments with warm and cool SST anomalies over the WKOC region (warm and cool runs). The results derived from the CNTL run showed that moisture that evaporated from the WKOC region contributed substantially to latent heat release over the bent-back front with the aid of the cold conveyor belt (CCB), leading to the cyclone's development and to the transition from axisymmetric to asymmetric structure around the cyclone center. Such successive processes were more active in the warm run than in the cool run. The dominance of the zonally asymmetric structure caused a difference in sea level pressure around the bent-back front between the two runs. The WKOC SST variations have the potential to affect strong wind distributions along the CCB through the modification of the cyclone inner structure. Additional experiments with regard to two other cyclones indicated that the cyclone response to the WKOC SST variations became evident when the CCB north of the cyclone center overlapped with that region, confirming that the CCB plays a vital role in latent heat release over the bent-back front through enhanced moisture supply from warm currents.

  11. Diabatic modification of potential vorticity in a north Atlantic cyclone

    NASA Astrophysics Data System (ADS)

    Chagnon, J.; Gray, S.; Methven, J.

    2012-04-01

    Heating and cooling due to moist processes in extratropical cyclones introduce local anomalies of potential vorticity (PV). On the mesoscale, diabatically-induced flow anomalies can influence the evolution of mesoscale precipitation structures. If distributed over a large portion of the cyclone, the modified PV can also influence the evolution of the synoptic-scale wave pattern, thus effecting events downstream. The moist processes contributing to modification of PV are typically parameterized in numerical weather prediction models. The purpose of this paper is to examine the structure and origin of diabatic PV near the level of the tropopause in a north Atlantic cyclone. A mature cyclone with a warm conveyor belt and a tropopause fold that was located northwest of the UK on 20 October 2008 was simulated using the Met Office Unified Model (MetUM) in a global domain (with ~40km horizontal grid spacing in midlatitudes) and in a limited-area domain (with 12 km horizontal grid spacing). A set of Lagrangian PV tracers were integrated online. Each tracer accumulated and advected sources of PV from a specific modelled process (e.g., convection scheme, long-wave radiation, boundary-layer scheme, cloud microphysics). A key finding of this work is that diabatic PV was minimised along the 2 pvu tropopause. A dipole of diabatic PV straddled the tropopause with an increase (decrease) in PV above (beneath) the elevation of the tropopause. The positive diabatic PV above the tropopause was contributed primarily by long-wave radiative cooling, and the negative PV beneath the tropopause was contributed by the convection and large-scale cloud schemes. The practical and theoretical implications of the increased gradient of PV at the tropopause level will be discussed.

  12. The Intensification of Sheared Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Nguyen, Leon Trungduong

    Environmental vertical wind shear has been shown to have a generally detrimental impact on tropical cyclone (TC) intensity change. However, many cases of rapidly intensifying (RI) sheared TCs have been observed, and TCs in moderate (5-10 m s-1) shear often have the largest intensity forecast errors. Thus, advancing the understanding of TC-shear interactions is vital to improving TC intensity forecasts, which have not seen much improvement over the past few decades. This dissertation employs both observational and high-resolution numerical modeling approaches to investigate how some TCs are able to resist shear and intensify. The rapid intensification of Hurricane Irene (1999) was studied using observations, while the short-term RI of Tropical Storm Gabrielle (2001) was simulated using the Weather Research and Forecast (WRF) model run at 1-km horizontal resolution. Both storms exhibited a downshear-left vortex tilt and a marked azimuthal wavenumber-1 convective asymmetry. However, the azimuthally averaged diabatic heating also increased, suggesting that TC intensity may be more sensitive to the azimuthally averaged component of diabatic heating rather than the asymmetric component. Furthermore, this increase occurred within the radius of maximum winds (RMW), a region theorized to favor rapid spinup of the vortex. A key difference between the Irene and Gabrielle cases was that the latter underwent a downshear reformation. The circulation associated with an intense mesovortex and other localized cyclonic vorticity anomalies comprised a developing "inner vortex" on the downshear-left (downtilt) periphery of the broader parent vortex. This inner vortex was nearly upright within a parent vortex that was tilted significantly with height. The inner vortex became the dominant vortex of the system, advecting and absorbing the broad, tilted parent vortex. A method was developed for diagnosing vortex tilt in the simulation. The reduction of TC vortex tilt from 65 km to 20 km

  13. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  14. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  15. The influence of advanced processing on PWA 1480

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.; Schnittgrund, G. D.

    1989-01-01

    High thermal gradient casting of PWA 1480 was evaluated as an avenue for reducing the size of casting porosity. Hot isostatic pressing (HIP) was also employed for the elimination of casting pores. An alternate to the standard PWA 1480 coating plus diffusion bonding aging heat treatment cycle was also evaluated for potential improvements in the properties of interest to the Space Shuttle Main Engine (SSME) application. Microstructural changes associated with the high thermal gradient casting process were quantified by measurement of the size and density of the casting porosity, the amount of retained casting eutectic, and dendrite arm spacings. The results of the advanced processing have shown an improvement in material microstructure due to high thermal gradient casting. Improved homogeneity of PWA 1480 is advantageous in providing an improved solution heat treatment window and, potentially, easier HIP. High thermal gradient casting improves fatigue life by reducing casting pore size. The alternate heat treatment improves the balance of strength and ductility which appears to improve low cycle fatigue life, but with a reduction in short time stress rupture life. Based upon these tests, hot isostatic pressing appears to afford further improvements in cyclic life, though additional evaluation is suggested. Development of the alternate heat treatment is not recommended due to the reduced stress rupture capability and the need to develop a new properties data base. High thermal gradient casting and HIP are recommended for application to single crystal castings.

  16. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  17. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  18. Genesis of tropical cyclone Nargis revealed by multiple satellite observations

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuyoshi; Wang, Bin; Fudeyasu, Hironori

    2009-03-01

    Tropical cyclone (TC) Nargis recently battered Myanmar on May 2 2008 is one of the most deadly tropical storms in history. Nargis was initiated by an abnormally strong intraseasonal westerly event associated with Madden-Julian oscillation (MJO) in the eastern Indian Ocean. An incipient cyclonic disturbance emerged as an emanation of Rossby wave-induced vortex when the intraseasonal convective anomaly reached the Maritime Continent. The northeastward movement of MJO convection facilitated further development of the disturbance. The incipient disturbance became a tropical disturbance (TD) with a central warm-core structure on April 26. The further development from the TD to TC formation on April 28 is characterized by two distinctive stages: a radial contraction followed by a rapid intensification. The processes responsible for contraction and rapid intensification are discussed by diagnosis of multiple satellite data. This proposed new scenario is instrumental for understanding how a major TC develops in the northern Indian Ocean.

  19. An elastic contour matching model for tropical cyclone pattern recognition.

    PubMed

    Lee, R T; Lin, J K

    2001-01-01

    In this paper, an elastic graph dynamic link model (EGDLM) based on elastic contour matching is proposed to automate the Dvorak technique for tropical cyclone (TC) pattern interpretation from satellite images. This method integrates traditional dynamic link architecture (DLA) for neural dynamics and the active contour model (ACM) for contour extraction of TC patterns. Using satellite pictures provided by National Oceanic and Atmospheric Administration (NOAA), 120 tropical cyclone cases that appeared in the period from 1990 to 1998 were extracted for the study. An overall correct rate for TC classification was found to be above 95%. For hurricanes with distinct "eye" formation, the model reported a deviation within 3 km from the "actual eye" location, which was obtained from the aircraft measurement of minimum surface pressure by reconnaissance. Compared with the classical DLA model, the proposed model has simplified the feature representation, the network initialization, and the training process. This leads to a tremendous improvement of recognition performance by more than 1000 times.

  20. PROLIFERATION RESISTANCE OF ADVANCED SPENT FUEL CONDITIONING PROCESS

    SciTech Connect

    MARLOW, JOHNNA B.; LEE, SANG Y.; THOMAS, KENNETH E.; MILLER, MICHAEL C.; KIM, H.D.

    2007-02-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyro-metallurgical spent fuel conditioning technology that is under development by the Korea Atomic Energy Research Institute (KAERI). KAERl has been developing this technology to resolve the high-level waste (HLW) disposition problem since 1997 and is planning to perform a lab-scale demonstration in 2008. The proposed concept is an electrometallurgical treatment technique that converts spent nuclear fuels into a single set of disposal metal forms to reduce the volume and simplify the qualification process. The goal of the project is to recover more than 99% of the actinides in metallic form from oxide spent fuel in a proliferation-resistant manner. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, decreasing the burden of the final disposal in terms of size, safety, and cost. The success of the ACP will depend on a number of factors. One key factor is 'proliferation resistance,' and it should be judged by the manner in which it addresses issues of proliferation concern. In this paper, the proliferation resistance of the ACP technology has been analyzed. The intrinsic and extrinsic proliferation resistance features of the ACP technology were examined for the pilot-scale ACP facility based on the Nuclear Energy Research Advisory Committee's TOPS (Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power System) metrics. It was found that the ACP system was more proliferation-resistant than aqueous technologies. The ACP as envisioned in current process flow is not capable of separating plutonium, and significant additional steps would be required to create a pathway to produce plutonium. However, like other processes, it could be modified to directly obtain weapon-usable materials. In this paper, several options are suggested for modification of the process or facility design in order to reduce the

  1. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  2. GPM Flyby of Tropical Cyclone Uriah

    NASA Video Gallery

    On Feb. 15, GPM saw rain was falling at a rate of over 127 mm (5 inches) per hour in a band of intense storms south of Tropical Cyclone Uriah's center. Thunderstorms moving around the southwestern ...

  3. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  4. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. PMID:27418502

  5. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  6. Human influence on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  7. Human influence on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas–driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  8. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  9. TRMM Flyby of Tropical Cyclone Narelle

    NASA Video Gallery

    This animated, 3-D flyby of Major Cyclone Narelle was created using data on Jan. 11, from NASA's TRMM satellite. Narelle's wind speeds were near 132 mph. A few thunderstorm towers in Narelle's eye ...

  10. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    observational data from the BAe146 aircraft and other sources such as wind profilers and radiosondes. In initial model simulations of a secondary frontal wave observed during the 2009 T-NAWDEX pilot flights, the microphysics in the parameterization scheme used has a large impact on the winds observed around the hook of the occlusion. The advanced double-moment Morrison and Thompson schemes show 12-hour mean 10m winds about 50% higher than the simpler WSM3 (WRF single moment) scheme in this area. These results suggest that ice processes could play an important role in the downward transport of momentum in this part of the cyclone. Further results from this and other cases from the field campaigns will be presented at the conference.

  11. Interactions between climate and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2007-05-01

    For the last 50 years, there have been two major thrusts in tropical cyclone research: determining the state of the atmosphere and ocean that is suitable for the formation of tropical storms (the genesis criteria) and short-term forecasting of the track and intensity of storms. Efforts to forecast seasonal storm activity, especially in the North Atlantic Ocean, have been undertaken through empirical means and, more recently, using low-resolution climate models. Climate model results have been exceptionally encouraging suggesting that the tropical cyclogenesis factors are predictable and are part of the large scale tropical circulation. During the last few years, a spate of papers has noted the relationship between changes in sea-surface temperature (SST) and tropical cyclone intensity and frequency. A critical issue is determining to what degree the frequency of hurricanes, as well as their intensity distribution, will change in a warming world. We discuss recent research regarding the interactions of the climate system with tropical cyclones, including the role of climate in determining the genesis of tropical cyclones and the role of tropical cyclones in the heat balance of the planet. Specifically: (i) We re-examine the genesis criteria of tropical cyclones and add two new criteria based on the behavior of waves in a flow varying in longitude and the inertial instability of equatorial flow in a cross-equatorial pressure gradient environment. Tropical cyclones are seen to form where the stretching deformation is negative and where large-scale waves transform into tight smaller and highly energetic scale vortices. We also discuss the tendency for storms to develop and intensify where the near-equatorial flow is inertially unstable. (ii) Tropical cyclones act to cool the tropical oceans by > 1K/year by evaporation of ocean surface water and by entrainment mixing with cooler water from below the mixed layer. We suggest that tropical cyclones are important part of

  12. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  13. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  14. Objective identification of frontal wave cyclones

    NASA Astrophysics Data System (ADS)

    Hewson, T. D.

    1997-12-01

    This brief paper further develops the objective front-plotting methodology described in Hewson (1996), to enable the tips of frontal wave cyclones to also be objectively identified. The method embraces a new definition of frontal waves, but is analogous to operational practice in that these waves are located where cold and warm fronts join. It is suggested that for the early stages of cyclonic development the new methodology will perform better than those previously published.

  15. Idealized simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Gray, S. L.; Clark, P. A.

    2012-04-01

    An idealized modeling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localized regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. Two jets exist in the control idealized cyclone that descend into the frontal fracture region and result in strong winds near to the top of the boundary layer; one of these satisfies the criteria for a sting jet, the other is associated with the warm front. Sensitivity experiments show that both these jets are robust features. The sting jet strength (measured by maximum low-level wind speed or descent rate) increases with the cyclone growth rate; growth rate increases with increasing basic-state zonal jet maximum or decreasing basic-state tropospheric static stability. The two cyclones with the weakest basic-state static stability have by far the strongest sting jets, with descent rates comparable to those observed. Evaporative cooling contributes up to 20% of the descent rate in these sting jets compared with up to 4% in the other sting jets. Conditional symmetric instability (CSI) release in the cloud head also contributes to the sting jet, although there is less extensive CSI than in observed cases. The robustness of the sting jets suggests that they could occur frequently in cyclones with frontal fracture; however, they are unlikely to be identified unless momentum transport through the boundary layer leads to strong surface wind gusts.

  16. Diabatic and frictional forcing effects on the structure and intensity of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Slocum, Christopher J.

