Science.gov

Sample records for advanced dendritic web

  1. Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  2. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1984-01-01

    The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded.

  3. Large area sheet task: Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1981-01-01

    The growth of silicon dendritic web for photovoltaic applications was investigated. The application of a thermal model for calculating buckling stresses as a function of temperature profile in the web is discussed. Lid and shield concepts were evaluated to provide the data base for enhancing growth velocity. An experimental web growth machine which embodies in one unit the mechanical and electronic features developed in previous work was developed. In addition, evaluation of a melt level control system was begun, along with preliminary tests of an elongated crucible design. The economic analysis was also updated to incorporate some minor cost changes. The initial applications of the thermal model to a specific configuration gave results consistent with experimental observation in terms of the initiation of buckling vs. width for a given crystal thickness.

  4. Large area sheet task: Advanced Dendritic Web Growth Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1981-01-01

    A melt level control system was implemented to provide stepless silicon feed rates from zero to rates exactly matching the silicon consumed during web growth. Bench tests of the unit were successfully completed and the system mounted in a web furnace for operational verification. Tests of long term temperature drift correction techniques were made; web width monitoring seems most appropriate for feedback purposes. A system to program the initiation of the web growth cycle was successfully tested. A low cost temperature controller was tested which functions as well as units four times as expensive.

  5. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The thermal stress model was used to generate the design of a low stress lid and shield configuration, which was fabricated and tested experimentally. In preliminary tests, the New Experimental Web Growth Facility performed as designed, producing web on the first run. These experiments suggested desirable design modifications in the melt level sensing system to improve further its performance, and these are being implemented.

  6. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D. L.; Schruben, J.

    1982-01-01

    Thermal models were developed that accurately predict the thermally generated stresses in the web crystal which, if too high, cause the crystal to degenerate. The application of the modeling results to the design of low-stress experimental growth configurations will allow the growth of wider web crystals at higher growth velocities. A new experimental web growth machine was constructed. This facility includes all the features necessary for carrying out growth experiments under steady thermal conditions. Programmed growth initiation was developed to give reproducible crystal starts. Width control permits the growth of long ribbons at constant width. Melt level is controlled to 0.1 mm or better. Thus, the capability exists to grow long web crystals of constant width and thickness with little operator intervention, and web growth experiments can now be performed with growth variables controlled to a degree not previously possible.

  7. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1983-01-01

    Modeling in the development of low stress configurations for wide web growth is presented. Parametric sensitivity to identify design features which can be used for dynamic trimming of the furnace element was studied. Temperature measurements of experimental growth behavior led to modification in the growth system to improve lateral temperature distributions.

  8. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The computer code for calculating web temperature distribution was expanded to provide a graphics output in addition to numerical and punch card output. The new code was used to examine various modifications of the J419 configuration and, on the basis of the results, a new growth geometry was designed. Additionally, several mathematically defined temperature profiles were evaluated for the effects of the free boundary (growth front) on the thermal stress generation. Experimental growth runs were made with modified J419 configurations to complement the modeling work. A modified J435 configuration was evaluated.

  9. Large area sheet task. Advanced dendritic web growth development. [silicon films

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Frantti, E.; Schruben, J.

    1981-01-01

    The development of a silicon dendritic web growth machine is discussed. Several refinements to the sensing and control equipment for melt replenishment during web growth are described and several areas for cost reduction in the components of the prototype automated web growth furnace are identified. A circuit designed to eliminate the sensitivity of the detector signal to the intensity of the reflected laser beam used to measure melt level is also described. A variable speed motor for the silicon feeder is discussed which allows pellet feeding to be accomplished at a rate programmed to match exactly the silicon removed by web growth.

  10. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  11. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  12. Large-area sheet task: Advanced dendritic-web-growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Schruben, J.

    1983-01-01

    Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used.

  13. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  14. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  15. Apparatus for growing a dendritic web

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.; Skutch, Maria E.; McHugh, James P.

    1983-06-21

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn.

  16. Lid for improved dendritic web growth

    DOEpatents

    Duncan, Charles S.; Kochka, Edgar L.; Piotrowski, Paul A.; Seidensticker, Raymond G.

    1992-03-24

    A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.

  17. Defect characterization of silicon dendritic web ribbons

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1985-01-01

    Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.

  18. Apparatus for dendritic web growth systems

    SciTech Connect

    Hundal, R.; Seidensticker, R.G.; McHugh, J.P.

    1988-11-22

    This patent describes an apparatus for growing dendritic web crystals comprising: a. a susceptor; b. a crucible for melting silicon, the crucible nesting within the susceptor; c. a sublid positioned above the susceptor and crucible, the sublid having upper and lower horizontal surfaces, the sublid further having a slot through which a dendritic web crystal may be pulled, the slot defining at least one inner surface in the sublid; d. a susceptor lid having an upper horizontal surface and a lower horizontal surface, the susceptor lid further having a slot through which a dendritic web crystal may be pulled, the susceptor lid further having a lip disposed downwardly from the susceptor lid lower horizontal surface, the lip extending continuously and peripherally around the susceptor lid slot and having an outer surface facing the inner surface of the sublid, the susceptor lid lower horizontal surface facing the sublid upper horizontal surface; e. the susceptor lid being positioned above the sublid such that the lip of the susceptor lid fits substantially concentrically within the sublid slot, and providing insulating space between the upper horizontal surface of the sublid and the lower horizontal surface of the susceptor lid and between the outer surface of the susceptor lid lip and the inner surface of the sublid.

  19. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  20. Dendritic web - A viable material for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  1. Silicon dendritic web growth thermal analysis task

    NASA Technical Reports Server (NTRS)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  2. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  3. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  4. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  5. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  6. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  7. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  8. Advanced Web Searching: Tricks of the Trade.

    ERIC Educational Resources Information Center

    Zorn, Peggy; And Others

    1996-01-01

    Discusses World Wide Web searching techniques for information professionals, and describes and evaluates four search systems that provide advanced search features and that search a comprehensive and authoritative database of Internet sites. Sample searches are explained and professional searching on the Web is discussed. (LRW)

  9. Production Line for Dendritic-Web Solar Cells

    NASA Technical Reports Server (NTRS)

    Page, D. J.

    1985-01-01

    Direct inclusion of web-growth furnaces in production line expected to result in lower costs than current production processes using silicon wafers sliced from Czochralski boules. Silicon-web input capacity of line is 0.5 m2/min, which corresponds to total peak-power output of about 25 MW for 1 year of production. Line employs about 18 production people per shift and requires about 3,650 square feet of floorspace.

  10. Development of processes for the production of low cost silicon dendritic web for solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  11. Computer modeling of dendritic web growth processes and characterization of the material

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  12. Web-dendritic growth. [single crystal silicon ribbons for solar cells

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B.; Faust, J. W., Jr.; Rhodes, C.

    1977-01-01

    The effects of various machine design parameters on the growth of web dendritic silicon ribbon were investigated. Ribbons were grown up to lengths of one meter, with widths increasing linearly up to one cm at the point of termination of growth. Thermal data were collected and evaluated for actual seeding and growth with variations in parameters affecting heat loss. It was found that for suitable growth, the mechanical system should be very rigid and stable, and the tolerances and specifications of the quartz crucibles must be far tighter than normal quartz tolerances. The widening rates of the ribbons were found to be a function of the temperature gradient rather than the temperature differences alone. A twin spacing in the seed of 3 microns to 2 microns was found to be unfavorable for growth; whereas spacing of 0.9 microns to 2 microns and 8 microns to 2 microns were favorable. Thermal modeling studies of the effects of furnace design parameters on the temperature distributions in melt and the growth of the dendritic web ribbon showed that the pull rate of the ribbon is strongly dependent on the temperature of the top thermal shield, the spacing between this shield and the melt, and the thickness of the growing web.

  13. Development of dendritic web continuous ribbon silicon cells for use in a linear Fresnel lens photovoltaic concentrator

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.

    1986-04-01

    The primary objective of this program was to design, develop, and test low-cost, continuous ribbon silicon cells suitable for use in ENTECH's linear Fresnel lens photovoltaic concenrator module. The cells were made by Westinghouse using a dendritic web continuous ribbon process. This program represented the first attempt to adapt dendritic web cell fabrication technology to concentrator applications. ENTECH generated an optimized cell design, which included variable metallization matched to the radiant flux profile of the linear Fresnel lens concentrator. Westinghouse fabricated cells in several sequential production runs. The cells were tested by ENTECH under actual lens illumination to determine their performance parameters. The best cells made under this program achieved peak cell efficiencies of about 14%, compared to about 16% for production cells made by Applied Solar Energy Corporation, using float-zone-refined single-crystal silicon. With additional development, significant performance improvements should be achievable in future dendritic web concentrator cells.

  14. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The "discrete shield' temperature model was completed and verified. Modifications to the J419 low stress configuration were tested experimentally to evaluate effects on growth speed. A composite lid and shield configuration combining the low stress features of the J419 with the width limiting characteristics of the J98M3 was fabricated and tested in the N-furnace. Several long crystals were grown with width limited to about 3.3 cm and with melt replenishment, although the configuration is not yet optimized for steady state growth.

  15. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1983-01-01

    The thermal stress models were used to test the effect of melt level on stress generation and growth velocity. The results indicate that melt level has only small effects on stresses but significant effects on growth velocity. These results are consistent with experimental growth from measured melt levels. A new low-stress design concept is being evaluated with the models. A width-limiting version of the low-stress J460 configuration was tested experimentally with results consistent with the design goals.

  16. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  17. Advances in Web-Based Education: Personalized Learning Environments

    ERIC Educational Resources Information Center

    Magoulas, George, Ed.; Chen, Sherry, Ed.

    2006-01-01

    Advances in technology are increasingly impacting the way in which curriculum is delivered and assessed. The emergence of the Internet has offered learners a new instructional delivery system that connects them with educational resources. "Advances in Web-Based Education: Personalized Learning Environments" covers a wide range of factors that…

  18. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  19. Advances in Sensor Webs for NASA Earth Science Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, R.; Moe, K.; Smith, S.; Prescott, G.

    2007-12-01

    The world is slowly evolving into a web of interconnected sensors. Innovations such as camera phones that upload directly to the internet, networked devices with built-in GPS chips, traffic sensors, and the wireless networks that connect these devices are transforming our society. Similar advances are occurring in science sensors at NASA. NASA developed autonomy software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events. This software has also enabled NASA satellites to coordinate with other satellites and ground sensors to form an autonomous sensor web. A vision for NASA sensor webs for Earth science is to enable "on-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit." Several technologies for improved autonomous science and sensor webs are being developed at NASA. Each of these technologies advances the state of the art in sensorwebs in different areas including enabling model interactions with sensorwebs, smart autonomous sensors, and sensorweb communications. Enabling model interactions in sensor webs is focused on the creation and management of new sensor web enabled information products. Specifically, the format of these data products and the sensor webs that use them must be standardized so that sensor web components can more easily communicate with each other. This standardization will allow new components such as models and simulations to be included within sensor webs. Smart sensing implies sophistication in the sensors themselves. The goal of smart sensing is to enable autonomous event detection and reconfiguration. This may include onboard processing, self-healing sensors, and self-identifying sensors. The goal of communication enhancements, especially session layer management, is to support dialog control for autonomous operations

  20. Characterization of terrestrial solar cells for space applications: Electrical characteristics of thin Westinghouse dendritic web cells as a function of solar intensity, temperature, and incidence angle

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Anspaugh, B. E.

    1985-01-01

    Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.

  1. High temperature (900-1300 C) mechanical behaviour of dendritic web grown silicon ribbons - Strain rate and temperature dependence of the yield stress

    NASA Technical Reports Server (NTRS)

    Mathews, V. K.; Gross, T. S.

    1987-01-01

    The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.

  2. Using Advanced Search Operators on Web Search Engines.

    ERIC Educational Resources Information Center

    Jansen, Bernard J.

    Studies show that the majority of Web searchers enter extremely simple queries, so a reasonable system design approach would be to build search engines to compensate for this user characteristic. One hundred representative queries were selected from the transaction log of a major Web search service. These 100 queries were then modified using the…

  3. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  4. Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications.

    PubMed

    Ghobril, Cynthia; Rodriguez, Edward K; Nazarian, Ara; Grinstaff, Mark W

    2016-04-11

    Hydrogels represent one of the most important classes of biomaterials and are of interest for various medical applications including wound repair, tissue engineering, and drug release. Hydrogels possess tunable mechanical properties, biocompatibility, nontoxicity, and similarity to natural soft tissues. The need for hydrogels with specific properties, based on the design requirements of the in vitro, in vivo, or clinical application, motivates researchers to develop new synthetic approaches and cross-linking methodologies to form novel hydrogels with unique properties. The use of dendritic macromonomers represents one elegant strategy for the formation of hydrogels with specific properties. Specifically, the uniformity of dendrimers combined with the control of their size, architecture, density, and surface groups make them promising cross-linkers for hydrogel formation. Over the last two decades, a large variety of dendritic-based hydrogels are reported for their potential use in the clinic. This review describes the state of the art with these different dendritic hydrogel formulations including their design requirements, the synthetic routes, the measurement and determination of their properties, the evaluation of their in vitro and in vivo performances, and future perspectives.

  5. Advances on Sensor Web for Internet of Things

    NASA Astrophysics Data System (ADS)

    Liang, S.; Bermudez, L. E.; Huang, C.; Jazayeri, M.; Khalafbeigi, T.

    2013-12-01

    'In much the same way that HTML and HTTP enabled WWW, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE), envisioned in 2001 [1] will allow sensor webs to become a reality.'. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not a simple task. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. SWE standardizes web service interfaces, sensor descriptions and data encodings as building blocks for a Sensor Web. SWE standards are now mature specifications (version 2.0) with approved OGC compliance test suites and tens of independent implementations. Many earth and space science organizations and government agencies are using the SWE standards to publish and share their sensors and observations. While SWE has been demonstrated very effective for scientific sensors, its complexity and the computational overhead may not be suitable for resource-constrained tiny sensors. In June 2012, a new OGC Standards Working Group (SWG) was formed called the Sensor Web Interface for Internet of Things (SWE-IoT) SWG. This SWG focuses on developing one or more OGC standards for resource-constrained sensors and actuators (e.g., Internet of Things devices) while leveraging the existing OGC SWE standards. In the near future, billions to trillions of small sensors and actuators will be embedded in real- world objects and connected to the Internet facilitating a concept called the Internet of Things (IoT). By populating our environment with real-world sensor-based devices, the IoT is opening the door to exciting possibilities for a variety of application domains, such as environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as personal and social applications. The current SWE-IoT development aims on modeling the IoT components and defining a standard web service that makes the

  6. Bringing The Web Down to Size: Advanced Search Techniques.

    ERIC Educational Resources Information Center

    Huber, Joe; Miley, Donna

    1997-01-01

    Examines advanced Internet search techniques, focusing on six search engines. Includes a chart comparison of nine search features: "include two words,""exclude one of two words,""exclude mature audience content,""two adjacent words,""exact match,""contains first and neither of two following…

  7. Isothermal Dendritic Growth Experiment - PVA Dendrites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  8. Interactive Web-based Learning Modules Prior to General Medicine Advanced Pharmacy Practice Experiences

    PubMed Central

    Walton, Alison M.; Nisly, Sarah A.

    2015-01-01

    Objective. To implement and evaluate interactive web-based learning modules prior to advanced pharmacy practice experiences (APPEs) on inpatient general medicine. Design. Three clinical web-based learning modules were developed for use prior to APPEs in 4 health care systems. The aim of the interactive modules was to strengthen baseline clinical knowledge before the APPE to enable the application of learned material through the delivery of patient care. Assessment. For the primary endpoint, postassessment scores increased overall and for each individual module compared to preassessment scores. Postassessment scores were similar among the health care systems. The survey demonstrated positive student perceptions of this learning experience. Conclusion. Prior to inpatient general medicine APPEs, web-based learning enabled the standardization and assessment of baseline student knowledge across 4 health care systems. PMID:25995515

  9. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  10. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling

    PubMed Central

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K.

    2015-01-01

    Introduction Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Methods Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. Results The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase(SHP)-1 and a reduced expression of positive regulators like Janus kinase(JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Conclusions Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral

  11. Chemotherapy plus dendritic cells co-cultured with cytokine-induced killer cells versus chemotherapy alone to treat advanced non-small-cell lung cancer: A meta-analysis

    PubMed Central

    Sun, Huanhuan; Zheng, Xiaobin; Wang, Shuncong; Hong, Guobin; Mallampati, Saradhi; Sun, Hongliu; Zhou, Xiuling; Cheng, Zhibin; Zhang, Hongyu; Ma, Haiqing

    2016-01-01

    This study was aimed to investigate the efficacy and safety of the combination treatment of dendritic cells co-cultured with cytokine-induced killer cells and chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC). Literatures were searched from the Cochrane Library Central, PubMed, Web of Science and EMBASE. The primary endpoint of interest was overall survival (OS), and secondary endpoints were disease control rate (DCR) and progression free survival (PFS). Finally 7 trials published between January 2005 and March 2016 met inclusion criteria and totally 610 patients were enrolled. The combination group showed advance in DCR (RR = 1.31, 95% CI = 1.13-1.52, p = 0.0004), 1-year OS (RR = 1.18, 95% CI = 1.05-1.33, p = 0.007), and 2-year OS (RR = 1.37, 95% CI = 1.10-1.70, p = 0.005), with statistical significance. The proportions of CD3+ T cells (p = 0.002), NK cells (p = 0.02) and NKT cells (p = 0.001) were significantly higher in the peripheral blood of combination group, compared with those of the control group. Moreover, adverse reactions were obviously decreased in the combination group. However, no significant difference was identified in ORR and PFS between two groups (p > 0.05). In conclusion, the combination therapy was safe and applicable for patients with advanced NSCLC. PMID:27863436

  12. JPL web team

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) WEB Team activities were reported for activities which were directed toward identifying and attacking areas in the growth of dendritic web ribbon, to complement the program at Westinghouse Electric Corp.

  13. Netscape Communicator 4.5. Volume II: Beyond the Basics. Advanced Searches, Multimedia, and Composing a Web Page.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This second of two guides on Netscape Communicator 4.5 contains six lessons on advanced searches, multimedia, and composing a World Wide Web page. Lesson 1 is a review of the Navigator window, toolbars, and menus. Lesson 2 covers AltaVista's advanced search tips, searching for information excluding certain text, and advanced and nested Boolean…

  14. Dendrite Model Explained

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Angie Jackman, a NASA project manager in microgravity research, explains a model of a dendrite to a visitor to the NASA exhibit at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI. The model depicts microscopic dendrites that grow as molten metals solidify. NASA sponsored three experiments aboard the Space Shuttle that used the microgravity environment to study the formation of large (1 to 4 mm) dendrites without Earth's gravity disrupting their growth. Three advanced follow-on experiments, managed by Jackman, are being developed for the International Space Station (ISS).

  15. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  16. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer: a phase I pilot study

    PubMed Central

    2011-01-01

    Background Overall therapeutic outcomes of advanced non-small-cell lung cancer (NSCLC) are poor. The dendritic cell (DC) immunotherapy has been developed as a new strategy for the treatment of lung cancer. The purpose of this study was to evaluate the feasibility, safety and immunologic responses in use in mature, antigen-pulsed autologous DC vaccine in NSCLC patients. Methods Five HLA-A2 patients with inoperable stage III or IV NSCLC were selected to receive two doses of 5 × 107 DC cells administered subcutaneous and intravenously two times at two week intervals. The immunologic response, safety and tolerability to the vaccine were evaluated by the lymphoproliferation assay and clinical and laboratorial evolution, respectively. Results The dose of the vaccine has shown to be safe and well tolerated. The lymphoproliferation assay showed an improvement in the specific immune response after the immunization, with a significant response after the second dose (p = 0.005). This response was not long lasting and a tendency to reduction two weeks after the second dose of the vaccine was observed. Two patients had a survival almost twice greater than the expected average and were the only ones that expressed HER-2 and CEA together. Conclusion Despite the small sample size, the results on the immune response, safety and tolerability, combined with the results of other studies, are encouraging to the conduction of a large clinical trial with multiples doses in patients with early lung cancer who underwent surgical treatment. Trial Registration Current Controlled Trials: ISRCTN45563569 PMID:21682877

  17. Les Chansons de la Francophonie Web Site and Its Two Web-Usage-Tracking Systems in an Advanced Listening Comprehension Course

    ERIC Educational Resources Information Center

    Weinberg, Alysse

    2005-01-01

    The "Les Chansons de la francophonie" web site is based on French songs and was developed using HTML and JavaScript for the advanced French Comprehension Course at the Second Language Institute of the University of Ottawa. These interactive listening activities include true-false and multiple-choice questions, fill in the blanks,…

  18. Toward a Theory of Web-Mediated Knowledge Synthesis: How Advanced Learners Used the Web to Construct Knowledge about Climate Change Behavior

    ERIC Educational Resources Information Center

    DeSchryver, Michael

    2012-01-01

    This dissertation utilized a multiple case study design to explore how advanced learners synthesize information about ill-structured topics when reading-to-learn and reading-to-do on the Web. Eight graduate students provided data in the form of think-alouds, interviews, screen video, digital trails, and task artifacts. Data analysis was based on…

  19. Dendritic cell-based immunotherapy induces transient clinical response in advanced rat fibrosarcoma - comparison with preventive anti-tumour vaccination.

    PubMed

    Kucera, A; Pýcha, K; Pajer, P; Spísek, R; Skába, R

    2009-01-01

    In this study we present the models of preventive and therapeutic vaccination of sarcoma-bearing rats with dendritic cells that present tumour antigens from killed tumour cells. We present the characteristics of dendritic cell-based vaccine and its capacity to induce anti-tumour immune response both in vitro and in vivo. We show that preventive vaccination efficiently prevents tumour growth. On the other hand, vaccination of rats with established tumours did not lead to eradication of the tumours. Despite the induction of a vigorous immune response after administration of dendritic cell-based vaccine and transient decrease in tumour progression, tumours eventually resumed their growth and animals vaccinated with dendritic cells succumbed to cancer. In both settings, preventive and therapeutic, dendritic cell-based vaccination induced a vigorous tumour-specific T-cell response. These results argue for the timing of cancer immunotherapy to the stages of low tumour load. Immunotherapy initiated at the stage of minimal residual disease, after reduction of tumour load by other modalities, will have much better chance to offer a clinical benefit to cancer patients than the immunotherapy at the stage of metastatic disease.

  20. Recent advancements on the development of web-based applications for the implementation of seismic analysis and surveillance systems

    NASA Astrophysics Data System (ADS)

    Friberg, P. A.; Luis, R. S.; Quintiliani, M.; Lisowski, S.; Hunter, S.

    2014-12-01

    Recently, a novel set of modules has been included in the Open Source Earthworm seismic data processing system, supporting the use of web applications. These include the Mole sub-system, for storing relevant event data in a MySQL database (see M. Quintiliani and S. Pintore, SRL, 2013), and an embedded webserver, Moleserv, for serving such data to web clients in QuakeML format. These modules have enabled, for the first time using Earthworm, the use of web applications for seismic data processing. These can greatly simplify the operation and maintenance of seismic data processing centers by having one or more servers providing the relevant data as well as the data processing applications themselves to client machines running arbitrary operating systems.Web applications with secure online web access allow operators to work anywhere, without the often cumbersome and bandwidth hungry use of secure shell or virtual private networks. Furthermore, web applications can seamlessly access third party data repositories to acquire additional information, such as maps. Finally, the usage of HTML email brought the possibility of specialized web applications, to be used in email clients. This is the case of EWHTMLEmail, which produces event notification emails that are in fact simple web applications for plotting relevant seismic data.Providing web services as part of Earthworm has enabled a number of other tools as well. One is ISTI's EZ Earthworm, a web based command and control system for an otherwise command line driven system; another is a waveform web service. The waveform web service serves Earthworm data to additional web clients for plotting, picking, and other web-based processing tools. The current Earthworm waveform web service hosts an advanced plotting capability for providing views of event-based waveforms from a Mole database served by Moleserve.The current trend towards the usage of cloud services supported by web applications is driving improvements in Java

  1. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  2. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and

  3. Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.

    PubMed

    Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim

    2013-01-01

    Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.

  4. Web-based Multimedia Vignettes in Advanced Community Pharmacy Practice Experiences

    PubMed Central

    Vanderbush, Ross E.; Hastings, Jan K.; West, Donna

    2010-01-01

    Objectives To evaluate the effectiveness of Web-based multimedia vignettes on complex drug administration techniques to augment the training of pharmacy students in advanced community pharmacy practice experiences. Design During the orientation for a community APPE, students were randomly assigned to either a study group or control group After they began their APPE, students in the study group were given an Internet address to access multimedia vignettes which they were required to watch to augment their training and standardize their counseling of patients in the use of inhalers and ear and eye drops. Assessment A 12-item questionnaire was administered to students in both groups at the orientation and again on the last day of the APPE to evaluate their knowledge of counseling patients in the use of inhalers and ear and eye drops. The control group did not experience any improvement in their counseling knowledge of the research topics during their month-long experience. Students in the intervention group scored higher on their postintervention test than students in the control group (p < 0.001). Conclusions Student learning outcomes from experiential training can be improved through the use of Web-based multimedia instructional vignettes. PMID:20498732

  5. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  6. Regulation of dendrite morphogenesis by extrinsic cues.

    PubMed

    Valnegri, Pamela; Puram, Sidharth V; Bonni, Azad

    2015-07-01

    Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.

  7. Isothermal Dendritic Growth Experiment - SCN Dendrites

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  8. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols

    PubMed Central

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-01

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N-acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS

  9. Using Hypermedia Research To Advance the Study of Learning on the World Wide Web. Research Monograph.

    ERIC Educational Resources Information Center

    Eveland, William P.; Dunwoody, Sharon

    In this monograph we begin by situating the technological and historical origins of the World Wide Web in hypermedia systems that were conceptualized during the World War II era and first developed decades before the Web. We then review the cross-disciplinary theoretical and empirical literature on the uses and effects of educational hypermedia.…

  10. Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer

    PubMed Central

    ZHANG, LIHONG; YANG, XUEJING; SUN, ZHEN; LI, JIALI; ZHU, HUI; LI, JING; PANG, YAN

    2016-01-01

    The present study aimed to evaluate the survival time, immune response and safety of a dendritic cell (DC) vaccine and cytokine-induced killer (CIK) cell therapy (DC-CIK) in advanced non-small cell lung cancer (NSCLC). The present retrospective study enrolled 507 patients with advanced NSCLC; 99 patients received DC-CIK [immunotherapy group (group I)] and 408 matched patients did not receive DC-CIK, and acted as the control [non-immunotherapy group (group NI)]. Delayed-type hypersensitivity (DTH), quality of life (QOL) and safety were analyzed in group I. The follow-up period for the two groups was 489.2±160.4 days. The overall survival (OS) time was calculated using the Kaplan-Meier method. DTH was observed in 59 out of 97 evaluated patients (60.8%) and 67 out of 98 evaluated patients (68.4%) possessed an improved QOL. Fever and a skin rash occurred in 36 out of 98 patients (36.7%) and 7 out of 98 patients (7.1%) in group I. DTH occurred more frequently in patients with squamous cell carcinoma compared with patients with adenocarcinoma (77.1 vs. 40.4%; P=0.0013). Radiotherapy was not associated with DC-CIK-induced DTH (72.7 vs. 79.6%; P=0.18), but chemotherapy significantly reduced the rate of DTH (18.2 vs. 79.6%; P=0.00). The OS time was significantly increased in group I compared with group NI (P=0.03). In conclusion, DC-CIK may induce an immune response against NSCLC, improve the QOL, and prolong the OS time of patients, without adverse effects. Therefore, the present study recommends DC-CIK for the treatment of patients with advanced NSCLC. PMID:27073525

  11. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  12. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  13. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  14. Pretests or advance organizers for Web-based allergy-immunology medical education? A randomized controlled trial.

    PubMed

    Rank, Matthew A; Volcheck, Gerald W; Swagger, Timothy; Cook, David A

    2012-01-01

    Web-based modules may facilitate instruction on core topics in allergy and immunology (AI). Pretests (PTs) have been shown to improve learning in Web-based courses, but their effectiveness in comparison with advance organizers (AOs) is unknown. We performed a randomized controlled trial of a Web-based educational intervention for teaching the practical aspects of allergen immunotherapy (AIT). AI Fellows-in-Training were randomly assigned to receive the introduction to the modules in an AO outline (AO group) or as PT questions (PT group). The primary outcome was the difference in posttest scores between groups. The secondary outcome was the difference in PT and posttest scores in the PT group. Thirty participants in the AO group and 35 in the PT group completed the modules and the posttest. The mean (SD) posttest score for the AO group was 74% (14%) compared with 73% (9%) for the PT group, a mean difference of -1% (95% CI, -7%, 5%; p = 0.67). A multivariate analysis controlling for year-in-training and total time spent on the modules revealed virtually identical results. The mean (SD) PT score for the PT group increased from 49 (10%) to 73% (9%), a mean difference of 24% (95% CI, 19%, 28%; p < 0.0001). Introducing Web-based allergy education with PT questions or an AO resulted in similar posttest scores. Posttest scores in the PT group improved significantly compared with PT scores.

  15. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.

  16. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  17. Advanced Use of Wolrd-Wide Web in the Online System of Delphi

    NASA Astrophysics Data System (ADS)

    DöNszelmann, M.; Carvalho, D.; Mundim, L. M.; Du, S.; Rodden, K.; TennebØ, F.

    The World-Wide Web technology is used by the DELPHI experiment at CERN to provide easy access to information of the `On-line System'. WWW technology on both client and server side is used in five different projects. The World-Wide Web has its advantages concerning the network technology, the practical user interface and its scalability. It however also demands a stateless protocol and format negotiation.

  18. Clinical effects of autologous dendritic cells combined with cytokine-induced killer cells followed by chemotherapy in treating patients with advanced colorectal cancer: a prospective study.

