Sample records for advanced detector technology

  1. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  2. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, F; Dowla, F; Wang, T

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He basedmore » detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.« less

  4. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  5. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  6. ATLAST Detector Needs for Direct Spectroscopic Biosignature Characterization in the Visible and Near-IR

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2015-01-01

    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.

  7. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  8. Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline; Adams, J. S.; Bandler, S.; Chervenak, J.; Chiao, M.; Doriese, R.; Eckart, M.; Finkbeiner, F.; Fowler, J. W.; Hilton, G.; Irwin, K.; Kelley, R. L.; Moseley, S. J.; Porter, F. S.; Reintsema, C.; Sadleir, J.; Smith, S. J.; Swetz, D.; Ullom, J.

    2014-01-01

    NASA/GSFC and NIST-Boulder are collaborating on a program to advance superconducting transition-edge sensor (TES) microcalorimeter technology toward Technology Readiness Level (TRL) 6. The technology development for a TES imaging X-ray microcalorimeter spectrometer (TES microcalorimeter arrays and time-division multiplexed SQUID readout) is now at TRL 4, as evaluated by both NASA and the European Space Agency (ESA) during mission formulation for the International X-ray Observatory (IXO). We will present the status of the development program. The primary goal of the current project is to advance the core X-ray Microcalorimeter Spectrometer (XMS) detector-system technologies to a demonstration of TRL 5 in 2014. Additional objectives are to develop and demonstrate two important related technologies to at least TRL 4: position-sensitive TES devices and code-division multiplexing (CDM). These technologies have the potential to expand significantly the range of possible instrument optimizations; together they allow an expanded focal plane and higher per-pixel count rates without greatly increasing mission resources. The project also includes development of a design concept and critical technologies needed for the thermal, electrical, and mechanical integration of the detector and readout components into the focal-plane assembly. A verified design concept for the packaging of the focal-plane components will be needed for the detector system eventually to advance to TRL 6. Thus, the current project is a targeted development and demonstration program designed to make significant progress in advancing the XMS detector system toward TRL 6, establishing its readiness for a range of possible mission implementations.

  9. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  10. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  11. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  12. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  14. Recent developments in photodetection for medical applications

    NASA Astrophysics Data System (ADS)

    Llosá, Gabriela

    2015-07-01

    The use of the most advanced technology in medical imaging results in the development of high performance detectors that can significantly improve the performance of the medical devices employed in hospitals. Scintillator crystals coupled to photodetectors remain to be essential detectors in terms of performance and cost for medical imaging applications in different imaging modalities. Recent advances in photodetectors result in an increase of the performance of the medical scanners. Solid state detectors can provide substantial performance improvement, but are more complex to integrate into clinical detectors due mainly to their higher cost. Solid state photodetectors (APDs, SiPMs) have made new detector concepts possible and have led to improvements in different imaging modalities. Recent advances in detectors for medical imaging are revised.

  15. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less

  16. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  17. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.

    2017-07-01

    Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.

  18. Recent progress in infrared detector technologies

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  19. Neutron detectors for the ESS diffractometers

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Müller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, J.; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 μm. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight (TOF) diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the detector technologies commonly employed at the existing similar instruments and their major challenges for ESS. The detector technologies selected by the instrument teams to collect the diffraction patterns are also presented. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to estimate the event rate in the diffraction detectors. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.

  20. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    PubMed Central

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-01-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087

  1. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  2. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  3. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  4. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less

  5. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  6. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  7. Particle and nuclear physics instrumentation and its broad connections

    DOE PAGES

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...

    2016-12-20

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  8. Particle and nuclear physics instrumentation and its broad connections

    NASA Astrophysics Data System (ADS)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  9. Particle and nuclear physics instrumentation and its broad connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  10. Innovative experimental particle physics through technological advances: Past, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Harry W.K.; /Fermilab

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  11. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  12. Novel EO/IR sensor technologies

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-10-01

    The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.

  13. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  14. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  15. Fast response pyroelectric detector-preamplifier assembled device

    NASA Astrophysics Data System (ADS)

    Bai, PiJi; Tai, Yunjian; Liu, Huiping

    2008-03-01

    The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.