    Tropical cyclone intensity forecasting skill has slowed in improvement for both dynamical and statistical-dynamical forecasting methods in comparison to gains seen in track forecasting skill. Also, forecast skill related to rapid intensification, e.g. a 30 kt or greater increase in intensity within a 24-hour period, still remains poor. In order to make advances and gain a greater understanding, the processes that affect intensity change, especially rapid intensification, need further study. This work evaluates the roles of diabatic and frictional forcing on the structure and intensity of tropical cyclones. To assess the diabatic forcing effects on intensity change in tropical cyclones, this study develops applications of Eliassen's balanced vortex model to obtain one-dimensional solutions to the geopotential tendency and two-dimensional solutions to the transverse circulation. The one-dimensional balanced solutions are found with dynamical model outputs as well as aircraft reconnaissance combined with diabatic heating derived from microwave rainfall rate retrievals. This work uses solutions from both datasets to make short-range intensity predictions. The results show that for the one-dimensional solutions, the tangential tendency does not match the dynamical model or aircraft wind tendencies. To relax the assumptions of the one-dimensional solutions to the geopotential tendency, solutions for idealized vortices are examined by finding two-dimensional solutions to the transverse circulation. The two-dimensional solutions allow for evaluation of the axisymmetric structure of the vortex on the (r, z)-plane without setting the baroclinicity to zero and the static stability to a constant value. While the sensitivity of tangential wind tendency to diabatic forcing and the region of high inertial stability is more realistic in the two-dimensional results, the solutions still neglect the influence of friction from the boundary layer. To understand further the role of

  17. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  18. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  19. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  20. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  1. The advanced PFB process: Pilot plant results and design studies

    SciTech Connect

    Robertson, A.; Domeracki, W.; Horazak, D.; Rehmat, A.

    1993-11-01

    The plant being developed is a hybrid of two technologies; it incorporates the partial gasification of coal in a vessel called the carbonizer and the combustion of the resultant char residue in a circulating pressurized fluidized bed combustor (CPFBC). In this plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and a ceramic barrier filter to remove gas-entrained particulates, the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator and a compressor that feeds air to the carbonizer, a CPFBC, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the CPFBC with high excess air. The vitiated air from the CPFBC supports combustion of the fuel gas in the gas turbine topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the CPFBC drives the steam turbine generator that furnishes the balance of electric power delivered by the plant. The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces a char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus the expensive, complex, fuel gas heat exchangers and the chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated.

  2. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  3. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  4. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  5. The Indian Ocean Dipole's influence on Atlantic tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Marinaro, Alan Joseph

    Improving early tropical cyclone forecasts would assist reinsurance decision makers as they seek information that can minimize risks. Early lead forecasts are based on model variables before December 1 (Year 0) that predict Atlantic tropical cyclone activity (Year +1). The autumn Indian Ocean Dipole (IOD) has an 8 to 14 month antecedent correlation with the El Nino - Southern Oscillation (ENSO). ENSO is traditionally the best non-lead and overall predictor of Atlantic tropical cyclone activity. Analyses were performed over a 30-year period from 1984/85-2013/14, with some time variation depending on the test. Correlation, spatial, and wavelet analyses were utilized to find associations between the IOD, west and east components of the IOD, and four other variables related to the following season's ENSO state and tropical cyclone activity. The prior western pole of the October IOD (WIOD) was demonstrated to have statistically significant r-squared values (i.e. 99% confidence interval) to upcoming tropical storm activity (i.e. explained 25% of the variance), named storm counts (28%), and ENSO (21%). The WIOD has no connection with U.S. hurricane landfalls. Wavelet analysis between October IOD variables and following August-October ENSO data was observed to have the best time-frequency relationship. Dynamic reasoning for these relationships reside within the idealized biennial IOD-ENSO cycle, Walker circulation process, and the impact of ENSO on the state of the Atlantic Basin. The WIOD's integration into early-lead forecast models could be an advantage for those in the reinsurance industry and other decision makers impacted by Atlantic tropical cyclonesn.

  6. Modeling Tropical Cyclone induced inland flooding for Houston metropolitan area

    NASA Astrophysics Data System (ADS)

    Zhu, L.

    2011-12-01

    Tropical cyclones are an important source of extreme precipitation and they have caused destructive inland floods in Texas. The Houston metropolitan area is a highly populated region with rapid economic development. The Bayou River basin was selected as the study area because it covers most of Houston. This study will employ HEC-HMS (a hydrological model) simulate the flood discharge from tropical storm Alison in 2001. The simulated discharge will be compared with observed discharge values for model adjustment and calibration. An iterative process will be used to calibrate the model. Then the flood discharge of another extreme precipitation event (Hurricane Ike) will be calculated from the fitted HEC model. Modeled discharge from both events will be used as inputs for HEC-RAS (a hydraulic model) to generate regional inundation maps. The purposes of this study are: (1) to understand how an urbanized hydrological system in Texas reacts to extreme precipitation brought by Tropical Cyclones, and (2) to construct a reliable model of inland flooding for future applications. Questions will be answered by this study are: What are the similarities and differences in flooding caused by two recent tropical storms that have affected the Houston metro area? Which factor plays a more important role in determining the TC floods intensity, variations in precipitation or changes in land use? Key words: Tropical Cyclone, Hydrological Model, Floods, Houston

  7. Height of warm core in very severe cyclonic storms Phailin: INSAT-3D perspective

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Prasad, V. S.; Rajagopal, E. N.; Basu, Swati

    2016-05-01

    Warm core is the characteristic that distinguishes tropical cyclones from its extra tropical counter parts, where the center of the cyclone is warmer than its environment. Two of the most common variables used to characterize the warm core are its strength and height. The strength is given by the magnitude of maximum perturbation temperature and the height is the level where the maximum perturbation temperature occurs. INSAT-3D, India's advanced weather satellite, is the first geostationary sounder over India and the surrounding Oceanic regions. INSAT-3D has 18 channel sounder with a resolution of 10 km to profile the atmospheric temperature and humidity. Brightness Temperatures (Tbs) from INSAT-3D sounder channels are used to analyze the warm core structure of Tropical cyclone Phailin (8-14 October 2013) over the North Indian Ocean. Only when the system becomes very severe cyclonic system, when the eye of the cyclone is clearer (fully cloud free), the sounder channel Tbs showed multiple maxima, with strong primary maximum in the middle level (600-500 mb) and the secondary maximum in the upper level (300-250 mb), unlike the conventional belief suggested warm core existence at 250 mb. Due to the high resolution of (10 km) INSAT-3D sounder channels, compared to the Micro wave channels (AMSU-A of 50 km resolution), the warm core structure below 10 km of the atmosphere is well resolved.

  8. The Morphology of Cyclonic Windstorms

    NASA Astrophysics Data System (ADS)

    Hewson, Tim

    2015-04-01

    The aim of this study is to help facilitate the correct interpretation and use of model analyses and predictions of windstorms in the extra-tropics, and to show that 'storm detection' does not just depend on the efficacy of the identification/tracking algorithm. Under the auspices of the IMILAST (Intercomparison of MId-LAtitude STorm diagnostics) project, 29 damaging European cyclonic windstorms have been studied in detail, using observational evidence as the main tool. Accordingly a conceptual model of windstorm evolution has been constructed. This usefully has its roots in the evolution one sees on standard synoptic charts, and highlights that three types of damage footprint can be associated. Building on previous work these are referred to as the warm jet, the sting jet and the cold jet footprints. The jet phenomena themselves each relate to the proximity of fronts on the synoptic charts, and accordingly occur in airmasses with different stability characteristics. These characteristics seem to play a large role in determining the magnitude of surface gusts, and how those gusts vary between coastal and inland sites. These aspects will be discussed with examples, showing that one cannot simply characterise or rank cyclones using wind strength on a lower tropospheric level such as 850hPa. A key finding that sets the sting jet apart, and that makes it a particularly dangerous phenomena, is that gust magnitude is relatively unaffected by passage inland, and this seems to relate to the atmosphere in its environment being destabilised from above. For sting jets wind strength may be greatest below 850hPa. Unfortunately neither current generation global re-analyses, nor global climate models seem to be able to simulate sting jets. This is for various reasons, though their low resolution is key. This limitation has been recognised previously, and the standard way to address this has been to use a re-calibration technique. The potential pitfalls of this approach will be

  9. Effect of tropical cyclones on the stratosphere-troposphere exchange observed using satellite observations over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, M.; Babu, S. Ravindra; Das, S. S.; Basha, G.; Krishnamurthy, B. V.; Venkateswararao, B.

    2016-07-01

    Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) processes in the upper troposphere and lower stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the north Indian Ocean during 2007-2013 on the STE processes is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) radio occultation (RO) measurements, and ozone and water vapour concentrations in the UTLS region are obtained from Aura Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km of the centre of the tropical cyclone. In our earlier study, we observed a decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K), and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within 500 km of the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from the cyclone centre, whereas the enhancement in the water vapour in the lower stratosphere is more significant on the south-east side, extending from 500 to 1000 km away from the cyclone centre. The cross-tropopause mass flux for different intensities of cyclones is estimated and it is found that the mean flux from the stratosphere to the troposphere for cyclonic storms is 0.05 ± 0.29 × 10-3 kg m-2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10-3 kg m-2. More downward flux is noticed on the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget, and consequentially the STE in the UTLS region.

  10. Climate Forcing of North Atlantic Tropical Cyclone Activity over the last 6000 years

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Woodruff, J. D.; Scileppi, E.; Lane, P.

    2006-12-01

    Africa leading to stronger easterly waves moving into the tropical North Atlantic. A positive correlation between warmer SSTs, inferred from the limited reconstructions available, and intense tropical cyclone landfalls in the Caribbean is possible within dating uncertainties. However, given the increase in intense tropical cyclone landfalls during the later half of the LIA, tropical SSTs as warm as present are apparently not a requisite condition for increased intense tropical cyclone activity. In addition the western North Atlantic experienced a relatively active interval of intense tropical cyclones for over 1000 years despite summer tropical SSTs that were on average cooler than modern. These results suggest that processes in addition to fluctuations in SST act to modulate intense tropical cyclone activity on centennial and millennial timescales. If we are to accurately project future changes in intense tropical cyclone activity it is important to consider and understand how these factors may change over the coming decades.

  11. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  12. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  13. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.

  14. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  15. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  16. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  17. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  18. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  19. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  20. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  1. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  2. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of

  3. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  4. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  5. Cyclone reduction of taconite. Final report

    SciTech Connect

    Taylor, P.R.; Bartlett, R.W.; Abdel-latif, M.A.; Hou, X.; Kumar, P.

    1995-05-01

    A cyclone reactor system for the partial reduction and melting of taconite concentrate fines has been engineered, designed and operated. A non-transferred arc plasma torch was employed as a heat source. Taconite fines, carbon monoxide, and carbon dioxide were fed axially into the reactor, while the plasma gas was introduced tangentially into the cyclone. The average reactor temperature was maintained at above 1400{degrees}C, and reduction experiments were performed under various conditions. The influence of the following parameters on the reduction of taconite was investigated experimentally; carbon monoxide to carbon dioxide inlet feed ratio, carbon monoxide inlet partial pressure, and average reactor temperature. The interactions of the graphite lining with carbon dioxide and taconite were also studied. An attempt was made to characterize the flow behavior of the molten product within the cyclone. The results suggest that the system may approach a plug flow reactor, with little back mixing. Finally, a fundamental mathematical model was developed. The model describes the flow dynamics of gases and solid particles in a cyclone reactor, energy exchange, mass transfer, and the chemical kinetics associated with cyclone smelting of taconite concentrate fines. The influence of the various parameters on the reduction and melting of taconite particles was evaluated theoretically.

  6. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  7. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  8. Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model

    NASA Astrophysics Data System (ADS)

    Holdaway, Daniel

    2015-04-01

    As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  9. Putting to rest WISHE-ful misconceptions for tropical cyclone intensification

    NASA Astrophysics Data System (ADS)

    Montomery, Michael T.; Persing, John; Smith, Roger K.

    2015-03-01

    The purpose of this article is twofold. The first is to point out and correct several misconceptions about the putative WISHE mechanism of tropical cyclone intensification that currently are being taught to atmospheric science students, to tropical weather forecasters, and to laypeople who seek to understand how tropical cyclones intensify. The mechanism relates to the simplest problem of an initial cyclonic vortex in a quiescent environment. This first part is important because the credibility of tropical cyclone science depends inter alia on being able to articulate a clear and consistent picture of the hypothesized intensification process and its dependencies on key flow parameters. The credibility depends also on being able to test the hypothesized mechanisms using observations, numerical models, or theoretical analyses. The second purpose of the paper is to carry out new numerical experiments using a state-of-the-art numerical model to test a recent hypothesis invoking the WISHE feedback mechanism during the rapid intensification phase of a tropical cyclone. The results obtained herein, in conjunction with prior work, do not support this recent hypothesis and refute the view that the WISHE intensification mechanism is the essential mechanism of tropical cyclone intensification in the idealized problem that historically has been used to underpin the paradigm. This second objective is important because it presents a simple way of testing the hypothesized intensification mechanism and shows that the mechanism is neither essential nor the dominant mode of intensification for the prototype intensification problem. In view of the operational, societal, and scientific interest in the physics of tropical cyclone intensification, we believe this paper will be of broad interest to the atmospheric science community and the findings should be useful in both the classroom setting and frontier research.

  10. Dust cyclone technology for gins – A literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust cyclone research leading to more efficient designs has helped the cotton ginning industry to comply with increasingly stringent air quality regulations governing fine particulate emissions. Future changes in regulations may require additional improvements in dust cyclone efficacy. This inter-...

  11. Modeling and Advanced Control for Sustainable Process Systems

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  12. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  13. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  14. Design of Stairmand-type sampling cyclones

    SciTech Connect

    Moore, M.E.; McFarland, A.R. )

    1990-03-01

    An empirical, nondimensional correlation of cut-point Stokes number (Stk0.5) and flow Reynolds number (Re) has been established for small Stairmand-type sampling cyclones. Four cyclones with body diameters of 38, 57, 89, and 140 mm were constructed and tested with monodisperse aerosols over a range of flow rates. The flow rates were chosen to provide preselected increments of particle Froude numbers. These flow rates for the four cyclones spanned the range of 9.4 to 1080 L/min and provided Froude numbers of 1.5, 2.0, 2.5, and 6.0. The resulting Reynolds numbers (based upon cyclone body diameter and inlet flow rate) covered the range of 2.1 x 10(3) to 6.4 x 10(4). Sizes of monodisperse aerosols used in this study were from 3.0- to 17.4-microns aerodynamic diameter. The graphical correlation between cut-point Stokes number and Reynolds number showed there to be no effect of Froude number (for the range of Froude numbers tested). The data have been fit by a least squares procedure to a quadratic logarithmic function. In addition to development of the empirical correlation, the results of this study also provide data pertinent to the regional deposition of liquid particles within the cyclone and to the transmission of solid particles through the cyclone. The carryover of solid, 19-microns diameter particles is only 0.5% greater than that of liquid particles of the same size.