    PubMed

    Lin, Tao; Song, Chun; Chuo, Dong-Yu; Zhang, Hao; Zhao, Jian

    2016-04-01

    The objective of this study was to evaluate the effects of dendritic cell and cytokine-induced killer (DC-CIK) cell-based immunotherapy combined with chemotherapy on the treatment of patients with advanced colorectal cancer. We prospectively included patients with advanced colorectal cancer and assessed the efficacy of DC-CIK cell-based immunotherapy combined with chemotherapy compared to treatment with chemotherapy alone. T cell subtypes, progression-free survival (PFS), overall survival (OS), and adverse events were evaluated in each group. In total, 134 patients were included in the DC-CIK group and 121 patients were included in the control group. No significant differences were observed in the percentages of CD3(+), CD3(+)CD4(+), CD3(+)CD8(+), and NK cells after DC-CIK cell-based immunotherapy compared to before chemotherapy in the DC-CIK group. The median PFS and OS in the DC-CIK treatment group were 8.8 months (95 % CI 8.4-9.1) and 14.7 months (95 % CI 13.9-15.5), respectively, which were significantly improved compared to the PFS and OS in the control group. The frequencies of grade III and IV leukopenia (8.2 vs. 19.0 %, P = 0.011), grade III and IV anemia (3.0 vs. 9.1 %, P = 0.039), and grade III and IV thrombocytopenia (3.7 vs. 10.7 %, P = 0.029) were significantly lower in the DC-CIK group compared to the control group. DC-CIK cell-based immunotherapy could induce an immune response against colorectal cancer and prolong PFS and OS. DC-CIK cell-based immunotherapy combined with chemotherapy had a significant benefit in terms of survival in patients with colorectal cancer compared to chemotherapy alone.

  19. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  20. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  1. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis

    PubMed Central

    Artene, Stefan-Alexandru; Turcu-Stiolica, Adina; Hartley, Richard; Ciurea, Marius Eugen; Daianu, Oana; Brindusa, Corina; Alexandru, Oana; Tataranu, Ligia Gabriela; Purcaru, Stefana Oana; Dricu, Anica

    2016-01-01

    Background The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. Methods A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. Results Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84–10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34–24.46) months. For irinotecan + bevacizumab group, the mean survival gain was −0.02±2.00, while that for the dendritic cell immunotherapy group was −0.01±4.54. Conclusion For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620). PMID:27877052

  2. Chimeric advanced drug delivery nano systems (chi-aDDnSs) for shikonin combining dendritic and liposomal technology.

    PubMed

    Kontogiannopoulos, Konstantinos N; Assimopoulou, Andreana N; Hatziantoniou, Sophia; Karatasos, Kostas; Demetzos, Costas; Papageorgiou, Vassilios P

    2012-01-17

    The interest of drug delivery has focused on the creation of new formulations with improved properties, taking much attention to the drug release from the carrier. Liposomes have already been commercialized, while dendrimers and hyperbranched polymers are emerging as potentially ideal drug delivery vehicles. Chimeric advanced drug delivery nano systems (chi-aDDnSs) are mixed nanosystems combining different biomaterials that can offer advantages as drug carriers. Alkannin and shikonin (A/S) are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant and recently established antitumor activity. In this work three generations of hyperbranched aliphatic polyesters were used for the first time to form complexes with shikonin, as well as liposomal chi-aDDnSs. Characterization of the shikonin-loaded chi-aDDnSs was performed by measuring their particle size distribution, ζ-potential, drug encapsulation efficiency and the in vitro release profile. The analysis revealed sufficient drug encapsulation and appropriately featured release profiles. Chi-aDDnSs were also examined for their physical stability at 4°C. The results are considered promising and could be used as a road map for designing in vivo experiments.

  3. Promises and pitfalls of Web-based experimentation in the advance of replicable psychological science: A reply to Plant (2015).

    PubMed

    van Steenbergen, Henk; Bocanegra, Bruno R

    2016-12-01

    In a recent letter, Plant (2015) reminded us that proper calibration of our laboratory experiments is important for the progress of psychological science. Therefore, carefully controlled laboratory studies are argued to be preferred over Web-based experimentation, in which timing is usually more imprecise. Here we argue that there are many situations in which the timing of Web-based experimentation is acceptable and that online experimentation provides a very useful and promising complementary toolbox to available lab-based approaches. We discuss examples in which stimulus calibration or calibration against response criteria is necessary and situations in which this is not critical. We also discuss how online labor markets, such as Amazon's Mechanical Turk, allow researchers to acquire data in more diverse populations and to test theories along more psychological dimensions. Recent methodological advances that have produced more accurate browser-based stimulus presentation are also discussed. In our view, online experimentation is one of the most promising avenues to advance replicable psychological science in the near future.

  4. Web-conference supervision for advanced psychotherapy training: a practical guide.

    PubMed

    Abbass, Allan; Arthey, Stephen; Elliott, Jason; Fedak, Tim; Nowoweiski, Dion; Markovski, Jasmina; Nowoweiski, Sarah

    2011-06-01

    The advent of readily accessible, inexpensive Web-conferencing applications has opened the door for distance psychotherapy supervision, using video recordings of treated clients. Although relatively new, this method of supervision is advantageous given the ease of use and low cost of various Internet applications. This method allows periodic supervision from point to point around the world, with no travel costs and no long gaps between direct training contacts. Web-conferencing permits face-to-face training so that the learner and supervisor can read each other's emotional responses while reviewing case material. It allows group learning from direct supervision to complement local peer-to-peer learning methods. In this article, we describe the relevant literature on this type of learning method, the practical points in its utilization, its limitations, and its benefits.

  5. miRClassify: an advanced web server for miRNA family classification and annotation.

    PubMed

    Zou, Quan; Mao, Yaozong; Hu, Lingling; Wu, Yunfeng; Ji, Zhiliang

    2014-02-01

    MicroRNA (miRNA) family is a group of miRNAs that derive from the common ancestor. Normally, members from the same miRNA family have similar physiological functions; however, they are not always conserved in primary sequence or secondary structure. Proper family prediction from primary sequence will be helpful for accurate identification and further functional annotation of novel miRNA. Therefore, we introduced a novel machine learning-based web server, the miRClassify, which can rapidly identify miRNA from the primary sequence and classify it into a miRNA family regardless of similarity in sequence and structure. Additionally, the medical implication of the miRNA family is also provided when it is available in PubMed. The web server is accessible at the link http://datamining.xmu.edu.cn/software/MIR/home.html.

  6. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness.

    PubMed

    Hameroff, Stuart

    2010-01-01

    Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.

  7. Achieving Evolvable Web-Database Bioscience Applications Using the EAV/CR Framework: Recent Advances

    PubMed Central

    Marenco, Luis; Tosches, Nicholas; Crasto, Chiquito; Shepherd, Gordon; Miller, Perry L.; Nadkarni, Prakash M.

    2003-01-01

    The EAV/CR framework, designed for database support of rapidly evolving scientific domains, utilizes metadata to facilitate schema maintenance and automatic generation of Web-enabled browsing interfaces to the data. EAV/CR is used in SenseLab, a neuroscience database that is part of the national Human Brain Project. This report describes various enhancements to the framework. These include (1) the ability to create “portals” that present different subsets of the schema to users with a particular research focus, (2) a generic XML-based protocol to assist data extraction and population of the database by external agents, (3) a limited form of ad hoc data query, and (4) semantic descriptors for interclass relationships and links to controlled vocabularies such as the UMLS. PMID:12807806

  8. Intro and Recent Advances: Remote Data Access via OPeNDAP Web Services

    NASA Technical Reports Server (NTRS)

    Fulker, David

    2016-01-01

    During the upcoming Summer 2016 meeting of the ESIP Federation (July 19-22), OpenDAP will hold a Developers and Users Workshop. While a broad set of topics will be covered, a key focus is capitalizing on recent EOSDIS-sponsored advances in Hyrax, OPeNDAPs own software for server-side realization of the DAP2 and DAP4 protocols. These Hyrax advances are as important to data users as to data providers, and the workshop will include hands-on experiences of value to both. Specifically, a balanced set of presentations and hands-on tutorials will address advances in1.server installation,2.server configuration,3.Hyrax aggregation capabilities,4.support for data-access from clients that are HTTP-based, JSON-based or OGC-compliant (especially WCS and WMS),5.support for DAP4,6.use and extension of server-side computational capabilities, and7.several performance-affecting matters. Topics 2 through 7 will be relevant to data consumers, data providers and notably, due to the open-source nature of all OPeNDAP software to developers wishing to extend Hyrax, to build compatible clients and servers, and/or to employ Hyrax as middleware that enables interoperability across a variety of end-user and source-data contexts. A session for contributed talks will elaborate the topics listed above and embrace additional ones.

  9. Advances in studies of disease-navigating webs: Sarcoptes scabiei as a case study

    PubMed Central

    2014-01-01

    The discipline of epidemiology is the study of the patterns, causes and effects of health and disease conditions in defined anima populations. It is the key to evidence-based medicine, which is one of the cornerstones of public health. One of the important facets of epidemiology is disease-navigating webs (disease-NW) through which zoonotic and multi-host parasites in general move from one host to another. Epidemiology in this context includes (i) classical epidemiological approaches based on the statistical analysis of disease prevalence and distribution and, more recently, (ii) genetic approaches with approximations of disease-agent population genetics. Both approaches, classical epidemiology and population genetics, are useful for studying disease-NW. However, both have strengths and weaknesses when applied separately, which, unfortunately, is too often current practice. In this paper, we use Sarcoptes scabiei mite epidemiology as a case study to show how important an integrated approach can be in understanding disease-NW and subsequent disease control. PMID:24406101

  10. Dendritic solidification. I - Analysis of current theories and models. II - A model for dendritic growth under an imposed thermal gradient

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1985-01-01

    A critical review of the present dendritic growth theories and models is presented. Mathematically rigorous solutions to dendritic growth are found to rely on an ad hoc assumption that dendrites grow at the maximum possible growth rate. This hypothesis is found to be in error and is replaced by stability criteria which consider the conditions under which a dendrite tip advances in a stable fashion in a liquid. The important elements of a satisfactory model for dendritic solidification are summarized and a theoretically consistent model for dendritic growth under an imposed thermal gradient is proposed and described. The model is based on the modification of an analysis due to Burden and Hunt (1974) and predicts correctly in all respects, the transition from a dendritic to a planar interface at both very low and very large growth rates.

  11. Advances in Web-Based, Near Real-Time Climate Data Ingest For NOAA's Cooperative Volunteer Observation Network

    NASA Astrophysics Data System (ADS)

    Owen, T.; Brewer, M.; Redmond, K.; McCurdy, G.; Kelly, G.; Bonack, B.; Somrek, B.; Doesken, N.; Bollinger, J.

    2006-12-01

    NOAA is charged with collection, preservation and accessibility of a quality digital record of Cooperative Network data and metadata. This record has historically been derived through the imaging and keying of so- called "B-91' forms that are sent by observers and the National Weather Service to the National Climatic Data Center (NCDC). The processing time, including quality assurance checks and serial publication, typically is 45-60 days beyond the data month. Technological and communication advances, coupled with integrated climate and weather and water reporting needs have reached a threshold where near real-time (i.e., daily) reporting of observations is desirable. While ASOS data have long been directly reported to NCDC in this time horizon, National Weather Service Cooperative Network (COOP) data has continued to be recorded on forms. Timely data reporting is fundamental to the success of the U.S. effort in Global Earth Observations, especially for monitoring drought as part of the National Integrated Drought Information System (NIDIS). Coupled with implementation planning for transition of Legacy COOP under NOAA's Environmental Real-Time Observing Network (NERON), work toward such a system is timely. NOAA is working closely with Regional Climate Centers, State Climatologists and other partners to develop a web-based interface based on existing systems (e.g., WxCoder, CoCoRAHS and COOLTAP) to provide for the electronic submission of daily COOP data to NCDC and the climate community. To this end, the following guiding principles have been identified: 1) Provide efficient, easy-to-use data entry system for participating COOP observers, 2) Ensure timely availability of COOP data for all customers, 3) Improve data quality through automated near-real-time data QA/QC, 4) Achieve a paperless electronic data collection, transmission, and archiving system. 5) Allow system flexibility to meet demands of integrating data from future observing systems This presentation

  12. A comparative analysis of teacher-authored websites in high school honors and Advanced Placement physics for Web-design and NSES content and process standards

    NASA Astrophysics Data System (ADS)

    Persin, Ronald C.

    The purpose of this study was to investigate whether statistically significant differences existed between high school Honors Physics websites and those of Advanced Placement (AP) Physics in terms of Web-design, National Science Education Standards (NSES) Physics content, and NSES Science Process standards. The procedure began with the selection of 152 sites comprising two groups with equal sample sizes of 76 for Honors Physics and for Advanced Placement Physics. The websites used in the study were accumulated using the Google(TM) search engine. To find Honors Physics websites, the search words "honors physics high school" were entered as the query into the search engine. To find sites for Advanced Placement Physics, the query, "advanced placement physics high school," was entered into the search engine. The evaluation of each website was performed using an instrument developed by the researcher based on three attributes: Web-design, NSES Physics content, and NSES Science Process standards. A "1" was scored if the website was found to have each attribute, otherwise a "0" was given. This process continued until all 76 websites were evaluated for each of the two types of physics websites, Honors and Advanced Placement. Subsequently the data were processed using Excel functions and the SPSS statistical software program. The mean and standard deviation were computed individually for the three attributes under consideration. Three, 2-tailed, independent samples t tests were performed to compare the two groups of physics websites separately on the basis of Web Design, Physics Content, and Science Process. The results of the study indicated that there was only one statistically significant difference between high school Honors Physics websites and those of AP Physics. The only difference detected was in terms of National Science Education Standards Physics content. It was found that Advanced Placement Physics websites contained more NSES physics content than Honors

  13. Free dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  14. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1980-01-01

    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  15. Apparatus for silicon web growth of higher output and improved growth stability

    DOEpatents

    Duncan, Charles S.; Piotrowski, Paul A.

    1989-01-01

    This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

  16. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  17. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells.

    PubMed

    Kyte, Jon Amund; Aamdal, Steinar; Dueland, Svein; Sæbøe-Larsen, Stein; Inderberg, Else Marit; Madsbu, Ulf Erik; Skovlund, Eva; Gaudernack, Gustav; Kvalheim, Gunnar

    2016-01-01

    The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.

  18. TNF-α and Tumor Lysate Promote the Maturation of Dendritic Cells for Immunotherapy for Advanced Malignant Bone and Soft Tissue Tumors

    PubMed Central

    Miwa, Shinji; Nishida, Hideji; Tanzawa, Yoshikazu; Takata, Munetomo; Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Kimura, Hiroaki; Igarashi, Kentaro; Mizukoshi, Eishiro; Nakamoto, Yasunari; Kaneko, Shuichi; Tsuchiya, Hiroyuki

    2012-01-01

    Background Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli. Methods Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy. Results Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy. Conclusions Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors. PMID:23300824

  19. Dendritic SNAREs add a new twist to the old neuron theory.

    PubMed

    Ovsepian, Saak V; Dolly, J Oliver

    2011-11-29

    Dendritic exocytosis underpins a broad range of integrative and homeostatic synaptic functions. Emerging data highlight the essential role of SNAREs in trafficking and fusion of secretory organelles with release of peptides and neurotransmitters from dendrites. This Perspective analyzes recent evidence inferring axo-dendritic polarization of vesicular release machinery and pinpoints progress made with existing challenges in this rapidly progressing field of dendritic research. Interpreting the relation of new molecular data to physiological results on secretion from dendrites would greatly advance our understanding of this facet of neuronal mechanisms.

  20. Dendritic Growth Investigators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  1. Siegfried the Dragonslayer Meets the Web: Using Digital Media for Developing Historical Awareness and Advanced Language and Critical Thinking Skills

    ERIC Educational Resources Information Center

    Rasmussen, Ann Marie

    2011-01-01

    This article describes an undergraduate, German-language course that aimed to improve students' language skills, critical thinking, and declarative knowledge of German history and culture by studying multiple manifestations of the legend of Siegfried the Dragonslayer. The course used web-based e-learning tools to address two major learning…

  2. Next Generation Online: Advancing Learning through Dynamic Design, Virtual and Web 2.0 Technologies, and Instructor "Attitude"

    ERIC Educational Resources Information Center

    O'Connor, Eileen

    2013-01-01

    With the advent of web 2.0 and virtual technologies and new understandings about learning within a global, networked environment, online course design has moved beyond the constraints of text readings, papers, and discussion boards. This next generation of online courses needs to dynamically and actively integrate the wide-ranging distribution of…

  3. Efficacy and safety of cord blood-derived dendritic cells plus cytokine-induced killer cells combined with chemotherapy in the treatment of patients with advanced gastric cancer: a randomized Phase II study

    PubMed Central

    Mu, Ying; Wang, Wei-hua; Xie, Jia-ping; Zhang, Ying-xin; Yang, Ya-pei; Zhou, Chang-hui

    2016-01-01

    Background Cellular immunotherapy has been widely used in the treatment of solid tumors. However, the clinical application of cord blood-derived dendritic cells and cytokine-induced killer cells (CB-DC-CIK) for the treatment of gastric cancer has not been frequently reported. In this study, the efficacy and safety of CB-DC-CIK for the treatment of gastric cancer were evaluated both in vitro and in vivo. Methods The phenotypes, cytokines, and cytotoxicity of CB-DC-CIK were detected in vitro. Patients with advanced gastric cancer were divided into the following two groups: the experimental group (CB-DC-CIK combined with chemotherapy) and the control group (chemotherapy alone). The curative effects and immune function were compared between the two groups. Results First, the results showed that combination therapy significantly increased the overall disease-free survival rate (P=0.0448) compared with chemotherapy alone. The overall survival rate (P=0.0646), overall response rate (P=0.410), and disease control rate (P=0.396) were improved in the experimental group, but these changes did not reach statistical significance. Second, the percentage of T-cell subsets (CD4+, CD3−CD56+, and CD3+CD56+) and the levels of IFN-γ, TNF-α, and IL-2, which reflect immune function, were significantly increased (P<0.05) after immunotherapy. Finally, no serious side effects appeared in patients with gastric cancer after the application of cellular immunotherapy based on CB-DC-CIK. Conclusion CB-DC-CIK combined with chemotherapy is effective and safe for the treatment of patients with advanced gastric cancer. PMID:27524915

  4. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  5. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  6. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  7. Dendritic Release of Neurotransmitters.

    PubMed

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E

    2016-12-06

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.

  8. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  9. Recent Advances in Immersive Visualization of Ocean Data: Virtual Reality Through the Web on Your Laptop Computer

    NASA Astrophysics Data System (ADS)

    Hermann, A. J.; Moore, C.; Soreide, N. N.

    2002-12-01

    Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.

  10. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  11. Molecular mechanisms of dendrite morphogenesis

    PubMed Central

    Arikkath, Jyothi

    2012-01-01

    Dendrites are key integrators of synaptic information in neurons and play vital roles in neuronal plasticity. Hence, it is necessary that dendrite arborization is precisely controlled and coordinated with synaptic activity to ensure appropriate functional neural network integrity. In the past several years, it has become increasingly clear that several cell intrinsic and extrinsic mechanisms contribute to dendritic arborization. In this review, we will discuss some of the molecular mechanisms that regulate dendrite morphogenesis, particularly in cortical and hippocampal pyramidal neurons and some of the implications of aberrant dendritic morphology for human disease. Finally, we will discuss the current challenges and future directions in the field. PMID:23293584

  12. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  13. A simple transfer function for nonlinear dendritic integration

    PubMed Central

    Singh, Matthew F.; Zald, David H.

    2015-01-01

    Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration (“dendritic integration”). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches obeys previous linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which some authors have likened to the sigmoid function. Here we show the implausibility of a sigmoidal relation and present a more realistic transfer function in both an elegant artificial form and a biophysically derived form that further considers input locations along the dendritic arbor. As the distance between input locations determines their ability to produce nonlinear interactions, models incorporating dendritic topology are essential to understanding the computational power afforded by these early stages of integration. We use the biophysical transfer function to emulate empirical data using biophysical parameters and describe the conditions under which the artificial and biophysically derived forms are equivalent. PMID:26321940

  14. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  15. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  16. Defect structure of web silicon ribbon

    NASA Technical Reports Server (NTRS)

    Cunningham, B.; Strunk, H.; Ast, D.

    1980-01-01

    The results of a preliminary study of two dendritic web samples are presented. The structure and electrical activity of the defects in the silicon webs were studied. Optical microscopy of chemically etched specimens was used to determine dislocation densities. Samples were mechanically polished, then Secco etched for approximately 5 minutes. High voltage transmission electron microscopy was used to characterize the crystallographic nature of the defects.

  17. Dendritic Materials Systems

    DTIC Science & Technology

    2003-09-22

    2-hydroxyethyl)-e-caprolactone,” Macromolecules, 32, 6881-4, (1999). Yu, D.; Vladimirov, N.; Fréchet, J.M.J. “ MALDI - TOF in the Characterization of...Mat Sci. Eng., (1999). Yu, D.; Vladimirov, N.; Fréchet, J. M. J. “ MALDI - TOF Mass Spectrometry in the Characterization of Dendritic-Linear Block and...with long endgroups capable of chain entanglements providing uniform continuous films. We found that the surface properties of polyetherimide ( PEI

  18. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    PubMed Central

    2010-01-01

    Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE

  19. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  20. InformedTogether: Usability Evaluation of a Web-Based Decision Aid to Facilitate Shared Advance Care Planning for Severe Chronic Obstructive Pulmonary Disease

    PubMed Central

    Uhler, Lauren M; Pérez Figueroa, Rafael E; Dickson, Mark; McCullagh, Lauren; Kushniruk, Andre; Monkman, Helen; Witteman, Holly O

    2015-01-01

    Background Advance care planning may help patients receive treatments that better align with their goals for care. We developed a Web-based decision aid called InformedTogether to facilitate shared advance care planning between chronic obstructive pulmonary disease (COPD) patients and their doctors. Objective Our objective was to assess the usability of the InformedTogether decision aid, including whether users could interact with the decision aid to engage in tasks required for shared decision making, whether users found the decision aid acceptable, and implications for redesign. Methods We conducted an observational study with 15 patients and 8 doctors at two ethnically and socioeconomically diverse outpatient clinics. Data included quantitative and qualitative observations of patients and doctors using the decision aid on tablet or laptop computers and data from semistructured interviews. Patients were shown the decision aid by a researcher acting as the doctor. Pulmonary doctors were observed using the decision aid independently and asked to think aloud (ie, verbalize their thoughts). A thematic analysis was implemented to explore key issues related to decision aid usability. Results Although patients and doctors found InformedTogether acceptable and would recommend that doctors use the decision aid with COPD patients, many patients had difficulty understanding the icon arrays that were used to communicate estimated prognoses and could not articulate the definitions of the two treatment choices—Full Code and Do Not Resuscitate (DNR). Minor usability problems regarding content, links, layout, and consistency were also identified and corresponding recommendations were outlined. In particular, participants suggested including more information about potential changes in quality of life resulting from the alternative advance directives. Some doctor participants thought the decision aid was too long and some thought it may cause nervousness among patients due to

  1. The Isothermal Dendritic Growth Experiment Archive

    NASA Astrophysics Data System (ADS)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  2. Silicon web process development. Annual report

    SciTech Connect

    Duncan, C.S.; Seidensticker, R.G.; McHugh, J.P.; Hill, F.E.; Skutch, M.E.; Driggers, J.M.; Hopkins, R.H.

    1980-06-30

    During this reporting period significant milestones have been met. A new barrier crucible design which consistently maintains melt stability over long periods of time has been successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours (a one day growth cycle). The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and, during the preparation of this report, operated successfully for 3 1/2 hours demonstrating the feasibility of semi-automated dendritic web growth. The web throughput task has resulted in a demonstration of wider good quality web as well as a demonstration of higher throughput rates. The accomplishments during the report period are described in detail. The economic analysis of the dendritic web process was updated. The sensitivity of the cost of sheet to variations in capital equipment cost and recycling dendrites was calculated; and it was shown that these factors have relatively little impact on sheet cost. An important finding was that dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  3. Developing dendrites demonstrate unexpected specificity.

    PubMed

    Chalupa, Leo M

    2006-11-22

    Our knowledge of how developing dendrites attain their mature state is still rudimentary. In this issue of Neuron, Mumm et al. rely on time-lapsed analysis of ingrowing dendrites of retinal ganglion cells in transgenic zebrafish to show that this process is much more specific than has been suspected.

  4. Web Mining

    NASA Astrophysics Data System (ADS)

    Fürnkranz, Johannes

    The World-Wide Web provides every internet citizen with access to an abundance of information, but it becomes increasingly difficult to identify the relevant pieces of information. Research in web mining tries to address this problem by applying techniques from data mining and machine learning to Web data and documents. This chapter provides a brief overview of web mining techniques and research areas, most notably hypertext classification, wrapper induction, recommender systems and web usage mining.

  5. Applying Web Usage Mining for Personalizing Hyperlinks in Web-Based Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Romero, Cristobal; Ventura, Sebastian; Zafra, Amelia; de Bra, Paul

    2009-01-01

    Nowadays, the application of Web mining techniques in e-learning and Web-based adaptive educational systems is increasing exponentially. In this paper, we propose an advanced architecture for a personalization system to facilitate Web mining. A specific Web mining tool is developed and a recommender engine is integrated into the AHA! system in…

  6. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons☆

    PubMed Central

    Hasel, Philip; Mckay, Sean; Qiu, Jing; Hardingham, Giles E.

    2015-01-01

    Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. PMID:25541281

  7. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Steinbach, I.; Karma, A.; deGroh, H. C., III

    1999-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during solidification of an assemblage of equiaxed dendritic crystals. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology (i.e., tip radii, branch spacings, etc.) and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of initial supercoolings and, thus, interaction "strengths" between the crystals. The experiment thus extends the microgravity measurements of Glicksman and coworkers for steady growth of a single dendrite [Isothermal Dendritic Growth Experiment (IDGE), first flown on USMP-2] to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation more close to actual casting conditions. Corresponding earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will primarily be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  8. Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    The objective of the research is to quantitatively determine and understand the fundamental mechanisms that control the microstructural evolution during equiaxed dendritic solidification. A microgravity experiment will be conducted to obtain benchmark data on the transient growth and interaction of up to four equiaxed crystals of a pure and transparent metal analog (succinonitrile, SCN) under strictly diffusion-dominated conditions. Of interest in the experiment are the transient evolution of the primary and secondary dendrite tip speeds, the dendrite morphology and solid fraction, the tip selection criterion, and the temperature field in the melt for a range of interaction "strengths" between the crystals. The experiment extends the microgravity measurements of Glicksman and co-workers isothermal dendritic growth experiment (IDGE) for steady growth of a single dendrite to a case where growth transients are introduced due to thermal interactions between neighboring dendrites - a situation closer to actual casting conditions. Corresponding Earth-based experiments will be conducted to ascertain the influence of melt convection. The experiments are supported by a variety of analytical models and numerical simulations. The data will be used to develop and test theories of transient dendritic growth and the solidification of multiple interacting equiaxed crystals in a supercooled melt.

  9. Sculpting Neural Circuits by Axon and Dendrite Pruning

    PubMed Central

    Riccomagno, Martin M.; Kolodkin, Alex L.

    2015-01-01

    The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections, thus, axon pruning is tightly associated with synapse elimination. In many instances these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders. PMID:26436703

  10. Spider silk: Webs measure up

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2013-03-01

    The complete elastic response of a spider's orb web has been quantified by non-invasive light scattering, revealing important insights into the architecture, natural material use and mechanical properties of the web. This knowledge advances our understanding of the prey-catching process and the role of supercontraction therein.

  11. Dendritic Growth Velocities in Microgravity

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Winsa, E. A.

    1994-01-01

    We measured dendritic tip velocities in pure succinonitrile (SCN) in microgravity. using a sequence of telemetered binary images sent to Earth from the Space Shuttle Columbia (STS-62). Growth velocities were measured as a function of the supercooling over the range 0.05-1.5 K. Microgravity observations show that buoyancy-induced convection alters the growth kinetics of SCN dendrites at supercooling as high as 1.3 K. Also, the dendrite velocity data measured under microgravity agree well with the Ivantsov paraboloidal diffusion solution when coupled to a scaling constant of sigma(sup *) = 0.0157.

  12. Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism.

    PubMed

    Deutch, Ariel Y; Colbran, Roger J; Winder, Danny J

    2007-01-01

    Current approaches to Parkinson's Disease (PD) are largely based on our current understanding of the mechanisms that contribute to the death of nigrostriatal dopamine neurons. However, our understanding of the consequences of the loss of dopamine on the striatal target cells of nigrostriatal neurons is much less advanced. In particular, the compensatory changes that occur in striatal medium spiny neurons (MSNs) that have lost their normal dopamine input remains poorly understood. The compensatory changes may have either positive or negative effects. Among the alterations that occur in striatal cells of the dopamine-denervated striatum are dystrophic changes in the dendrites of MSNs, with a loss of dendritic length and dendritic spine number. Dendritic spines are the targets of convergent nigrostriatal dopamine and corticostriatal glutamate axons, and integrate these convergent signals to determine the nature of striatal output. The loss of these spines in the dopamine-denervated state may protect the MSN from overt excitotoxic death, but at the price of compromising MSN function. The loss of dendritic spines is thought be responsible for the gradual decrease in levodopa efficacy in late-stage PD, suggesting that therapeutic interventions need to be developed that target key downstream signaling complexes in medium spiny neurons.

  13. Angioimmunoblastic T-Cell Lymphoma: A Questionable Association with Follicular Dendritic Cell Sarcoma

    PubMed Central

    Zekzer, Miriam; Nalbandyan, Karen

    2017-01-01

    An elderly woman presented with generalized lymphadenopathy, several systemic symptoms, and splenomegaly. An inguinal lymph node excision revealed a compound picture. One aspect of the lymph node morphology, including cells with follicular T-helper cell phenotype, was most consistent with angioimmunoblastic T-cell lymphoma. The other component, revealing spindle cells forming whorls with immunostaining for CD21, CD23, and fascin, might be an integral part of this T-cell lymphoma. However, due to the often massive involvement of the nodal tissue by these follicular dendritic cells, these areas were questionably suggestive of involvement by follicular dendritic cell sarcoma. We raise herein the issue of the borderline area between advanced follicular dendritic cell expansion in angioimmunoblastic T-cell lymphoma and a massive follicular dendritic cell proliferation consistent with follicular dendritic cells sarcoma, in the absence of a genomic analysis. PMID:28197348

  14. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  15. Chapter 59: Web Services

    NASA Astrophysics Data System (ADS)

    Graham, M. J.