  15. Explosive cyclones in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  16. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  17. Contexts of Reading. Advances in Discourse Processes Series. Volume XVIII.

    ERIC Educational Resources Information Center

    Hedley, Carolyn N., Ed.; Baratta, Anthony N., Ed.

    Focusing on the reading-thinking-learning process, the classrooms in which such processes occur, and the means for studying these processes, this book presents essays on teaching, learning, and assessing the reading process. The first section contains essays on learning contexts that are interactive and participatory, while essays in the second…

  18. Diabatic modification of potential vorticity in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  19. Measuring Stress in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Liu, W. T.; Tang, W.

    2015-12-01

    Wind is air in motion and stress is the turbulent transport of momentum between the ocean and the atmosphere. There was no large-scale measurement of stress before the scatterometer and the stress we used was almost entirely derived from wind through a drag coefficient. While the strong wind of a tropical cyclone (TC) causes destruction at landfall, it is the surface stress that drags down the TC. The relations that were established to retrieve moderate wind speeds from the normalized radar cross-section, or backscatter power, measured by Ku-band and C-band scatterometers do not apply well to TC-scale winds. Even if we have good wind measurements, there is a large uncertainty in the drag coefficient in TC. We will give credence to our hypothesis that there is no distinct physics of radar backscatter from ocean surface for weather phenomenon like the TC. The relation between backscatter and surface roughness or stress does not change under TC, and the same retrieval algorithm can be extended to the TC. The need for changes in wind retrieval algorithm is explained through the change of the drag coefficient. We separate the sensor parameters that affect backscatter, such as, incident angle, azimuth angle, polarization and backscatter frequencies, from the secondary factors related to the physics of the air-sea interface and turbulent transport, such as air stability (shear and buoyance), air density, sea states, and sea sprays, and establish a simple approximation of surface stress from the backscatter averaged over the relevant spatial and temporal scales. We established a relation between backscatter and surface stress over a moderate range of wind speed, where wind measurements coincident with satellite observations are abundant, and the drag coefficient is well established to convert wind measurements to stress. This relation is applied to retrieve stress from the scatterometer measurement in the high wind range of TC. With abundant stress measurements by the

  20. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    NASA Astrophysics Data System (ADS)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    that baroclinicity is one of the most important driving mechanisms for the cyclonic deepening over the examined region. The upper level dynamics acting well before the event and the low level diabatic processes over the Aegean or the Levantine sea contribute to the large amounts of precipitation. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.

  1. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  2. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  3. Application of Helical Characteristics of the Velocity Field to Evaluate the Intensity of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Levina, G.; Glebova, E.; Naumov, A.; Trosnikov, I.

    The paper presents results of numerical analysis for helical features of velocity field to investigate the process of tropical cyclone formation, namely, the downward helicity flux through the upper boundary of the viscous atmospheric turbulent boundary layer has been calculated. The simulation was carried out by use of the regional atmospheric ETA model and NCEP reanalysis global data. Calculations were performed for two tropical cyclones - Wilma (Atlantic basin, 2005) and Man-Yi (North-West Pacific, 2007). It has been found, that the chosen helical characteristic reveals an adequate response to basic trends in variation of such important meteorological fields as pressure and wind velocity during the hurricane vortex evolution. The analysis carried out in the paper shows that the helicity flux can be used as an illustrative characteristic to describe the intensity and destructive power of tropical cyclones.

  4. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    PubMed

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  5. A Simplified Model of Tropical Cyclone Intensification

    NASA Astrophysics Data System (ADS)

    Schubert, W. H.

    2015-12-01

    An axisymmetric model of tropical cyclone intensification is presented. The model is based on Salmon's wave-vortex approximation, which can describe flows with high Rossby number and low Froude number. After introducing an additional approximation designed to filter propagating inertia-gravity waves, the problem is reduced to the prediction of potential vorticity (PV) and the inversion of this PV to obtain the balanced wind and mass fields. This PV prediction/inversion problem is solved analytically for two types of forcing: a two-region model in which there is nonzero forcing in the cyclone core and zero forcing in the far-field; a three-region model in which there is non-zero forcing in both the cyclone core and the eyewall, with zero forcing in the far-field. The solutions of the two-region model provide insight into why tropical cyclones can have long incubation times before rapid intensification and how the size of the mature vortex can be influenced by the size of the initial vortex. The solutions of the three-region model provide insight into the formation of hollow PV structures and the inward movement of angular momentum surfaces across the radius of maximum wind.

  6. Nuclear power plant risk from tropical cyclones

    SciTech Connect

    Gilmore, T.F. )

    1991-01-01

    Tropical cyclones are considered to have a potential for contributing to the overall core-melt frequency at Turkey Point. A tropical cyclone is known to have the four main hazards associated with it: wind, tidal surge, wind-generated missiles, and precipitation. To understand the contribution to overall core-melt risk at Turkey Point, it is essential to understand the mechanisms of these hazards and their relative importance. The results are bounded by the hurricane surge scenario, where the frequency of core melt is equal to the frequency of the surge reaching 19 ft NGVD (National Geographic Vertical Datum). This could be mitigated by potential recovery actions for the tropical cyclone scenario. The probability of the storm surge reaching 19 ft NVGD is estimated to be 1 x 10{sup {minus}4}. The data associated with the tropical cyclones as discussed in detail in the body of this paper are lacking in quantity and quality. By taking the conservative approach in creating the wind/frequency, wind/surge, and surge/frequency relationships, the conclusion that the results are worst case is reasonable. With this in mind, it is logical to conclude that the value of further hazard analysis to narrow down the built-in conservative margin using the existing data and technology is doubtful. Thus, a recovery approach to driving the risk level down is the most pragmatic step to be taken.

  7. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  8. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    NASA Technical Reports Server (NTRS)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; Tanelli, S.; Vane, D.; Vu, Q.; Goodman, H. M.; Blakeslee, R.; Conover, H.; Hall, J.; He, Y.; Regner, K.; Knapp, Ken

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  9. Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Jangir, B.; Swain, D.; Udaya Bhaskar, T. V. S.

    2016-05-01

    Ocean Heat Content (OHC) plays a significant role in modulating the intensity of Tropical Cyclones (TC) in terms of the oceanic energy available to TCs. TC Heat Potential (TCHP), an estimate of OHC, is thus known to be a useful indicator of TC genesis and intensification. In the present study, we analyze the role of TCHP in intensification of TCs in the North Indian Ocean (NIO) through statistical comparisons between TCHP and Cyclone Intensities (CI). A total of 27 TCs (20 in the Bay of Bengal, and 7 in the Arabian Sea) during the period 2005-2012 have been analyzed using TCHP data from Global Ocean Data Assimilation System (GODAS) model of Indian National Center for Ocean Information Services and cyclone best track data from India Meteorological Department. Out of the 27 cyclones analyzed, 58% (86%) in the Bay (Arabian Sea) have negative correlation and 42% (14%) cyclones have positive correlation between CI and TCHP. On the whole, more than 60% cyclones in the NIO show negative correlations between CI and TCHP. The negative percentage further increases for TCHP leading CI by 24 and 48 hours. Similar trend is also seen with satellite derived TCHP data obtained from National Remote Sensing Center and TC best track data from Joint Typhoon Warming Centre. Hence, it is postulated that TCHP alone need not be the only significant oceanographic parameter, apart from sea surface temperature, responsible for intensification and propagation of TCs in the NIO.

  10. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  11. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  12. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  13. Advances in soil erosion research: processes, measurement, and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by the environmental agents of water and wind is a continuing global menace that threatens the agricultural base that sustains our civilization. Members of ASABE have been at the forefront of research to understand erosion processes, measure erosion and related processes, and model very...

  14. Dual-Process Theories and Cognitive Development: Advances and Challenges

    ERIC Educational Resources Information Center

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive…

  15. Advanced ThioClear process testing. Final report

    SciTech Connect

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  16. Recent advances in the deformation processing of titanium alloys

    NASA Astrophysics Data System (ADS)

    Tamirisakandala, S.; Bhat, R. B.; Vedam, B. V.

    2003-12-01

    Titanium (Ti) alloys are special-purpose materials used for several critical applications in aerospace as well as non-aerospace industries, and extensive deformation processing is necessary to shape-form these materials, which poses many challenges due to the microstructural complexities. Some of the recent developments in the deformation processing of Ti alloys and usefulness of integrating the material behavior information with simulation schemes while designing and optimizing manufacturing process schedules are discussed in this paper. Discussions are primarily focused on the most important alloy, Ti-6Al-4V and on developing a clear understanding on the influence of key parameters (e.g., oxygen content, starting microstructure, temperature, and strain rate) on the deformation behavior during hot working. These studies are very useful not only for obtaining controlled microstructures but also to design complex multi-step processing sequences to produce defect-free components. Strain-induced porosity (SIP) has been a serious problem during titanium alloy processing, and improved scientific understanding helps in seeking elegant solutions to avoid SIP. A novel high-speed processing technique for microstructural conversion in titanium has been described, which provides several benefits over the conventional slow-speed practices. The hot working behavior of some of the affordable α+β and β titanium alloys being developed recently—namely, Ti-5.5Al-1Fe, Ti-10V-2Fe-3Al, Ti-6.8Mo-4.5Fe-1.5Al, and Ti-10V-4.5Fe-1.5Al—has been analyzed, and the usefulness of the processing maps in optimizing the process parameters and design of hot working schedules in these alloys is demonstrated. Titanium alloys modified with small additions of boron are emerging as potential candidates for replacing structural components requiring high specific strength and stiffness. Efforts to understand the microstructural mechanisms during deformation processing of Ti-B alloys and the issues

  17. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  18. Development of processing techniques for advanced thermal protection materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.

    1994-01-01

    The effort, which was focused on the research and development of advanced materials for use in Thermal Protection Systems (TPS), has involved chemical and physical testing of refractory ceramic tiles, fabrics, threads and fibers. This testing has included determination of the optical properties, thermal shock resistance, high temperature dimensional stability, and tolerance to environmental stresses. Materials have also been tested in the Arc Jet 2 x 9 Turbulent Duct Facility (TDF), the 1 atmosphere Radiant Heat Cycler, and the Mini-Wind Tunnel Facility (MWTF). A significant part of the effort hitherto has gone towards modifying and upgrading the test facilities so that meaningful tests can be carried out. Another important effort during this period has been the creation of a materials database. Computer systems administration and support have also been provided. These are described in greater detail below.

  19. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  20. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles.

  1. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles. PMID:27265244

  2. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  3. Data processing 1: Advancements in machine analysis of multispectral data

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1972-01-01

    Multispectral data processing procedures are outlined beginning with the data display process used to accomplish data editing and proceeding through clustering, feature selection criterion for error probability estimation, and sample clustering and sample classification. The effective utilization of large quantities of remote sensing data by formulating a three stage sampling model for evaluation of crop acreage estimates represents an improvement in determining the cost benefit relationship associated with remote sensing technology.

  4. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  5. Comparing Simple and Advanced Video Tools as Supports for Complex Collaborative Design Processes

    ERIC Educational Resources Information Center

    Zahn, Carmen; Pea, Roy; Hesse, Friedrich W.; Rosen, Joe

    2010-01-01

    Working with digital video technologies, particularly advanced video tools with editing capabilities, offers new prospects for meaningful learning through design. However, it is also possible that the additional complexity of such tools does "not" advance learning. We compared in an experiment the design processes and learning outcomes of 24…

  6. Treatment of petroleum refinery sourwater by advanced oxidation processes.

    PubMed

    Coelho, Alessandra; Castro, Antonio V; Dezotti, Márcia; Sant'Anna, G L

    2006-09-01

    The performance of several oxidation processes to remove organic pollutants from sourwater was investigated. Sourwater is a specific stream of petroleum refineries, which contains slowly biodegradable compounds and toxic substances that impair the industrial biological wastewater treatment system. Preliminary experiments were conducted, using the following processes: H2O2, H2O2/UV, UV, photocatalysis, ozonation, Fenton and photo-Fenton. All processes, except Fenton and photo-Fenton, did not lead to satisfactory results, reducing at most 35% of the sourwater dissolved organic carbon (DOC). Thus, further experiments were performed with these two techniques to evaluate process conditions and organic matter removal kinetics. Batch experiments revealed that the Fenton reaction is very fast and reaches, in a few minutes, an ultimate DOC removal of 13-27%, due to the formation of iron complexes. Radiation for an additional period of 60 min can increase DOC removal up to 87%. Experiments were also conducted in a continuous mode, operating one 0.4L Fenton stirred reactor and one 1.6L photo-Fenton reactor in series. DOC removals above 75% were reached, when the reaction system was operated with hydraulic retention times (HRT) higher than 85 min. An empirical mathematical model was proposed to represent the DOC removal kinetics, allowing predicting process performance quite satisfactorily.

  7. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    PubMed

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  8. Advancements in organic antireflective coatings for dual-damascene processes

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Shao, Xie; Lamb, James E., III; Brakensiek, Nickolas L.; Johnson, Joe; Wu, Xiaoming; Xu, Gu; Simmons, William J.

    2000-06-01

    Dual Damascene (DD) process has been implemented in manufacturing semiconductor devices with smaller feature sizes (process is the most commonly used process for manufacturing semiconductor devices since it requires less number of processing steps and also it can make use of a via fill material to minimize the resist thickness variations in the trench patterning photolithography step. Absence of via fill material results in non-uniform fill of vias (in isolated and dense via regions) thus leading to non-uniform focus and dose for exposure of the resist in the deep vias. This results in poor resolution and poor critical dimension (CD) control in the trench-patterning step. When a via fill organic material such as a bottom anti- reflective coating (BARC) is used, then the resist thickness variations are minimized thus enhancing the resolution and CD control in trench patterning. Via fill organic BARC materials can also act as etch blocks at the base of the via to protect the substrate from over etch. In this paper we review the important role of via fill organic BARCs in improving the efficiency of via first DD process now being implemented in semiconductor manufacturing.