    Web services are a cornerstone of the distributed computing infrastructure that the VO is built upon yet to the newcomer, they can appear to be a black art. This perception is not helped by the miasma of technobabble that pervades the subject and the seemingly impenetrable high priesthood of actual users. In truth, however, there is nothing conceptually difficult about web services (unsurprisingly any complexities will lie in the implementation details) nor indeed anything particularly new. A web service is a piece of software available over a network with a formal description of how it is called and what it returns that a computer can understand. Note that entities such as web servers, ftp servers and database servers do not generally qualify as they lack the standardized description of their inputs and outputs. There are prior technologies, such as RMI, CORBA, and DCOM, that have employed a similar approach but the success of web services lies predominantly in its use of standardized XML to provide a language-neutral way for representing data. In fact, the standardization goes further as web services are traditionally (or as traditionally as five years will allow) tied to a specific set of technologies (WSDL and SOAP conveyed using HTTP with an XML serialization). Alternative implementations are becoming increasingly common and we will cover some of these here. One important thing to remember in all of this, though, is that web services are meant for use by computers and not humans (unlike web pages) and this is why so much of it seems incomprehensible gobbledegook. In this chapter, we will start with an overview of the web services current in the VO and present a short guide on how to use and deploy a web service. We will then review the different approaches to web services, particularly REST and SOAP, and alternatives to XML as a data format. We will consider how web services can be formally described and discuss how advanced features such as security, state

  16. Optimal Current Transfer in Dendrites

    PubMed Central

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  17. The Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  18. Sustainable Materials Management (SMM) Web Academy Webinar: Advancing Sustainable Materials Management: Facts and Figures 2013 - Assessing Trends in Materials Generation, Recycling and Disposal in the United States

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  19. The Impact of the DoD Mobile Code Policy on Advanced Distributed Learning, Web-Based Distance Learning and Other Educational Missions

    DTIC Science & Technology

    2001-08-30

    agencies and 13 Learning Management System vendors. Eighteen surveys were returned, and only one-third of the respondents indicated that they used...Documenting the frequency with which mobile code is used in web- enabled courseware programming Questionnaires were distributed to learning management system courseware...web-enabled courseware was sent to points of contact at 51 DoD Academic agencies and 13 Learning Management System vendors. Eighteen surveys were

  20. Device for mechanically stabilizing web ribbon buttons during growth initiation

    NASA Technical Reports Server (NTRS)

    Henry, Paul K. (Inventor); Fortier, Edward P. (Inventor)

    1992-01-01

    The invention relates to a stabilization device for stabilizing dendritic web seed buttons during initiation of crystal growth from a float melt zone. The invention includes angular maintenance means for maintaining a constant angular orientation between the axis of a growth initiation seed and the upper surface of a web button during withdrawal of the web button from the melt. In the preferred embodiment, the angular means includes an adjustable elevation tube which surrounds the seed, the weight of which may be selectively supported by the seed button during web button withdrawal.

  1. Homophilic Dscam interactions control complex dendrite morphogenesis

    PubMed Central

    Hughes, Michael E.; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    Summary The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-intrinsic aspects of dendrite guidance. We examined the function of Dscam during morphogenesis of dendrite arborization neurons (“da” neurons) and found that loss of Dscam in single neurons causes abnormal dendritic fasciculation and a strong increase in self-crossing of dendritic branches of da neurons. Restriction of dendritic fields of neighboring class III neurons appeared intact in Dscam deficient neurons suggesting that dendritic self-avoidance but not hetero-neuronal tiling may depend on Dscam function. Over-expression of the same Dscam isoforms in two da neurons with normally overlapping dendritic fields forced a spatial segregation of the two dendritic fields. Taken together, our results suggest that dendritic branches of all four classes of da neurons use isoform-specific homophilic interactions of Dscam to ensure minimal overlap of dendrites. The large pool of Dscam’s extracellular recognition domains may allow the same ‘core’ repulsion mechanism to be used in every da neuron without interfering with hetero-neuronal interactions. PMID:17481395

  2. Web Engineering

    SciTech Connect

    White, Bebo

    2003-06-23

    Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.

  3. Gravitational effects in dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Singh, N. B.; Chopra, M.

    1983-01-01

    The theories of diffusion-controlled dendritic crystallization will be reviewed briefly, along with recently published critical experiments on the kinetics and morphology of dendritic growth in pure substances. The influence of the gravitational body force on dendrite growth kinetics will be shown to be highly dependent on the growth orientation with respect to the gravity vector and on the level of the thermal supercooling. In fact, an abrupt transition occurs at a critical supercooling, above which diffusional transport dominates the growth process and below which convective transport dominates. Our most recent work on binary mixtures shows that dilute solute additions influence the crystallization process indirectly, by altering the interfacial stability, rather than by directly affecting the transport mode. Directions for future studies in this field will also be discussed.

  4. An inverse approach for elucidating dendritic function.

    PubMed

    Torben-Nielsen, Benjamin; Stiefel, Klaus M

    2010-01-01

    We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a "hypothesis generator" in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a "function confirmation" by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  5. WebVR: an interactive web browser for virtual environments

    NASA Astrophysics Data System (ADS)

    Barsoum, Emad; Kuester, Falko

    2005-03-01

    The pervasive nature of web-based content has lead to the development of applications and user interfaces that port between a broad range of operating systems and databases, while providing intuitive access to static and time-varying information. However, the integration of this vast resource into virtual environments has remained elusive. In this paper we present an implementation of a 3D Web Browser (WebVR) that enables the user to search the internet for arbitrary information and to seamlessly augment this information into virtual environments. WebVR provides access to the standard data input and query mechanisms offered by conventional web browsers, with the difference that it generates active texture-skins of the web contents that can be mapped onto arbitrary surfaces within the environment. Once mapped, the corresponding texture functions as a fully integrated web-browser that will respond to traditional events such as the selection of links or text input. As a result, any surface within the environment can be turned into a web-enabled resource that provides access to user-definable data. In order to leverage from the continuous advancement of browser technology and to support both static as well as streamed content, WebVR uses ActiveX controls to extract the desired texture skin from industry strength browsers, providing a unique mechanism for data fusion and extensibility.

  6. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  7. Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

    PubMed

    Voss, Ching Y; Albertini, Mark R; Malter, James S

    2004-07-01

    The encouraging results from dendritic cell-related cancer immunotherapy have created tremendous interest for its broad clinical application. Dendritic cells are the most potent antigen-presenting cells. In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised. Autologous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cellular immunity against cancer and result in clinical antitumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes. In small group studies, clinical response rates have reached 50% in patients with advanced stage of cancer. These cellular products caused minimal side effects and were well tolerated. The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation. The purpose of this article is to review the mechanisms of tumor immune surveillance and the biology of dendritic cells relevant to tumor antigen presentation, sensitization, and T-lymphocyte stimulation. Information on tumor-associated antigens and clinical trial results with dendritic cell-based cancer immunotherapy are summarized. The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

  8. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  9. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    PubMed

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  10. Web Scraping for Astronomy

    NASA Astrophysics Data System (ADS)

    Derriere, S.; Boch, T.

    2012-09-01

    Astronomical web sites and portals are used daily by astronomers, and are increasingly interactive and customizable, mainly through the use of JavaScript. In addition, information often arises from the linking of remotely distributed data and contents. All these potential links can not always be defined in advance and stored in a web document for at least two reasons: they could potentially increase the size of the document source by a large fraction; and sometimes only the user (and not the document creator) knows where relevant links should be provided. Web scraping is the process of automatically collecting Web information. In this context, we started developing a method allowing retrieval of remote information, and display of this information (including links to remote websites) in the current document, triggered by a very simple action from the user: the selection of a portion of text in the web document. Our first prototype deals with astronomical object names. It is written in JavaScript, and can easily be implemented in a web document, or used as a bookmarklet. Whenever the user selects a portion of text in a web document, a request to the Sesame name resolver is made to test if this is a valid object identifier. On success, information retrieved in JSON allows to display a tooltip with additional information on this object such as its coordinates, links to various CDS services, image thumbnails, etc. We present the current status of this work, and discuss how it could be extended in the future to other applications.

  11. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  12. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  13. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  14. Molecular and cellular mechanisms of dendritic morphogenesis

    PubMed Central

    Gao, Fen-Biao

    2008-01-01

    Summary Dendrites exhibit unique cell-type specific branching patterns and targeting specificity that are critically important for neuronal function and connectivity. Recent evidence indicates that highly complex transcriptional regulatory networks dictate various aspects of dendritic outgrowth, branching, and routing. In addition to other intrinsic molecular pathways such as membrane protein trafficking, interactions between neighboring dendritic branches also contribute to the final specification of dendritic morphology. Nonredundant coverage by dendrites of same type of neurons, known as tiling, requires the actions of the Tricornered/Furry (Sax-1/Sax-2) signaling pathway. However, the dendrites of a neuron do not cross over each other, a process called self-avoidance that is mediated by Down’s syndrome cell adhesion molecule (Dscam). Those exciting findings have enhanced significantly our understanding of dendritic morphogenesis and revealed the magnitude of complexity in the underlying molecular regulatory networks. PMID:17933513

  15. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    PubMed

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  16. Deterministic side-branching during thermal dendritic growth

    NASA Astrophysics Data System (ADS)

    Mullis, Andrew M.

    2015-06-01

    The accepted view on dendritic side-branching is that side-branches grow as the result of selective amplification of thermal noise and that in the absence of such noise dendrites would grow without the development of side-arms. However, recently there has been renewed speculation about dendrites displaying deterministic side-branching [see e.g. ME Glicksman, Metall. Mater. Trans A 43 (2012) 391]. Generally, numerical models of dendritic growth, such as phase-field simulation, have tended to display behaviour which is commensurate with the former view, in that simulated dendrites do not develop side-branches unless noise is introduced into the simulation. However, here we present simulations at high undercooling that show that under certain conditions deterministic side-branching may occur. We use a model formulated in the thin interface limit and a range of advanced numerical techniques to minimise the numerical noise introduced into the solution, including a multigrid solver. Not only are multigrid solvers one of the most efficient means of inverting the large, but sparse, system of equations that results from implicit time-stepping, they are also very effective at smoothing noise at all wavelengths. This is in contrast to most Jacobi or Gauss-Seidel iterative schemes which are effective at removing noise with wavelengths comparable to the mesh size but tend to leave noise at longer wavelengths largely undamped. From an analysis of the tangential thermal gradients on the solid-liquid interface the mechanism for side-branching appears to be consistent with the deterministic model proposed by Glicksman.

  17. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.

  18. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  19. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  20. The Equiaxed Dendritic Solidification Experiment (EDSE)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Equiaxed Dendritic Solidification Experiment (EDSE) is a material sciences investigation under the Formation of Microstructures/pattern formation discipline. The objective is to study the microstructural evolution of and thermal interactions between several equiaxed crystals growing dendritically in a supercooled melt of a pure and transparent substance under diffusion controlled conditions. Dendrites growing at .4 supercooling from a 2 stinger growth chamber for the EDSE in the Microgravity Development Lab (MDL).

  1. Characterization of Optical Lenses to be Considered for the Imaging of Crystal Dendrite Growth

    NASA Technical Reports Server (NTRS)

    Wing, Frank M.

    1999-01-01

    Dynamic fracture is a phenomenon that is extremely sensitive to small perturbations in system parameters. This phenomenon is, in some ways, similar to that of dendritic crystal growth, although it is governed by different physical principles. Crystal dendrite growth patterns are affected by parameters such as temperature, pressure, and gravity. By studying the behavior of crystal dendrites in a controlled, microgravity environment, a greater understanding of dynamic fracture could be revealed. A sealed cubical container contains four stingers, which facilitate the growth of crystal dendrites. The container has five windows and is emersed in a liquid, for thermal isolation. The tip of a dendrite can advance in any direction, therefore three-dimensional images of the process are desired. Furthermore, because of the rapid growth rate, a fast image frame rate is required for accurate tracking of dendrite tip velocity. In addition, optical parameters such as field of view, depth of focus, and resolution are examined, as well as the working distance between a lens and the target of observation.

  2. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-02-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  3. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  4. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  5. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  6. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  7. Precipitation dendrites in turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  8. Web Search Engines: Search Syntax and Features.

    ERIC Educational Resources Information Center

    Ojala, Marydee

    2002-01-01

    Presents a chart that explains the search syntax, features, and commands used by the 12 most widely used general Web search engines. Discusses Web standardization, expanded types of content searched, size of databases, and search engines that include both simple and advanced versions. (LRW)

  9. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  10. Imaging dendritic spines of rat primary hippocampal neurons using structured illumination microscopy.

    PubMed

    Schouten, Marijn; De Luca, Giulia M R; Alatriste González, Diana K; de Jong, Babette E; Timmermans, Wendy; Xiong, Hui; Krugers, Harm; Manders, Erik M M; Fitzsimons, Carlos P

    2014-05-04

    Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light's intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy's theoretical resolution limit of 200 nm. Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the

  11. The Isothermal Dendritic Growth Experiment (IDGE): USMP-4 One-Year-Report

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Malarik, D. C.

    1999-01-01

    Dendrites describe the tree-like crystal morphology commonly assumed in many material systems--particularly in metals and alloys that freeze from supercooled or supersaturated melts. There remains a high level of engineering interest in dendritic solidification because of the role of dendrites in the determination of cast alloy microstructures. Microstructure plays a key role in determining the physical properties of cast or welded products. In addition, dendritic solidification provides an example of non-equilibrium physics and is one of the simplest non-trivial examples of dynamic pattern formation, where an amorphous melt, under simple starting conditions, evolves into a complex ramified microstructure. Although it is well-known that dendritic growth is controlled by the transport of latent heat from the moving solid-melt interface as the dendrite advances into a supercooled melt, an accurate, and predictive model has not been developed. Current theories consider: 1) the transfer of heat or solute from the solid-liquid interface into the melt, and 2) the interfacial crystal growth and growth selection physics for the interface. However, the effects of gravity-induced convection on the transfer of heat from the interface prevent either element from being adequately tested solely under terrestrial conditions. The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data collection from the on-orbit phase of the IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving.

  12. 'Infectious web'.

    PubMed

    Kotra, L P; Ojcius, D M

    2000-12-01

    A comprehensive list of all known bacterial pathogens of humans is now available at various web-sites on the internet. The sites contain hyperlinks to original scientific literature, along with general information on laboratory testing, antibiotic resistance and clinical treatment. More specific sites highlight the fungus Pneumocystic carinii, arguably the main cause of pneumonia in immunosuppressed individuals.

  13. Webbing It.

    ERIC Educational Resources Information Center

    Brandsberg, Jennifer

    1996-01-01

    Provides a quick look at some World Wide Web sites that contain current election year information. Recommends Project Vote Smart, a site with links to online news organizations, the home pages of all presidential candidates, and other political sites. Briefly notes several interactive CD-ROM resources. (MJP)

  14. Web Sitings.

    ERIC Educational Resources Information Center

    Lo, Erika

    2001-01-01

    Presents seven mathematics games, located on the World Wide Web, for elementary students, including: Absurd Math: Pre-Algebra from Another Dimension; The Little Animals Activity Centre; MathDork Game Room (classic video games focusing on algebra); Lemonade Stand (students practice math and business skills); Math Cats (teaches the artistic beauty…

  15. Overview of the Tusas Code for Simulation of Dendritic Solidification

    SciTech Connect

    Trainer, Amelia J.; Newman, Christopher Kyle; Francois, Marianne M.

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  16. In vivo dendrite regeneration after injury is different from dendrite development.

    PubMed

    Thompson-Peer, Katherine L; DeVault, Laura; Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-08-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.

  17. In vivo dendrite regeneration after injury is different from dendrite development

    PubMed Central

    Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-01-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  18. EBSD Characterization of Dendrites in Synthetic and Natural Rocks

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.; Tiley, J.; Shiveley, A.; Knox, S.; Viswanathan, G.

    2011-12-01

    Arborescent crystals in igneous rocks are associated with extreme crystallization environments: the protoplanary disk (chondrules), Earth's ultramafic Archean mantle (komatiite), and terrestrial submarine-erupted lavas (pillow basalts), although the role of morphological instabilities in more mundane settings such as magma reservoirs of modern oceanic islands is increasingly appreciated (see Welsch et al., V16). Fundamentals of dendrite formation are presumably well understood: branching morphologies belie crystal growth conditions in which the driving force for solidification produces a kinetic roughening transition, transforming an atomically smooth crystal-liquid interface into a rough, adhesive interface capable of extremely rapid advancement. However, not since photomicrograhic advances made possible close observations of snow crystals (Nakaya 1936), has there been a more promising set of analytical tools to characterize dendrites in natural and synthetic materials in pursuit of new insights. We are investigating clinopyroxene (cpx) in the quenched top of Fe-rich tholeiitic lava (Munro Township, Northeast Ontario; Fig. 1) and a synthetic basalt of similar character (Hammer 2006) with electron backscatter diffraction (EBSD), 3D reconstruction of optical serial sections, and TEM. Here we report intriguing phenomena observed with EBSD common to both samples. Severe thinning of dendrite trunks and repeated tip splitting destroys the self-similarity associated with classical dendrites and instead presages 'seaweed' morphology. Split tips manifest incremental trajectory deflections, producing gently arched trunks (Fig. 1A) as well as tightly curved (r<10 um) trunks. Crystals progressively rotate clockwise about cpx <010>, producing distinctive misorientation maps and pole figures (Fig. 1C). Parallel branches exhibit similar rotational trajectories, carving parallel arcs in the <010> pole figure. The high incidence of side branching and tip splitting is consistent

  19. Cross-Presentation in Mouse and Human Dendritic Cells.

    PubMed

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  20. Cell technology: Advanced silicon sheet

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1986-01-01

    The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.

  1. Dendritic Growth in Undercooled Melts

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1985-01-01

    The kinetic and morphological behavior of systems solidifying at small undercooling were investigated with emphasis on the role of convective and diffusive transport and the influence of gravity. A data base was established for pure succinonitrile which permits a comprehensive check on diffusional dendrite growth theory and the development of scaling laws to extend the theory to other material systems. A departure from diffusional-controlled growth was observed which becomes more significant at smaller undercoolings. A shuttle experiment is prepared to test the theory at the low undercoolings where convective effects begin to dominate.

  2. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  3. Convection and diffusion effects during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S.-C.

    1979-01-01

    A report is presented of the first quantitative measurements of dendritic growth at supercooling levels where convection instead of diffusion is the controlling heat transfer mechanism. Precautions similar to that used in an investigation conducted by Glicksman et al. (1976) were taken to insure 'free' dendritic growth conditions. Dendritic growth velocity was measured as a function of growth orientation at seventeen supercoolings which ranged from 0.043 C to 2 C. Selected but representative measurements of velocity versus orientation angle are shown in a graph. The relative growth velocity of a downward growing dendrite is found to be greater than that of a diffusion-limited dendrite. This result is consistent with that expected from the enhanced heat transfer arising from natural convection.

  4. Role of dendritic cells in cardiovascular diseases

    PubMed Central

    Zhang, Yi; Zhang, Cuihua

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation. PMID:21179302

  5. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    2016-01-01

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  6. JUST in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced IT tools (the Web-CD).

    PubMed

    Manganas, A; Tsiknakis, M; Leisch, E; Karefilaki, L; Monsieurs, K; Bossaert, L L; Giorgini, F

    2004-01-01

    This paper reports the results of the first of the two systems developed by JUST, a collaborative project supported by the European Union under the Information Society Technologies (IST) Programme. The most innovative content of the project has been the design and development of a complementary training course for non-professional health emergency operators, which supports the traditional learning phase, and which purports to improve the retention capability of the trainees. This was achieved with the use of advanced information technology techniques, which provide adequate support and can help to overcome the present weaknesses of the existing training mechanisms.

  7. 'Infectious web'.

    PubMed

    Kotra, L P; Ojcius, D M

    2000-07-01

    Infections by Helicobacter pylori are responsible for duodenal and gastric ulcers and are a significant risk factor for the development of gastric adenocarcinoma. H. pylori was discovered in 1983, but many institutes in Canada, Europe, and the United States are already involved in programs to understand and treat the infections, as reflected by the growing number of internet sites devoted to this bacterium. Most AIDS patients and about 20% of children with acute lymphoblastic leukemia develop Pneumocystis carinii pneumoniae. Information on clinical symptoms and treatment, as well as the P. carinii genome sequencing project, are described at several web sites. Students and researchers wishing to understand the correlation between telomere length and AIDS may turn to web sites of the University of Colorado and Washington University School of Medicine for the latest on telomeres and telomerase, and their function in aging and cancer.

  8. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  9. Advanced module development overview

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1984-01-01

    Crystalline silicon solar power modules are examined for reliability and cost effectiveness. A goal of 12% solar energy conversion efficiency is considered feasible at a cost of 12/kWh, and a decision is made to limit consideration to float zone silicon wafer and dendritic web silicone modules. A preliminary module packaging configuration of glass/ethylene vinyl acetate/plastic film is selected. Anticipated module efficiency levels are 12.6% at 25 C and 11.5% at NOCT (Nominal Operating Cell Temperature).

  10. Probe dendritic functions through poking and peeking

    NASA Astrophysics Data System (ADS)

    Xiong, Wenhui; Zhou, Zhishang; Zeng, Shaoqun; Chen, Wei R.

    2003-12-01

    Several photonic approaches have been utilized to study functional dynamics of olfactory bulb dendrites, which plays a critical role in odor discrimination and recognition. Firstly, with infrared differential interference contrast (DIC) video microscopy, we can visualize living nerve cells in an olfactory bulb slice preparation and target glass electrodes to different dendritic locations for direct electrical measurement. This furnishes a high temporal resolution of signal recording from dendrites. Secondly, by using a cooled CCD camera and loading calcium-sensitive dyes into neurons, we have explored the spatial distribution and propagation of spike signals within complex dendritic trees. Thirdly, two-photon microscope enables us to analyze active properties of very tiny dendritic structures such as dendritic spines. Lastly, by using UV light pulse to release calcium ions from caged compounds, we have examined the mechanisms for signal communication between two dendrites with reciprocal synaptic connections. Our research highlights an important contribution of optical imaging methods to functional dissection of neuronal circuitry in the brain.

  11. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  12. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  13. Methods of dendritic spine detection: from Golgi to high-resolution optical imaging.

    PubMed

    Mancuso, J J; Chen, Y; Li, X; Xue, Z; Wong, S T C

    2013-10-22

    Dendritic spines, the bulbous protrusions that form the postsynaptic half of excitatory synapses, are one of the most prominent features of neurons and have been imaged and studied for over a century. In that time, changes in the number and morphology of dendritic spines have been correlated to the developmental process as well as the pathophysiology of a number of neurodegenerative diseases. Due to the sheer scale of synaptic connectivity in the brain, work to date has merely scratched the surface in the study of normal spine function and pathology. This review will highlight traditional approaches to the imaging of dendritic spines and newer approaches made possible by advances in microscopy, protein engineering, and image analysis. The review will also describe recent work that is leading researchers toward the possibility of a systematic and comprehensive study of spine anatomy throughout the brain.

  14. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  15. REMOD: A Tool for Analyzing and Remodeling the Dendritic Architecture of Neural Cells

    PubMed Central

    Bozelos, Panagiotis; Stefanou, Stefanos S.; Bouloukakis, Georgios; Melachrinos, Constantinos; Poirazi, Panayiota

    2016-01-01

    Dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations under various physiological or neuropathological conditions. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between the two remains largely elusive. The lack of a systematic approach for remodeling neural cells and their dendritic trees is a key limitation that contributes to this problem. Such causal relationships can be inferred via the use of large-scale neuronal models whereby the anatomical plasticity of neurons is accounted for, in order to enhance their biological relevance and hence their predictive performance. To facilitate this effort, we developed a computational tool named REMOD that allows the structural remodeling of any type of virtual neuron. REMOD is written in Python and can be accessed through a dedicated web interface that guides the user through various options to manipulate selected neuronal morphologies. REMOD can also be used to extract meaningful morphology statistics for one or multiple reconstructions, including features such as sholl analysis, total dendritic length and area, path length to the soma, centrifugal branch order, diameter tapering and more. As such, the tool can be used both for the analysis and/or the remodeling of neuronal morphologies of any type. PMID:26778971

  16. REMOD: A Tool for Analyzing and Remodeling the Dendritic Architecture of Neural Cells.

    PubMed

    Bozelos, Panagiotis; Stefanou, Stefanos S; Bouloukakis, Georgios; Melachrinos, Constantinos; Poirazi, Panayiota

    2015-01-01

    Dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations under various physiological or neuropathological conditions. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between the two remains largely elusive. The lack of a systematic approach for remodeling neural cells and their dendritic trees is a key limitation that contributes to this problem. Such causal relationships can be inferred via the use of large-scale neuronal models whereby the anatomical plasticity of neurons is accounted for, in order to enhance their biological relevance and hence their predictive performance. To facilitate this effort, we developed a computational tool named REMOD that allows the structural remodeling of any type of virtual neuron. REMOD is written in Python and can be accessed through a dedicated web interface that guides the user through various options to manipulate selected neuronal morphologies. REMOD can also be used to extract meaningful morphology statistics for one or multiple reconstructions, including features such as sholl analysis, total dendritic length and area, path length to the soma, centrifugal branch order, diameter tapering and more. As such, the tool can be used both for the analysis and/or the remodeling of neuronal morphologies of any type.

  17. Fractional Cable Models for Spiny Neuronal Dendrites

    NASA Astrophysics Data System (ADS)

    Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.

    2008-03-01

    Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.

  18. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  19. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  20. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  1. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  2. Deep Web video

    SciTech Connect

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  3. Deep Web video

    ScienceCinema

    None Available

    2016-07-12

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  4. Web 2.0 and Marketing Education: Explanations and Experiential Applications

    ERIC Educational Resources Information Center

    Granitz, Neil; Koernig, Stephen K.

    2011-01-01

    Although both experiential learning and Web 2.0 tools focus on creativity, sharing, and collaboration, sparse research has been published integrating a Web 2.0 paradigm with experiential learning in marketing. In this article, Web 2.0 concepts are explained. Web 2.0 is then positioned as a philosophy that can advance experiential learning through…

  5. Neurotensin promotes the dendrite elongation and the dendritic spine maturation of the cerebral cortex in vitro.

    PubMed

    Gandou, Chihiro; Ohtani, Akiko; Senzaki, Kouji; Shiga, Takashi

    2010-03-01

    We examined roles of neurotensin in the dendrite formation and the maturation of dendritic spines in the rat cerebral cortex. Embryonic day (E) 18 cortical neurons were cultured for 2 or 4 days in the presence of neurotensin. The chronic treatment of cortical neurons with neurotensin for 4 days increased the dendritic length of non-GABAergic neurons. In addition, the acute treatment of cortical neurons for 24h at 3 days in vitro also increased the dendritic length of non-GABAergic neurons similarly but more strongly than the chronic treatment. In contrast, the acute treatment for 4h had no effects on the dendrite formation. Next, we examined the effects of neurotensin on the maturation of dendritic spines. E16 cortical neurons were cultured for 10 or 14 days in a basal medium and then treated with neurotensin for 24h. At 11 days in vitro, neurotensin increased the postsynaptic density (PSD) 95-positive dendritic protrusions (filopodia, puncta and spines) together with the increase of spine density and the decrease of puncta density. At 15 days in vitro, neurotensin decreased the puncta density. In addition, the immunohistochemical localization of neurotensin type 1 and type 3 receptors in cultured neurons suggested the differential contribution of the receptors in these effects. These findings suggest that neurotensin promotes the dendrite outgrowth and the maturation of dendritic spines of cultured cortical neurons, although further studies are needed to conclude that these roles of neurotensin are also the case in vivo.

  6. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  7. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  8. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  9. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  10. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  11. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  12. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  13. Synaptic Control of Secretory Trafficking in Dendrites

    PubMed Central

    Hanus, Cyril; Kochen, Lisa; Dieck, Susanne tom; Racine, Victor; Sibarita, Jean-Baptiste; Schuman, Erin M.; Ehlers, Michael D.

    2016-01-01

    Summary Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport. PMID:24931613

  14. Fast Kalman filtering on quasilinear dendritic trees.

    PubMed

    Paninski, Liam

    2010-04-01

    Optimal filtering of noisy voltage signals on dendritic trees is a key problem in computational cellular neuroscience. However, the state variable in this problem-the vector of voltages at every compartment-is very high-dimensional: realistic multicompartmental models often have on the order of N = 10(4) compartments. Standard implementations of the Kalman filter require O(N (3)) time and O(N (2)) space, and are therefore impractical. Here we take advantage of three special features of the dendritic filtering problem to construct an efficient filter: (1) dendritic dynamics are governed by a cable equation on a tree, which may be solved using sparse matrix methods in O(N) time; and current methods for observing dendritic voltage (2) provide low SNR observations and (3) only image a relatively small number of compartments at a time. The idea is to approximate the Kalman equations in terms of a low-rank perturbation of the steady-state (zero-SNR) solution, which may be obtained in O(N) time using methods that exploit the sparse tree structure of dendritic dynamics. The resulting methods give a very good approximation to the exact Kalman solution, but only require O(N) time and space. We illustrate the method with applications to real and simulated dendritic branching structures, and describe how to extend the techniques to incorporate spatially subsampled, temporally filtered, and nonlinearly transformed observations.

  15. Web Mining for Web Image Retrieval.

    ERIC Educational Resources Information Center

    Chen, Zheng; Wenyin, Liu; Zhang, Feng; Li, Mingjing; Zhang, Hongjiang

    2001-01-01

    Presents a prototype system for image retrieval from the Internet using Web mining. Discusses the architecture of the Web image retrieval prototype; document space modeling; user log mining; and image retrieval experiments to evaluate the proposed system. (AEF)

  16. Web Mining: Machine Learning for Web Applications.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chau, Michael

    2004-01-01

    Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…

  17. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  18. CliniWeb: managing clinical information on the World Wide Web.