  9. IR camera system with an advanced image processing technologies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Syuichi; Tamura, Tetsuo

    2016-05-01

    We have developed image processing technologies for resolving issues caused by the inherent UFPA (uncooled focal plane array) sensor characteristics to spread its applications. For example, large time constant of an uncooled IR (infra-red) sensor limits its application field, because motion blur is caused in monitoring the objective moving at high speed. The developed image processing technologies can eliminate the blur and retrieve almost the equivalent image observed in still motion. This image processing is based on the idea that output of the IR sensor is construed as the convolution of radiated IR energy from the objective and impulse response of the IR sensor. With knowledge of the impulse response and moving speed of the objective, the IR energy from the objective can be de-convolved from the observed images. We have successfully retrieved the image without blur using the IR sensor of 15 ms time constant under the conditions in which the objective is moving at the speed of about 10 pixels/60 Hz. The image processing for reducing FPN (fixed pattern noise) has also been developed. UFPA having the responsivity in the narrow wavelength region, e.g., around 8 μm is appropriate for measuring the surface of glass. However, it suffers from severe FPN due to lower sensitivity compared with 8-13 μm. The developed image processing exploits the images of the shutter itself, and can reduce FPN significantly.

  10. Disaster triggers disaster: Earthquake triggering by tropical cyclones

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Tsukanov, I.

    2011-12-01

    erosion induced by very wet cyclones increased the failure stresses at the hypocenters' depth by 300-1500 Pa, which ultimately triggered these earthquakes. Our findings are supported by a statistical analysis indicating a very low probability (1-5%) for a random earthquake occurrence process to form the observed typhoon-earthquake temporal distribution.

  11. Heart Cycle: facilitating the deployment of advanced care processes.

    PubMed

    Meneu, T; Traver, V; Guillen, S; Valdivieso, B; Benedi, J; Fernandez-Llatas, C

    2013-01-01

    Current trends in health management improvement demand the standardization of care protocols to achieve better quality and efficiency. The use of Clinical Pathways is an emerging solution for that problem. However, current Clinical Pathways are big manuals written in natural language and highly affected by human subjectivity. These problems make their deployment and dissemination extremely difficult in real practice environments. Furthermore, the intrinsic difficulties for the design of formal Clinical Pathways requires new specific design tools to help making them relly useful and cost-effective. Process Mining techniques can help to automatically infer processes definition from execution samples and, thus, support the automatization of the standardization and continuous control of healthcare processes. This way, they can become a relevant helping tool for clinical experts and healthcare systems for reducing variability in clinical practice and better understand the performance of the system.

  12. Development of ALMA process: Advances maleic anhydride production technology

    SciTech Connect

    Arnoia, S.C.; Komeya, M.; Pedretti, D.; Stanecki, J.W.

    1987-01-01

    Shin-Daikyowa Petrochemical Co. (SDPC) has initiated a project to build a 15,000 MTA maleic anhydride plant at Yokkaichi, Japan. For technology, SDPC evaluated many alternatives and elected to utilize the ALMA Process in what will be the first full-scale plant for this new process. Startup is scheduled for late 1988. This paper describes the economic advantages of the ALMA Process and their technical bases which have led to its selection by SDPC. The advantages are in variable costs (primarily feed and energy) for any size plant, and in initial capital as well for plants larger than 10,000 MTA. They are derived from the use of n-butane feed, a fluidized-bed reactor system, and a non-aqueous recovery system.

  13. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  14. Advanced processing technology for high-nitrogen steels

    NASA Astrophysics Data System (ADS)

    Dunning, John S.; Simmons, John W.; Rawers, James C.

    1994-03-01

    Both high-and low-pressure processing techniques can be employed to add nitrogen to iron-based alloys at levels in excess of the equilibrium, ambient-pressure solubility limits. High-pressure techniques include high-pressure melting-solidification; powder atomization; and high-pressure, solid-state diffusion. Low-pressure techniques are centrifugal powder atomization and mechanical alloying. This article describes U.S. Bureau of Mines research on a range of processing technologies for nitrogen steels and references thermodynamic and materials characterization studies that have been completed on these materials.

  15. Beyond celery and starter culture: advances in natural/organic curing processes in the United States.

    PubMed

    Sebranek, J G; Jackson-Davis, A L; Myers, K L; Lavieri, N A

    2012-11-01

    Over the past 10years there has been ongoing development of curing processes with natural ingredients designed to meet consumer demand and regulatory requirements for natural and organic processed meats. Initially, these processes utilized celery concentrates with a high nitrate content combined with a nitrate-reducing starter culture. Subsequent advances included celery concentrates with the nitrate converted to nitrite by suppliers. Further, as questions developed concerning reduced concentration of preservatives and the microbiological safety of these processed meats, additional advances have resulted in a wide variety of ingredients and processes designed to provide supplementary antimicrobial effects for improved product safety.

  16. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 2 CHEMICALS § 713.4 Advance declaration requirements for additionally planned production... additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section...

  17. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 2 CHEMICALS § 713.4 Advance declaration requirements for additionally planned production... additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section...

  18. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 2 CHEMICALS § 713.4 Advance declaration requirements for additionally planned production... additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section...

  19. Electrophysiological Advances on Multiple Object Processing in Aging

    PubMed Central

    Mazza, Veronica; Brignani, Debora

    2016-01-01

    EEG research conducted in the past 5 years on multiple object processing has begun to define how the aging brain tracks the numerosity of the objects presented in the visual field for different goals. We review the recent EEG findings in healthy older individuals (age range: 65–75 years approximately) on perceptual, attentional and memory mechanisms-reflected in the N1, N2pc and contralateral delayed activity (CDA) components of the EEG, respectively-during the execution of a variety of cognitive tasks requiring simultaneous processing of multiple elements. The findings point to multiple loci of neural changes in multi-object analysis, and suggest the involvement of early perceptual mechanisms, attentive individuation and working memory (WM) operations in the neural and cognitive modification due to aging. However, the findings do not simply reflect early impairments with a cascade effect over subsequent stages of stimulus processing, but in fact highlight interesting dissociations between the effects occurring at the various stages of stimulus processing. Finally, the results on older adults indicate the occurrence of neural overactivation in association to good levels of performance in easy perceptual contexts, thus providing some hints on the existence of compensatory phenomena that are associated with the functioning of early perceptual mechanisms. PMID:26973520

  20. High-speed parallel-processing networks for advanced architectures

    SciTech Connect

    Morgan, D.R.

    1988-06-01

    This paper describes various parallel-processing architecture networks that are candidates for eventual airborne use. An attempt at projecting which type of network is suitable or optimum for specific metafunction or stand-alone applications is made. However, specific algorithms will need to be developed and bench marks executed before firm conclusions can be drawn. Also, a conceptual projection of how these processors can be built in small, flyable units through the use of wafer-scale integration is offered. The use of the PAVE PILLAR system architecture to provide system level support for these tightly coupled networks is described. The author concludes that: (1) extremely high processing speeds implemented in flyable hardware is possible through parallel-processing networks if development programs are pursued; (2) dramatic speed enhancements through parallel processing requires an excellent match between the algorithm and computer-network architecture; (3) matching several high speed parallel oriented algorithms across the aircraft system to a limited set of hardware modules may be the most cost-effective approach to achieving speed enhancements; and (4) software-development tools and improved operating systems will need to be developed to support efficient parallel-processor use.

  1. Quality assessment of digested sludges produced by advanced stabilization processes.

    PubMed

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples. PMID:24903249

  2. Naturalistic Text Comprehension. Advances in Discourse Processes, Volume LIII.

    ERIC Educational Resources Information Center

    Oostendorp, Herrre van, Ed.; Zwaah, Rolf A., Ed.

    A collection of essays on the comprehension of text brings together perspectives of different disciplines on discourse. Articles include: "Naturalistic Texts and Naturalistic Tasks" (Herre van Oostendorp, Rolf A. Zwaan); "Psychological Studies of Naturalistic Text" (Arthur C. Graesser, Joseph P. Magliano, Karl Haberlandt); "Text Processing in…

  3. Electrophysiological Advances on Multiple Object Processing in Aging.

    PubMed

    Mazza, Veronica; Brignani, Debora

    2016-01-01

    EEG research conducted in the past 5 years on multiple object processing has begun to define how the aging brain tracks the numerosity of the objects presented in the visual field for different goals. We review the recent EEG findings in healthy older individuals (age range: 65-75 years approximately) on perceptual, attentional and memory mechanisms-reflected in the N1, N2pc and contralateral delayed activity (CDA) components of the EEG, respectively-during the execution of a variety of cognitive tasks requiring simultaneous processing of multiple elements. The findings point to multiple loci of neural changes in multi-object analysis, and suggest the involvement of early perceptual mechanisms, attentive individuation and working memory (WM) operations in the neural and cognitive modification due to aging. However, the findings do not simply reflect early impairments with a cascade effect over subsequent stages of stimulus processing, but in fact highlight interesting dissociations between the effects occurring at the various stages of stimulus processing. Finally, the results on older adults indicate the occurrence of neural overactivation in association to good levels of performance in easy perceptual contexts, thus providing some hints on the existence of compensatory phenomena that are associated with the functioning of early perceptual mechanisms. PMID:26973520

  4. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit. PMID:24835259

  5. Advancing Microwave Technology for Dehydration Processing of Biologics

    PubMed Central

    Cellemme, Stephanie L.; Van Vorst, Matthew; Paramore, Elisha

    2013-01-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex® syringe filter holder (Millipore™, Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit. PMID:24835259

  6. Tropical Cyclone Interactions Within Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, P. P.; Bosart, L. F.; Torn, R. D.

    2014-12-01

    Central American gyres (CAGs) are broad (~1000 km diameter) low-level cyclonic circulations that organize over Central America during the tropical cyclone (TC) season. While CAGs have rarely been studied, prior work on similar circulations has been conducted on monsoon depressions (MDs) and monsoon gyres (MGs), which possess spatial scales of 1000 - 2500 km in the west Pacific basin. A key difference between MDs and MGs is related to the organization of vorticity around the low-level circulation. MDs possess a symmetrical vorticity pattern where vorticity accumulates near the circulation center over time, occasionally developing into a large TC. In contrast, MGs possess asymmetrical vorticity, organized in mesovorticies, which rotate cyclonically along the periphery of the MG circulation. Small tropical cyclones (TCs) occasionally develop from these mesovorticies. Interaction and development of TCs within CAGs are also common, as noted by a CAG identified during the 2010 PREDICT field project, which involved the interaction of TC Matthew and the development of TC Nicole within the larger CAG. This project is motivated by the lack of prior research on CAGs, as well as the complex scale interactions that occasionally occur between TCs and CAGs. This presentation focuses on the mutual interaction of vortices embedded in the larger-scale cyclonic flow comprising the CAG circulation. Case studies will be presented using a circulation framework to illustrate the relationship between different scale vorticity elements within the CAG. Some of these case studies resemble a MD-like evolution, where a large TC develops through the accumulation of symmetrical vorticity around the CAG (e.g. TC Opal 1995, TC Frances 1998). Other instances resemble a MG-like evolution, where smaller mesovorticies rotate around a common circulation center (e.g. TC Florence 1988). The circulation analysis framework aids in the diagnosis of interaction between different scale cyclonic vortices, and

  7. Advanced precoat filtration and competitive processes for water purification. Technical report

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1989-01-28

    An advanced precoat filtration process system is introduced. Also presented and discussed are major competitive processes for water purification, such as conventional precoat filtration, conventional physical-chemical process, lime softening, carbon adsorption, ion exchange, activated alumina, reverse osmosis, ultrafiltration, microfiltration, electrodialysis, and packed aeration column.

  8. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    PubMed Central

    Klein, Eric S.; Cherry, J. E.; Young, J.; Noone, D.; Leffler, A. J.; Welker, J. M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ18O, δ2H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ18O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle. PMID:26023728

  9. Advanced metal mirror processing for tactical ISR systems

    NASA Astrophysics Data System (ADS)

    Schaefer, John P.

    2013-05-01

    Using its patented VQ™ finishing process, Raytheon EO Innovations has been producing low-scatter, low-figure and affordable aluminum 6061-based mirrors for long stand-off intelligence, surveillance and reconnaissance (ISR) systems in production since 2005. These common aperture multispectral systems require λ/30 root mean square (RMS) surface figure and sub-20Å RMS finishes for optimal visible imaging performance. This paper discusses the process results, scatter performance, and fabrication capabilities of Multispectral Reflective Lightweight Optics Technology (MeRLOT™), a new lightweight substrate material. This new technology enables lightweight, common-aperture, broadband performance that can be put in the hands of the warfighter for precision targeting and surveillance operations.

  10. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  11. Effects of separate urine collection on advanced nutrient removal processes.

    PubMed

    Wilsenach, J A; van Loosdrecht, M C M

    2004-02-15

    Municipal wastewater contains a mixture of minerals from different origins. Urine contributes 80% of the nitrogen (N) and 45% of the phosphate (P) load in wastewater. Effects of separate urine collection on BNR processes were evaluated by using a simulation model for an existing state-of-the-art biological nutrient removal process. It was found that increasing urine separation efficiency leads to lower nitrate effluent concentrations, while ammonium and phosphorus concentrations remain more or less the same. The improved nitrate effluent quality is most notable up to 50-60% urine separation. Urine separation allows primary sedimentation without an increase in the nitrate effluent concentration. Furthermore, urine separation increases the potential treatment capacity for raw and settled wastewater by 20% and 60%, respectively. Urine separation provides options for increasing the lifetime of existing treatment works.

  12. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  13. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  14. Interferometric metrology of wafer nanotopography for advanced CMOS process integration

    NASA Astrophysics Data System (ADS)

    Valley, John F.; Koliopoulos, Chris L.; Tang, Shouhong

    2001-12-01

    According to industry standards (SEMI M43, Guide for Reporting Wafer Nanotopography), Nanotopography is the non- planar deviation of the whole front wafer surface within a spatial wavelength range of approximately 0.2 to 20 mm and within the fixed quality area (FQA). The need for precision metrology of wafer nanotopography is being actively addressed by interferometric technology. In this paper we present an approach to mapping the whole wafer front surface nanotopography using an engineered coherence interferometer. The interferometer acquires a whole wafer raw topography map. The raw map is then filtered to remove the long spatial wavelength, high amplitude shape contributions and reveal the nanotopography in the filtered map. Filtered maps can be quantitatively analyzed in a variety of ways to enable statistical process control (SPC) of nanotopography parameters. The importance of tracking these parameters for CMOS gate level processes at 180-nm critical dimension, and below, is examined.