    PubMed Central

    Hersh, W R; Brown, K E; Donohoe, L C; Campbell, E M; Horacek, A E

    1996-01-01

    The World Wide Web is a powerful new way to deliver on-line clinical information, but several problems limit its value to health care professionals: content is highly distributed and difficult to find, clinical information is not separated from non-clinical information, and the current Web technology is unable to support some advanced retrieval capabilities. A system called CliniWeb has been developed to address these problems. CliniWeb is an index to clinical information on the World Wide Web, providing a browsing and searching interface to clinical content at the level of the health care student or provider. Its database contains a list of clinical information resources on the Web that are indexed by terms from the Medical Subject Headings disease tree and retrieved with the assistance of SAPHIRE. Limitations of the processes used to build the database are discussed, together with directions for future research. PMID:8816350

  19. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  20. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons

    PubMed Central

    Kim, Michael D.; Jan, Lily Yeh; Jan, Yuh Nung

    2006-01-01

    Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the Drosophila homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, class I and II da neurons, which are normally characterized by their simple dendrite morphologies, elaborate more complex arbors, whereas the normally complex class III and IV da neurons develop simpler dendritic arbors. Consequently, different classes of da neurons elaborate dendrites with similar morphologies. In its control of dendritic diversity among da neurons, ss likely acts independently of its known cofactor tango and through a regulatory program distinct from those involving cut and abrupt. These findings suggest that one evolutionarily conserved role for Ahr in neuronal development concerns the diversification of dendrite morphology. PMID:17015425

  1. Molecules and mechanisms of dendrite development in Drosophila.

    PubMed

    Corty, Megan M; Matthews, Benjamin J; Grueber, Wesley B

    2009-04-01

    Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.

  2. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  3. Dendritic spine dysgenesis in neuropathic pain.

    PubMed

    Tan, Andrew M; Waxman, Stephen G

    2015-08-05

    Neuropathic pain is a significant unmet medical need in patients with variety of injury or disease insults to the nervous system. Neuropathic pain often presents as a painful sensation described as electrical, burning, or tingling. Currently available treatments have limited effectiveness and narrow therapeutic windows for safety. More powerful analgesics, e.g., opioids, carry a high risk for chemical dependence. Thus, a major challenge for pain research is the elucidation of the mechanisms that underlie neuropathic pain and developing targeted strategies to alleviate pathological pain. The mechanistic link between dendritic spine structure and circuit function could explain why neuropathic pain is difficult to treat, since nociceptive processing pathways are adversely "hard-wired" through the reorganization of dendritic spines. Several studies in animal models of neuropathic pain have begun to reveal the functional contribution of dendritic spine dysgenesis in neuropathic pain. Previous reports have demonstrated three primary changes in dendritic spine structure on nociceptive dorsal horn neurons following injury or disease, which accompany chronic intractable pain: (I) increased density of dendritic spines, particularly mature mushroom-spine spines, (II) redistribution of spines toward dendritic branch locations close to the cell body, and (III) enlargement of the spine head diameter, which generally presents as a mushroom-shaped spine. Given the important functional implications of spine distribution, density, and shape for synaptic and neuronal function, the study of dendritic spine abnormality may provide a new perspective for investigating pain, and the identification of specific molecular players that regulate spine morphology may guide the development of more effective and long-lasting therapies.

  4. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    PubMed Central

    Svensson, Mattias; Chen, Puran; Hammarfjord, Oscar

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes. PMID:27713374

  5. EPA Web Taxonomy

    EPA Pesticide Factsheets

    EPA's Web Taxonomy is a faceted hierarchical vocabulary used to tag web pages with terms from a controlled vocabulary. Tagging enables search and discovery of EPA's Web based information assests. EPA's Web Taxonomy is being provided in Simple Knowledge Organization System (SKOS) format. SKOS is a standard for sharing and linking knowledge organization systems that promises to make Federal terminology resources more interoperable.

  6. Web data mining

    NASA Astrophysics Data System (ADS)

    Wibonele, Kasanda J.; Zhang, Yanqing

    2002-03-01

    A web data mining system using granular computing and ASP programming is proposed. This is a web based application, which allows web users to submit survey data for many different companies. This survey is a collection of questions that will help these companies develop and improve their business and customer service with their clients by analyzing survey data. This web application allows users to submit data anywhere. All the survey data is collected into a database for further analysis. An administrator of this web application can login to the system and view all the data submitted. This web application resides on a web server, and the database resides on the MS SQL server.

  7. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Koss, M. B.; LaCombe, J. C.; Lupulescu, A. O.; Frei, J. E.; Guimarra, C.; Malarik, D. C.

    2001-01-01

    Dendritic solidification is one of the simplest examples of pattern formation where a structureless melt evolves into a ramified crystalline microstructure; it is a common mode of solidification in many materials, but especially so in metals and alloys. There is considerable engineering interest in dendrites because of the role dendrites play in the determination of microstructure, and thereby in influencing the physical properties of cast metals and alloys. Dendritic solidification provides important examples of non-equilibrium physics, pattern formation dynamics, and models for computational condensed matter and material physics. Current theories of dendritic growth generally couple diffusion effects in the melt with the physics introduced by the interface. Unfortunately, in terrestrial based experiments, convective effects in the melt alter the growth process in such a manner as to prevent definitive analysis of convective, diffusive or interfacial effects. Thus, the effective elimination of convection in the melt by operating experiments on orbit were required to produce high-fidelity data needed for achieving further progress. This simple fact comprised the scientific justification for the IDGE.

  8. Advanced Interactive Web Technologies in Industry Training.

    ERIC Educational Resources Information Center

    Vassileva, Tania; Astinov, Ilario; Bojkov, Dimitar; Tchoumatchenko, Vassiliy; Scholten, Ulrich; Furnadziev, Ivan

    Today, faced with the problems of global competition, increasing costs, and complex production engineering, a company can only be successfully managed if the employees are motivated and highly qualified. To cope with this demand the new educational scheme for cost-effective retraining, lifelong learning and distance education at the workplace…

  9. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines.

  10. Successful Isothermal Dendritic Growth Experiment (IDGE) Proves Current Theories of Dendritic Solidification are Flawed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The scientific objective of the Isothermal Dendritic Growth Experiment (IDGE) is to test fundamental assumptions about dendritic solidification of molten materials. "Dendrites"-- from the ancient Greek word for tree--are tiny branching structures that form inside molten metal alloys when they solidify during manufacturing. The size, shape, and orientation of the dendrites have a major effect on the strength, ductility (ability to be molded or shaped), and usefulness of an alloy. Nearly all of the cast metal alloys used in everyday products (such as automobiles and airplanes) are composed of thousands to millions of tiny dendrites. Gravity, present on Earth, causes convection currents in molten alloys that disturb dendritic solidification and make its precise study impossible. In space, gravity is negated by the orbiting of the space shuttle. Consequently, IDGE (which was conducted on the space shuttle) gathered the first precise data regarding undisturbed dendritic solidification. IDGE is a microgravity materials science experiment that uses an apparatus which was designed, built, tested, and operated by people from the NASA Lewis Research Center. This experiment was conceived by the principal investigator, Professor Martin E. Glicksman, from Rensselaer Polytechnic Institute in Troy, New York. The experiment was a team effort of Lewis civil servants, contractors from Aerospace Design & Fabrication Inc. (ADF), and personnel at Rensselaer.

  11. The path integral for dendritic trees.

    PubMed

    Abbott, L F; Farhi, E; Gutmann, S

    1991-01-01

    We construct the path integral for determining the potential on any dendritic tree described by a linear cable equation. This is done by generalizing Brownian motion from a line to a tree. We also construct the path integral for dendritic structures with spatially-varying and/or time-dependent membrane conductivities due, for example, to synaptic inputs. The path integral allows novel computational techniques to be applied to cable problems. Our analysis leads ultimately to an exact expression for the Green's function on a dendritic tree of arbitrary geometry expressed in terms of a set of simple diagrammatic rules. These rules providing a fast and efficient method for solving complex cable problems.

  12. Dendritic inhomogeneity of stainless maraging steels

    SciTech Connect

    Krasnikova, S.I.; Drobot, A.V.; Shmelev, A.Y.; Vukelich, S.B.

    1986-03-01

    The authors investigated dendritic inhomogeneity in industrial ingots 630 mm (steel I) in diameter and 500 mm (steel II) in diameter. The variation in the degree of dendritic inhomogeneity was investigated over the height of the ingots and across the sections on an MS-46 microprobe. It was established that the elements can be placed in the following order in accordance with the degree of reduction in the liquation factor: titanium, molybdenum, nickel, chromium, and cobalt. Titanium and molybdenum exhibit forward liquation in both steels, and chromium in steel II. The distribution of nickel and chromium in the steel I ingots and cobalt in the steel II ingots is unconventional. Dendritic inhomogeneity, which must be considered in assigning the heat treatment for finished articles, develops during the crystallization of stainless maraging steels.

  13. Measuring dendritic distribution of membrane proteins.

    PubMed

    Ballou, Edmund W; Smith, W Bryan; Anelli, Roberta; Heckman, C J

    2006-09-30

    Neurons perform much of their integrative work in the dendritic tree, and spinal motoneurons have the largest tree of any cell. Electrical excitability is strongly influenced by dendrite membrane properties, which are difficult to measure directly. We describe a method to measure the distribution of ion channel membrane densities along dendritic trajectories. The method combines standard immunohistochemistry with reconstruction procedures for both large-scale and small-scale optical microscopy. Software written for Matlab then extracts the colocalization of the target ion channel with the target dye injected cell, and calculates the relative channel density per square micron of cell surface area, as a function of distance from the cell body. The technique can be used to quantify the localization and distribution of any immunoreactive moiety, and the software provides a flexible vehicle for sensitivity analysis, to validate heuristics for selecting thresholds.

  14. Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.

  15. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  16. Aligning bona fide dendritic cell populations across species.

    PubMed

    Dutertre, Charles-Antoine; Wang, Lin-Fa; Ginhoux, Florent

    2014-01-01

    Dendritic cells (DC) are professional antigen sensing and presenting cells that link innate and adaptive immunity. Consisting of functionally specialized subsets, they form a complex cellular network capable of integrating multiple environmental signals leading to immunity or tolerance. Much of DC research so far has been carried out in mice and increasing efforts are now being devoted to translating the findings into humans and other species. Recent studies have aligned these cellular networks across species at multiple levels from phenotype, gene expression program, ontogeny and functional specializations. In this review, we focus on recent advances in the definition of bona fide DC subsets across species. The understanding of functional similarities and differences of specific DC subsets in different animals not only brings light in the field of DC biology, but also paves the way for the design of future effective therapeutic strategies targeting these cells.

  17. Regulation of dendrite growth and maintenance by exocytosis.

    PubMed

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z; Kim, Michael D

    2015-12-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop-exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments.

  18. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  19. The Isothermal Dendritic Growth Experiment (IDGE)

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Koss, M. B.; Lupulescu, A. O.; LaCombe, J. C.; Frei, J. E.; Malarik, D. C.

    1999-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE

  20. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  1. On dendritic growth in undercooled melts

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1988-01-01

    The role of gravity-dependent convection in the steady-state growth of dendrites in undercooled melts is investigated theoretically. The model described by Huang and Glicksman (1981) is extended and refined, using the concept of a thermal diffusion boundary layer (Burton et al., 1987) to characterize the dendritic interface. Theoretical predictions are presented in graphs and shown to be in good general agreement with published experimental data on succinonitrile. The need for careful space experiments to clarify the role of nongravity-dependent convection is indicated.

  2. Evolving dynamic web pages using web mining

    NASA Astrophysics Data System (ADS)

    Menon, Kartik; Dagli, Cihan H.

    2003-08-01

    The heterogeneity and the lack of structure that permeates much of the ever expanding information sources on the WWW makes it difficult for the user to properly and efficiently access different web pages. Different users have different needs from the same web page. It is necessary to train the system to understand the needs and demands of the users. In other words there is a need for efficient and proper web mining. In this paper issues and possible ways of training the system and providing high level of organization for semi structured data available on the web is discussed. Web pages can be evolved based on history of query searches, browsing, links traversed and observation of the user behavior like book marking and time spent on viewing. Fuzzy clustering techniques help in grouping natural users and groups, neural networks, association rules and web traversals patterns help in efficient sequential anaysis based on previous searches and queries by the user. In this paper we analyze web server logs using above mentioned techniques to know more about user interactions. Analyzing these web server logs help to closely understand the user behavior and his/her web access pattern.

  3. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts.

    PubMed

    Withers, Ginger S; Farley, Jennifer R; Sterritt, Jeffrey R; Crane, Andrés B; Wallace, Christopher S

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified.

  4. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    PubMed Central

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  5. New Interfaces to Web Documents and Services

    NASA Technical Reports Server (NTRS)

    Carlisle, W. H.

    1996-01-01

    This paper reports on investigations into how to extend capabilities of the Virtual Research Center (VRC) for NASA's Advanced Concepts Office. The work was performed as part of NASA's 1996 Summer Faculty Fellowship program, and involved research into and prototype development of software components that provide documents and services for the World Wide Web (WWW). The WWW has become a de-facto standard for sharing resources over the internet, primarily because web browsers are freely available for the most common hardware platforms and their operating systems. As a consequence of the popularity of the internet, tools, and techniques associated with web browsers are changing rapidly. New capabilities are offered by companies that support web browsers in order to achieve or remain a dominant participant in internet services. Because a goal of the VRC is to build an environment for NASA centers, universities, and industrial partners to share information associated with Advanced Concepts Office activities, the VRC tracks new techniques and services associated with the web in order to determine the their usefulness for distributed and collaborative engineering research activities. Most recently, Java has emerged as a new tool for providing internet services. Because the major web browser providers have decided to include Java in their software, investigations into Java were conducted this summer.

  6. Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways.

    PubMed

    Lin, Yu-Chih; Yeckel, Mark F; Koleske, Anthony J

    2013-01-30

    Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.

  7. Development and evaluation of a dynamic web-based application.

    PubMed

    Hsieh, Yichuan; Brennan, Patricia Flatley

    2007-10-11

    Traditional consumer health informatics (CHI) applications that were developed for lay public on the Web were commonly written in a Hypertext Markup Language (HTML). As genetics knowledge rapidly advances and requires updating information in a timely fashion, a different content structure is therefore needed to facilitate information delivery. This poster will present the process of developing a dynamic database-driven Web CHI application.

  8. Searching the Web: The Public and Their Queries.

    ERIC Educational Resources Information Center

    Spink, Amanda; Wolfram, Dietmar; Jansen, Major B. J.; Saracevic, Tefko

    2001-01-01

    Reports findings from a study of searching behavior by over 200,000 users of the Excite search engine. Analysis of over one million queries revealed most people use few search terms, few modified queries, view few Web pages, and rarely use advanced search features. Concludes that Web searching by the public differs significantly from searching of…

  9. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  10. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  11. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  12. Dendritic growth in a supercooled alloy melt

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1987-01-01

    A simple model which describes the growth of an 'array' of dendrites into a supercooled, binary, alloy melt is presented. Solute diffusion is calculated by superposing the solutions given by Flemings and Zener, and also, by superposing the solutions given by Ivantsov and Flemings. A general expression for the transport solution is suggested from which all other dendrite growth models presented earlier may be obtained as special cases. It is shown that both 'free' and 'constrained' growth may be described by a single transport solution, which indicates that (1) both thermal and solutal effects will be important during 'free' growth in dilute alloys, (2) only solutal effects are predominant during 'free' growth in concentrated alloys and during 'constrained' growth. An examination of the relevant dimensionless parameters also suggests that all dendrite growth models, regardless of the assumptions used to determine the tip radius (marginal stability, minimum undercooling, maximum velocity, minimum entropy production) should predict the experimentally observed extrema in tip radius and growth velocity in dilute alloys, during 'free' dendritic growth. Experimental data in binary H2O-NaCl and succinonitrile-acetone solutions are shown to be in good agreement with the model.

  13. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  14. Dendritic Cells, New Tools for Vaccination

    DTIC Science & Technology

    2003-01-01

    19], Borrelia burgdorferi [20] Chlamydia trachomatis [21] and Candida albicans [22]. C. albicans provides a paradigmatic example of how this ap... Borrelia burgdorferi -pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes, Infect. Immun. 65 (1997) 3386–3390

  15. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  16. Lysophosphatidic acid induces osteocyte dendrite outgrowth.

    PubMed

    Karagiosis, Sue A; Karin, Norman J

    2007-05-25

    Osteocytes elaborate an extensive mechanosensory network in bone matrix and communicate intercellularly via gap junctions established at dendrite termini. We developed a method to measure osteocyte dendritogenesis in vitro using a modified transwell assay and determined that the lipid growth factor lysophosphatidic acid (LPA) is a potent stimulator of dendrite outgrowth in MLO-Y4 osteocytes. The stimulatory effects were dose-dependent with maximal outgrowth observed within a physiological range of LPA. LPA-treated osteocytes exhibited distinct rearrangements of the actin cytoskeleton and a more stellate morphology than control cells. LPA also promoted osteocyte chemotaxis, suggesting a shared molecular mechanism between dendrite outgrowth and cell motility. The LPA-induced increase in dendrite formation was blocked by the specific LPA-receptor antagonist Ki16425 and by pertussis toxin. Bone cells in vivo encounter platelet-derived LPA in regions of bone damage, and we postulate that this lipid factor is important for re-establishing osteocyte connectivity during fracture repair.

  17. DRIFTER Web App Development Support

    NASA Technical Reports Server (NTRS)

    Davis, Derrick D.; Armstrong, Curtis D.

    2015-01-01

    During my 2015 internship at Stennis Space Center (SSC) I supported the development of a web based tool to enable user interaction with a low-cost environmental monitoring buoy called the DRIFTER. DRIFTERs are designed by SSC's Applied Science and Technology Projects branch and are used to measure parameters such as water temperature and salinity. Data collected by the buoys help verify measurements by NASA satellites, which contributes to NASA's mission to advance understanding of the Earth by developing technologies to improve the quality of life on or home planet. My main objective during this internship was to support the development of the DRIFTER by writing web-based software that allows the public to view and access data collected by the buoys. In addition, this software would enable DRIFTER owners to configure and control the devices.

  18. Supramolecular dendritic polymers: from synthesis to applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Zhu, Xinyuan

    2014-07-15

    CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential

  19. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5.

    PubMed

    Wirth, Marcus J; Brun, Annika; Grabert, Jochen; Patz, Silke; Wahle, Petra

    2003-12-01

    Neurotrophins are candidate molecules for regulating dendritogenesis. We report here on dendritic growth of rat visual cortex pyramidal and interneurons overexpressing 'brain-derived neurotrophic factor' BDNF and 'neurotrophin 4/5' NT4/5. Neurons in organotypic cultures were transfected with plasmids encoding either 'enhanced green fluorescent protein' EGFP, BDNF/EGFP or NT4/5/EGFP either at the day of birth with analysis at 5 days in vitro, or at 5 days in vitro with analysis at 10 days in vitro. In pyramidal neurons, both TrkB ligands increased dendritic length and number of segments without affecting maximum branch order and number of primary dendrites. In the early time window, only infragranular neurons were responsive. Neurons in layers II/III became responsive to NT4/5, but not BDNF, during the later time window. BDNF and NT4/5 transfectants at 10 days in vitro had still significantly shorter dendrites than adult pyramidal neurons, suggesting a massive growth spurt after 10 days in vitro. However, segment numbers were already in the range of adult neurons. Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI. Neutralization of endogenous NT4/5 causes shorter and less branched dendrites at 10 days in vitro suggesting an essential role for NT4/5. Neutralization of BDNF had no effect. Transfected multipolar interneurons became identifiable during the second time window. Both TrkB ligands significantly increased number of segments and branch order towards the adult state with little effects on dendritic length. The results suggested that early in development BDNF and NT4/5 probably accelerate dendritogenesis in an autocrine fashion. In particular, branch formation was advanced towards the adult pattern in pyramidal cells and interneurons.

  20. Dendritic mitochondria reach stable positions during circuit development.

    PubMed

    Faits, Michelle C; Zhang, Chunmeng; Soto, Florentina; Kerschensteiner, Daniel

    2016-01-07

    Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.

  1. Managing World Wide Web Information in a Frames Environment: A Guide to Constructing Web Pages Using Frames.

    ERIC Educational Resources Information Center

    Gilstrap, Donald L.

    1998-01-01

    Explains how to build World Wide Web home pages using frames-based HTML so that librarians can manage Web-based information and improve their home pages. Provides descriptions and 15 examples for writing frames-HTML code, including advanced concepts and additional techniques for home-page design. (Author/LRW)

  2. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    PubMed Central

    2010-01-01

    Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection

  3. Trilinos Web Interface Package

    SciTech Connect

    Hu, Jonathan; Phenow, Michael N.; Sala, Marzio; Tuminaro, Ray S.

    2006-09-01

    WebTrilinos is a scientific portal, a web-based environment to use several Trilinos packages through the web. If you are a teaching sparse linear algebra, you can use WebTrilinos to present code snippets and simple scripts, and let the students execute them from their browsers. If you want to test linear algebra solvers, you can use the MatrixPortal module, and you just have to select problems and options, then plot the results in nice graphs.

  4. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  5. Transport of dendritic microtubules establishes their nonuniform polarity orientation

    PubMed Central

    1995-01-01

    The immature processes that give rise to both axons and dendrites contain microtubules (MTs) that are uniformly oriented with their plus- ends distal to the cell body, and this pattern is preserved in the developing axon. In contrast, developing dendrites gradually acquire nonuniform MT polarity orientation due to the addition of a subpopulation of oppositely oriented MTs (Baas, P. W., M. M. Black, and G. A. Banker. 1989. J. Cell Biol. 109:3085-3094). In theory, these minus-end-distal MTs could be locally nucleated and assembled within the dendrite itself, or could be transported into the dendrite after their nucleation within the cell body. To distinguish between these possibilities, we exposed cultured hippocampal neurons to nanomolar levels of vinblastine after one of the immature processes had developed into the axon but before the others had become dendrites. At these levels, vinblastine acts as a kinetic stabilizer of MTs, inhibiting further assembly while not substantially depolymerizing existing MTs. This treatment did not abolish dendritic differentiation, which occurred in timely fashion over the next two to three days. The resulting dendrites were flatter and shorter than controls, but were identifiable by their ultrastructure, chemical composition, and thickened tapering morphology. The growth of these dendrites was accompanied by a diminution of MTs from the cell body, indicating a net transfer of MTs from one compartment into the other. During this time, minus-end-distal microtubules arose in the experimental dendrites, indicating that new MT assembly is not required for the acquisition of nonuniform MT polarity orientation in the dendrite. Minus-end-distal microtubules predominated in the more proximal region of experimental dendrites, indicating that most of the MTs at this stage of development are transported into the dendrite with their minus-ends leading. These observations indicate that transport of MTs from the cell body is an essential feature

  6. Multimedia Web Searching Trends.

    ERIC Educational Resources Information Center

    Ozmutlu, Seda; Spink, Amanda; Ozmutlu, H. Cenk

    2002-01-01

    Examines and compares multimedia Web searching by Excite and FAST search engine users in 2001. Highlights include audio and video queries; time spent on searches; terms per query; ranking of the most frequently used terms; and differences in Web search behaviors of U.S. and European Web users. (Author/LRW)

  7. Evaluating Web Usability

    ERIC Educational Resources Information Center

    Snider, Jean; Martin, Florence

    2012-01-01

    Web usability focuses on design elements and processes that make web pages easy to use. A website for college students was evaluated for underutilization. One-on-one testing, focus groups, web analytics, peer university review and marketing focus group and demographic data were utilized to conduct usability evaluation. The results indicated that…

  8. Commercial Web Site Links.

    ERIC Educational Resources Information Center

    Thelwall, Mike

    2001-01-01

    Discusses business use of the Web and related search engine design issues as well as research on general and academic links before reporting on a survey of the links published by a collection of business Web sites. Results indicate around 66% of Web sites do carry external links, most of which are targeted at a specific purpose, but about 17%…

  9. Implementing Good Web Style.

    ERIC Educational Resources Information Center

    Plankis, Brian J.

    1998-01-01

    Provides an overview of Web-site design and discusses three steps in building a site: audience analysis, design, and evaluation. Includes an analysis of loading speeds with and without graphics; examples of no-style, low-bandwidth, and high-bandwidth Web sites; and addresses for related Web sites. (PEN)

  10. WWW: Neuroscience Web Sites

    ERIC Educational Resources Information Center

    Liu, Dennis

    2006-01-01

    The human brain contains an estimated 100 billion neurons, and browsing the Web, one might be led to believe that there's a Web site for every one of those cells. It's no surprise that there are lots of Web sites concerning the nervous system. After all, the human brain is toward the top of nearly everyone's list of favorite organs and of…

  11. Using Web GIS for Public Health Education

    ERIC Educational Resources Information Center

    Reed, Rajika E.; Bodzin, Alec M.

    2016-01-01

    An interdisciplinary curriculum unit that used Web GIS mapping to investigate malaria disease patterns and spread in relation to the environment for a high school Advanced Placement Environmental Science course was developed. A feasibility study was conducted to investigate the efficacy of the unit to promote geospatial thinking and reasoning…

  12. Video Analysis with a Web Camera

    ERIC Educational Resources Information Center

    Wyrembeck, Edward P.

    2009-01-01

    Recent advances in technology have made video capture and analysis in the introductory physics lab even more affordable and accessible. The purchase of a relatively inexpensive web camera is all you need if you already have a newer computer and Vernier's Logger Pro 3 software. In addition to Logger Pro 3, other video analysis tools such as…

  13. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  14. Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons.

    PubMed

    Kim, Hojeong; Jones, Kelvin E; Heckman, C J

    2014-01-01

    It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC) dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability), whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability). These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability.

  15. Asymmetry in Signal Propagation between the Soma and Dendrites Plays a Key Role in Determining Dendritic Excitability in Motoneurons

    PubMed Central

    Kim, Hojeong; Jones, Kelvin E.; Heckman, C. J.

    2014-01-01

    It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC) dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability), whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability). These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability. PMID:25083794

  16. Focus Groups and Usability Testing in Redesigning an Academic Library's Web Site

    ERIC Educational Resources Information Center

    Oldham, Bonnie W.

    2008-01-01

    As the World Wide Web has advanced since its inception, librarians have endeavored to keep pace with this progress in the design of their library Web pages. User recommendations collected from focus groups and usability testing have indicated that the University of Scranton's Weinberg Memorial Library's Web site was not working as intended, and…

  17. TLR signaling and trapped vascular dendritic cells in the development of atherosclerosis.

    PubMed

    Doherty, Terence M; Fisher, Edward A; Arditi, Moshe

    2006-05-01

    The Framingham Heart Study established a link between serum lipoproteins and atherosclerosis but a crucially important feature of the disease has been neglected: it is primarily an immunological disorder. Here, we reframe atherosclerosis in terms of recent progress in understanding the immunological mechanisms underlying the disorder, and advance a new conceptual model for the future. We place vascular dendritic cells squarely at the forefront, and propose that a sentinel network of vascular dendritic cells (DCs) sample and process exogenous and endogenous antigens that can trigger an inflammatory nidus within the arterial wall. Our model postulates that two components are essential to the development of atheromata: vascular DCs and intact myeloid differentiation (MyD)88-dependent signaling by Toll-like receptors.

  18. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  19. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  20. The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting

    PubMed Central

    Merad, Miriam; Sathe, Priyanka; Helft, Julie; Miller, Jennifer; Mortha, Arthur

    2013-01-01

    Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ. PMID:23516985

  1. Web accessibility and open source software.

    PubMed

    Obrenović, Zeljko

    2009-07-01

    A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.

  2. The cellular basis of dendrite pathology in neurodegenerative diseases.

    PubMed

    Kweon, Jung Hyun; Kim, Sunhong; Lee, Sung Bae

    2017-01-01

    One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. [BMB Reports 2017; 50(1): 5-11].

  3. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization.

    PubMed

    Zou, Wei; Yadav, Smita; DeVault, Laura; Nung Jan, Yuh; Sherwood, David R

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.

  4. The cellular basis of dendrite pathology in neurodegenerative diseases

    PubMed Central

    Kweon, Jung Hyun; Kim, Sunhong; Lee, Sung Bae

    2017-01-01

    One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. PMID:27502014

  5. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  6. Vaccines, adjuvants and dendritic cell activators – Current Status and Future Challenges

    PubMed Central

    Obeid, Joseph M.; Hu, Yinin; Slingluff, Craig L.

    2015-01-01

    Cancer vaccines offer a low-toxicity approach to induce anticancer immune responses. They have shown promise for clinical benefit with one cancer vaccine approved in the U.S. for advanced prostate cancer. As other immune therapies are now clearly effective for treatment of advanced cancers of many histologies, there is renewed enthusiasm for optimizing cancer vaccines for use to prevent recurrence in early stage cancers and/or to combine with other immune therapies for therapy of advanced cancers. Future advancements in vaccine therapy will involve the identification and selection of effective antigen formulations, optimization of adjuvants, dendritic cell activation, and combination therapies. In this summary we present the current practice, the broad collection of challenges, and the promising future directions of vaccine therapy for cancer. PMID:26320060

  7. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    PubMed Central

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A.; Marot, Jessica E.; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R.

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  8. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    PubMed

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-08-09

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  9. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  10. Dendritic trafficking for neuronal growth and plasticity.

    PubMed

    Ehlers, Michael D

    2013-12-01

    Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.

  11. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  12. Axon and dendrite pruning in Drosophila.

    PubMed

    Yu, Fengwei; Schuldiner, Oren

    2014-08-01

    Pruning, a process by which neurons selectively remove exuberant or unnecessary processes without causing cell death, is crucial for the establishment of mature neural circuits during animal development. Yet relatively little is known about molecular and cellular mechanisms that govern neuronal pruning. Holometabolous insects, such as Drosophila, undergo complete metamorphosis and their larval nervous systems are replaced with adult-specific ones, thus providing attractive models for studying neuronal pruning. Drosophila mushroom body and dendritic arborization neurons have been utilized as two appealing systems to elucidate the underlying mechanisms of axon and dendrite pruning, respectively. In this review we highlight recent developments and discuss some similarities and differences in the mechanisms that regulate these two distinct modes of neuronal pruning in Drosophila.

  13. "Clickable" PEG-dendritic block copolymers.

    PubMed

    Fernandez-Megia, Eduardo; Correa, Juan; Riguera, Ricardo

    2006-11-01

    Three generations of azido-terminated PEG-dendritic block copolymers have been synthesized and completely characterized by NMR and MALDI-TOF. A radial decrease of density, leading to more mobile protons at the outermost periphery, and an increasingly higher compactness of the core with generation have been determined by T(1) and T(2) relaxation time studies. The efficient surface decoration of these dendritic polymers by means of click chemistry has been demonstrated by the incorporation of unprotected carbohydrate units in very good to excellent yields. The reaction proceeds at room temperature, under aqueous conditions, and requires just catalytic amounts of Cu. The modified block copolymers are conveniently purified by ultrafiltration. The glycodendrimers functionalized with alpha-mannose form aggregates with concanavalin A as determined by absorbance experiments at 400 nm. This aggregation ability increases with generation.

  14. Plasmacytoid dendritic cells and autoimmune inflammation.

    PubMed

    Galicia, Georgina; Gommerman, Jennifer L

    2014-03-01

    Plasmacytoid dendritic cells (pDC) are a sub-population of dendritic cells (DC) that produce large amounts of type I interferon (IFN) in response to nucleic acids that bind and activate toll-like-receptor (TLR)9 and TLR7. Type I IFN can regulate the function of B, T, DC, and natural killer (NK) cells and can also alter the residence time of leukocytes within lymph nodes. Activated pDC can also function as antigen presenting cells (APC) and have the potential to prime and differentiate T cells into regulatory or inflammatory effector cells, depending on the context. In this review we discuss pDC ontogeny, function, trafficking, and activation. We will also examine how pDC can potentially be involved in regulating immune responses in the periphery as well as within the central nervous system (CNS) during multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE).

  15. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  16. Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites.

    PubMed

    Fukumitsu, Kansai; Fujishima, Kazuto; Yoshimura, Azumi; Wu, You Kure; Heuser, John; Kengaku, Mineko

    2015-04-08

    The distribution of mitochondria within mature, differentiated neurons is clearly adapted to their regional physiological needs and can be perturbed under various pathological conditions, but the function of mitochondria in developing neurons has been less well studied. We have studied mitochondrial distribution within developing mouse cerebellar Purkinje cells and have found that active delivery of mitochondria into their dendrites is a prerequisite for proper dendritic outgrowth. Even when mitochondria in the Purkinje cell bodies are functioning normally, interrupting the transport of mitochondria into their dendrites severely disturbs dendritic growth. Additionally, we find that the growth of atrophic dendrites lacking mitochondria can be rescued by activating ATP-phosphocreatine exchange mediated by creatine kinase (CK). Conversely, inhibiting cytosolic CKs decreases dendritic ATP levels and also disrupts dendrite development. Mechanistically, this energy depletion appears to perturb normal actin dynamics and enhance the aggregation of cofilin within growing dendrites, reminiscent of what occurs in neurons overexpressing the dephosphorylated form of cofilin. These results suggest that local ATP synthesis by dendritic mitochondria and ATP-phosphocreatine exchange act synergistically to sustain the cytoskeletal dynamics necessary for dendritic development.

  17. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.

    PubMed

    Lev, D L; White, E L

    1997-02-01

    It has been proposed that neurons in sensory cortices are organized into modules that centre on clusters of apical dendrites belonging to layer V pyramidal neurons. In the present study, sections reacted for microtubule-associated protein (MAP2) were examined in order to determine the three-dimensional inter-relationships of pyramidal cell dendrites in mouse primary motor cortex (MsI) cortex. Results indicate that pyramidal cell dendrites in MsI cortex can be interpreted to be arranged in a modular fashion, and that these modules are organized similarly to those in the sensory areas of the cortex. Also included in the present study are experiments designed to determine if the clusters of apical dendrites, around which the modules are centred, are composed of dendrites belonging to one or to more than one type of projection cell. Callosal neurons in MsI cortex were labelled by the retrograde transport of horseradish peroxidase deposited onto severed callosal fibres in the contralateral hemisphere. Examination of tangential thin sections through layer IV of MsI cortex shows clusters of apical dendrites in which every dendrite is labelled with horseradish peroxidase. Adjacent clusters are composed of unlabelled dendrites, suggesting that the apical dendrites of callosal neurons aggregate to form clusters that are composed exclusively of dendrites belonging to this type of projection cell. These findings suggest a hitherto unsuspected degree of specificity in the cellular composition of cortical modules.

  18. Postnatal dendritic development of Y-like geniculocortical relay neurons.

    PubMed

    Coleman, Lee-Ann; Friedlander, Michael J

    2002-01-01

    We describe the dendritic development of neurons in the dorsal lateral geniculate nucleus (LGNd) projecting to cortical area 18 in the postnatal cat. LGN neurons were identified by retrograde labeling from area 18 with fluorescent latex microspheres and injected in the fixed slice with Lucifer yellow (LY) and horseradish peroxidase (HRP) to visualize their dendritic arborizations. Both topological (measures of the patterns of dendritic branching and their territorial coverage) and metric parameters (measures of the quantitative parameters describing the size, length, extent and diameter of the dendritic arbors) were measured in three-dimensions for 25 LGN neurons in cats between 1 and 18 postnatal weeks. In addition, dendritic growth was compared to the changing dimensions of the LGNd. At all ages, neurons projecting to area 18 have large somata and radiate dendrites. From 1 to 18 weeks neurons increase in size--both soma area and the length of all dendritic segments double during this period. Intermediate and terminal dendritic segments show comparable growth until 5 weeks. However, only terminal segments continue to grow significantly from 5 until 18 weeks. Dendrites become straighter during development, the angle between daughter branches decreases and dendritic segment diameter increases, with terminal segments showing a greater increase relative to intermediate segments. The density of dendritic appendages increases transiently at 5 weeks and a differential redistribution occurs, so that by 18 weeks dendrites further from the soma have a greater density of appendages than those near the soma. Some dendritic relationships remain invariant during development--intermediate segments are always shorter, thicker and straighter than terminal segments. During these changes however, area 18 projecting neurons maintain a constant number of primary dendrites and have, on average, a constant branching pattern. The relative volume of the LGNd occupied by an area 18

  19. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  20. The discovery of dendritic spines by Cajal

    PubMed Central

    Yuste, Rafael

    2015-01-01

    Dendritic spines were considered an artifact of the Golgi method until a brash Spanish histologist, Santiago Ramón y Cajal, bet his scientific career arguing that they were indeed real, correctly deducing their key role in mediating synaptic connectivity. This article reviews the historical context of the discovery of spines and the reasons behind Cajal's obsession with them, all the way till his deathbed. PMID:25954162

  1. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  2. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

  3. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  4. The unfolded protein response is required for dendrite morphogenesis.

    PubMed

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-06-08

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors.

  5. Probing synaptic function in dendrites with calcium imaging.

    PubMed

    Siegel, Friederike; Lohmann, Christian

    2013-04-01

    Calcium imaging has become a widely used technique to probe neuronal activity on the cellular and subcellular levels. In contrast to standard electrophysiological methods, calcium imaging resolves sub- and suprathreshold activation patterns in structures as small as fine dendritic branches and spines. This review highlights recent findings gained on the subcellular level using calcium imaging, with special emphasis on synaptic transmission and plasticity in individual spines. Since imaging allows monitoring activity across populations of synapses, it has recently been adopted to investigate how dendrites integrate information from many synapses. Future experiments, ideally carried out in vivo, will reveal how the dendritic tree integrates and computes afferent signals. For example, it is now possible to directly test the concept that dendritic inputs are clustered and that single dendrites or dendritic stretches act as independent computational units.

  6. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  7. The emergent discipline of health web science.

    PubMed

    Luciano, Joanne S; Cumming, Grant P; Wilkinson, Mark D; Kahana, Eva

    2013-08-22

    The transformative power of the Internet on all aspects of daily life, including health care, has been widely recognized both in the scientific literature and in public discourse. Viewed through the various lenses of diverse academic disciplines, these transformations reveal opportunities realized, the promise of future advances, and even potential problems created by the penetration of the World Wide Web for both individuals and for society at large. Discussions about the clinical and health research implications of the widespread adoption of information technologies, including the Internet, have been subsumed under the disciplinary label of Medicine 2.0. More recently, however, multi-disciplinary research has emerged that is focused on the achievement and promise of the Web itself, as it relates to healthcare issues. In this paper, we explore and interrogate the contributions of the burgeoning field of Web Science in relation to health maintenance, health care, and health policy. From this, we introduce Health Web Science as a subdiscipline of Web Science, distinct from but overlapping with Medicine 2.0. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed among Web-oriented investigators present at the 2012 Medicine 2.0 Conference in Boston, Massachusetts.

  8. The Emergent Discipline of Health Web Science

    PubMed Central

    2013-01-01

    The transformative power of the Internet on all aspects of daily life, including health care, has been widely recognized both in the scientific literature and in public discourse. Viewed through the various lenses of diverse academic disciplines, these transformations reveal opportunities realized, the promise of future advances, and even potential problems created by the penetration of the World Wide Web for both individuals and for society at large. Discussions about the clinical and health research implications of the widespread adoption of information technologies, including the Internet, have been subsumed under the disciplinary label of Medicine 2.0. More recently, however, multi-disciplinary research has emerged that is focused on the achievement and promise of the Web itself, as it relates to healthcare issues. In this paper, we explore and interrogate the contributions of the burgeoning field of Web Science in relation to health maintenance, health care, and health policy. From this, we introduce Health Web Science as a subdiscipline of Web Science, distinct from but overlapping with Medicine 2.0. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed among Web-oriented investigators present at the 2012 Medicine 2.0 Conference in Boston, Massachusetts. PMID:23968998

  9. Theory of dendritic growth in the presence of lattice strain.

    PubMed

    Pilipenko, D; Brener, E A; Hüter, C

    2008-12-01

    We discuss elastic effects due to lattice strain which are a new key ingredient in the theory of dendritic growth for solid-solid transformations. Both thermal and elastic fields are eliminated by Green's function techniques, and a closed nonlinear integro-differential equation for the evolution of the interface is derived. We find dendritic patterns even without the anisotropy of the surface energy required by classical dendritic growth theory. In this sense, elastic effects serve as a new selection mechanism.

  10. Epac2-mediated dendritic spine remodeling: implications for disease

    PubMed Central

    Woolfrey, Kevin M.; Srivastava, Deepak P.

    2010-01-01

    In the mammalian forebrain, most glutamatergic excitatory synapses occur on small dendritic protrusions called dendritic spines. Dendritic spines are highly plastic and can rapidly change morphology in response to numerous stimuli. This dynamic remodeling of dendritic spines is thought to be critical for information processing, memory and cognition. Conversely, multiple studies have revealed that neuropathologies such as autism spectrum disorders (ASDs) are linked with alterations in dendritic spine morphologies and miswiring of neural circuitry. One compelling hypothesis is that abnormal dendritic spine remodeling is a key contributing factor for this miswiring. Ongoing research has identified a number of mechanisms that are critical for the control of dendritic spine remodeling. Among these mechanisms, regulation of small GTPase signaling by guanine-nucleotide exchange factors (GEFs) is emerging as a critical mechanism for integrating physiological signals in the control of dendritic spine remodeling. Furthermore, multiple proteins associated with regulation of dendritic spine remodeling have also been implicated with multiple neuropathologies, including ASDs. Epac2, a GEF for the small GTPase Rap, has recently been described as a novel cAMP(yet PKA-independent) target localized to dendritic spines. Signaling via this protein in response to pharmacological stimulation or cAMP accumulation, via the dopamine D1/5 receptor, results in Rap activation, promotes structural destabilization, in the form of dendritic spine shrinkage, and functional depression due to removal of GluR2/3-containing AMPA receptors. In addition, Epac2 forms macromolecular complexes with ASD-associated proteins, which are sufficient to regulate Epac2 localization and function. Furthermore, rare nonsynonymous variants of the EPAC2 gene associated with the ASD phenotype alter protein function, synaptic protein distribution, and spine morphology. We review here the role of Epac2 in the remodeling

  11. Using Open Web APIs in Teaching Web Mining

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Li, Xin; Chau, M.; Ho, Yi-Jen; Tseng, Chunju

    2009-01-01

    With the advent of the World Wide Web, many business applications that utilize data mining and text mining techniques to extract useful business information on the Web have evolved from Web searching to Web mining. It is important for students to acquire knowledge and hands-on experience in Web mining during their education in information systems…

  12. Sign language Web pages.

    PubMed

    Fels, Deborah I; Richards, Jan; Hardman, Jim; Lee, Daniel G

    2006-01-01

    The WORLD WIDE WEB has changed the way people interact. It has also become an important equalizer of information access for many social sectors. However, for many people, including some sign language users, Web accessing can be difficult. For some, it not only presents another barrier to overcome but has left them without cultural equality. The present article describes a system that allows sign language-only Web pages to be created and linked through a video-based technique called sign-linking. In two studies, 14 Deaf participants examined two iterations of signlinked Web pages to gauge the usability and learnability of a signing Web page interface. The first study indicated that signing Web pages were usable by sign language users but that some interface features required improvement. The second study showed increased usability for those features; users consequently couldnavigate sign language information with ease and pleasure.

  13. WebEAV

    PubMed Central

    Nadkarni, Prakash M.; Brandt, Cynthia M.; Marenco, Luis

    2000-01-01

    The task of creating and maintaining a front end to a large institutional entity-attribute-value (EAV) database can be cumbersome when using traditional client-server technology. Switching to Web technology as a delivery vehicle solves some of these problems but introduces others. In particular, Web development environments tend to be primitive, and many features that client-server developers take for granted are missing. WebEAV is a generic framework for Web development that is intended to streamline the process of Web application development for databases having a significant EAV component. It also addresses some challenging user interface issues that arise when any complex system is created. The authors describe the architecture of WebEAV and provide an overview of its features with suitable examples. PMID:10887163

  14. Dendritic integration in pyramidal neurons during network activity and disease.

    PubMed

    Palmer, Lucy M

    2014-04-01

    Neurons have intricate dendritic morphologies which come in an array of shapes and sizes. Not only do they give neurons their unique appearance, but dendrites also endow neurons with the ability to receive and transform synaptic inputs. We now have a wealth of information about the functioning of dendrites which suggests that the integration of synaptic inputs is highly dependent on both dendritic properties and neuronal input patterns. It has been shown that dendrites can perform non-linear processing, actively transforming synaptic input into Na(+) spikes, Ca(2+) plateau spikes and NMDA spikes. These membrane non-linearities can have a large impact on the neuronal output and have been shown to be regulated by numerous factors including synaptic inhibition. Many neuropathological diseases involve changes in how dendrites receive and package synaptic input by altering dendritic spine characteristics, ion channel expression and the inhibitory control of dendrites. This review focuses on the role of dendrites in integrating and transforming input and what goes wrong in the case of neuropathological diseases.

  15. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  16. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    PubMed

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver.

  17. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    PubMed

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  18. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  19. Building Community Web Platform

    NASA Astrophysics Data System (ADS)

    Ohmukai, Ikki; Matsuo, Yutaka; Matsumura, Naohiro; Takeda, Hideaki

    In this paper we propose Web-based communication environment called ``Community Web Platform''. Our platform provides an easy way to exchange personal knowledge among people with lightweight metadata such like RSS and FOAF. We investigate the nature of ``personal trustness'' on the environment since it is one and only measure for evaluating subjective information and knowledge. We also discuss how to develop and maintain Community Web applications from our exrerience.

  20. Properties of food webs

    SciTech Connect

    Pimm, S.L.

    1980-04-01

    On the assumption that systems of interacting species, when perturbed from equilibrium, should return to equilibrium quickly, one can predict four properties of food webs: (1) food chains should be short, (2) species feeding on more than one trophic level (omnivores) should be rare, (3) those species that do feed on more than one trophic level should do so by feeding on species in adjacent trophic levels, and (4) host-parasitoid systems are likely to be exceptions to (1)-(3) when interaction coefficients permit greater trophic complexity. By generating random, model food webs (with many features identical to webs described from a variety of marine, freshwater, and terrestrial systems), it is possible to generate expected values for the number of trophic levels and the degree of omnivory within webs. When compared with these random webs, real world webs are shown to have fewer trophic levels, less omnivory, and very few omnivores feeding on nonadjacent trophic levels. Insect webs are shown to have a greater degree of omnivory than other webs. The confirmation of all these predictions from stability analyses suggests that system stability places necessary, though not sufficient, limitations on the possible shapes of food webs.

  1. Web Accessibility and Guidelines

    NASA Astrophysics Data System (ADS)

    Harper, Simon; Yesilada, Yeliz

    Access to, and movement around, complex online environments, of which the World Wide Web (Web) is the most popular example, has long been considered an important and major issue in the Web design and usability field. The commonly used slang phrase ‘surfing the Web’ implies rapid and free access, pointing to its importance among designers and users alike. It has also been long established that this potentially complex and difficult access is further complicated, and becomes neither rapid nor free, if the user is disabled. There are millions of people who have disabilities that affect their use of the Web. Web accessibility aims to help these people to perceive, understand, navigate, and interact with, as well as contribute to, the Web, and thereby the society in general. This accessibility is, in part, facilitated by the Web Content Accessibility Guidelines (WCAG) currently moving from version one to two. These guidelines are intended to encourage designers to make sure their sites conform to specifications, and in that conformance enable the assistive technologies of disabled users to better interact with the page content. In this way, it was hoped that accessibility could be supported. While this is in part true, guidelines do not solve all problems and the new WCAG version two guidelines are surrounded by controversy and intrigue. This chapter aims to establish the published literature related to Web accessibility and Web accessibility guidelines, and discuss limitations of the current guidelines and future directions.

  2. Silicon Web Process Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1978-01-01

    Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.

  3. Web 2.0

    NASA Astrophysics Data System (ADS)

    Gibson, Becky

    The Web is growing and changing from a paradigm of static publishing to one of participation and interaction. This change has implications for people with disabilities who rely on access to the Web for employment, information, entertainment, and increased independence. The interactive and collaborative nature of Web 2.0 can present access problems for some users. There are some best practices which can be put in place today to improve access. New specifications such as Accessible Rich Internet Applications (ARIA) and IAccessible2 are opening the doors to increasing the accessibility of Web 2.0 and beyond.

  4. An introduction to webs

    NASA Astrophysics Data System (ADS)

    White, C. D.

    2016-04-01

    Webs are sets of Feynman diagrams that contribute to the exponents of scattering amplitudes, in the kinematic limit in which emitted radiation is soft. As such, they have a number of phenomenological and formal applications, and offer tantalizing glimpses into the all-order structure of perturbative quantum field theory. This article is based on a series of lectures given to graduate students, and aims to provide a pedagogical introduction to webs. Topics covered include exponentiation in (non-)abelian gauge theories, the web mixing matrix formalism for non-abelian gauge theories, and recent progress on the calculation of web diagrams. Problems are included throughout the text, to aid understanding.

  5. An Evaluative Methodology for Virtual Communities Using Web Analytics

    ERIC Educational Resources Information Center

    Phippen, A. D.

    2004-01-01

    The evaluation of virtual community usage and user behaviour has its roots in social science approaches such as interview, document analysis and survey. Little evaluation is carried out using traffic or protocol analysis. Business approaches to evaluating customer/business web site usage are more advanced, in particular using advanced web…

  6. Motivation Mining: Prospecting the Web.

    ERIC Educational Resources Information Center

    Small, Ruth V.; Arnone, Marilyn P.

    1999-01-01

    Describes WebMAC instruments, which differ from other Web-evaluation instruments because they have a theoretical base, are user-centered, are designed for students in grades 7 through 12, and assess the motivational quality of Web sites. Examples are given of uses of WebMAC Middle and WebMAC Senior in activities to promote evaluation and…

  7. Web Design Curriculum and Syllabus Based on Web Design Practice and Students' Prior Knowledge

    ERIC Educational Resources Information Center

    Krunic, Tanja; Ruzic-Dimitrijevic, Ljiljana; Petrovic, Branka; Farkas, Robert

    2006-01-01

    The Advanced Technical School from Novi Sad set up a completely new study group for web design in 2004. The main goals of the paper are to explain the steps that were taken in starting this group, and to present the educational program based on our own research through the organization of the group and course descriptions. Since there is a…

  8. Influence of Immunotherapy with Autologous Dendritic Cells on Innate and Adaptive Immune Response in Cancer

    PubMed Central

    Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.

    2013-01-01

    The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442

  9. Active immunotherapy for cancer patients using tumor lysate pulsed dendritic cell vaccine: a safety study.

    PubMed

    Ovali, E; Dikmen, T; Sonmez, M; Yilmaz, M; Unal, A; Dalbasti, T; Kuzeyli, K; Erturk, M; Omay, S B

    2007-06-01

    Cancer vaccine therapy represents a promising therapeutical option. Consistently, with these new treatment strategies, the use of dendritic cell vaccines is becoming increasingly widespread and currently in the forefront for cancer treatment. The purpose of this study was to evaluate the feasibility and safety of tumor lysate-pulsed dendritic cell (DC) vaccine in patients with advanced cancers. For this purpose, eighteen patients with relapsed or refractory cancer were vaccinated with peripheral monocyte-derived DCs generated with GM-CSF and IL-4, and pulsed consequently with 100 microg/ml of tumor lysate before maturation in culture in the presence of IL-1beta, PGE2 and TNF alpha for two days. The first two vaccinations were given intradermally every two weeks while further injections were given monthly. Tumor lysate-pulsed dendritic cell injections were well-tolerated in all patients with no more than grade 1 injection-related toxicity. Local inflammatory response was mainly erythematous which subsided in 48 hrs time. No end organ toxicity or autoimmune toxicity was identified. Clinical responses observed in our study were satisfactory for a phase I clinical study. We observed 4 (22%) objective clinical responses. These responses are significantly correlated with delayed type hypersensitivity testing (DTH) (p < 0.01). The results showed that this active immunotherapy is feasible, safe, and may be capable of eliciting immune responses against cancer.

  10. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes.

    PubMed

    Tao, Ran; Bi, Xuanxuan; Li, Shu; Yao, Ying; Wu, Feng; Wang, Qian; Zhang, Cunzhong; Lu, Jun

    2017-03-01

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this investigation, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li(+) salts, LiPF6, LiAsF6, LiBF4 and LiClO4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j0, transfer coefficient, α) of Li(+)/Li redox system, the mass transfer parameters of Li(+) (transfer number of Li(+), tLi+, diffusion coefficient of Li(+), DLi+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j0, tLi+, DLi+, and κ of the electrolyte, while the choice of Li(+) salts only slightly affect the measured parameters. The understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.

  11. In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes

    PubMed Central

    Christian, Natalie A.; Benencia, Fabian; Milone, Michael C.; Li, Guizhi; Frail, Paul R.; Therien, Michael J.; Coukos, George; Hammer, Daniel A.

    2009-01-01

    Purpose: Noninvasive in vivo cell-tracking techniques are necessary to advance the field of cellular-based therapeutics as well as to elucidate mechanisms governing in vivo cell biology. Fluorescence is commonly used for in vitro and postmortem biomedical studies but has been limited by autofluorescence at the whole-animal level. Procedures: In this report, we demonstrate the ability of in vivo fluorescent lifetime imaging to remove autofluorescence and thereby enable in vivo dendritic cell tracking in naïve mice. Specifically, we track mature dendritic cells (DCs) labeled internally with near-infrared-emissive polymersomes (NIR-DCs). Results: We establish the ability to detect labeled cells in vivo and image NIR-DC trafficking after both intravenous and subcutaneous delivery. In addition, we demonstrate the longitudinal capacity of this method by characterizing NIR-DC migration kinetics in the popliteal lymph node. Conclusions: This work provides a tool to evaluate dendritic-cell-based immunotherapy and generates novel opportunities for in vivo fluorescence imaging. PMID:19194761

  12. Ternary eutectic dendrites: Pattern formation and scaling properties

    SciTech Connect

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  13. Using Firefly Tools to Enhance Archive Web Pages

    NASA Astrophysics Data System (ADS)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2013-10-01

    Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.

  14. Writing Web 2.0 applications for science archives

    NASA Astrophysics Data System (ADS)

    Roby, William

    2010-07-01

    Writing these sorts of science archive web applications is now possible because of some significant breakthroughs in web technology over the last four years. The Web browser is no longer a glorified batch processing terminal, but an interactive environment that allows the user to have a similar experience as one might expect with an installed desktop application. Taking advantage of this technology requires a significant amount of UI design and advanced interactions with the web server. There are new levels of sophistication required to effectively develop this sort of web application. The IRSA group (NASA/IPAC Infrared Science Archive) is developing web-based software that equally takes advantage of modern technology and is designed to be reused easily. This way we can add new missions and data sets without a large programming effort while keeping the advanced interface. We can now provide true web-based FITS viewing, data overlays, and interaction without any plugins. Our tabular display allows us to filter, sort, and interact with large amounts data in ways that take advantage of the browser's power. This talk will show how we can us AJAX technology, the Google Web Toolkit (GWT), and Java to develop a data archive that is both well designed and creates a truly interactive experience.

  15. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  16. Web 2 Nowhere?

    ERIC Educational Resources Information Center

    Shapiro, Steven

    2012-01-01

    Web 2.0 seems to be all the rage these days. One cannot go to a library conference and attend presentations or stroll down the halls without hearing some mention of it in magical tones reserved for some great discovery. The excitement surrounding Web 2.0 reminds the author of the frenzy that gripped the country between 1848 and 1855, when…

  17. Taming the Tangled Web.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2001-01-01

    Describes the Open Knowledge Initiative (OKI) and its use as a resource for higher education institutions interested in developing web-based learning capabilities. Highlights the OKI collaborative effort and its goal to ensure that the web tools it designs are installable and supportable on smaller campuses and by smaller institutions. (GR)

  18. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  19. Rhizoctonia web blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia web blight, caused by several Rhizoctonia spp., is an important disease of evergreen azaleas and other ornamental plants in nurseries. The primary pathogens causing web blight are binucleate Rhizoctonia anastomosis groups (AG) (= Ceratobasidium D.P. Rogers, teleomorph). In southern AL an...

  20. The Social Web

    ERIC Educational Resources Information Center

    Richardson, Will

    2006-01-01

    This article takes a look at tech guru Will Richardson's new book, "Blogs, Wikis, Podcasts, and Other Powerful Web Tools for Classrooms." Whether it's blogs or wikis or RSS, all roads now point to a Web where little is done in isolation. The biggest, most sweeping change in the people's relationship with the Internet may not be as much the ability…

  1. Web Page Design.

    ERIC Educational Resources Information Center

    Lindsay, Lorin

    Designing a web home page involves many decisions that affect how the page will look, the kind of technology required to use the page, the links the page will provide, and kinds of patrons who can use the page. The theme of information literacy needs to be built into every web page; users need to be taught the skills of sorting and applying…

  2. Web Publishing Schedule

    EPA Pesticide Factsheets

    Section 207(f)(2) of the E-Gov Act requires federal agencies to develop an inventory and establish a schedule of information to be published on their Web sites, make those schedules available for public comment. To post the schedules on the web site.

  3. Sign Language Web Pages

    ERIC Educational Resources Information Center

    Fels, Deborah I.; Richards, Jan; Hardman, Jim; Lee, Daniel G.

    2006-01-01

    The World Wide Web has changed the way people interact. It has also become an important equalizer of information access for many social sectors. However, for many people, including some sign language users, Web accessing can be difficult. For some, it not only presents another barrier to overcome but has left them without cultural equality. The…

  4. Literature on the Web.

    ERIC Educational Resources Information Center

    Deal, Nancy

    2003-01-01

    A teacher in the English education program at Buffalo State College describes her development of Web-based literature guides for preservice teachers to use in preparation and student teaching and for secondary-level English/language arts teachers to use in their classrooms. Discusses assembling materials for the web guide; an overview of site…

  5. Web Design Matters

    ERIC Educational Resources Information Center

    Mathews, Brian

    2009-01-01

    The web site is a library's most important feature. Patrons use the web site for numerous functions, such as renewing materials, placing holds, requesting information, and accessing databases. The homepage is the place they turn to look up the hours, branch locations, policies, and events. Whether users are at work, at home, in a building, or on…

  6. The Web's Unelected Government.

    ERIC Educational Resources Information Center

    Garfinkel, Simson L.

    1998-01-01

    The World Wide Web Consortium--an organization based at the Massachusetts Institute of Technology (MIT) that has 275 corporate members and holds closed meetings--is the closest thing the Web has to a central authority; however, almost nobody outside the telecommunications industry understands what the consortium is. Analyzes the role this body may…

  7. Making WEB Meaning.

    ERIC Educational Resources Information Center

    McKenzie, Jamie

    1996-01-01

    Poorly organized and dominated by amateurs, hucksters, and marketeers, the net requires efficient navigating devices. Students at Bellingham (Washington) Public Schools tackle information overload by contributing to virtual museums on school Web sites, using annotated Web curriculum lists, and conducting research in cooperative teams stressing…

  8. EPA Web Training Classes

    EPA Pesticide Factsheets

    Scheduled webinars can help you better manage EPA web content. Class topics include Drupal basics, creating different types of pages in the WebCMS such as document pages and forms, using Google Analytics, and best practices for metadata and accessibility.

  9. CERES Web Links

    Atmospheric Science Data Center

    2013-03-21

        Web Links to Relevant CERES Information Relevant information about ... questions about the CERES data can be found at the following web sites: CERES Home Page CERES TRMM Home Page ... Information page  on the Atmospheric Science Data Center site CERES "ARM" Validation Experiment (CAVE) Home Page  has ...

  10. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  11. Funnel-web spider bite

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002844.htm Funnel-web spider bite To use the sharing features on ... the effects of a bite from the funnel-web spider. Male funnel-web spiders are more poisonous ...