  15. Microwave Processing for Advance Electro-Optic Materials

    SciTech Connect

    Boatner, L.A.

    2000-06-01

    This project addressed the technical and scientific goals of developing new methods for the formation of striation-free single crystals of potassium tantalate niobate. This solid-solution system has the potential for serving as a general electro-optic material with a wide range of optical applications. The performance of the material is, however, severely limited by the effects of compositional inhomogeneity that is generally induced during the single crystal growth process due to the nature of the binary phase diagram of the mixed tantalatehiobate system. Single-crystal boules of potassium tantalate niobate (KTa{sub 1-x}Nb{sub x}O{sub 3} or KTN) with varying tantalum-to-niobium ratios (or values of x) were grown under a variety of experimental conditions. The resulting single crystals were characterized in terms of their compositional homogeneity and optical quality. Single crystals were grown using both the most-favorable established set of growth parameters as well as in the presence of programmed oscillatory temperature variations. The purpose of these deliberately induced variations was to introduce controlled compositional variations and associated optical striations in the solid-solution single crystals. The overall objective of the effort was to utilize microwave heating and processing methods to treat the inhomogeneous single crystals for the purpose of eliminating the compositional variations that lead to striations and the associated varying changes in the refractive index of the material. In order to realize the ultimate goal of the effort, it was necessary to develop methods that would lead to the effective coupling of the microwave field to the KTN single crystals. Achieving the technical and commercial goals of this effort would have made it possible to introduce an important new electro-optic product into the market place, to improve our fundamental understanding of solid-state diffusion processes in general (and of microwave-assisted thermal

  16. Flow measurements in semiconductor processing; New advances in measurement technology

    NASA Astrophysics Data System (ADS)

    Tison, S. A.; Calabrese, A. M.

    1998-11-01

    Gas flow measurement, control, and distribution are an integral part in meeting present and future semiconductor processing requirements (1). Changes in processing and environmental concerns have put additional pressure not only on accurate measurement of the gas flow, but also in reducing flows. To address the need for more accurate metering of gas flows, NIST has developed primary flow standards which have uncertainties of 0.1% of reading or better over the flow range of 10-9 mol/s to 10-3 mol/s (0.001 sccm to 1000 sccm). These standards have been used to test NIST-designed high repeatability flow transfer standards (2) which can be used to document and improve flow measurements in the semiconductor industry (3). In particular two flowmeters have been developed at NIST; the first is a pressure-based flow sensor and the second a Doppler-shift flowmeter, both of which can be used for in-situ calibration of thermal mass flow controllers or for direct metering of process gases.

  17. Process Systems Engineering R&D for Advanced Fossil Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-09-11

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

  18. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  19. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    NASA Technical Reports Server (NTRS)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  20. Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-07-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  1. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  2. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively-coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data and performing simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (I) wave deepening associated with wave shortening and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with bOlll1dary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  3. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGES

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  4. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  5. Recent advances in processing and characterization of edgeless detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Kalliopuska, J.; Eränen, S.; Virolainen, T.

    2012-02-01

    During past five years VTT has actively developed edgeless detector fabrication process. The straightforward and high yield process relies on ion-implantation to activate the edges of the detector. A recent fabrication process was performed at VTT to provide p-on-n edgeless detectors. The layout contained DC- and AC-coupled strip detector and pixel detectors for Medipix/Timepix readouts. The fabricated detector thicknesses were 50, 100 and 150 μm. Electrical characterization was done for 5 × 5 mm2 edgeless diodes on wafer level. All measured electrical parameters showed a dramatic dependence on the diode thickness. Leakage current was measured below 10 nA/cm2 at full depletion. Calculation using a theoretical approximation indicates the diode surface generation current of less than 300 pA. The breakdown voltages were measured to be above 140 V and increased as a function of diode thickness. Reverse bias of 10 V is enough to fully deplete designed edgeless diodes. Leakage current dependence of temperature was investigated for both p-on-n and previous n-on-n edgeless detectors and results show that the leakage current doubles for every 8.5 degree Celsius rise in temperature. TCAD device simulations reveal that breakdown occurs at the lateral p-n junction where the electric field reaches its highest value. Thick edgeless diodes have wider bulk space that allows electric potential to drop and causes smaller curvature of the equipotential lines. This releases the accumulation of electric field at the corner of anode and increases the breakdown voltage. A good match of the simulated and the measured capacitance-voltage curves enables identification of proper parameters used in the simulation.

  6. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  7. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  8. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  9. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  10. Measurement and modeling of advanced coal conversion processes, Volume III

    SciTech Connect

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G.

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  11. Low turbulence/high efficiency cyclone separators: Facility qualification results

    SciTech Connect

    Razgaitis, R.; Paul, D.D.; Bioarski, A.A.; Jordan, H. ); Brodkey, R.S.; Munson-McGee, M. . Dept. of Chemical Engineering)

    1985-01-01

    The objective of this work is to experimentally investigate the near-wall turbulent flow-fields characteristic of cyclone separators in order to determine the influence of wall-originating turbulence on the separation of fine particles. In particular, seven turbulence suppression concepts will be evaluated with reference to a well-established baseline condition. Concepts which appear attractive will be studied and characterized in more detail. The work accomplished to date is principally the design, construction, and qualification of two of the facilities that will be used to study the various concepts of turbulence suppression. The qualification of the primary facility, the Cyclonic Wind Tunnel (CWT), has required the development and adaptation of laser Doppler velocimetry (LDV) to perform simultaneous two-dimensional turbulence measurements in a highly swirling flow. A companion facility to the CWT is the Curvilinear Boundary Layer (CBL) apparatus. The purpose of the CBL is to provide a thick, visually-observable near-wall flow region under dynamically similar conditions to the CWT to that a physical understanding of the turbulence suppression process can be obtained. 9 refs., 15 figs.

  12. The Diurnal Cycle of Precipitation in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bowman, K. P.; Fowler, M. D.

    2015-12-01

    Position and intensity data from the International Best Track Archive for Climate Stewardship (IBTrACS) are combined with global, gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) for the period 1998 to 2013 to study diurnal variability of precipitation in tropical cyclones. The comprehensive global coverage and large sample size afforded by the two data sets allow robust statistical analysis of storm-averaged diurnal variations and permit stratification of the data in various ways. There is a clearly detectable diurnal variation of precipitation in tropical cyclones with peak rainfall occurring near 0600 local time. For storms of all intensities the amplitude of the diurnal harmonic, which dominates the diurnal cycle, is approximately 7% of the mean rain rate. This corresponds to a peak-to-peak variation of about 15% over the course of the day. The diurnal cycle is similar in all ocean basins. There is evidence that the amplitude of the diurnal cycle increases with increasing storm intensity, but the results are not statistically significant. The results have implications for hurricane forecasting and for our understanding of the processes that regulate oceanic convection.

  13. Space options for tropical cyclone hazard mitigation

    NASA Astrophysics Data System (ADS)

    Dicaire, Isabelle; Nakamura, Ryoko; Arikawa, Yoshihisa; Okada, Kazuyuki; Itahashi, Takamasa; Summerer, Leopold

    2015-02-01

    This paper investigates potential space options for mitigating the impact of tropical cyclones on cities and civilians. Ground-based techniques combined with space-based remote sensing instrumentation are presented together with space-borne concepts employing space solar power technology. Two space-borne mitigation options are considered: atmospheric warming based on microwave irradiation and laser-induced cloud seeding based on laser power transfer. Finally technology roadmaps dedicated to the space-borne options are presented, including a detailed discussion on the technological viability and technology readiness level of our proposed systems. Based on these assessments, the space-borne cyclone mitigation options presented in this paper may be established in a quarter of a century.

  14. Microseism and infrasound generation by cyclones.

    PubMed

    Bowen, Samuel P; Richard, Jacques C; Mancini, Jay D; Fessatidis, Vassilios; Crooker, Benjamin

    2003-05-01

    A two-dimensional cylindrical shear-flow wave theory for the generation of microseisms and infrasound by hurricanes and cyclones is developed as a linearized theory paralleling the seminal work by Longuet-Higgins which was limited to one-dimensional plane waves. Both theories are based on Bernoulli's principle. A little appreciated consequence of the Bernoulli principle is that surface gravity waves induce a time dependent pressure on the sea floor through a vertical column of water. A significant difference exists between microseisms detected at the bottom of each column and seismic signals radiated into the crust through coherence over a region of the sea floor. The dominant measured frequency of radiated microseisms is matched by this new theory for seismic data gathered at the Fordham Seismic Station both for a hurricane and a mid-latitude cyclone in 1998. Implications for Bernoulli's principle and this cylindrical stress flow theory on observations in the literature are also discussed.

  15. Advances in Linac-Based Technology for Industrial Radiation Processing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph

    1997-04-01

    Experience with the Industrial Materials Processing Electron Linear Accelerator, IMPELA, over 30,000 hours of 50 kW operation is reported for three irradiators, two of which are in commercial service. Operations are sufficiently mature that research is now concentrated on split beams, photon conversion, dose monitoring, beam scanning, new shielding designs and QA controls. The efficacy of increasing the incident electron energy on bremsstrahlung converters to 7.5 MeV, as proposed by an IAEA committee, is examined experimentally on an IMPELA accelerator over the energy range 7 MeV to 11 MeV to evaluate conversion efficiency, activation of machine components, converter engineering and the activation of red meat. Above 8 MeV the radioactive isotopes ^38Cl and ^24Na, formed primarily by neutrons produced in a tantalum converter, were clearly identified in the meat, while above 10.5 MeV the radiation from ^13N becomes dominant. Implications for the practicality of processing other high density products are discussed.

  16. Advances in the electro-spark deposition coating process

    SciTech Connect

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors.

  17. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  18. Emergency Department Presentations following Tropical Cyclone Yasi

    PubMed Central

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Introduction Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Methods Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. Results There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories - 4 and 5; and ICD categories - diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). Discussion There was an increase in presentations to the ED of TTH, which peaked in the first 24 – 48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience. PMID:26111010

  19. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  20. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  1. Advanced robotics for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-extravehicular activity tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for robot services. Similarly, a set of robot primitives is presented that can be used to model robot actions for alternative robot reference configurations. The robot primitives are tied to technologies and used for composing robot operations for an automated refueling scenario. Robotics technology issues and design accommodation guidelines (hooks and scars) for Space Station Freedom are described.

  2. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  3. Molten metal processing of advanced cast aluminum alloys

    NASA Astrophysics Data System (ADS)

    Shivkumar, S.; Wang, L.; Apelian, D.

    1991-01-01

    Premium quality aluminum alloy castings are used extensively in various applications requiring a high strength-to-weight ratio, such as aerospace, automotive and other structural components. The mechanical properties in these structure-sensitive alloys are determined primarily by the secondary dendrite arm spacing and the morphology of interdendritic phases. In addition, the amount of porosity in the casting and the inclusion concentration have a strong influence on fracture, fatigue and impact properties. During the production of the casting, various molten metal processing techniques can be implemented to control these microstructural parameters. These melt treatments include grain refinement with Ti-B, eutectic modification with strontium or sodium, degassing with purge gases and filtration of inclusions. The efficiency of these treatments determines the quality of the cast component.

  4. An advanced microcomputer design for processing of semiconductor materials

    NASA Technical Reports Server (NTRS)

    Bjoern, L.; Lindkvist, L.; Zaar, J.

    1988-01-01

    In the Get Away Special 330 payload two germanium samples doped with gallium will be processed. The aim of the experiments is to create a planar solid/liquid interface, and to study the breakdown of this interface as the crystal growth rate increases. For the experiments a gradient furnace was designed which is heated by resistive heaters. Cooling is provided by circulating gas from the atmosphere in the cannister through cooling channels in the furnace. The temperature along the sample are measured by platinum/rhodium thermocouples. The furnace is controlled by a microcomputer system, based upon the processor 80C88. A data acquisition system is integrated into the system. In order to synchronize the different actions in time, a multitask manager is used.

  5. Optimization of segmented alignment marks for advanced semiconductor fabrication processes

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Lu, Zhijian G.; Williams, Gary; Zach, Franz X.; Liegl, Bernhard

    2001-08-01

    The continued downscaling of semiconductor fabrication ground rule has imposed increasingly tighter overlay tolerances, which becomes very challenging at the 100 nm lithographic node. Such tight tolerances will require very high performance in alignment. Past experiences indicate that good alignment depends largely on alignment signal quality, which, however, can be strongly affected by chip design and various fabrication processes. Under some extreme circumstances, they can even be reduced to the non- usable limit. Therefore, a systematic understanding of alignment marks and a method to predict alignment performance based on mark design are necessary. Motivated by this, we have performed a detailed study of bright field segmented alignment marks that are used in current state-of- the-art fabrication processes. We find that alignment marks at different lithographic levels can be organized into four basic categories: trench mark, metal mark, damascene mark, and combo mark. The basic principles of these four types of marks turn out to be so similar that they can be characterized within the theoretical framework of a simple model based on optical gratings. An analytic expression has been developed for such model and it has been tested using computer simulation with the rigorous time-domain finite- difference (TD-FD) algorithm TEMPEST. Consistent results have been obtained; indicating that mark signal can be significantly improved through the optimization of mark lateral dimensions, such as segment pitch and segment width. We have also compared simulation studies against experimental data for alignment marks at one typical lithographic level and a good agreement is found.

  6. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  7. Anatomy of sand beach ridges: Evidence from severe Tropical Cyclone Yasi and its predecessors, northeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Nott, Jonathan; Chague-Goff, Catherine; Goff, James; Sloss, Craig; Riggs, Naomi

    2013-09-01

    Four well-identified tropical cyclones over the past century have been responsible for depositing distinct units of predominantly quartzose sand and gravel to form the most seaward beach ridge at several locations along the wet tropical coast of northeast Queensland, Australia. These units deposited by tropical cyclones display a key sedimentary signature characterized by a sharp basal erosional contact, a coarser grain size than the underlying facies and a coarse-skewed trend toward the base. Coarse-skewed distributions with minimal change in mean grain size also characterize the upper levels of the high-energy deposited units at locations within the zone of maximum onshore winds during the tropical cyclone. These same coarse skew distributions are not apparent in sediments deposited at locations where predominantly offshore winds occurred during the cyclone, which in the case of northeast Australia is north of the eye-crossing location. These sedimentary signatures, along with the geochemical indicators and the degraded nature of the microfossil assemblages, have proven to be useful proxies to identify storm-deposited units within the study site and can also provide useful proxies in older beach ridges where advanced pedogenesis has obscured visual stratigraphic markers. As a consequence, more detailed long-term histories of storms and tropical cyclones can now be developed.

  8. Cyclone frequency over the Chaleur Bay, Canada

    SciTech Connect

    Piccolo, M.C. |; El-Sabh, M.I.

    1994-12-31

    The OPEN (Ocean Production Enhancement Network) project was originated to understand and enhance the economy of Canadian fisheries. Within the scope of the project was to study the meteorological, oceanographic and biological characteristics of the Chaleur Bay, a relatively important fishing area in Southeastern Canada. The Atlantic provinces and the Gulf of St. Lawrence area show the most active and variable winter regimes in Canada. Most of the work in the region was performed on the frequency and tracking of low pressure systems traveling over the area, but all were related to severe storms or general circulation models. In these studies some detailed features are lost because of the global scale analysis. The main purpose of this investigation is to document, update and complete the knowledge of the synoptic climatological variability of the region. A specific objective is to find the climatology of cyclones over the bay for the period November 1971--June 1991. Temporal variations in cyclone frequency, and also cyclone development and dissipation frequency are examined in the study area.

  9. Les cyclones tropicaux et le changement climatique

    NASA Astrophysics Data System (ADS)

    André, Jean-Claude; Royer, Jean-François; Chauvin, Fabrice

    2008-09-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades.

  10. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  11. Advanced Signal Processing Methods Applied to Digital Mammography

    NASA Technical Reports Server (NTRS)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  12. Cyclone Nargis in Myanmar: lessons for public health preparedness for cyclones.

    PubMed

    Guha-Sapir, Debarati; Vogt, Florian

    2009-01-01

    Recent natural disasters such as the 2004 tsunami, 2008 Sichuan earthquake, and the 2008 Myanmar cyclone have killed more than 100,000 people each. Mortality and morbidity associated with natural disasters are a growing concern, especially because extreme climate events are likely to get increasingly frequent. The authors comment on Cyclone Nargis, claiming an extraordinarily high death toll during its devastating track through the Irrawaddy delta in Myanmar on May 2, 2008 and analyze how and why its mortality pattern differs from other typical postdisaster situations. Underlying factors and preconditions are described and the specificity of the Myanmese context is presented. This leads to lessons how excess mortality can be reduced in future high-ranked cyclones, whose recurrence in this region will only be a matter of time.

  13. Delicate visual artifacts of advanced digital video processing algorithms

    NASA Astrophysics Data System (ADS)

    Nicolas, Marina M.; Lebowsky, Fritz

    2005-03-01

    With the incoming of digital TV, sophisticated video processing algorithms have been developed to improve the rendering of motion or colors. However, the perceived subjective quality of these new systems sometimes happens to be in conflict with the objective measurable improvement we expect to get. In this presentation, we show examples where algorithms should visually improve the skin tone rendering of decoded pictures under normal conditions, but surprisingly fail, when the quality of mpeg encoding drops below a just noticeable threshold. In particular, we demonstrate that simple objective criteria used for the optimization, such as SAD, PSNR or histogram sometimes fail, partly because they are defined on a global scale, ignoring local characteristics of the picture content. We then integrate a simple human visual model to measure potential artifacts with regard to spatial and temporal variations of the objects' characteristics. Tuning some of the model's parameters allows correlating the perceived objective quality with compression metrics of various encoders. We show the evolution of our reference parameters in respect to the compression ratios. Finally, using the output of the model, we can control the parameters of the skin tone algorithm to reach an improvement in overall system quality.

  14. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  15. Automated angiogenesis quantification through advanced image processing techniques.

    PubMed

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  16. DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL BELOW AND BEHIND IT. STRAIGHT HORIZONTAL PIPE IS SLIME FEED FROM ROD MILL. PIPE OUT TOP OF CYCLONE AND CURVING AT LOWER RIGHT CARRIED FINELY GROUND SLIME TO FLOTATION CONDITIONER TANK. PIPE NOT VISIBLE OUT BOTTOM OF CYCLONE CONVEYED COARSER SLIME TO BALL MILL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  17. Precipitation of suspended particles in wet-film cyclones

    SciTech Connect

    Val'dberg, A.Y.; Kirsanova, N.S.

    1986-07-01

    The fact that wet and dry mechanical centrifugal dust collectors operate on the same principle allowed the authors to make the calculations for wet cyclones with an equation similar to one used previously. A figure shows that the efficiency of wet cyclones is much higher (20% higher on the average) than that of dry cyclones under the same operating conditions. This improvement is due to a decrease in the secondary discharge of dust particles from the wet wall of the device.

  18. Advances in process overlay: alignment solutions for future technology nodes

    NASA Astrophysics Data System (ADS)

    Megens, Henry; van Haren, Richard; Musa, Sami; Doytcheva, Maya; Lalbahadoersing, Sanjay; van Kemenade, Marc; Lee, Hyun-Woo; Hinnen, Paul; van Bilsen, Frank

    2007-03-01

    Semiconductor industry has an increasing demand for improvement of the total lithographic overlay performance. To improve the level of on-product overlay control the number of alignment measurements increases. Since more mask levels will be integrated, more alignment marks need to be printed when using direct-alignment (also called layer-to-layer alignment). Accordingly, the alignment mark size needs to become smaller, to fit all marks into the scribelane. For an in-direct alignment scheme, e.g. a scheme that aligns to another layer than the layer to which overlay is being measured, the number of needed alignment marks can be reduced. Simultaneously there is a requirement to reduce the size of alignment mark sub-segmentations without compromising the alignment and overlay performance. Smaller features within alignment marks can prevent processing issues like erosion, dishing and contamination. However, when the sub-segmentation size within an alignment mark becomes comparable to the critical dimension, and thus smaller than the alignment-illuminating wavelength, polarization effects might start to occur. Polarization effects are a challenge for optical alignment systems to maintain mark detectability. Nevertheless, this paper shows how to actually utilize those effects in order to obtain enhanced alignment and overlay performance to support future technology nodes. Finally, another challenge to be met for new semiconductor product technologies is the ability to align through semi-opaque materials, like for instance new hard-mask materials. Enhancement of alignment signal strength can be reached by adapting to new alignment marks that generate a higher alignment signal. This paper provides a description of an integral alignment solution that meets with these emerging customer application requirements. Complying with these requirements will significantly enhance the flexibility in production strategies while maintaining or improving the alignment and overlay

  19. Detection of merger and splitting of extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    Kew, Sarah; Hanley, John

    2013-04-01

    Results from the project IMILAST (Intercomparison of mid-latitude storm diagnostics) show that, despite a wide variety in the 15 cyclone identification and tracking techniques considered, a reasonable agreement on tracks of intense cyclones can be reached, at least in the central intensifying stage of the cyclone life cycle. In contrast, diagnostics of cyclone genesis and lysis events show reduced agreement amongst the methods with genesis and lysis density maps exhibiting coherence over smaller spatial scales. Recent work by Hanley and Caballero claims that multi-centre cyclones occur more frequently as storm intensity increases, with an associated increase in the probability of spurious splittings by single-centre tracking routines. We investigate whether the methodological differences in handling of cyclone merger and splitting are responsible for the range in genesis/lysis outcomes exhibited in IMILAST results or whether other factors, such as cyclone definition, have more influence over the spread. The study is focussed on a number of selected cases of intense cyclones that undergo a clear merger or splitting. Of the methods contributing to the IMILAST project, three explicitly handle cyclone merger and splitting. In demonstrating the differences between the techniques, we explore what each approach has to offer.

  20. Extratropical cyclone tracks in the TIGGE data set

    NASA Astrophysics Data System (ADS)

    Campa, J.; Wernli, H.

    2009-09-01

    The accuracy of extratropical cyclone tracks is of key importance when considering medium-range global weather forecasts. For a given cyclone evolution, ensemble predictions typically produce significantly differing tracks, both in terms of location and amplitude. In this study, a cyclone tracking algorithm (based upon closed contours in the sea level pressure field) is used to investigate the variability of extratropical cyclone tracks in the TIGGE data set. ECMWF analysis data is used for the verification. For a time period of three months of TIGGE data different statistical measures are determined for every TIGGE ensemble. These measures include the ensemble mean error in cyclone intensity and position, the spread in terms of cyclone intensity and position, and the number of cyclones where the actual track was outside of the spread indicated by the ensemble. The latter cases are "forecast busts" that are completely missed by the ensemble prediction system. Our results also show that the number of forecast tracks assigned to each analysis cyclone decreases strongly with forecast lead time. Also the number of ensemble members that actually catch the cyclone shows a large variability between different ensembles. The width of the distribution of errors of the minimum SLP increases with lead time, but its median remains close to zero.

  1. Animation of Flood Potential from Two Australian Tropical Cyclones

    NASA Video Gallery

    Merged precipitation data from NASA-JAXA's Tropical Rainfall Measuring Mission (TRMM) and other satellites was used to calculate flood potential withrainfall from Tropical Cyclone Lam and Tropical ...

  2. Post Cyclone (PoC): An innovative way to reduce the emission of fines from industrial cyclones

    SciTech Connect

    Ray, M.B.; Luning, P.E.; Hoffmann, A.C.; Plomp, A.; Beumer, M.I.L.

    1997-07-01

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 {micro}m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called Post Cyclone (PoC), which is a cylindrical annular shell located on top of the vortex finder. Experiments were conducted in a cyclone larger than the usual laboratory range (diameter = 0.4 m) with different configurations of the PoC and spanning a range of operating conditions. Flow patterns and collection efficiencies for the cyclone and the PoC, both individually and in combination, were calculated and compared with experimental data. Both the experiments and simulations indicate a decrease in emission of particles of 1--3 {micro}m by around 30%, rising with particle size to around 50% for 5 {micro}m particles.

  3. Differential leaflet mortality may influence biogeochemical cycling following tropical cyclones.

    PubMed

    Marler, Thomas E; Ferreras, Ulysses

    2014-01-01

    Intensity of tropical cyclones is expected to increase in the coming century, and an improved understanding of their influence on biogeochemical cycles would benefit ecologists and conservationists. We studied the November 2013 Typhoon Haiyan damage to observe that numerous examples of partial leaf necrosis on intact leaves of trees in the Cycadaceae and Arecaceae families resulted, leaving behind a copious amount of arboreal dead leaf material attached to live leaves. The decay process of this form of arboreal litter has not been previously studied. When compared with decay of ground litter or detached litter suspended in the canopy, we predict the decay process of this form of arboreal litter will include increased photooxidation, leaching, and comminution by detritivorous insects and mites; but decreased catabolism of organic molecules by saprophytic organisms.

  4. Tropical Cyclones and the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Zimmerman, N. L.; Emanuel, K.

    2010-12-01

    The relationship between tropical cyclones and the carbon cycle poses an interesting question: tropical surface waters are generally quite warm and poor in nutrients, but the mixing in tropical cyclones entrains potentially large amounts of cold, nutrient-rich water. As the cold anomaly warms, there is a tendency toward over-saturation of carbon dioxide, and thus a net outgassing from the ocean to the atmosphere, but because nutrients are mixed into the photic zone, there is a simultaneous phytoplankton bloom which removes carbon from the mixed layer. The amount of carbon taken up into biota by the induced biological activity can in some cases create a net undersaturation of carbon dioxide in spite of the warming of entrained cold water, and therefore cause a net ingassing of carbon in the wake of a tropical cyclone. This is, however, only a short-term effect. Phytoplankton have a short life cycle, and the detritus they leave behind sinks and remineralizes; that which remineralizes below the climatological mixed layer represents a long-term sink of carbon from the atmosphere to the mixed layer, but the remainder will quickly return to the atmosphere. Both the warming of the mixed layer and the induced phytoplankton bloom are easily observable, but neither the sign nor the magnitude of the net effect is intuitive. To illuminate the question, a simple one-dimensional model is formulated which simulates the behavior of the upper few hundred meters of the ocean in response to tropical cyclone-induced mixing. Phytoplankton (and its remains), Nitrate, and Dissolved Inorganic Carbon are tracked, and the model is both initialized and forced with the best possible approximation to real chemical concentrations, winds, and heat fluxes, and the effect of the storm is estimated by comparing model behavior with the storm included and with the storm removed from observations. It is shown that the model performs acceptably well compared to such observations as exist. The model is

  5. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  6. Development of an advanced, continuous mild gasification process for the production of co-products

    SciTech Connect

    Ness, R.O. Jr.; Li, Y.; Heidt, M.

    1992-09-01

    Prior to disassembly of the CFBR, accumulated tar residue must be removed from the reactor, piping and tubing lines, and the condenser vessels. Based on experience from the CFBR mild gasification tests, lacquer thinner must be pumped through the unit for at least one hour to remove the residual tar. The lacquer thinner wash may be followed by a water wash. The CFBR will be disassembled after the system has been thoroughly flushed out. The following equipment must be disassembled and removed for storage: Superheater; Water supply pump; Coal feed system (hopper, auger, ball feeder, valves); Reactor; Cyclone and fines catch pot; Condensers (water lines, glycol bath, condenser pots, valves); and Gas meter. After the process piping and reactor have been disassembled, the equipment will be inspected for tar residues and flushed again with acetone or lacquer thinner, if necessary. All solvent used for cleaning the system will be collected for recycle or proper disposal. Handling and disposal of the solvent will be properly documented. The equipment will be removed and stored for future use. Equipment contaminated externally with tar (Level 4) will be washed piece by piece with lacquer thinner after disassembly of the PRU. Proper health and safety practices must be followed by the personnel involved in the cleanup operation. Care must be taken to avoid ingestion, inhalation, or prolonged skin contact of the coal tars and lacquer thinner. Equipment contaminated internally by accumulation of residual tar or oil (Level 5) will be flushed section by section with lacquer thinner. The equipment will be washed with solvent both before and after disassembly to ensure that all tar has been removed from the piping, pumps, gas quench condensers, light tar condensers, and drain lines. The coal tars wig be separated from the solvent and incinerated.