  12. Using Dendritic Heat Maps to Simultaneously Display Genotype Divergence with Phenotype Divergence

    PubMed Central

    Kellom, Matthew; Raymond, Jason

    2016-01-01

    The advancement of techniques to visualize and analyze large-scale sequencing datasets is an area of active research and is rooted in traditional techniques such as heat maps and dendrograms. We introduce dendritic heat maps that display heat map results over aligned DNA sequence clusters for a range of clustering cutoffs. Dendritic heat maps aid in visualizing the effects of group differences on clustering hierarchy and relative abundance of sampled sequences. Here, we artificially generate two separate datasets with simplified mutation and population growth procedures with GC content group separation to use as example phenotypes. In this work, we use the term phenotype to represent any feature by which groups can be separated. These sequences were clustered in a fractional identity range of 0.75 to 1.0 using agglomerative minimum-, maximum-, and average-linkage algorithms, as well as a divisive centroid-based algorithm. We demonstrate that dendritic heat maps give freedom to scrutinize specific clustering levels across a range of cutoffs, track changes in phenotype inequity across multiple levels of sequence clustering specificity, and easily visualize how deeply rooted changes in phenotype inequity are in a dataset. As genotypes diverge in sample populations, clusters are shown to break apart into smaller clusters at higher identity cutoff levels, similar to a dendrogram. Phenotype divergence, which is shown as a heat map of relative abundance bin response, may or may not follow genotype divergences. This joined view highlights the relationship between genotype and phenotype divergence for treatment groups. We discuss the minimum-, maximum-, average-, and centroid-linkage algorithm approaches to building dendritic heat maps and make a case for the divisive “top-down” centroid-based clustering methodology as being the best option visualize the effects of changing factors on clustering hierarchy and relative abundance. PMID:27536963

  13. The effect of dendritic voltage-gated conductances on the neuronal impedance: a quantitative model.

    PubMed

    Káli, Szabolcs; Zemankovics, Rita

    2012-10-01

    Neuronal impedance characterizes the magnitude and timing of the subthreshold response of a neuron to oscillatory input at a given frequency. It is known to be influenced by both the morphology of the neuron and the presence of voltage-gated conductances in the cell membrane. Most existing theoretical accounts of neuronal impedance considered the effects of voltage-gated conductances but neglected the spatial extent of the cell, while others examined spatially extended dendrites with a passive or spatially uniform quasi-active membrane. We derived an explicit mathematical expression for the somatic input impedance of a model neuron consisting of a somatic compartment coupled to an infinite dendritic cable which contained voltage-gated conductances, in the more general case of non-uniform dendritic membrane potential. The validity and generality of this model was verified through computer simulations of various model neurons. The analytical model was then applied to the analysis of experimental data from real CA1 pyramidal neurons. The model confirmed that the biophysical properties and predominantly dendritic localization of the hyperpolarization-activated cation current I (h) were important determinants of the impedance profile, but also predicted a significant contribution from a depolarization-activated fast inward current. Our calculations also implicated the interaction of I (h) with amplifying currents as the main factor governing the shape of the impedance-frequency profile in two types of hippocampal interneuron. Our results provide not only a theoretical advance in our understanding of the frequency-dependent behavior of nerve cells, but also a practical tool for the identification of candidate mechanisms that determine neuronal response properties.

  14. Convective heat transfer during dendritic solidification

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1978-01-01

    Experiments on succinonitrile are described in which the dependence of dendritic growth velocity is studied as a function of orientation with respect to gravity. Growth rate measurements were carried out at a relatively small supercooling, requiring high specimen purity as well as extreme thermal stability and precision temperature measurement. The normalized growth velocity showed a dependence on orientation described by the ratio of observed growth velocity to that expected for convection-free growth being equal to 3.52 times the n-th power of Cos half the orientation angle, where n lies between 0.5 and 0.75.

  15. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  16. Divergent Effects of Dendritic Cells on Pancreatitis

    DTIC Science & Technology

    2015-09-01

    responses. Our work utilizes murine models and human tissues. Dendritic cells in mice express MHC II and the integrin CD11c. They are proficient in...CD54), and co-stimulatory molecules (CD80, CD86) in the pancreas and spleen in control mice and in models of pancreatitis. We showed that DC... generated BMDC in vitro from BM progenitors using GMCSF (20 ng/ml) in 8 day cultures. Mice were adoptively transferred with 1x106 BMDC after daily caerulein

  17. Organization of TNIK in dendritic spines.

    PubMed

    Burette, Alain C; Phend, Kristen D; Burette, Susan; Lin, Qingcong; Liang, Musen; Foltz, Gretchen; Taylor, Noël; Wang, Qi; Brandon, Nicholas J; Bates, Brian; Ehlers, Michael D; Weinberg, Richard J

    2015-09-01

    Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.

  18. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  19. Buoyancy effects of a growing, isolated dendrite

    NASA Technical Reports Server (NTRS)

    Canright, D.; Davis, S. H.

    1991-01-01

    The buoyancy effect of a growing isolated dendrite on the solidification process in the undercooling liquid material was investigated by developing an analytic solution to the growth/convection problem in powers of a buoyancy parameter G. The solution depends on the Prandtl number P and the Stefan number S (undercooling) for the local velocity and thermal fields and also the buoyant alteration of the interface shape. Results suggest that buoyancy effect for metals (low P) may be qualitatively different from that for organics (high P).

  20. Convective heat transfer during dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  1. Dendrites and Cognition: A Negative Pilot Study in the Rat.

    ERIC Educational Resources Information Center

    Anderson, Britt

    1995-01-01

    The dendritic structure of layer II-III pyramidal neurons of the parietal cortex in 41 Long-Evans rats was compared to behavioral assessments of attention to novelty, response flexibility, and reasoning. A significant correlation between dendritic arborization and behavioral performance was not demonstrated. (SLD)

  2. Musical representation of dendritic spine distribution: a new exploratory tool.

    PubMed

    Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier

    2014-04-01

    Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.

  3. Astrocyte-derived phosphatidic acid promotes dendritic branching.

    PubMed

    Zhu, Yan-Bing; Gao, Weizhen; Zhang, Yongbo; Jia, Feng; Zhang, Hai-Long; Liu, Ying-Zi; Sun, Xue-Fang; Yin, Yuhua; Yin, Dong-Min

    2016-02-17

    Astrocytes play critical roles in neural circuit formation and function. Recent studies have revealed several secreted and contact-mediated signals from astrocytes which are essential for neurite outgrowth and synapse formation. However, the mechanisms underlying the regulation of dendritic branching by astrocytes remain elusive. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphatidic acid (PA) and choline, has been implicated in the regulation of neurite outgrowth. Here we showed that knockdown of PLD1 selectively in astrocytes reduced dendritic branching of neurons in neuron-glia mixed culture. Further studies from sandwich-like cocultures and astrocyte conditioned medium suggested that astrocyte PLD1 regulated dendritic branching through secreted signals. We later demonstrated that PA was the key mediator for astrocyte PLD1 to regulate dendritic branching. Moreover, PA itself was sufficient to promote dendritic branching of neurons. Lastly, we showed that PA could activate protein kinase A (PKA) in neurons and promote dendritic branching through PKA signaling. Taken together, our results demonstrate that astrocyte PLD1 and its lipid product PA are essential regulators of dendritic branching in neurons. These results may provide new insight into mechanisms underlying how astrocytes regulate dendrite growth of neurons.

  4. Redefining the gonadotrophin-releasing hormone neurone dendrite.

    PubMed

    Campbell, R E; Suter, K J

    2010-07-01

    Gonadotrophin-releasing hormone (GnRH) neurones are the final output neurones of the complex synaptic network responsible for the central control of fertility. This scattered population of neurones has been shown to have remarkably long dendritic processes by cell-filling of GnRH neurones in situ with low-molecular weight dyes. This review focuses on how the functional significance of these long dendritic extensions is being explored through dual somatic-dendritic electrophysiological recordings, computational modelling, immunolabelling for specific channels and multiple modes of microscopy and imaging. Remarkably, recent work has discovered that GnRH neurone dendrites not only actively propagate action potentials, but also comprise the primary site of action potential initiation. These findings, along with the discovery of regionalized expression of active conductances, highlight dendrites of single GnRH neurones as being central sites of signal integration. Moreover, imaging studies have shown that the long dendrites of GnRH neurones intertwine and bundle with one another. The presence of shared synaptic input to bundling dendrites, coupled with their active properties and the increased potency of distally placed synaptic inputs, is suggestive of a novel mechanism of GnRH neurone synchronisation, a feature critical for mammalian reproduction. Together, these discoveries of the GnRH neurone dendrite structure and function are changing the way that we view the central regulation of fertility.

  5. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging.

    PubMed

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D

    2013-01-01

    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  6. Special fractal growth of dendrite copper using a hydrothermal method

    SciTech Connect

    Zheng Yan; Zhang Zhejuan; Guo Pingsheng; He Pingang; Sun Zhuo

    2011-08-15

    Special fractal dendrite Cu nanostructures have been synthesized through a simple hydrothermal method, and the effects of the volume ratio between glycerol and water and the concentration of H{sub 3}PO{sub 3} on the morphologies of dendrite Cu have been studied in detail. The Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used to characterize these Cu products. The results indicate that rhombic diamond and different morphologies of fractal dendrite were prepared because of the accumulation of Cu nuclei based on the diffusion-limited aggregation (DLA) and the nucleation-limited aggregation (NLA) model. Fortunately, symmetrical leaf-like dendrite Cu nanostructures different from Cu dendrites reported before have been obtained. Additionally, an explanation for the growth of fractal dendrite Cu has been discussed carefully. - Graphical abstract: Uniform dendritic Cu are grown through controlling V{sub glycerol/water} in range of 0.6-1.2 and the concentration of H{sub 3}PO{sub 3} in range of 0.06-0.3 M. The rhombic cluster Cu are obtained by decreasing the amount of glycerol. Highlights: > Volume ratio of glycerol/water and concentration of H{sub 3}PO{sub 3} were varied, respectively. > Morphologies of dendritic Cu have some changes. > Leaf-like and rhombic cluster Cu were obtained. > The concentration changes affect the aggregation of Cu crystallites. > The aggregation and crystallographic orientation cause leaf-like Cu nanostructures.

  7. Spike-timing-dependent synaptic plasticity depends on dendritic location

    NASA Astrophysics Data System (ADS)

    Froemke, Robert C.; Poo, Mu-ming; Dan, Yang

    2005-03-01

    In the neocortex, each neuron receives thousands of synaptic inputs distributed across an extensive dendritic tree. Although postsynaptic processing of each input is known to depend on its dendritic location, it is unclear whether activity-dependent synaptic modification is also location-dependent. Here we report that both the magnitude and the temporal specificity of spike-timing-dependent synaptic modification vary along the apical dendrite of rat cortical layer 2/3 pyramidal neurons. At the distal dendrite, the magnitude of long-term potentiation is smaller, and the window of pre-/postsynaptic spike interval for long-term depression (LTD) is broader. The spike-timing window for LTD correlates with the window of action potential-induced suppression of NMDA (N-methyl-D-aspartate) receptors; this correlation applies to both their dendritic location-dependence and pharmacological properties. Presynaptic stimulation with partial blockade of NMDA receptors induced LTD and occluded further induction of spike-timing-dependent LTD, suggesting that NMDA receptor suppression underlies LTD induction. Computer simulation studies showed that the dendritic inhomogeneity of spike-timing-dependent synaptic modification leads to differential input selection at distal and proximal dendrites according to the temporal characteristics of presynaptic spike trains. Such location-dependent tuning of inputs, together with the dendritic heterogeneity of postsynaptic processing, could enhance the computational capacity of cortical pyramidal neurons.

  8. Channelopathies and Dendritic Dysfunction in Fragile X syndrome

    PubMed Central

    Brager, Darrin H.; Johnston, Daniel

    2014-01-01

    Dendritic spine abnormalities and the metabotropic glutamate receptor theory put the focus squarely on synapses and protein synthesis as the cellular locus of Fragile X syndrome. Synapses however, are only partly responsible for information processing in neuronal networks. Neurotransmitter triggered excitatory postsynaptic potentials (EPSPs) are shaped and integrated by dendritic voltage-gated ion channels. These EPSPs, and in some cases the resultant dendritic spikes, are further modified by dendritic voltage-gated ion channels as they propagate to the soma. If the resultant somatic depolarization is large enough, action potential(s) will be triggered and propagate both orthodromically down the axon, where it may trigger neurotransmitter release, and antidromically back into the dendritic tree, where it can activate and modify dendritic voltage-gated and receptor activated ion channels. Several channelopathies, both soma-dendritic (L-type calcium channels, Slack potassium channels, h-channels, A-type potassium channels) and axo-somatic (BK channels and delayed rectifier potassium channels) were identified in the fmr1-/y mouse model of Fragile X syndrome. Pathological function of these channels will strongly influence the excitability of individual neurons as well as overall network function. In this chapter we discuss the role of voltage-gated ion channels in neuronal processing and describe how identified channelopathies in models of Fragile X syndrome may play a role in dendritic pathophysiology. PMID:24462643

  9. Cold-induced exodus of postsynaptic proteins from dendritic spines.

    PubMed

    Cheng, Hui-Hsuan; Huang, Zu-Han; Lin, Wei-Hsiang; Chow, Wei-Yuan; Chang, Yen-Chung

    2009-02-01

    Dendritic spines are small protrusions on neuronal dendrites and the major target of the excitatory inputs in mammalian brains. Cultured neurons and brain slices are important tools in studying the biochemical and cellular properties of dendritic spines. During the processes of immunocytochemical studies of neurons and the preparation of brain slices, neurons were often kept at temperatures lower than 37 degrees C for varied lengths of time. This study sought to investigate whether and how cold treatment would affect the protein composition of dendritic spines. The results indicated that upon cold treatment four postsynaptic proteins, namely, alpha,beta-tubulins, calcium, calmodulin-dependent protein kinase IIalpha, and cytoplasmic dynein heavy chain and microtubule-associated protein 2, but not PSD-95 or AMPA receptors, exited from the majority of dendritic spines of cultured rat hippocampal neurons in a Gd(3+)-sensitive manner. The cold-induced exit of tubulins from dendritic spines was further found to be an energy-dependent process involving the activation of Gd(3+)-sensitive calcium channels and ryanodine receptors. The results thus indicate that changes in temperature, calcium concentration, and energy supply of the medium surrounding neurons would affect the protein composition of the dendritic spines and conceivably the protein composition of the subcellular organizations, such as the postsynaptic density, in the cytoplasm of dendritic spines.

  10. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  11. Synaptic amplification by dendritic spines enhances input cooperativity.

    PubMed

    Harnett, Mark T; Makara, Judit K; Spruston, Nelson; Kath, William L; Magee, Jeffrey C

    2012-11-22

    Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons and as such are critically positioned to influence diverse aspects of neuronal signalling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration and plasticity. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines. However, there is a longstanding debate over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation. Here we measure the amplitude ratio of spine head to parent dendrite voltage across a range of dendritic compartments and calculate the associated spine neck resistance (R(neck)) for spines at apical trunk dendrites in rat hippocampal CA1 pyramidal neurons. We find that R(neck) is large enough (~500 MΩ) to amplify substantially the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold, depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of the amplitude ratio indicates that spines provide a consistently high-impedance input structure throughout the dendritic arborization. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an R(neck)-dependent increase in spine head voltage-gated conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons.

  12. A web services choreography scenario for interoperating bioinformatics applications

    PubMed Central

    de Knikker, Remko; Guo, Youjun; Li, Jin-long; Kwan, Albert KH; Yip, Kevin Y; Cheung, David W; Cheung, Kei-Hoi

    2004-01-01

    services using a web services choreography language (BPEL4WS). Conclusion While it is relatively straightforward to implement and publish web services, the use of web services choreography engines is still in its infancy. However, industry-wide support and push for web services standards is quickly increasing the chance of success in using web services to unify heterogeneous bioinformatics applications. Due to the immaturity of currently available web services engines, it is still most practical to implement a simple, ad-hoc XML-based workflow by hard coding the workflow as a Java application. For advanced web service users the Collaxa BPEL engine facilitates a configuration and management environment that can fully handle XML-based workflow. PMID:15113410

  13. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1974-01-01

    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.

  14. Neuronal polarity in Drosophila: sorting out axons and dendrites

    PubMed Central

    Rolls, Melissa M.

    2014-01-01

    Drosophila neurons have identifiable axons and dendrites based on cell shape, but it is only just starting to become clear how Drosophila neurons are polarized at the molecular level. Dendrite-specific components, including the Golgi complex, GABA receptors, neurotransmitter receptor scaffolding proteins and cell adhesion molecules have been described. And proteins involved in constructing presynaptic specializations are concentrated in axons of some neurons. A very simple model for how these components are distributed to axons and dendrites can be constructed based on the opposite polarity of microtubules in axons and dendrites: dynein carries cargo into dendrites, and kinesins carry cargo into axons. The simple model works well for multipolar neurons, but will likely need refinement for unipolar neurons, which are common in Drosophila. PMID:21557498

  15. Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity

    PubMed Central

    Tan, Peng H.; Tyrrell, Helen E.J.; Gao, Liquan; Xu, Danmei; Quan, Jianchao; Gill, Dipender; Rai, Lena; Ding, Yunchuan; Plant, Gareth; Chen, Yuan; Xue, John Z.; Handa, Ashok I.; Greenall, Michael J.; Walsh, Kenneth; Xue, Shao-An

    2015-01-01

    Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer. PMID:25261236

  16. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation.

    PubMed

    Ghosh, Amrit Raj; Bhattacharya, Roopkatha; Bhattacharya, Shamik; Nargis, Titli; Rahaman, Oindrila; Duttagupta, Pritam; Raychaudhuri, Deblina; Liu, Chinky Shiu Chen; Roy, Shounak; Ghosh, Parasar; Khanna, Shashi; Chaudhuri, Tamonas; Tantia, Om; Haak, Stefan; Bandyopadhyay, Santu; Mukhopadhyay, Satinath; Chakrabarti, Partha; Ganguly, Dipyaman

    2016-11-01

    In obese individuals, visceral adipose tissue (VAT) is the seat of chronic low-grade inflammation (metaflammation), but the mechanistic link between increased adiposity and metaflammation largely remains unclear. In obese individuals, deregulation of a specific adipokine, chemerin, contributes to innate initiation of metaflammation by recruiting circulating plasmacytoid dendritic cells (pDCs) into VAT through chemokine-like receptor 1 (CMKLR1). Adipose tissue-derived high-mobility group B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9) in the adipose-recruited pDCs by transporting extracellular DNA through receptor for advanced glycation end products (RAGE) and induces production of type I interferons (IFNs). Type I IFNs in turn help in proinflammatory polarization of adipose-resident macrophages. IFN signature gene expression in VAT correlates with both adipose tissue and systemic insulin resistance (IR) in obese individuals, which is represented by ADIPO-IR and HOMA2-IR, respectively, and defines two subgroups with different susceptibility to IR. Thus, this study reveals a pathway that drives adipose tissue inflammation and consequent IR in obesity.

  17. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  18. Retinal vessel extraction using Lattice Neural Networks with Dendritic Processing.

    PubMed

    Vega, Roberto; Sanchez-Ante, Gildardo; Falcon-Morales, Luis E; Sossa, Humberto; Guevara, Elizabeth

    2015-03-01

    Retinal images can be used to detect and follow up several important chronic diseases. The classification of retinal images requires an experienced ophthalmologist. This has been a bottleneck to implement routine screenings performed by general physicians. It has been proposed to create automated systems that can perform such task with little intervention from humans, with partial success. In this work, we report advances in such endeavor, by using a Lattice Neural Network with Dendritic Processing (LNNDP). We report results using several metrics, and compare against well known methods such as Support Vector Machines (SVM) and Multilayer Perceptrons (MLP). Our proposal shows better performance than other approaches reported in the literature. An additional advantage is that unlike those other tools, LNNDP requires no parameters, and it automatically constructs its structure to solve a particular problem. The proposed methodology requires four steps: (1) Pre-processing, (2) Feature computation, (3) Classification and (4) Post-processing. The Hotelling T(2) control chart was used to reduce the dimensionality of the feature vector, from 7 that were used before to 5 in this work. The experiments were run on images of DRIVE and STARE databases. The results show that on average, F1-Score is better in LNNDP, compared with SVM and MLP implementations. Same improvement is observed for MCC and the accuracy.

  19. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  20. GM-CSF alters dendritic cells in autoimmune diseases.

    PubMed

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  1. Impact of Aging on Dendritic Cell Functions in humans

    PubMed Central

    Agrawal, Anshu; Gupta, Sudhir

    2010-01-01

    Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-alpha in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance. PMID:20619360

  2. Aging and the Dendritic Cell System: Implications for Cancer

    PubMed Central

    Shurin, Michael R.; Shurin, Galina V.; Chatta, Gurkamal S.

    2007-01-01

    The immune system shows a decline in responsiveness to antigens both with aging, as well as in the presence of tumors. The malfunction of the immune system with age can be attributed to developmental and functional alterations in several cell populations. Previous studies have shown defects in humoral responses and abnormalities in T cell function in aged individuals, but have not distinguished between abnormalities in antigen presentation and intrinsic T cell or B cell defects in aged individuals. Dendritic cells (DC) play a pivotal role in regulating immune responses by presenting antigens to naïve T lymphocytes, modulating Th1/Th2/Treg balance, producing numerous regulatory cytokines and chemokines, and modifying survival of immune effectors. DC are receiving increased attention due to their involvement in the immunobiology of tolerance and autoimmunity, as well as their potential role as biological adjuvants in tumor vaccines. Recent advances in the molecular and cell biology of different DC populations allow for addressing the issue of DC and aging both in rodents and humans. Since DC play a crucial role in initiating and regulating immune responses, it is reasonable to hypothesize that they are directly involved in altered antitumor immunity in aging. However, the results of studies focusing on DC in the elderly are conflicting. The present review summarizes the available human and experimental animal data on quantitative and qualitative alterations of DC in aging and discusses the potential role of the DC system in the increased incidence of cancer in the elderly. PMID:17446082

  3. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  4. Dendritic cells--why can they help and hurt us.

    PubMed

    Schäkel, Knut

    2009-03-01

    Dendritic cells (DCs) show a Janus-like functional behavior. They help us by their orchestration of numerous immune responses to defend our body against invading pathogenic micro-organisms and also induce regulatory T cells to inhibit immune reactions against autoantigens as well as diverse harmless environmental antigens. However, DCs can also be of harm to us when misguided by their microenvironment as in allergic and autoimmune diseases or when DCs are targeted and exploited by microbes and cancer cells to evade the immune defense. This huge and diverse functional repertoire of DCs requires complex decision-making processes and the integration of multiple stimulatory and inhibitory signals. Although a given DC type has an extensive functionally plasticity, DCs are heterogeneous and individual DC subtypes are differentially distributed in tissues, express distinct sets of pattern recognition receptors and differ in their capacity to program naive T cells. With the help of transgenic mouse models and selective ablation of individual DC subtypes, we are just at the beginning of understanding the DC system in its complexity. Obtaining a more detailed knowledge of the DC system in mice and men holds strong promise for the successful induction of immunity and tolerance in therapeutic trials. This review presents the recent advances in the understanding of DC biology and discusses why and how DC can help and hurt us.

  5. Web-based interventions for menopause: A systematic integrated literature review.

    PubMed

    Im, Eun-Ok; Lee, Yaelim; Chee, Eunice; Chee, Wonshik

    2017-01-01

    Advances in computer and Internet technologies have allowed health care providers to develop, use, and test various types of Web-based interventions for their practice and research. Indeed, an increasing number of Web-based interventions have recently been developed and tested in health care fields. Despite the great potential for Web-based interventions to improve practice and research, little is known about the current status of Web-based interventions, especially those related to menopause. To identify the current status of Web-based interventions used in the field of menopause, a literature review was conducted using multiple databases, with the keywords "online," "Internet," "Web," "intervention," and "menopause." Using these keywords, a total of 18 eligible articles were analyzed to identify the current status of Web-based interventions for menopause. Six themes reflecting the current status of Web-based interventions for menopause were identified: (a) there existed few Web-based intervention studies on menopause; (b) Web-based decision support systems were mainly used; (c) there was a lack of detail on the interventions; (d) there was a lack of guidance on the use of Web-based interventions; (e) counselling was frequently combined with Web-based interventions; and (f) the pros and cons were similar to those of Web-based methods in general. Based on these findings, directions for future Web-based interventions for menopause are provided.

  6. Interval coding. II. Dendrite-dependent mechanisms.

    PubMed

    Doiron, Brent; Oswald, Anne-Marie M; Maler, Leonard

    2007-04-01

    The rich temporal structure of neural spike trains provides multiple dimensions to code dynamic stimuli. Popular examples are spike trains from sensory cells where bursts and isolated spikes can serve distinct coding roles. In contrast to analyses of neural coding, the cellular mechanics of burst mechanisms are typically elucidated from the neural response to static input. Bridging the mechanics of bursting with coding of dynamic stimuli is an important step in establishing theories of neural coding. Electrosensory lateral line lobe (ELL) pyramidal neurons respond to static inputs with a complex dendrite-dependent burst mechanism. Here we show that in response to dynamic broadband stimuli, these bursts lack some of the electrophysiological characteristics observed in response to static inputs. A simple leaky integrate-and-fire (LIF)-style model with a dendrite-dependent depolarizing afterpotential (DAP) is sufficient to match both the output statistics and coding performance of experimental spike trains. We use this model to investigate a simplification of interval coding where the burst interspike interval (ISI) codes for the scale of a canonical upstroke rather than a multidimensional stimulus feature. Using this stimulus reduction, we compute a quantization of the burst ISIs and the upstroke scale to show that the mutual information rate of the interval code is maximized at a moderate DAP amplitude. The combination of a reduced description of ELL pyramidal cell bursting and a simplification of the interval code increases the generality of ELL burst codes to other sensory modalities.

  7. Astrocytes refine cortical connectivity at dendritic spines

    PubMed Central

    Risher, W Christopher; Patel, Sagar; Kim, Il Hwan; Uezu, Akiyoshi; Bhagat, Srishti; Wilton, Daniel K; Pilaz, Louis-Jan; Singh Alvarado, Jonnathan; Calhan, Osman Y; Silver, Debra L; Stevens, Beth; Calakos, Nicole; Soderling, Scott H; Eroglu, Cagla

    2014-01-01

    During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.001 PMID:25517933

  8. Dendritic growth model of multilevel marketing

    NASA Astrophysics Data System (ADS)

    Pang, James Christopher S.; Monterola, Christopher P.

    2017-02-01

    Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.

  9. How to Weave a Cognitive Web

    NASA Astrophysics Data System (ADS)

    Morris, R. A.; Dungan, J. L.; Votava, P.

    2006-12-01

    interactions with the sensor and product web through technologies related to plan execution and monitoring. Finally, the process of transforming products to goals requires the development of visualization and goal generation tools based on the notion we call model-based goal-generation. We will highlight recent advances in these software technologies that are relevant to realizing the goal of weaving a cognitive web.

  10. Macroscopic characterisations of Web accessibility

    NASA Astrophysics Data System (ADS)

    Lopes, Rui; Carriço, Luis

    2010-12-01

    The Web Science framework poses fundamental questions on the analysis of the Web, by focusing on how microscopic properties (e.g. at the level of a Web page or Web site) emerge into macroscopic properties and phenomena. One research topic on the analysis of the Web is Web accessibility evaluation, which centres on understanding how accessible a Web page is for people with disabilities. However, when framing Web accessibility evaluation on Web Science, we have found that existing research stays at the microscopic level. This article presents an experimental study on framing Web accessibility evaluation into Web Science's goals. This study resulted in novel accessibility properties of the Web not found at microscopic levels, as well as of Web accessibility evaluation processes themselves. We observed at large scale some of the empirical knowledge on how accessibility is perceived by designers and developers, such as the disparity of interpretations of accessibility evaluation tools warnings. We also found a direct relation between accessibility quality and Web page complexity. We provide a set of guidelines for designing Web pages, education on Web accessibility, as well as on the computational limits of large-scale Web accessibility evaluations.

  11. Chemistry WebBook

    National Institute of Standards and Technology Data Gateway

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  12. Web Content Management and One EPA Web Factsheet

    EPA Pesticide Factsheets

    One EPA Web is a multi-year project to improve EPA’s website to better meet the needs of our Web visitors. Content is developed and managed in the WebCMS which supports One EPA Web goals by standardizing how we create and publish content.

  13. An Approach of Web-based Point Cloud Visualization without Plug-in

    NASA Astrophysics Data System (ADS)

    Ye, Mengxuan; Wei, Shuangfeng; Zhang, Dongmei

    2016-11-01

    With the advances in three-dimensional laser scanning technology, the demand for visualization of massive point cloud is increasingly urgent, but a few years ago point cloud visualization was limited to desktop-based solutions until the introduction of WebGL, several web renderers are available. This paper addressed the current issues in web-based point cloud visualization, and proposed a method of web-based point cloud visualization without plug-in. The method combines ASP.NET and WebGL technologies, using the spatial database PostgreSQL to store data and the open web technologies HTML5 and CSS3 to implement the user interface, a visualization system online for 3D point cloud is developed by Javascript with the web interactions. Finally, the method is applied to the real case. Experiment proves that the new model is of great practical value which avoids the shortcoming of the existing WebGIS solutions.

  14. Adherent cells in granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived dendritic cell culture system are qualified dendritic cells.

    PubMed

    Li, Gong-Bo; Lu, Guang-Xiu

    2010-01-01

    A widely-used method for generating dendritic cell (DC) is to culture bone marrow cells in granulocyte-macrophage colony-stimulating factor (GM-CSF)-containing medium for 6-10 days. Usually, non-adherent cells are used as qualified dendritic cells while the adherent ones are discarded as "non-dendritic cells" or macrophages. In this study, we show that the adherent cells are nearly identical to the non-adherent cells in both dendritic cell surface markers expression and main dendritic cell-related functions, hence to prove that these "junk cells" are actually qualified dendritic cells.

  15. Spider webs: Damage control

    NASA Astrophysics Data System (ADS)

    Omenetto, Fiorenzo G.; Kaplan, David L.

    2012-04-01

    A study reveals that spider orb webs fail in a nonlinear fashion, owing to the hierarchical organization of the silk proteins. The discovery may serve as inspiration for engineers for the design of aerial, light-weight, robust architectures.

  16. Web Governance and Management

    EPA Pesticide Factsheets

    This Policy establishes that the U.S. Environmental Protection Agency will operate and maintain a public access Web site to assist in fulfilling the Agency’s mission - to protect the environment and public health.

  17. Learning: The Web.

    ERIC Educational Resources Information Center

    Smith, David A., Ed.; DeVries, David J., Ed.

    1999-01-01

    Explores what can be learned--in particular, what can be learned about science--from the Web sites of four well-known science journals: Discover, Scientific American, Nature, and Science. (Author/ASK)

  18. Fun With Food Webs

    ERIC Educational Resources Information Center

    Smith, Karl D.

    1977-01-01

    Explains an upper elementary game of tag that illustrates energy flow in food webs using candy bars as food sources. A follow-up field trip to a river and five language arts projects are also suggested. (CS)

  19. A zooming Web browser

    SciTech Connect

    Bederson, B.B.; Hollan, J.D.; Stewart, J.; Rogers, D.; Vick, D.; Ring, L.; Grose, E.; Forsythe, C.