  7. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  8. Advances in remote sensing and modeling of terrestrial hydro-meteorological processes and extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is an indispensable tool for monitoring and detecting the evolution of the Earth’s hydro-meteorological processes. Fast-growing remote sensing observations and technologies have been a primary impetus to advancing our knowledge of hydro-meteorological processes and their extremes ove...

  9. Software Systems 2--Compiler and Operating Systems Lab--Advanced, Data Processing Technology: 8025.33.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to help the student develop the skills and knowledge necessary to succeed in the field of data processing. By learning the purpose and principles of compiler programs and operating systems, the student will become familiar with advanced data processing procedures that are representative of computer…

  10. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Statistical Process Control.

    ERIC Educational Resources Information Center

    Billings, Paul H.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…

  11. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  12. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  13. Processing advances for localization of beaked whales using time difference of arrival.

    PubMed

    Baggenstoss, Paul M

    2013-06-01

    This paper is concerned with the localization of clicking Blainville's beaked whales (Mesoplodon densirostris) using an array of widely spaced bottom-mounted hydrophones. A set of signal and data processing advances are presented that together make reliable tracking a possibility. These advances include a species-specific detector, elimination of spurious time-difference-of-arrival (TDOA) estimates, improved tracking of TDOA estimates, positive association of TDOA estimates using different hydrophone pairs, and joint localization of multiple whales. A key innovation in three of these advances is the principle of click-matching. The methods are demonstrated using real data.

  14. [Technology development as social process: prospects and frontiers of social scientific elucidation of technological advancement].

    PubMed

    Dierkes, M

    1990-05-01

    This article provides an overview of the new developments in social scientific technology research which have changed considerably as a result of public debate and reactions to the importance of advancements in technology. The shift in emphasis, away from the effects of technology to its shaping, is described and certain hypotheses and concepts of advancement in the study of the social conditions underlying technical development processes are presented.

  15. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  16. Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013)

    NASA Astrophysics Data System (ADS)

    Rajasree, V. P. M.; Kesarkar, Amit P.; Bhate, Jyoti N.; Umakanth, U.; Singh, Vikas; Harish Varma, T.

    2016-08-01

    The present study aims to examine the new understanding of cyclogenesis by analyzing the genesis sequence of formation of a very severe cyclonic storm Madi (6-13 December 2013) that occurred over the Bay of Bengal. We have generated a high-resolution (18 km, 6 km, and 2 km) analysis using three-dimensional variational data assimilation technique and Weather Research and Forecasting model. The genesis sequence of Madi cyclone is analyzed using the concepts in the marsupial theory and other theories of tropical cyclone formation. Major results are as follows: the developed analysis is found useful for tracking the movement of westward moving parent disturbance from 15 days prior to the genesis; identifying developed pouch region in the Lagrangian frame of reference; understanding the evolution of the pouch and convection within the pouch region and for the study of intensification inside the pouch region. Also, large-scale priming of environment concurs with the hypotheses of the marsupial theory of tropical cyclogenesis. The analysis of dynamical and thermodynamical processes within the pouch region showed gradual moistening, uplifting of moisture, diabatic heating causing buoyant convection in the vorticity-rich environment followed by vortex tube stretching, development of convection, heavy precipitation, strengthening of lower level convergence, and hence spin-up during a day or two preceding the genesis of Madi cyclone. In general, it is concluded that intensification within pouch region during the cyclogenesis phase followed the marsupial paradigm and bottom-up mechanism.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  18. Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data

    NASA Astrophysics Data System (ADS)

    Babu, S. Ravindra; Venkat Ratnam, M.; Basha, Ghouse; Krishnamurthy, B. V.; Venkateswara Rao, B.

    2015-05-01

    Tropical cyclones (TCs) are deep convective synoptic scale systems and play an important role in modifying the thermal structure, tropical tropopause parameters and hence stratosphere-troposphere exchange (STE) processes. In the present study, high vertical resolution and high accuracy measurements from COSMIC Global Positioning System (GPS) Radio Occultation (RO) measurements are used to investigate and quantify the effect of tropical cyclones that occurred over Bay of Bengal and Arabian Sea in last decade on the tropical tropopause parameters. The tropopause parameters include cold point tropopause altitude (CPH) and temperature (CPT), lapse rate tropopause altitude (LRH) and temperature (LRT) and the thickness of the tropical tropopause layer (TTL), that is defined as the layer between convective outflow level (COH) and CPH, obtained from GPS RO data. From all the TCs events, we generate the mean cyclone-centered composite structure for the tropopause parameters and removed from climatological mean obtained from averaging the GPS RO data from 2002-2013. Since the TCs include eye, eye walls and deep convective bands, we obtained the tropopause parameters based on radial distance from cyclone eye. In general, decrease in the CPH in the eye is noticed as expected. However, as the distance from cyclone eye increases by 3, 4, and 5° an enhancement in CPH (CPT), LRH (LRT) are observed. Lowering of CPH (0.6 km) and LRH (0.4 km) values with coldest CPT and LRT (2-3 K) within the 500 km radius from the TC centre is noticed. Higher (2 km) COH leading to the lowering of TTL thickness (2-3 km) is clearly observed. There exists multiple tropopause structures in the profiles of temperature obtained within 1° from centre of TC. These changes in the tropopause parameters are expected to influence the water vapour transport from troposphere to lower stratosphere and ozone from lower stratosphere to the upper troposphere and hence STE processes.

  19. Cell line development for biomanufacturing processes: recent advances and an outlook.

    PubMed

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  20. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia

    NASA Astrophysics Data System (ADS)

    Paling, E. I.; Kobryn, H. T.; Humphreys, G.

    2008-05-01

    Changes in mangal area were quantified in the eastern Exmouth Gulf over six years (1999-2004) after Cyclone Vance using Landsat TM satellite imagery and aerial photography. Vance was the strongest tropical cyclone ever to impact the Australian mainland before 2006 and produced wind gusts of more than 280 km h -1. Image data were processed using ENVI™ and IDRISI™ software. Three sets of Landsat TM images from 1999 (a few days before the cyclone), 2002 and 2004 were used, along with 2004 digital aerial photography. A 'common' subset of 904 km 2 was selected from all images and classification was developed using ISODATA™ unsupervised classification to identify spectrally distinct areas followed by principal component analysis (PCA), vegetation indices and supervised classification. Some 12,800 ha of mangrove habitat was present before the cyclone and approximately 5700 ha (44%) was removed by it. Most mangroves lost (74%) between 1999 and 2004 were converted either to bare sediment or to live saltmarshes and this occurred mostly between 1999 and 2002. Five basic categories of damage were conspicuous from imagery and field observations, and evidence suggests that much of the loss was due to the longer term consequences of sediment deposition or smothering, rather than the immediate effects of wind or waves. Mangroves exhibited accelerated recovery between 2002 and 2004, and around 1580 ha regenerated during this time, amounting to a return of 68% of their former coverage. At this recovery rate we estimate that they should have returned to their pre-cyclone area by 2009. Over half of the saltmarsh habitats (54%) were removed by the cyclone (4060 ha) but their recovery has been far more rapid than mangroves. After 5 years, saltmarshes had returned to 87% of their previous area. The 5700 ha of mangrove habitat damaged by Cyclone Vance exceeds any anthropogenic impact that has ever taken place in Western Australia by several orders of magnitude.

  1. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    SciTech Connect

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  2. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  3. Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting

    NASA Astrophysics Data System (ADS)

    Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.

    2015-12-01

    JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.

  4. Lessons learnt from tropical cyclone losses

    NASA Astrophysics Data System (ADS)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  5. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    SciTech Connect

    1996-01-01

    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  6. Experiments with the Kema cyclone incinerator for radioactive waste

    NASA Astrophysics Data System (ADS)

    Matteman, J. L.; Tigchelaar, P.

    A cyclone incinerator for the treatment of solid waste at a nuclear power station was developed to reduce volume and weight of the final waste; reductions by factors of 7 and 80 respectively are possible (after solidification). For burnable waste the throughput is 23 kg/hr for 6 hr runs. About 7000 kg of nonradioactive waste were treated in total. The behavior of potentially dangerous radionuclides (Co, Cs, Mn and Sr) was studied by tracers. It appears that Co, Mn and Sr are concentrated in the resulting ashes, where 55% of the Cs is also found; the remaining Cs is unaccounted for. The ashes were solidified by mixing them with concrete in a 1:1 ratio. Due to the flexibility of the facility, start-up and turn-down periods are short. Since the process can be controlled automatically, the operation can be run by one employee, to load the waste and handle the ashes.

  7. Dynamical simulation of tropical cyclones in high-resolution GCMs (Invited)

    NASA Astrophysics Data System (ADS)

    Strachan, J.; Vidale, P.; Hodges, K.; Roberts, M.

    2010-12-01

    weather events though teleconnections, and hence potential accumulation of seemingly unrelated risk; 4. Undertake future climate scenario runs, and assess how climate change may affect tropical cyclone risk in the future. This is important research from a scientific point of view, but also has significant implications for risk assessment and the insurance industry. Through a long-term collaboration with the insurance industry, via the Willis Research Network (WRN), we are working to integrate our findings and dynamical modelling approach into the risk assessment process to assist risk analysts in the evaluation climate-related risk.

  8. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  9. Partial reduction of particulate iron ores and cyclone reactor

    SciTech Connect

    Taylor, P.R.; Bartlett, R.W.; Abdel-Latif, M.

    1993-07-20

    An apparatus for iron or ferro-alloy smelting is described, comprising: bath smelter means for containing a smelting bath for reductive bath smelting of iron or ferro-alloy ore by coal/oxygen injection through use of endothermic nozzles directed into a smelting bath to form liquid iron or steel; a closed cyclone reactor having an upper end including an inlet end, said closed cyclone including an open lower exit positioned above the smelting bath within the bath smelter means; feed means for directing a continuous stream of fine ore particles into the cyclone reactor; and gas supply means for tangentially directing streams of oxygen, with or without air, and a fuel gas selected from the group consisting of producer gas, natural gas and methane for burning within the cyclone reactor to maintain the interior and contents of the cyclone reactor at an elevated temperature; the equilibrium partial pressure ratio of carbon monoxide to carbon dioxide exiting the cyclone reactor being maintained at a value sufficient to cause the melted ore at the elevated temperatures within the cyclone reactor to be partially reduced during the particulate residence time within the cyclone reactor.

  10. Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  11. Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  12. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  13. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  14. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  15. Assessment of Tropical Cyclone Track Forecast Errors using GDAPS (UM)

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, J.; Chang, K.; Byun, K.; Lee, J.

    2013-12-01

    After the Joint Typhoon Warning Center (JTWC) began issuing official five-day tropical cyclone (TC) forecasts in 2003, the Korea Meteorological Administration (KMA) started issuing official five-day forecasts of TCs in May 2012 after 2 year of beta test. Forming a selective consensus (SCON) by proper removal of a likely erroneous track forecast is hypothesized to be more accurate than the non-selective consensus (NCON) of all model tracks that are used for the five-day forecasts. Conceptual models describing large track error mechanisms, which are related to known tropical cyclone motion processes being misrepresented in the dynamical models, are applied to forecasts during the 2012 western North Pacific typhoon season by the Global Data Assimilation and Prediction System (GDAPS (UM N512 L70)) which is KMA's main operational model. GDAPS (UM) is one of consensus members used in making KMA's five-day forecasts and thus analysis of its track error tendencies would be useful for forming a SCON forecast. All 72-h track errors greater than 320 km are examined on the basis of the approach developed by Carr and Elsberry (2000a, b). Tropical-influenced error sources caused 37% (47 times / 126 erroneous forecasts) of the GDAPS (UM) large track forecast errors primarily because an incorrect beta effect-related process depicted by the model contributed to the erroneous forecasts. Midlatitude-influenced error sources accounted for 63% (79 times / 126 error cases) in the GDAPS (UM) erroneous forecasts mainly due to an incorrect forecast of the midlatitude system evolutions. It is proposed that KMA will be able to issue more reliable TC track information if a likely model track error is recognized by optimum use of conceptual models by Carr and Elsberry (2000a, b) and a selective consensus track is then the basis for an improved warning.

  16. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  17. Sea surface signature of tropical cyclones using microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Kil, Bumjun; Burrage, Derek; Wesson, Joel; Howden, Stephan

    2013-06-01

    Measuring the sea surface during tropical cyclones (TC) is challenging due to severe weather conditions that prevent shipboard measurements and clouds which mask the sea surface for visible satellite sensors. However, sea surface emission in the microwave L-band can penetrate rain and clouds and be measured from space. The European Space Agency (ESA) MIRAS L-band radiometer on the Soil Moisture and Ocean Salinity (SMOS) satellite enables a view of the sea surface from which the effects of tropical cyclones on sea surface emissivity can be measured. The emissivity at these frequencies is a function of sea surface salinity (SSS), sea surface temperature (SST), sea surface roughness, polarization, and angle of emission. If the latter four variables can be estimated, then models of the sea surface emissivity can be used to invert SSS from measured brightness temperature (TB). Actual measured TB from space also has affects due to the ionosphere and troposphere, which have to be compensated for, and components due to the galactic and cosmic background radiation those have to be removed. In this research, we study the relationships between retrieved SSS from MIRAS, and SST and precipitation collected by the NASA TMI sensor from the Tropical Rainfall Measuring Mission (TRMM) satellite during Hurricane Isaac, in August 2012. During the slower movement of the storm, just before landfall on the vicinity of the Louisiana Shelf, higher precipitation amounts were associated with lower SSS and slightly increased SST. This increased trend of SST and lower SSS under regions of high precipitation are indicative of inhibited vertical mixing. The SMOS Level 2 SSS were filtered by a stepwise process with removal of high uncertainty in TB under conditions of strong surface roughness which are known to create noise. The signature of increased SST associated with increasing precipitation was associated with decreased SSS during the storm. Although further research is required, this study

  18. A Classification of Mediterranean Cyclones Based on Global Analyses

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Atlas, Robert

    2003-01-01

    The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well

  19. Gas holdup in cyclone-static micro-bubble flotation column.

    PubMed

    Li, Xiaobing; Zhu, Wei; Liu, Jiongtian; Zhang, Jian; Xu, Hongxiang; Deng, Xiaowei

    2016-01-01

    The present work has been carried out to investigate the effect of process variables on gas holdup and develop an empirical equation and a neural network model for online process control of the gas holdup based on the operating variables. In this study, the effect of process variables (nozzle diameter, circulation pressure, aeration rate, and frother dosage) on gas holdup in a cyclone-static micro-bubble flotation column of an air/oily wastewater system was investigated. Gas holdup was estimated using a pressure difference method and an empirical equation was proposed to predict gas holdup. A general regression neural network (GRNN) model was also introduced to predict gas holdup for the cyclone-static micro-bubble flotation column. The predictions from the empirical equation and the GRNN are in good agreement with the experiment data for gas holdup, while the GRNN provides higher accuracy and stability compared with that of the empirical equation.

  20. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect

    Not Available

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  1. Building of tropical beach ridges, northeastern Queensland, Australia: Cyclone inundation and aeolian decoration

    NASA Astrophysics Data System (ADS)

    Tamura, Toru; Nicholas, William; Brooke, Brendan; Oliver, Thomas

    2016-04-01

    Processes associated with tropical cyclones are thought responsible for building coarse sand beach ridges along the northeastern Queensland coast, Australia. While these ridges are expected to be geological records of the past cyclone, they question the general consensus of the aeolian genesis of sandy beach ridges. To explore the ridge-forming process, we carried out the GPR survey, auger drilling, pit excavation, grain-size analysis, and OSL dating for coarse sand beach ridges at the Cowley Beach, northeastern Queensland. The Cowley Beach is a mesotidal beach characterized by a low-tide terrace and steep beach face. Ten beach ridges are recognized along the survey transect that extends 700 m inland from the shore. 37 OSL ages are younger seawards, indicating the seaward accretion of the ridge sequence over the last 2700 years. The highest ridge is +5.1 m high above AHD (Australian Height Datum). Two GPR units are bounded by a groundwater surface at c. +1.5 m AHD. The upper unit is characterized by horizontal to hummocky reflectors punctuated by seaward dipping truncation surfaces. These reflectors in places form dome-like structure that appears to be the nucleus of a beach ridge. The shape and level (+2.5 m AHD) of the dome are similar to those of the present swash berm. The lower unit shows a sequence of reflectors that dip at an angle of present beach face. The sequence is dissected by truncation surfaces, some of which are continuous to those in the upper unit. Coarse sand mainly forms beach ridge deposits below +4.0 m AHD, while a few higher ridges have an upward fining layer composed of medium sand above +4.0 m, which is finer than aeolian ripples found on the backshore during the survey. In addition, pumice gravel horizons underlie the examined ridge crests. The sequence of seaward dipping reflectors indicates that the Cowley Beach, like other many sandy beaches, has prograded during onshore sand accretion by fairweather waves and has been eroded by storms

  2. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  3. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  4. Cyclone Dera in the Mozambique Channel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS, flying aboard OrbView-2) saw Tropical Cyclone Dera shortly after it formed today (March 9, 2001) over the Mozambique Channel. Mozambique is visible to the left of the storm, and the island of Madagascar is partially visible on the right side of the storm. In the high-resolution image you can see the Zambeze River in Mozambique, which has been flooded in recent weeks. The signature brownish plumes of sediment discharge from the Zambeze into the channel are visible at several places along Mozambique's coastline. According to the U.S. Joint Typhoon Warning Center, Cyclone Dera now has sustained winds of 55 knots (about 63 mph or 102 km per hour), with gusts of up to 70 knots (81 mph or 130 km per hour). The storm is moving in a south-southeasterly direction at about 14 knots (16 mph or 26 km per hour). The storm is predicted to continue intensifying over the next 24 hours and should continue heading in a southerly direction. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  5. Entropy Convective Flux for Tropical Cyclone Haiyan

    NASA Astrophysics Data System (ADS)

    Pegahfar, Nafiseh; Gharaylou, Maryam; Ghafarian, Parvin

    2016-07-01

    It is well-known that the environmental factors control tropical cyclones (TCs). one of the most considered thermodynamical parameters is entropy that its significant role on tropical cyclogenesis and TC intensification has been professionally focused in some recent research studies. In the current work, two data sets including satellite data and NCEP-GFS data have been used to investigate the entropy parameter and its convective flux, during tropical cyclone Haiyan (TCH) occurred on 3-11 November 2013 and nominated as the strongest TC over Pacific Ocean before 2014. This purpose has been proceeded for three domain areas with different size. These domains cover inner, eyewall and rainbands, and environmental regions of TCH at various pressure levels. Also three terms of entropy vertical flux including dissipative heating, surface entropy flux and difference between entropy values over inner and outer regions have been analyzed. Our obtained results showed relatively similar behavior of averaged entropy over all selected domain, but with a delay and decrease in maximum values for the smaller domains. In addition our findings revealed different considerable contributions for three terms of entropy vertical flux.

  6. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  7. Evaluation of Advanced Potato Breeding Clones for Storage and Processing Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  8. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    SciTech Connect

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

  9. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  10. An Evaluation of the Air Force Logistics Career Area Advanced Academic Degree Position Validation Process.

    ERIC Educational Resources Information Center

    Biehl, Aleck L.; Sonnier, Ronald J.

    Reduced funding for educational programs indicated that a thorough review should be made of the Advanced Academic Degree (AAD) validation process. This reduction in funding necessitates more effective management of the AAD program in the logistics career areas to insure that officers in these career areas require those skills learned through these…

  11. 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan R.

    2004-12-01

    Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.

  12. Fieldcrest Cannon, Inc. Advanced Technical Preparation. Statistical Process Control (SPC). PRE-SPC I. Instructor Book.

    ERIC Educational Resources Information Center

    Averitt, Sallie D.

    This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills and instructing them in basic calculator…

  13. Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes

    PubMed Central

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298

  14. Economic-oriented stochastic optimization in advanced process control of chemical processes.

    PubMed

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process.

  15. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  16. Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.

    1991-04-01

    The combination of noninvasive in-situ monitoring sensors single-wafer processing modules vacuum-integrated cluster tools and computer-integrated manufacturing (CIM) can provide a suitable fabrication environment for flexible and high-yield advanced semiconductor device manufacturing. The use of in-situ sensors for monitoring of equipment process and wafer parameters results in increased equipment/process up-time reduced process and device parameter spread improved cluster tool reliability and functionality and reduced overall device manufacturing cycle time. This paper will present an overview of the main features and impact of noninvasive in-situ monitoring sensors for semiconductor device manufacturing applications. Specific examples will be presented for the use of critical sensors in conjunction with cluster tools for advanced CMOS device processing. A noninvasive temperature sensor will be presented which can monitor true wafer temperature via infrared (5. 35 jtm) pyrometery and laser-assisted real-time spectral wafer emissivity measurements. This sensor design eliminates any. temperature measurement errors caused by the heating lamp radiation and wafer emissivity variations. 1. SENSORS: MOTIVATIONS AND IMPACT Semiconductor chip manufacturing factories usually employ well-established statistical process control (SPC) techniques to minimize the process parameter deviations and to increase the device fabrication yield. The conventional fabrication environments rely on controlling a limited set of critical equipment and process parameters (e. g. process pressure gas flow rates substrate temperature RF power etc. ) however most of the significant wafer process and equipment parameters of interest are not monitored in real

  17. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  18. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    SciTech Connect

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  19. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  20. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.

    PubMed

    Reed, Andra J; Mann, Michael E; Emanuel, Kerry A; Lin, Ning; Horton, Benjamin P; Kemp, Andrew C; Donnelly, Jeffrey P

    2015-10-13

    In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies. PMID:26417111

  1. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era

    PubMed Central

    Reed, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Lin, Ning; Horton, Benjamin P.; Kemp, Andrew C.; Donnelly, Jeffrey P.

    2015-01-01

    In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies. PMID:26417111

  2. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.

    PubMed

    Reed, Andra J; Mann, Michael E; Emanuel, Kerry A; Lin, Ning; Horton, Benjamin P; Kemp, Andrew C; Donnelly, Jeffrey P

    2015-10-13

    In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.

  3. Sensitivities of Tropical Cyclones to Surface Friction and the Coriolis Parameter in a 2-D Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.

  4. The President's Day cyclone 17-19 February 1979: An analysis of jet streak interactions prior to cyclogenesis

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.

    1981-01-01

    The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.

  5. Advanced Materials and Processing for Drug Delivery: The Past and the Future

    PubMed Central

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W.

    2012-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. PMID:23088863

  6. Advanced instrumentation for the collection, retrieval, and processing of urban stormwater data

    USGS Publications Warehouse

    Robinson, Jerald B.; Bales, Jerad D.; Young, Wendi S.; ,

    1995-01-01

    The U.S. Geological Survey, in cooperation with the City of Charlotte and Mecklenburg County, North Carolina, has developed a data-collection network that uses advanced instrumentation to automatically collect, retrieve, and process urban stormwater data. Precipitation measurement and water-quality networks provide data for (1) planned watershed simulation models, (2) early warning of possible flooding, (3) computation of material export, and (4) characterization of water quality in relation to basin conditions. Advantages of advanced instrumentation include remote access to real-time data, reduced demands on and more efficient use of limited human resources, and direct importation of data into a geographical information system for display and graphic analysis.

  7. Advanced materials and processing for drug delivery: the past and the future.

    PubMed

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W

    2013-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery.

  8. Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-04-01

    In this presentation we describe the major features and capabilities of NETL’s Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOE’s $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus®) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT®).

  9. Analysis of edible oil processing options for the BIO-Plex advanced life support system.

    PubMed

    Greenwalt, C J; Hunter, J

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  10. Analysis of edible oil processing options for the BIO-Plex advanced life support system.

    PubMed

    Greenwalt, C J; Hunter, J

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation. PMID:11676438

  11. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  12. Temporal clustering of tropical cyclones and its ecosystem impacts.

    PubMed

    Mumby, Peter J; Vitolo, Renato; Stephenson, David B

    2011-10-25

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  13. Scaling parameters for PFBC cyclone separator system analysis

    SciTech Connect

    Gil, A.; Romeo, L.M.; Cortes, C.

    1999-07-01

    Laboratory-scale cold flow models have been used extensively to study the behavior of many installations. In particular, fluidized bed cold flow models have allowed developing the knowledge of fluidized bed hydrodynamics. In order for the results of the research to be relevant to commercial power plants, cold flow models must be properly scaled. Many efforts have been made to understand the performance of fluidized beds, but up to now no attention has been paid in developing the knowledge of cyclone separator systems. CIRCE has worked on the development of scaling parameters to enable laboratory-scale equipment operating at room temperature to simulate the performance of cyclone separator systems. This paper presents the simplified scaling parameters and experimental comparison of a cyclone separator system and a cold flow model constructed and based on those parameters. The cold flow model has been used to establish the validity of the scaling laws for cyclone separator systems and permits detailed room temperature studies (determining the filtration effects of varying operating parameters and cyclone design) to be performed in a rapid and cost effective manner. This valuable and reliable design tool will contribute to a more rapid and concise understanding of hot gas filtration systems based on cyclones. The study of the behavior of the cold flow model, including observation and measurements of flow patterns in cyclones and diplegs will allow characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements.

  14. Climatology and classification of Spring Saharan cyclone tracks

    NASA Astrophysics Data System (ADS)

    Hannachi, A.; Awad, A.; Ammar, K.

    2011-08-01

    Spring Saharan cyclones constitute a dominant feature of the not-well-explored Saharan region. In this manuscript, a climatological analysis and classification of Saharan cyclone tracks are presented using 6-hourly NCEP/NCAR sea level pressure (SLP) reanalyses over the Sahara (10°W-50°E, 20°N-50°N) for the Spring (March-April-May) season over the period 1958-2006. A simple tracking procedure based on following SLP minima is used to construct around 640 Spring Saharan cyclone tracks. Saharan cyclones are found to be short-lived compared to their extratropical counterparts with an e-folding time of about 3 days. The lee side of the west Atlas mountain is found to be the main cyclogenetic region for Spring Saharan cyclones. Central Iraq is identified as the main cyclolytic area. A subjective procedure is used next to classify the cyclone tracks where six clusters are identified. Among these clusters the Western Atlas-Asia Minor is the largest and most stretched, whereas Algerian Sahara-Asia Minor is composed of the most long-lived tracks. Upper level flow associated with the tracks has also been examined and the role of large scale baroclinicity in the growth of Saharan cyclones is discussed.

  15. Temporal clustering of tropical cyclones and its ecosystem impacts

    PubMed Central

    Mumby, Peter J.; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  16. Temporal clustering of tropical cyclones and its ecosystem impacts.

    PubMed

    Mumby, Peter J; Vitolo, Renato; Stephenson, David B

    2011-10-25

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another.

  17. Emission spectroscopy for coal-fired cyclone furnace diagnostics.

    PubMed

    Wehrmeyer, Joseph A; Boll, David E; Smith, Richard

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuel-lean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and O2 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  18. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  19. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  20. Australian Tropical Cyclone Activity: Interannual Prediction and Climate Change

    NASA Astrophysics Data System (ADS)

    Nicholls, N.

    2014-12-01

    It is 35 years since it was first demonstrated that interannual variations in seasonal Australian region tropical cyclone (TC) activity could be predicted using simple indices of the El Niño - Southern Oscillation (ENSO). That demonstration (Nicholls, 1979), which was surprising and unexpected at the time, relied on only 25 years of data (1950-1975), but its later confirmation eventually led to the introduction of operational seasonal tropical cyclone activity. It is worth examining how well the ENSO-TC relationship has performed, over the period since 1975. Changes in observational technology, and even how a tropical cyclone is defined, have affected the empirical relationships between ENSO and seasonal activity, and ways to overcome this in forecasting seasonal activity will be discussed. Such changes also complicate the investigation of long-term trends in cyclone activity. The early work linked cyclone activity to local sea surface temperature thereby leading to the expectation that global warming would result in an increase in cyclone activity. But studies in the 1990s (eg., Nicholls et al., 1998) suggested that such an increase in activity was not occurring, neither in the Australian region nor elsewhere. Trends in Australian tropical cyclone activity will be discussed, and the confounding influence of factors such as changes in observational technologies will be examined. Nicholls, N. 1979. A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Weath. Rev., 107, 1221-1224 Nicholls, N., Landsea, C., and Gill, J., 1998. Recent trends in Australian region tropical cyclone activity. Meteorology and Atmospheric Physics, 65, 197-205.