    1996-12-31

    We are developing a prototype zooming World-Wide Web browser within Pad++, a multiscale graphical environment. Instead of having a single page visible at a time, multiple pages and the links between them are depicted on a large zoomable information surface. Pages are scaled so that the page in focus is clearly readable with connected pages shown at smaller scales to provide context. We quantitatively compared performance with the Pad++ Web browser and Netscape in several different scenarios. We examined how quickly users could answer questions about a specific Web site designed for this test. Initially we found that subjects answered questions slightly slower with Pad++ than with Netscape. After analyzing the results of this study, we implemented several changes to the Pad++ Web browser, and repeated one Pad++ condition. After improvements were made to the Pad++ browser, subjects using Pad++ answered questions 23% faster than those using Netscape.

  20. Web surveys' hidden hazards.

    PubMed

    Morrel-Samuels, Palmer

    2003-07-01

    The same question posed on the Web and in print can yield very different answers, dramatically distorting survey results and misleading management. But, as psychologist Palmer Morrel-Samuels demonstrates, the problems are readily fixed.

  1. Sp4-dependent repression of Neurotrophin-3 limits dendritic branching

    PubMed Central

    Ramos, Belén; Valín, Alvaro; Sun, Xinxin; Gill, Grace

    2009-01-01

    Regulation of neuronal gene expression is critical to establish functional connections in the mammalian nervous system. The transcription factor Sp4 regulates dendritic patterning during cerebellar granule neuron development by limiting branching and promoting activity-dependent pruning. Here, we investigate neurotrophin-3 (NT3) as a target gene important for Sp4-dependent dendritic morphogenesis. We found that Sp4 overexpression reduced NT3 promoter activity whereas knockdown of Sp4 increased NT3 promoter activity and mRNA. Moreover, Sp4 bound to the NT3 promoter in vivo, supporting a direct role for Sp4 as a repressor of NT3 expression. Addition of exogenous NT3 promoted dendritic branching in cerebellar granule neurons. Furthermore, sequestering NT3 blocked the continued addition of dendritic branches observed upon Sp4 knockdown, but had no effect on dendrite pruning. These findings demonstrate that, during cerebellar granule neuron development, Sp4-dependent repression of neurotrophin-3 is required to limit dendritic branching and thereby promote acquisition of the mature dendritic pattern. PMID:19555762

  2. Computational Convergence of the Path Integral for Real Dendritic Morphologies

    PubMed Central

    2012-01-01

    Neurons are characterised by a morphological structure unique amongst biological cells, the core of which is the dendritic tree. The vast number of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of sub-threshold dendritic currents. The Green’s function obtained for a given dendritic geometry provides this functional relationship for passive or quasi-active dendrites and can be constructed by a sum-over-trips approach based on a path integral formalism. In this paper, we introduce a number of efficient algorithms for realisation of the sum-over-trips framework and investigate the convergence of these algorithms on different dendritic geometries. We demonstrate that the convergence of the trip sampling methods strongly depends on dendritic morphology as well as the biophysical properties of the cell membrane. For real morphologies, the number of trips to guarantee a small convergence error might become very large and strongly affect computational efficiency. As an alternative, we introduce a highly-efficient matrix method which can be applied to arbitrary branching structures. PMID:23174188

  3. Web Operational Status Boards

    SciTech Connect

    Millard, W. David; Stoops, LaMar R.; Dorow, Kevin E.

    2004-04-16

    Web Operational Status Boards (WebOSB)is a web-based application designed to acquire, display, and update highly dynamic status information between multiple users and jurisdictions. WebOSB is able to disseminate real-time status information—support the timely sharing of information—with constant, dynamic updates via personal computers and the Internet between emergency operations centers (EOCs), incident command centers, and to users outside the EOC who need to know the information (hospitals, shelters, schools). The WebOSB application far exceeds outdated information-sharing methods used by emergency workers: whiteboards, Word and Excel documents, or even locality-specific Web sites. WebOSB’s capabilities include the following elements: - Secure access. Multiple users can access information on WebOSB from any personal computer with Internet access and a secure ID. Privileges are use to control access and distribution of status information and to identify users who are authorized to add or edit information. - Simultaneous update. WebOSB provides options for users to add, display, and update dynamic information simultaneously at all locations involved in the emergency management effort, A single status board can be updated from multiple locations enabling shelters and hospitals to post bed availability or list decontamination capability. - On-the-fly modification. Allowing the definition of an existing status board to be modified on-the-fly can be an asset during an emergency, where information requirements can change quickly. The status board designer feature allows an administrator to quickly define, modi,, add to, and implement new status boards in minutes without needing the help of Web designers and computer programmers. - Publisher/subscriber notification. As a subscriber, each user automatically receives notification of any new information relating to specific status boards. The publisher/subscriber feature automatically notified each user of any new

  4. Learning from WebQuests

    ERIC Educational Resources Information Center

    Gaskill, Martonia; McNulty, Anastasia; Brooks, David W.

    2006-01-01

    WebQuests are activities in which students use Web resources to learn about school topics. WebQuests are advocated as constructivist activities and ones generally well regarded by students. Two experiments were conducted in school settings to compare learning using WebQuests versus conventional instruction. Students and teachers both enjoyed…

  5. Optimal Experience of Web Activities.

    ERIC Educational Resources Information Center

    Chen, Hsiang; Wigand, R. T.; Nilan, M. S.

    1999-01-01

    Reports on Web users' optimal flow experiences to examine positive aspects of Web experiences that could be linked to theory applied to other media and then incorporated into Web design. Discusses the use of content-analytic procedures to analyze open-ended questionnaires that examined Web users' perceived flow experiences. (Author/LRW)

  6. Mathematical foundations of the dendritic growth models.

    PubMed

    Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos

    2007-11-01

    At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.

  7. Semantic Web for Manufacturing Web Services

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad

    2002-06-01

    As markets become unexpectedly turbulent with a shortened product life cycle and a power shift towards buyers, the need for methods to rapidly and cost-effectively develop products, production facilities and supporting software is becoming urgent. The use of a virtual enterprise plays a vital role in surviving turbulent markets. However, its success requires reliable and large-scale interoperation among trading partners via a semantic web of trading partners' services whose properties, capabilities, and interfaces are encoded in an unambiguous as well as computer-understandable form. This paper demonstrates a promising approach to integration and interoperation between a design house and a manufacturer by developing semantic web services for business and engineering transactions. To this end, detailed activity and information flow diagrams are developed, in which the two trading partners exchange messages and documents. The properties and capabilities of the manufacturer sites are defined using DARPA Agent Markup Language (DAML) ontology definition language. The prototype development of semantic webs shows that enterprises can widely interoperate in an unambiguous and autonomous manner; hence, virtual enterprise is realizable at a low cost.

  8. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons.

    PubMed

    Hoffman, D A; Magee, J C; Colbert, C M; Johnston, D

    1997-06-26

    Pyramidal neurons receive tens of thousands of synaptic inputs on their dendrites. The dendrites dynamically alter the strengths of these synapses and coordinate them to produce an output in ways that are not well understood. Surprisingly, there turns out to be a very high density of transient A-type potassium ion channels in dendrites of hippocampal CA1 pyramidal neurons. These channels prevent initiation of an action potential in the dendrites, limit the back-propagation of action potentials into the dendrites, and reduce excitatory synaptic events. The channels act to prevent large, rapid dendritic depolarizations, thereby regulating orthograde and retrograde propagation of dendritic potentials.

  9. Fundamentals of dendritic solidification. I - Steady-state tip growth. II - Development of sidebranch structure

    NASA Technical Reports Server (NTRS)

    Huang, S.-C.; Glicksman, M. E.

    1981-01-01

    Systematic measurements of dendrite tip radius and growth velocity in succinonitrile reveal that consideration of dendrite tip stability should be incorporated into the heat transfer theory to determine the steady-state dendritic growth condition. The dendritic stability criterion measured is 2 alpha d0/VR squared = 0.0195, where V is the dendritic growth velocity, R is the dendritic tip radius, alpha is the liquid thermal diffusivity, and d0 is a capillary length defined in the text. Several dendritic stability models are reviewed and discussed in comparison to the present experimental results.

  10. ADASS XII Meeting Web Site

    NASA Astrophysics Data System (ADS)

    Liou, C.; Hulbert, S.

    We present the architecture, design, and implementation details of the ADASS XII web site. The web site was implemented in Zope, a high-performance application server, web server, and content management system rolled into one. Zope includes a robust, scalable object database, web services architecture, and powerful programming capabilities. The web site was built to conform to HTML, CSS, and accessibility standards as adopted by the W3C. This dynamic web site also taps into a back-end Sybase database while requiring a minimal amount of coding. We offer this site as a prototype web site suitable for reuse in supporting future ADASS meetings.

  11. Quantifying the Number of Discriminable Coincident Dendritic Input Patterns through Dendritic Tree Morphology

    PubMed Central

    Zippo, Antonio G.; Biella, Gabriele E. M.

    2015-01-01

    Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inputs. Dendritic branches appear to work as independent discriminating units of inputs potentially reflecting an extraordinary repertoire of pattern memories. However, it is unclear how these observations could impact our comprehension of the structural correlates of memory at the cellular level. This work investigates the discrimination capabilities of neurons through computational biophysical models to extract a predicting law for the dendritic input discrimination capability (M). By this rule we compared neurons from a neuron reconstruction repository (neuromorpho.org). Comparisons showed that primate neurons were not supported by an equivalent M preeminence and that M is not uniformly distributed among neuron types. Remarkably, neocortical neurons had substantially less memory capacity in comparison to those from non-cortical regions. In conclusion, the proposed rule predicts the inherent neuronal spatial memory gathering potentially relevant anatomical and evolutionary considerations about the brain cytoarchitecture. PMID:26100354

  12. Supporting Web Search with Visualization

    NASA Astrophysics Data System (ADS)

    Hoeber, Orland; Yang, Xue Dong

    One of the fundamental goals of Web-based support systems is to promote and support human activities on the Web. The focus of this Chapter is on the specific activities associated with Web search, with special emphasis given to the use of visualization to enhance the cognitive abilities of Web searchers. An overview of information retrieval basics, along with a focus on Web search and the behaviour of Web searchers is provided. Information visualization is introduced as a means for supporting users as they perform their primary Web search tasks. Given the challenge of visualizing the primarily textual information present in Web search, a taxonomy of the information that is available to support these tasks is given. The specific challenges of representing search information are discussed, and a survey of the current state-of-the-art in visual Web search is introduced. This Chapter concludes with our vision for the future of Web search.

  13. Quantitative phase-field modeling of dendritic electrodeposition

    NASA Astrophysics Data System (ADS)

    Cogswell, Daniel A.

    2015-07-01

    A thin-interface phase-field model of electrochemical interfaces is developed based on Marcus kinetics for concentrated solutions, and used to simulate dendrite growth during electrodeposition of metals. The model is derived in the grand electrochemical potential to permit the interface to be widened to reach experimental length and time scales, and electroneutrality is formulated to eliminate the Debye length. Quantitative agreement is achieved with zinc Faradaic reaction kinetics, fractal growth dimension, tip velocity, and radius of curvature. Reducing the exchange current density is found to suppress the growth of dendrites, and screening electrolytes by their exchange currents is suggested as a strategy for controlling dendrite growth in batteries.

  14. Follicular dendritic cell sarcoma of the abdomen: the imaging findings.

    PubMed

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong

    2010-01-01

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  15. Dendrites of rod bipolar cells sprout in normal aging retina.

    PubMed

    Liets, Lauren C; Eliasieh, Kasra; van der List, Deborah A; Chalupa, Leo M

    2006-08-08

    The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors. Such dendritic sprouting increased with age and was evident at all retinal eccentricities. These results provide evidence of retinal plasticity associated with normal aging.

  16. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  17. Web Based Seismological Monitoring (wbsm)

    NASA Astrophysics Data System (ADS)

    Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.

    Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a

  18. [Establishment of induced pluripotent stem cells from adipose tissue-derived stem cells for dendritic cell-based cancer vaccines].

    PubMed

    Matsushita, Norimasa; Kobayashi, Hajime; Aruga, Atsushi; Yamamoto, Masakazu

    2014-04-01

    Recently, studies on regenerative stem cell therapy are being encouraged, and efforts to generate dendritic cells, which play important roles in cancer immunotherapy, from stem cells are being made in the field of tumor immunology. Therapeutic acquisition of stem cells has important clinical applications. Studies on induced pluripotent stem(iPS)cells generated from somatic cells with pluripotent genes have advanced in recent years. Stem cells are reported to be found in adipose tissue (adipose-derived stem cells, ADSC). Our goal is to develop a new cancer vaccine by using dendritic cells generated from ADSC. In a preliminary study, we examined whether iPS cells can be generated from ADSC to serve as a source of dendritic cells.We introduced a plasmid with pluripotent genes(OCT3/4, KLF4, SOX2, L-MYC, LIN28, p53-shRNA)into an ADSC strain derived from adipose tissue by electroporation and subsequently cultured the cells for further examination. A colony sugges- tive of iPS cells from ADSC was observed. OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mRNAs were expressed in the cultured cells, as confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR). On the basis of these results, we confirmed that iPS cells were generated from ADSC. The method of inducing dendritic cells from iPS cells has already been reported, and the results of this study suggest that ADSC is a potential source of dendritic cells.

  19. Learning rules and persistence of dendritic spines.

    PubMed

    Kasai, Haruo; Hayama, Tatsuya; Ishikawa, Motoko; Watanabe, Satoshi; Yagishita, Sho; Noguchi, Jun

    2010-07-01

    Structural plasticity of dendritic spines underlies learning, memory and cognition in the cerebral cortex. We here summarize fifteen rules of spine structural plasticity, or 'spine learning rules.' Together, they suggest how the spontaneous generation, selection and strengthening (SGSS) of spines represents the physical basis for learning and memory. This SGSS mechanism is consistent with Hebb's learning rule but suggests new relations between synaptic plasticity and memory. We describe the cellular and molecular bases of the spine learning rules, such as the persistence of spine structures and the fundamental role of actin, which polymerizes to form a 'memory gel' required for the selection and strengthening of spine synapses. We also discuss the possible link between transcriptional and translational regulation of structural plasticity. The SGSS mechanism and spine learning rules elucidate the integral nature of synaptic plasticity in neuronal network operations within the actual brain tissue.

  20. Dendritic cell control of tolerogenic responses

    PubMed Central

    Manicassamy, Santhakumar; Pulendran, Bali

    2011-01-01

    Summary One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body’s own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions, and the microenvironment in programming tolerogenic DCs. Here we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy. PMID:21488899

  1. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  2. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  3. Transcriptional Control of Dendritic Cell Development

    PubMed Central

    Murphy, Theresa L.; Grajales-Reyes, Gary E.; Wu, Xiaodi; Tussiwand, Roxane; Briseño, Carlos G.; Iwata, Arifumi; Kretzer, Nicole M.; Durai, Vivek; Murphy, Kenneth M.

    2016-01-01

    The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow. PMID:26735697

  4. Free dendritic growth in viscous melts - Cyclohexanol

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Glicksman, M. E.

    1989-01-01

    Experiments were carried out to measure the growth speed, V, and dendritic tip radius, R, of highly purified cyclohexanol. The data show that VR-squared = constant over the entire experimentally observed supercooling range, Delta T is between 0.1 and 1 K. The stability parameter estimated from this result indicates that sigma(asterisk) = 0.027, a value in good agreement with the values of sigma(asterisk) found for the cubic plastic crystals succinonitrile pivalic acid. Cyclohexanol differs from other carefully measured plastic crystals in that the viscosity of its melt at the melting point is about 20 times higher, so gravity-induced convection remains weak even at small supercoolings.

  5. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  6. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  7. Macrophages, dendritic cells, and regression of atherosclerosis

    PubMed Central

    Feig, Jonathan E.; Feig, Jessica L.

    2012-01-01

    Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression. PMID:22934038

  8. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  9. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  10. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  11. Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration

    PubMed Central

    Schultheiss, Nathan W.; Edgerton, Jeremy R.; Jaeger, Dieter

    2010-01-01

    Synchronization of globus pallidus (GP) neurons and cortically-entrained oscillations between GP and other basal ganglia nuclei are key features of the pathophysiology of Parkinson's disease. Phase response curves (PRCs), which tabulate the effects of phasic inputs within a neuron's spike cycle on output spike timing, are efficient tools for predicting the emergence of synchronization in neuronal networks and entrainment to periodic input. In this study we apply physiologically realistic synaptic conductance inputs to a full morphological GP neuron model to determine the phase response properties of the soma and different regions of the dendritic tree. We find that perisomatic excitatory inputs delivered throughout the inter-spike interval advance the phase of the spontaneous spike cycle yielding a type I PRC. In contrast, we demonstrate that distal dendritic excitatory inputs can either delay or advance the next spike depending on whether they occur early or late in the spike cycle. We find this latter pattern of responses, summarized by a biphasic (type II) PRC, was a consequence of dendritic activation of the small conductance calcium-activated potassium current, SK. We also evaluate the spike-frequency dependence of somatic and dendritic PRC shapes, and we demonstrate the robustness of our results to variations of conductance densities, distributions, and kinetic parameters. We conclude that the distal dendrite of GP neurons embodies a distinct dynamical subsystem that could promote synchronization of pallidal networks to excitatory inputs. These results highlight the need to consider different effects of perisomatic and dendritic inputs in the control of network behavior. PMID:20164360

  12. GATA2 regulates dendritic cell differentiation

    PubMed Central

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki

    2016-01-01

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin−Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte–related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  13. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette-Guérin).

  14. Growth of a Dendritic Channel Network (Invited)

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Abrams, D. M.; Devauchelle, O.; Petroff, A. P.; Lobkovsky, A. E.; Straub, K. M.; McElroy, B.; Mohrig, D. C.; Kudrolli, A.

    2009-12-01

    Dendritic channel networks are a ubiquitous feature of Earth's topography. A half century of work has detailed their scale-invariant geometry. But relatively little is known about how such networks grow, especially in natural settings at geologic time scales. This talk addresses the growth of a particularly simple class of channel networks: those which drain groundwater. We focus on a pristine field site in the Florida Panhandle, in which channels extending for kilometers have been incised vertically through tens of meters of ancient beach sands. We first show how the flow of subsurface water interacts with the planform geometry of the network. Ground-penetrating radar images of the water table shape near a highly-ramified section of the network provide a qualitative view of groundwater focusing. Noting that the water table represents a balance between water input via rain and water flowing into the channel network, we solve for the steady state shape of the water table around the entire network and the associated water fluxes. Comparison of predicted and measured fluxes shows that the ramified structure of the Florida network is consistent with uniformly forced unstable growth through a homogeneous medium. In other words, the dendritic pattern results intrinsically from growth dynamics rather than geologic heterogeneity. We then use these observations to show that the growth of groundwater-driven networks can be described by two linear response laws. Remarkably, one of these growth laws is reversible, which allows us to reconstruct network history and estimate network age. A particularly striking feature of the Florida network is the existence of a characteristic length scale between channels. Our theory predicts how this length scale evolves, thereby linking network growth to geometric form. Reference: D. M. Abrams, A. E. Lobkovsky, A. P. Petroff, K. M. Straub, B. McElroy, D. C. Mohrig, A. Kudrolli, and D. H. Rothman,, Growth laws for channel networks incised by

  15. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.

  16. Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons.

    PubMed

    Hutchinson, Katie M; Vonhoff, Fernando; Duch, Carsten

    2014-01-29

    Down syndrome cell adhesion molecule, Dscam, serves diverse neurodevelopmental functions, including axon guidance and synaptic adhesion, as well as self-recognition and self-avoidance, depending on the neuron type, brain region, or species under investigation. In Drosophila, the extensive molecular diversity that results from alternative splicing of Dscam1 into >38,000 isoforms provides neurons with a unique molecular code for self-recognition in the nervous system. Each neuron produces only a small subset of Dscam1 isoforms, and distinct Dscam1 isoforms mediate homophilic interactions, which in turn, result in repulsion and even spacing of self-processes, while allowing contact with neighboring cells. While these mechanisms have been shown to underlie mushroom body development and spacing of mechanosensory neuron dendrites, here we report that Dscam1 plays no role in adult Drosophila motoneuron dendrite spacing, but is required for motoneuron dendritic growth. Targeted expression of Dscam-RNAi in an identified flight motoneuron did not impact dendrite spacing, but instead produced overgrowth. Increasing the knockdown strength severely reduced dendritic growth and branching. Similarly, Dscam mutant motoneurons in an otherwise control background (MARCM) were completely devoid of mature dendrites. These data suggest that Dscam1 is required cell autonomously for normal adult motoneuron dendrite growth in Drosophila. This demonstrates a previously unreported role of Drosophila Dscam1 in central neuron development, and expands the current understanding that Dscam1 operates as a cell adhesion molecule that mediates homophilic repulsion.

  17. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines

    PubMed Central

    Robinson, Cristina M.; Patel, Mikin R.; Webb, Donna J.

    2016-01-01

    Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer. PMID:27408691

  18. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.

    PubMed

    Yuan, Xiaosong; Trachtenberg, Joshua T; Potter, Steve M; Roysam, Badrinath

    2009-12-01

    This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

  19. Borderless Geospatial Web (bolegweb)

    NASA Astrophysics Data System (ADS)

    Cetl, V.; Kliment, T.; Kliment, M.

    2016-06-01

    The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. Project "Crosswalking the layers of geospatial information resources to enable a borderless geospatial web" with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

  20. Factsheets Web Application

    SciTech Connect

    VIGIL,FRANK; REEDER,ROXANA G.

    2000-10-30

    The Factsheets web application was conceived out of the requirement to create, update, publish, and maintain a web site with dynamic research and development (R and D) content. Before creating the site, a requirements discovery process was done in order to accurately capture the purpose and functionality of the site. One of the high priority requirements for the site would be that no specialized training in web page authoring would be necessary. All functions of uploading, creation, and editing of factsheets needed to be accomplished by entering data directly into web form screens generated by the application. Another important requirement of the site was to allow for access to the factsheet web pages and data via the internal Sandia Restricted Network and Sandia Open Network based on the status of the input data. Important to the owners of the web site would be to allow the published factsheets to be accessible to all personnel within the department whether or not the sheets had completed the formal Review and Approval (R and A) process. Once the factsheets had gone through the formal review and approval process, they could then be published both internally and externally based on their individual publication status. An extended requirement and feature of the site would be to provide a keyword search capability to search through the factsheets. Also, since the site currently resides on both the internal and external networks, it would need to be registered with the Sandia search engines in order to allow access to the content of the site by the search engines. To date, all of the above requirements and features have been created and implemented in the Factsheet web application. These have been accomplished by the use of flat text databases, which are discussed in greater detail later in this paper.

  1. Understanding and Supporting Web Developers: Design and Evaluation of a Web Accessibility Information Resource (WebAIR).

    PubMed

    Swallow, David; Petrie, Helen; Power, Christopher

    2016-01-01

    This paper describes the design and evaluation of a Web Accessibility Information Resource (WebAIR) for supporting web developers to create and evaluate accessible websites. WebAIR was designed with web developers in mind, recognising their current working practices and acknowledging their existing understanding of web accessibility. We conducted an evaluation with 32 professional web developers in which they used either WebAIR or an existing accessibility information resource, the Web Content Accessibility Guidelines, to identify accessibility problems. The findings indicate that several design decisions made in relation to the language, organisation, and volume of WebAIR were effective in supporting web developers to undertake web accessibility evaluations.

  2. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  3. Dendritic Synapse Location and Neocortical Spike-Timing-Dependent Plasticity

    PubMed Central

    Froemke, Robert C.; Letzkus, Johannes J.; Kampa, Björn M.; Hang, Giao B.; Stuart, Greg J.

    2010-01-01

    While it has been appreciated for decades that synapse location in the dendritic tree has a powerful influence on signal processing in neurons, the role of dendritic synapse location on the induction of long-term synaptic plasticity has only recently been explored. Here, we review recent work revealing how learning rules for spike-timing-dependent plasticity (STDP) in cortical neurons vary with the spatial location of synaptic input. A common principle appears to be that proximal synapses show conventional STDP, whereas distal inputs undergo plasticity according to novel learning rules. One crucial factor determining location-dependent STDP is the backpropagating action potential, which tends to decrease in amplitude and increase in width as it propagates into the dendritic tree of cortical neurons. We discuss additional location-dependent mechanisms as well as the functional implications of heterogeneous learning rules at different dendritic locations for the organization of synaptic inputs. PMID:21423515

  4. Synaptic efficacy cluster formation across the dendrite via STDP.

    PubMed

    Iannella, Nicolangelo; Tanaka, Shigeru

    2006-07-31

    The role of spike-timing-dependent plasticity (STDP) in shaping the strength of a synapse located on the dendritic tree has gained recent interest. Previous theoretical studies using STDP have mostly used simplified integrate-and-fire models to investigate the evolution of synaptic efficacy with time. Such studies usually show that the final weight distribution is unimodal or bimodal resulting from a multiplicative or additive STDP rule, respectively. However, very little is known about how STDP shapes the spatial organization of synaptic efficacies. Here, for the first time, we demonstrate that spatial clustering of synaptic efficacies can occur on the dendrite via STDP, where changes in synaptic efficacy are driven by timing differences between synaptic inputs and the generation of local dendritic spikes. Specifically, when the model neuron is stimulated by two independent groups of correlated afferent inputs, the synaptic efficacies from each group, are not only spatially clustered on the dendrite but also spatially complementary to each other.

  5. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  6. Magneto-Dendrite Effect: Copper Electrodeposition under High Magnetic Field.

    PubMed

    Miura, Makoto; Oshikiri, Yoshinobu; Sugiyama, Atsushi; Morimoto, Ryoichi; Mogi, Iwao; Miura, Miki; Takagi, Satoshi; Yamauchi, Yusuke; Aogaki, Ryoichi

    2017-04-04

    Ionic vacancy is a by-product in electrochemical reaction, composed of polarized free space of the order of 0.1 nm with a 1 s lifetime, and playing key roles in nano-electrochemical processes. However, its chemical nature has not yet been clarified. In copper electrodeposition under a high magnetic field of 15 T, using a new electrode system called cyclotron magnetohydrodynamic (MHD) electrode (CMHDE) composed of a pair of concentric cylindrical electrodes, we have found an extraordinary dendritic growth with a drastic positive potential shift from hydrogen-gas evolution potential. Dendritic deposition is characterized by the co-deposition of hydrogen molecule, but such a positive potential shift makes hydrogen-gas evolution impossible. However, in the high magnetic field, instead of flat deposit, remarkable dendritic growth emerged. By examining the chemical nature of ionic vacancy, it was concluded that ionic vacancy works on the dendrite formation with the extraordinary potential shift.

  7. Observation of dendritic growth under the influence of forced convection

    NASA Astrophysics Data System (ADS)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  8. Regulatory mechanisms underlying the differential growth of dendrites and axons.

    PubMed

    Wang, Xin; Sterne, Gabriella R; Ye, Bing

    2014-08-01

    A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.

  9. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  10. The three-dimensional morphology of growing dendrites

    SciTech Connect

    Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.; Shahani, A. J.; Xiao, X.; Bouman, C. A.; De Graef, M.; Voorhees, P. W.

    2015-07-03

    The processes controlling the morphology of dendrites have been of great interest to a wide range of communities, since they are examples of an out-of-equilibrium pattern forming system, there is a clear connection with battery failure processes, and their morphology sets the properties of many metallic alloys. We determine the three-dimensional morphology of free growing metallic dendrites using a novel X-ray tomographic technique that improves the temporal resolution by more than an order of magnitude compared to conventional techniques. These measurements show that the growth morphology of metallic dendrites is surprisingly different from that seen in model systems, the morphology is not self-similar with distance back from the tip, and that this morphology can have an unexpectedly strong influence on solute segregation in castings. These experiments also provide benchmark data that can be used to validate simulations of free dendritic growth.

  11. The Three-Dimensional Morphology of Growing Dendrites

    PubMed Central

    Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.; Shahani, A. J.; Xiao, X.; Bouman, C. A.; De Graef, M.; Voorhees, P. W.

    2015-01-01

    The processes controlling the morphology of dendrites have been of great interest to a wide range of communities, since they are examples of an out-of-equilibrium pattern forming system, there is a clear connection with battery failure processes, and their morphology sets the properties of many metallic alloys. We determine the three-dimensional morphology of free growing metallic dendrites using a novel X-ray tomographic technique that improves the temporal resolution by more than an order of magnitude compared to conventional techniques. These measurements show that the growth morphology of metallic dendrites is surprisingly different from that seen in model systems, the morphology is not self-similar with distance back from the tip, and that this morphology can have an unexpectedly strong influence on solute segregation in castings. These experiments also provide benchmark data that can be used to validate simulations of free dendritic growth. PMID:26139473

  12. The three-dimensional morphology of growing dendrites

    DOE PAGES

    Gibbs, J. W.; Mohan, K. A.; Gulsoy, E. B.; ...

    2015-07-03

    The processes controlling the morphology of dendrites have been of great interest to a wide range of communities, since they are examples of an out-of-equilibrium pattern forming system, there is a clear connection with battery failure processes, and their morphology sets the properties of many metallic alloys. We determine the three-dimensional morphology of free growing metallic dendrites using a novel X-ray tomographic technique that improves the temporal resolution by more than an order of magnitude compared to conventional techniques. These measurements show that the growth morphology of metallic dendrites is surprisingly different from that seen in model systems, the morphologymore » is not self-similar with distance back from the tip, and that this morphology can have an unexpectedly strong influence on solute segregation in castings. These experiments also provide benchmark data that can be used to validate simulations of free dendritic growth.« less

  13. Transcriptional profiling of dendritic cells matured in different osmolarities.

    PubMed

    Chessa, Federica; Hielscher, Thomas; Mathow, Daniel; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-03-01

    Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1-3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174), aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7) developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  14. High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts.

    PubMed

    Satoh, Daisuke; Suyama, Ritsuko; Kimura, Ken-ichi; Uemura, Tadashi

    2012-12-01

    Neuronal circuits that are formed in early development are reorganized at later developmental stages to support a wide range of adult behaviors. At Drosophila pupal stages, one example of this reorganization is dendritic remodeling of multidendritic neurons, which is accomplished by pruning and subsequent regeneration of branches in environments quite distinct from those in larval life. Here, we used long-term in vivo time-lapse recordings at high spatiotemporal resolution and analyzed the dynamics of two adjacent cell types that remodel dendritic arbors, which eventually innervate the lateral plate of the adult abdomen. These neurons initially exhibited dynamic extension, withdrawal and local degeneration of filopodia that sprouted from all along the length of regenerating branches. At a midpupal stage, branches extending from the two cell types started fasciculating with each other, which prompted us to test the hypothesis that this heterotypic contact may serve as a guiding scaffold for shaping dendritic arbors. Unexpectedly, our cell ablation study gave only marginal effects on the branch length and the arbor shape. This result suggests that the arbor morphology of the adult neurons in this study can be specified mostly in the absence of the dendrite-dendrite contact.

  15. Synaptic amplification by dendritic spines enhances input cooperativity

    PubMed Central

    Harnett, Mark T.; Makara, Judit K.; Spruston, Nelson; Kath, William L.; Magee, Jeffrey C.

    2012-01-01

    Dendritic spines are the nearly ubiquitous site of excitatory synaptic input onto neurons1–2 and as such are critically positioned to influence diverse aspects of neuronal signaling. Decades of theoretical studies have proposed that spines may function as highly effective and modifiable chemical and electrical compartments that regulate synaptic efficacy, integration, and plasticity3–8. Experimental studies have confirmed activity-dependent structural dynamics and biochemical compartmentalization by spines9–12. However, a longstanding debate remains over the influence of spines on the electrical aspects of synaptic transmission and dendritic operation3–8,13–18. Here, we measured the amplitude ratio (AR) of spine head to parent dendrite voltage across a range of dendritic compartments and calculated the associated Rneck for spines at apical trunk dendrites in hippocampal CA1 pyramidal neurons. We found that Rneck is large enough (~500 MΩ) to substantially amplify the spine head depolarization associated with a unitary synaptic input by ~1.5- to ~45-fold depending on parent dendritic impedance. A morphologically realistic compartmental model capable of reproducing the observed spatial profile of AR indicates that spines provide a consistently high impedance input structure throughout the dendritic arbor. Finally, we demonstrate that the amplification produced by spines encourages electrical interaction among coactive inputs through an Rneck-dependent increase in spine head voltage- dependent conductance activation. We conclude that the electrical properties of spines promote nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally enhancing the computational capabilities of neurons19–21. PMID:23103868

  16. Influence of dendrite network defects on channel segregate growth

    NASA Technical Reports Server (NTRS)

    Simpson, M.; Yerebakan, M.; Flemings, M. C.

    1985-01-01

    The solidifying ingot interdendritic flow analysis in which channel segregates are assumed to be produced by interdendritic fluid flow dissolving channels in the primary dendrite network is presently refined by examining the flow through a dendrite network possessing a small defect. Attention is given to the section of the mushy zone in a solidifying casting. Since defects such as that presently treated are unavoidable in a real casting, a more reliable indication may be furnished of the occurrence of channel segregates.

  17. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    PubMed

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  18. HMMER web server: interactive sequence similarity searching.

    PubMed

    Finn, Robert D; Clements, Jody; Eddy, Sean R

    2011-07-01

    HMMER is a software suite for protein sequence similarity searches using probabilistic methods. Previously, HMMER has mainly been available only as a computationally intensive UNIX command-line tool, restricting its use. Recent advances in the software, HMMER3, have resulted in a 100-fold speed gain relative to previous versions. It is now feasible to make efficient profile hidden Markov model (profile HMM) searches via the web. A HMMER web server (http://hmmer.janelia.org) has been designed and implemented such that most protein database searches return within a few seconds. Methods are available for searching either a single protein sequence, multiple protein sequence alignment or profile HMM against a target sequence database, and for searching a protein sequence against Pfam. The web server is designed to cater to a range of different user expertise and accepts batch uploading of multiple queries at once. All search methods are also available as RESTful web services, thereby allowing them to be readily integrated as remotely executed tasks in locally scripted workflows. We have focused on minimizing search times and the ability to rapidly display tabular results, regardless of the number of matches found, developing graphical summaries of the search results to provide quick, intuitive appraisement of them.

  19. Source food webs as estimators of community web structure

    NASA Astrophysics Data System (ADS)

    Hawkins, Bradford A.; Martinez, Neo D.; Gilbert, Francis

    Taxonomically restricted "source webs" are commonly used to represent the community food webs of which they are part. This raises a methodological problem if source webs provide biased estimates of food web structure. We use four high quality, extensive food webs containing multiple source species to measure the sensitivity of food web metrics to the number of source species used to generate a web. The total number of species ( S), linkage density ( L/S), directed connectance ( L/S 2) and the fractions of basal ( B), intermediate ( I), and top ( T) species are all sensitive to the number of source species. Further, the pattern of variation for the latter fractions is inconsistent and web dependent, indicating that source webs are inappropriate for characterizing these properties. Linkage densities increase with the numbers of source species in all four cases, with webs based on single or few sources severely underestimating values obtained for the full webs. Connectance shows more constrained decreases with increasing numbers of sources, suggesting that multiple-source webs may provide reasonable estimates of connectance for community webs.

  20. [Dendritic cells and gliomas: a hope in immunotherapy?].

    PubMed

    Jouanneau, E; Poujol, D; Caux, C; Belin, M-F; Blay, J-Y; Puisieux, I

    2006-12-01

    Immunotherapy has been explored for several decades to try to improve the prognosis of gliomas, but until recently no therapeutic benefit has been achieved. The discovery of dendritic cells, the most potent professional antigen presenting cells to initiate specific immune response, and the possibility of producing them ex vivo gave rise to new protocols of active immunotherapy. In oncology, promising experimental and clinical therapeutic results were obtained using these dendritic cells loaded with tumor antigen. Patients bearing gliomas have deficit antigen presentation making this approach rational. In several experimental glioma models, independent research teams have showed specific antitumor responses using these dendritic cells. Phase I/II clinical trials have demonstrated the feasibility and the tolerance of this immunotherapeutic approach. In neuro-oncology, the efficiency of such an approach remains to be established, similarly in oncology where positive phase III studies are missing. Nevertheless, dendritic cells comprise a complex network which is only partially understood and capable of generating either immunotolerance or immune response. Numerous parameters remain to be explored before any definitive conclusion about their utility as an anticancer weapon can be drawn. It seems however logical that immunotherapy with dendritic cells could prevent or delay tumor recurrence in patients with minor active disease. A review on glioma and dendritic cells is presented.

  1. Functional Redundancy of Septin Homologs in Dendritic Branching

    PubMed Central

    Kaplan, Charlotte; Steinmann, Mayra; Zapiorkowska, Natalia A.; Ewers, Helge

    2017-01-01

    Septins are cytoskeletal GTPases present in nonpolar heteromeric complexes that assemble in a palindromic fashion from two to eight subunits. Mammalian septins function in several fundamental cellular processes at the membrane-cytoskeleton interface including dendritic branching in neurons. Sequence homology divides the 13 mammalian septin genes into four homology groups. Experimental findings suggest that septin function is redundant among septins from one homology group. This is best understood for the isoforms of the SEPT2 group, which form a homodimer at the center of septin complexes. In vitro, all SEPT2-group septins form recombinant hexameric complexes with two copies of SEPT6 and SEPT7. However, it remains unclear to what extent homologs septins can substitute for each other in specific cellular processes. Here, we use the experimental paradigm of dendritic branching in hippocampal rat neurons to ask, to what extent septins of the SEPT2-group are functionally redundant. Dendritic branching is significantly reduced when SEPT5 is downregulated. In neurons expressing SEPT5-shRNA, simultaneously expressed SEPT2-GFP, and SEPT4-GFP colocalize with SEPT7 at dendritic spine necks and rescue dendritic branching. In contrast, SEPT1-GFP is diffusely distributed in the cytoplasm in SEPT5 downregulated neurons and cannot rescue dendritic branching. Our findings provide a basis for the study of septin-specific functions in cells. PMID:28265560

  2. SIRT1 regulates dendritic development in hippocampal neurons.

    PubMed

    Codocedo, Juan F; Allard, Claudio; Godoy, Juan A; Varela-Nallar, Lorena; Inestrosa, Nibaldo C

    2012-01-01

    Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.

  3. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  4. Afferent input regulates the formation of distal dendritic branches.

    PubMed

    Mizrahi, Adi; Libersat, Frederic

    2002-10-07

    During postembryonic development, the dendritic arbors of neurons grow to accommodate new incoming synaptic inputs. Our goal was to examine which features of dendritic architecture of postsynaptic interneurons are regulated by these synaptic inputs. To address this question, we took advantage of the cockroach cercal system where the morphology of the sensory giant interneurons (GIs) is uniquely identified and, therefore, amenable to quantitative analysis. We analyzed the three-dimensional architecture of chronically deafferented vs. normally developed dendritic trees of a specific identified GI, namely GI2. GI2 shows five prominent dendrites, four of which were significantly altered after deafferentation. De-afferentation induced an average of 55% decrease in metric measures (number of branch points, total length, and total surface area) on the entire dendritic tree. Sholl and branch order analysis showed a decrease in the most distal and higher order branches. We suggest that afferent input plays a specific role in shaping the morphology of dendritic trees by regulating the formation or maintenance of high-order distal branches.

  5. Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits

    PubMed Central

    Hay, Etay; Segev, Idan

    2015-01-01

    Layer 5 thick tufted pyramidal cells (TTCs) in the neocortex are particularly electrically complex, owing to their highly excitable dendrites. The interplay between dendritic nonlinearities and recurrent cortical microcircuit activity in shaping network response is largely unknown. We simulated detailed conductance-based models of TTCs forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. TTCs microcircuits significantly amplified brief thalamocortical inputs; this cortical gain was mediated by back-propagation activated N-methyl-d-aspartate depolarizations and dendritic back-propagation-activated Ca2+ spike firing, ignited by the coincidence of thalamic-activated somatic spike and local dendritic synaptic inputs, originating from the cortical microcircuit. Surprisingly, dendritic nonlinearities in TTCs microcircuits linearly multiplied thalamic inputs—amplifying them while maintaining input selectivity. Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. PMID:25205662

  6. SIRT1 Regulates Dendritic Development in Hippocampal Neurons

    PubMed Central

    Godoy, Juan A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2012-01-01

    Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway. PMID:23056585

  7. Dendritic position is a major determinant of presynaptic strength

    PubMed Central

    de Jong, Arthur P.H.; Schmitz, Sabine K.; Toonen, Ruud F.G.

    2012-01-01

    Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent. PMID:22492722

  8. Dendritic position is a major determinant of presynaptic strength.

    PubMed

    de Jong, Arthur P H; Schmitz, Sabine K; Toonen, Ruud F G; Verhage, Matthijs

    2012-04-16

    Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent.

  9. Dendrite arborization requires the dynein cofactor NudE.

    PubMed

    Arthur, Ashley L; Yang, Sihui Z; Abellaneda, Allison M; Wildonger, Jill

    2015-06-01

    The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.

  10. Unsupervised learnable neuron model with nonlinear interaction on dendrites.

    PubMed

    Todo, Yuki; Tamura, Hiroki; Yamashita, Kazuya; Tang, Zheng

    2014-12-01

    Recent researches have provided strong circumstantial support to dendrites playing a key and possibly essential role in computations. In this paper, we propose an unsupervised learnable neuron model by including the nonlinear interactions between excitation and inhibition on dendrites. The model neuron self-adjusts its synaptic parameters, so that the synapse to dendrite, according to a generalized delta-rule-like algorithm. The model is used to simulate directionally selective cells by the unsupervised learning algorithm. In the simulations, we initialize the interaction and dendrite of the neuron randomly and use the generalized delta-rule-like unsupervised learning algorithm to learn the two-dimensional multi-directional selectivity problem without an external teacher's signals. Simulation results show that the directionally selective cells can be formed by unsupervised learning, acquiring the required number of dendritic branches, and if needed, enhanced and if not, eliminated. Further, the results show whether a synapse exists; if it exists, where and what type (excitatory or inhibitory) of synapse it is. This leads us to believe that the proposed neuron model may be considerably more powerful on computations than the McCulloch-Pitts model because theoretically a single neuron or a single layer of such neurons is capable of solving any complex problem. These may also lead to a completely new technique for analyzing the mechanisms and principles of neurons, dendrites, and synapses.

  11. Design and implementation of CUAHSI WaterML and WaterOneFlow Web Services

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Zaslavsky, I.; Whitenack, T.; Maidment, D.

    2007-12-01

    WaterOneFlow is a term for a group of web services created by and for the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) community. CUAHSI web services facilitate the retrieval of hydrologic observations information from online data sources using the SOAP protocol. CUAHSI Water Markup Language (below referred to as WaterML) is an XML schema defining the format of messages returned by the WaterOneFlow web services. \

  12. Effect of aging and oral tolerance on dendritic cell function.

    PubMed

    Simioni, P U; Fernandes, L G R; Gabriel, D L; Tamashiro, W M S C

    2010-01-01

    Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20%, respectively) than DC from immunized mice (P < 0.05) in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-beta levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05). DC from both immunized and tolerized old and very old (60 and 80 weeks old) mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05). A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50%, respectively). The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.

  13. Dendritic cells: a family portrait at mid-gestation

    PubMed Central

    Bizargity, Peyman; Bonney, Elizabeth A

    2009-01-01

    Recent advances in our understanding of dendritic cells (DCs) and their role in tolerance and immunity has fuelled study of their normal development and function within the reproductive tract. The common hypothesis that pregnancy is a state of immune suppression or deviation now includes the idea that alterations in DC phenotype and function are critical for maternal tolerance. We chose to study DCs in the uterus and lymphoid tissue in non-pregnant and pregnant mice at mid-gestation to understand what DC-related factors may be involved in premature birth. We used a mouse model where the mother’s immune system has been shown to respond to the male antigen H-Y. Observed differences among DCs in the uterus, uterine draining nodes and spleen, even in non-pregnant mice, suggest the existence of a specialized uterus-specific subset of DCs. We further found that, amongst CD45+ CD11c+ cells in the uterus and peripheral lymphoid tissue of pregnant mice, expression of major histocompatibility complex class II (MHC II) and costimulatory molecules (i.e. CD80) was similar to that in the non-pregnant state. Moreover, there was no pregnancy-related decrease in the proportion of CD11c+ cells in the uterus or in the uterine node that were CD11b− CD8+. Pregnancy increased the CD11b+ subsets and the expression of chemokine (C-C motif) ligand 6 (CCL6) in DCs of the uterine draining nodes. Finally, DC subsets showed variable expression, with respect to tissue and pregnancy, of the cytokine interleukin-15, which is important in lymphoid cell homeostasis. For DCs, pregnancy is not a state of immune paralysis, but of dynamic developmental change. PMID:18778288

  14. Learning from WebQuests

    NASA Astrophysics Data System (ADS)

    Gaskill, Martonia; McNulty, Anastasia; Brooks, David W.

    2006-04-01

    WebQuests are activities in which students use Web resources to learn about school topics. WebQuests are advocated as constructivist activities and ones generally well regarded by students. Two experiments were conducted in school settings to compare learning using WebQuests versus conventional instruction. Students and teachers both enjoyed WebQuest instruction and spoke highly of it. In one experiment, however, conventional instruction led to significantly greater student learning. In the other, there were no significant differences in the learning outcomes between conventional versus WebQuest-based instruction.

  15. Development of Kevlar parachute webbings

    SciTech Connect

    Ericksen, R.H.

    1991-01-01

    This paper describes the development of Kevlar webbings for parachute applications. Evaluation of existing webbings and a study of the effects of filling yarn denier and pick count on tensile and joint strength provided data for fabric design. Measurements of warp crimp as a function of filling denier and pick count demonstrated the relationship between warp crimp and strength. One newly developed webbing had higher strength efficiency and another had higher joint efficiency than comparable existing webbings. Both new webbings had overall efficiencies over 5% higher than values for existing webbings. 10 refs., 4 figs., 2 tabs.

  16. Dendritic solidification. III - Some further refinements to the model for dendritic growth under an imposed thermal gradient

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1985-01-01

    Some further refinements to a simple model for dendritic solidification in a binary alloy melt under an imposed positive thermal gradient are presented. Two new expressions for the dendrite tip undercooling have been obtained and shown to yield a limiting value of Delta T sub 0 and very small growth rates. Here Delta T sub 0 is the equilibrium solidification range of the alloy. At very large growth rates, all three tip undercooling expressions reach the same limiting value depending on the value of a dimensionless parameter lambda which is related to the effective diffusion distance ahead of the dendrite tip. The predicted tip undercoolings are, however, somewhat lower at intermediate growth rates. An improved calculation for the solute buildup at the dendrite tip due to curvature effects is also included.

  17. WebTheme: Understanding Web Information through Visual Analytics

    SciTech Connect

    Whiting, Mark A.; Cramer, Nicholas O.

    2002-06-09

    WebTheme combines the power of software agent-based information retrieval with visual analytics to provide users with a new tool for understanding web information. WebTheme allows users to both quickly comprehend large collections of information from the Web and drill down into interesting portions of a collection. Software agents work for users to perform controlled harvesting of web material of interest. Visualization and analysis tools allow exploration of the resulting document space. Information spaces are organized and presented according to their topical context. Tools that display how documents were collected by the agents, where they were gathered, and how they are linked further enhance users? understanding of information and its context. WebTheme is a significant tool in the pursuit of the Semantic Web. In particular, it supports enhanced user insight into semantics of large, pre-structured or ad-hoc, web information collections.

  18. Improving Web Searches: Case Study of Quit-Smoking Web Sites for Teenagers

    PubMed Central

    Skinner, Harvey

    2003-01-01

    Background The Web has become an important and influential source of health information. With the vast number of Web sites on the Internet, users often resort to popular search sites when searching for information. However, little is known about the characteristics of Web sites returned by simple Web searches for information about smoking cessation for teenagers. Objective To determine the characteristics of Web sites retrieved by search engines about smoking cessation for teenagers and how information quality correlates with the search ranking. Methods The top 30 sites returned by 4 popular search sites in response to the search terms "teen quit smoking" were examined. The information relevance and quality characteristics of these sites were evaluated by 2 raters. Objective site characteristics were obtained using a page-analysis Web site. Results Only 14 of the 30 Web sites are of direct relevance to smoking cessation for teenagers. The readability of about two-thirds of the 14 sites is below an eighth-grade school level and they ranked significantly higher (Kendall rank correlation, tau = -0.39, P= .05) in search-site results than sites with readability above or equal to that grade level. Sites that ranked higher were significantly associated with the presence of e-mail address for contact (tau = -0.46, P= .01), annotated hyperlinks to external sites (tau = -0.39, P= .04), and the presence of meta description tag (tau = -0.48, P= .002). The median link density (number of external sites that have a link to that site) of the Web pages was 6 and the maximum was 735. A higher link density was significantly associated with a higher rank (tau = -0.58, P= .02). Conclusions Using simple search terms on popular search sites to look for information on smoking cessation for teenagers resulted in less than half of the sites being of direct relevance. To improve search efficiency, users could supplement results obtained from simple Web searches with human-maintained Web

  19. Semantic Sensor Web

    NASA Astrophysics Data System (ADS)

    Sheth, A.; Henson, C.; Thirunarayan, K.

    2008-12-01

    Sensors are distributed across the globe leading to an avalanche of data about our environment. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the Semantic Sensor Web (SSW) [1] proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. Kno.e.sis Center's approach to SSW is an evolutionary one. It adds semantic annotations to the existing standard sensor languages of the Sensor Web Enablement (SWE) defined by OGC. These annotations enhance primarily syntactic XML-based descriptions in OGC's SWE languages with microformats, and W3C's Semantic Web languages- RDF and OWL. In association with semantic annotation and semantic web capabilities including ontologies and rules, SSW supports interoperability, analysis and reasoning over heterogeneous multi-modal sensor data. In this presentation, we will also demonstrate a mashup with support for complex spatio-temporal-thematic queries [2] and semantic analysis that utilize semantic annotations, multiple ontologies and rules. It uses existing services (e.g., GoogleMap) and semantics enhanced SWE's Sensor Observation Service (SOS) over weather and road condition data from various sensors that are part of Ohio's transportation network. Our upcoming plans are to demonstrate end to end (heterogeneous sensor to application) semantics support and study scalability of SSW involving thousands of sensors to about a billion triples. Keywords: Semantic Sensor Web, Spatiotemporal thematic queries, Semantic Web Enablement, Sensor Observation Service [1] Amit Sheth, Cory Henson, Satya

  20. The Ret receptor regulates sensory neuron dendrite growth and integrin mediated adhesion.

    PubMed

    Soba, Peter; Han, Chun; Zheng, Yi; Perea, Daniel; Miguel-Aliaga, Irene; Jan, Lily Yeh; Jan, Yuh Nung

    2015-03-12

    Neurons develop highly stereotyped receptive fields by coordinated growth of their dendrites. Although cell surface cues play a major role in this process, few dendrite specific signals have been identified to date. We conducted an in vivo RNAi screen in Drosophila class IV dendritic arborization (C4da) neurons and identified the conserved Ret receptor, known to play a role in axon guidance, as an important regulator of dendrite development. The loss of Ret results in severe dendrite defects due to loss of extracellular matrix adhesion, thus impairing growth within a 2D plane. We provide evidence that Ret interacts with integrins to regulate dendrite adhesion via rac1. In addition, Ret is required for dendrite stability and normal F-actin distribution suggesting it has an essential role in dendrite maintenance. We propose novel functions for Ret as a regulator in dendrite patterning and adhesion distinct from its role in axon guidance.

  1. Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel

    NASA Astrophysics Data System (ADS)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2015-01-01

    Considering the influence of the latent heat released during the solidification of high carbon liquid steel, a cellular automaton (CA) model coupled with the heat transfer was developed to investigate the growth of equiaxed dendrites which is controlled by the solute diffusion during the continuous casting process. Additionally, the growth of columnar dendrites and primary dendrite arm spacings were predicted and measured. The results show that the CA model is able to describe the growth behavior of equiaxed dendrites, especially at 5 K to 7 K melt undercoolings, and the approach adjusting the cooling medium temperature is reliable to keep the undercooling condition stable for equiaxed dendrites although its hysteresis is reinforced as the pre-set undercooling increases. With the increase of the melt undercooling, the growth of equiaxed dendrites becomes faster, and the thickness of dendritic arms increases slightly, however, the thickness of the diffusion layer in front of dendritic tips keeps constant. The growth of thin and tiny columnar dendrites will be confined due to the competition and absorbed by neighboring strong columnar dendrites, giving rise to the coarsening of columnar dendrites, which is observed both from the experimental observation and the numerical simulation. With the decrease of the cooling intensity, columnar dendrites get sparser, primary dendrite arm spacings increase, and secondary dendritic arms become undeveloped.

  2. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw.

    PubMed

    Lee, Jiae; Peng, Yun; Lin, Wen-Yang; Parrish, Jay Z

    2015-01-01

    The directional flow of information in neurons depends on compartmentalization: dendrites receive inputs whereas axons transmit them. Axons and dendrites likewise contain structurally and functionally distinct subcompartments. Axon/dendrite compartmentalization can be attributed to neuronal polarization, but the developmental origin of subcompartments in axons and dendrites is less well understood. To identify the developmental bases for compartment-specific patterning in dendrites, we screened for mutations that affect discrete dendritic domains in Drosophila sensory neurons. From this screen, we identified mutations that affected distinct aspects of terminal dendrite development with little or no effect on major dendrite patterning. Mutation of one gene, raw, affected multiple aspects of terminal dendrite patterning, suggesting that Raw might coordinate multiple signaling pathways to shape terminal dendrite growth. Consistent with this notion, Raw localizes to branch-points and promotes dendrite stabilization together with the Tricornered (Trc) kinase via effects on cell adhesion. Raw independently influences terminal dendrite elongation through a mechanism that involves modulation of the cytoskeleton, and this pathway is likely to involve the RNA-binding protein Argonaute 1 (AGO1), as raw and AGO1 genetically interact to promote terminal dendrite growth but not adhesion. Thus, Raw defines a potential point of convergence in distinct pathways shaping terminal dendrite patterning.

  3. What Are the Usage Conditions of Web 2.0 Tools Faculty of Education Students?

    ERIC Educational Resources Information Center

    Agir, Ahmet

    2014-01-01

    As a result of advances in technology and then the emergence of using Internet in every step of life, web that provides access to the documents such as picture, audio, animation and text in Internet started to be used. At first, web consists of only visual and text pages that couldn't enable to make user's interaction. However, it is seen that not…

  4. Motivational Effect of Web-Based Simulation Game in Teaching Operations Management

    ERIC Educational Resources Information Center

    Nguyen, Tung Nhu

    2015-01-01

    Motivational effects during a simulated educational game should be studied because a general concern of lecturers is motivating students and increasing their knowledge. Given advances in internet technology, traditional short in-class games are being substituted with long web-based games. To maximize the benefits of web-based simulation games, a…

  5. The Library's Role in Academic Instructional Use of the World Wide Web.

    ERIC Educational Resources Information Center

    Jayne, Elaine; Vander Meer, Patricia

    1997-01-01

    Technological advances drive academic libraries to offer faculty instruction on using the World Wide Web as a teaching tool. This article describes the development of a library/computing center collaborative program, discusses the benefits of collaboration, offers advice on constructing instructional Web sites, and provides an annotated…

  6. Current State of Web Sites in Science Education--Focus on Atomic Structure.

    ERIC Educational Resources Information Center

    Tuvi, Inbal; Nachmias, Rafi

    2001-01-01

    Explores to what extent the web's advanced graphical tools and computational power are implemented in science education. Focuses on the pedagogical and technological characteristics of web sites attempting to teach the subject of atomic structure. (Contains 33 references.) (Author/YDS)

  7. The Invisible Web: Uncovering Information Sources Search Engines Can't See.

    ERIC Educational Resources Information Center

    Sherman, Chris; Price, Gary

    This book takes a detailed look at the nature and extent of the Invisible Web, and offers pathfinders for accessing the valuable information it contains. It is designed to fit the needs of both novice and advanced Web searchers. Chapter One traces the development of the Internet and many of the early tools used to locate and share information via…

  8. Users' Perceptions of the Web As Revealed by Transaction Log Analysis.

    ERIC Educational Resources Information Center

    Moukdad, Haidar; Large, Andrew

    2001-01-01

    Describes the results of a transaction log analysis of a Web search engine, WebCrawler, to analyze user's queries for information retrieval. Results suggest most users do not employ advanced search features, and the linguistic structure often resembles a human-human communication model that is not always successful in human-computer communication.…

  9. Social Responsibility and Corporate Web Pages: Self-Presentation or Agenda-Setting?

    ERIC Educational Resources Information Center

    Esrock, Stuart L.; Leichty, Greg B.

    1998-01-01

    Examines how corporate entities use the Web to present themselves as socially responsible citizens and to advance policy positions. Samples randomly "Fortune 500" companies, revealing that, although 90% had Web pages and 82% of the sites addressed a corporate social responsibility issue, few corporations used their pages to monitor…

  10. Dynamic Web Pages: Performance Impact on Web Servers.

    ERIC Educational Resources Information Center

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  11. Designing Effective Web Forms for Older Web Users

    ERIC Educational Resources Information Center

    Li, Hui; Rau, Pei-Luen Patrick; Fujimura, Kaori; Gao, Qin; Wang, Lin

    2012-01-01

    This research aims to provide insight for web form design for older users. The effects of task complexity and information structure of web forms on older users' performance were examined. Forty-eight older participants with abundant computer and web experience were recruited. The results showed significant differences in task time and error rate…

  12. APPRIS WebServer and WebServices.

    PubMed

    Rodriguez, Jose Manuel; Carro, Angel; Valencia, Alfonso; Tress, Michael L

    2015-07-01

    This paper introduces the APPRIS WebServer (http://appris.bioinfo.cnio.es) and WebServices (http://apprisws.bioinfo.cnio.es). Both the web servers and the web services are based around the APPRIS Database, a database that presently houses annotations of splice isoforms for five different vertebrate genomes. The APPRIS WebServer and WebServices provide access to the computational methods implemented in the APPRIS Database, while the APPRIS WebServices also allows retrieval of the annotations. The APPRIS WebServer and WebServices annotate splice isoforms with protein structural and functional features, and with data from cross-species alignments. In addition they can use the annotations of structure, function and conservation to select a single reference isoform for each protein-coding gene (the principal protein isoform). APPRIS principal isoforms have been shown to agree overwhelmingly with the main protein isoform detected in proteomics experiments. The APPRIS WebServer allows for the annotation of splice isoforms for individual genes, and provides a range of visual representations and tools to allow researchers to identify the likely effect of splicing events. The APPRIS WebServices permit users to generate annotations automatically in high throughput mode and to interrogate the annotations in the APPRIS Database. The APPRIS WebServices have been implemented using REST architecture to be flexible, modular and automatic.

  13. Code AI Personal Web Pages

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph A.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The document consists of a publicly available web site (george.arc.nasa.gov) for Joseph A. Garcia's personal web pages in the AI division. Only general information will be posted and no technical material. All the information is unclassified.

  14. Tip selection in three-dimensional dendrites

    NASA Astrophysics Data System (ADS)

    Foster, M. R.; Tanveer, S.

    2004-11-01

    Dendrites are well-known to have a fully three-dimensional structure, often with four equally-spaced fins emanating from the steady parabolic tip, the pattern for which has now a good theoretical foundation.(McFadden, Coriell & Sekerka, J. Crys. Growth) 208 (2000) The four fins are of course related to four-fold crystalline anisotropy of quite small magnitude. We follow Tanveer(Tanveer, S. Phys. Rev. A) 40 (1989) in carefully exploring the matching of the inner solution in the neighborhood of the singularity nearest the real line to the small-surface-energy regular perturbation expansion, in order to obtain the (selected) tip radius and the amplitude of the fin. We consider the case for which the anisotropy parameter, α, is much larger than a dimensionless capillary length to the 4/7 power. We confirm what was already found in a slightly different parameter range(Ben Amar & Brener, Phys. Rev. Lett.) 71 (1993)--that the inner equation is essentially that of the two-dimensional case, with azimuthally-dependent parameters. We compare our results with those of Ben Amar & Brener.

  15. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  16. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  17. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  18. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  19. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  20. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151