  16. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  17. A review of advances in pixel detectors for experiments with high rate and radiation

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  18. 412th Brookhaven Lecture

    ScienceCinema

    Peter Vanier

    2017-12-09

    With new radiation detectors, finding smuggled nuclear materials in a huge container among thousands of others in a busy port becomes possible. To learn about these new detectors from a specialist who has spent several years developing these technologies, watch the 412th Brookhaven Lecture, "Advanced Neutron Detection Methods: New Tools for Countering Nuclear Terrorism."

  19. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  20. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    NASA Technical Reports Server (NTRS)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  1. Semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai

    2016-09-01

    Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.

  2. Advanced uncooled infrared focal plane development at CEA/LETI

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc; Mottin, Eric; Martin, Jean-Luc; Yon, Jean-Jacques; Vilain, Michel

    2017-11-01

    LETI/LIR has been involved for a few year in the field of uncooled detectors and has chosen amorphous silicon for its microbolometer technology development. Uncooled IR detectors pave the way to reduced weight systems aboard satellites. The silicon compatibility of our thermometer is a key parameter which has enabled a very fast technology development and transfer to industry. This competitive technology is now able to provide a new approach for IR detectors for space applications. This paper presents the main characteristics of the CEA / LETI technology which is based on a monolithically integrated structure over a fully completed readout circuit from a commercially available 0.5 μm design rules CMOS line. The technology maturity will be illustrated by the results obtained at LETI/LIR and SOFRADIR on a 320 x 240 with a pitch of 45 μm. First improvement on device reliability and characterization results will be presented.

  3. Next decade in infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2017-10-01

    Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.

  4. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  5. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  6. New technologies for UV detectors

    NASA Technical Reports Server (NTRS)

    Joseph, C. L.

    1993-01-01

    Several technologies are currently being developed, leading to substantial improvements in the performance of UV detectors or significant reductions in power or weight. Four technologies discussed are (1) thin-film coatings to enhance the UV sensitivity of CCD's, (2) highly innovative magnet assemblies that dramatically reduce weight and result in virtually no external flux, (3) new techniques for curving microchannel plates (MCP's) so that single plates can be used to prevent ion feedback and present highly localized charge clouds to an anode structure, and (4) high-performance alternatives to glass-based MCP's. In item (2), for example, very robust magnets are made out of rare earth materials such as samarium cobalt, and cladding magnets are employed to prevent flux from escaping from the detector into the external environment. These new ultralight magnet assemblies are able to create strong, exceptionally uniform magnetic fields for image intensification and focusing of photoelectrons. The principle advantage of such detectors is the quantum efficiencies of 70-80 percent obtained throughout ultraviolet wavelengths (900-2000 A), the highest of any device. Despite the improvements achieved under item (3), high-performance alternatives to conventional glass-based MCP's potentially offer three distinct new advantages that include (1) a 30-100-fold improvement in dynamic range resulting in correspondingly higher signal-to-noise ratios, (2) the use of pure dielectric and semiconductor materials that will not outgas contaminants that eventually destroy photocathodes, and (3) channels that have constant spacing providing long-ranged order since the plates are made using photolithography techniques from the semiconductor industry. The manufacturers of these advanced-technology MCP's, however, are a couple of years away from actually producing a functioning image intensifier. In contrast to the use of CCD's for optical, ground based observations, there is no single detector technology in the ultraviolet that dominates or is as universally suitable for all applications. Thus, several technological problems, recent advances, and the impact that these new enabling technologies represent for UV applications are addressed.

  7. State-of-the-art radiation detectors for medical imaging: Demands and trends

    NASA Astrophysics Data System (ADS)

    Darambara, Dimitra G.

    2006-12-01

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.

  8. Integrated infrared detector arrays for low-background applications

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1982-01-01

    Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.

  9. Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.

    2017-03-01

    Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.

  10. InSb arrays with CCD readout for 1.0- to 5.5-microns infrared applications

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Scorso, J. B.; Thom, R. D.

    1976-01-01

    There were two approaches for fabricating indium antimonide (InSb) arrays with CCD readout discussed. The hybrid approach integrated InSb detectors and silicon CCDs in a modular assembly via an advanced interconnection technology. In the monolithic approach, the InSb infrared detectors and the CCD readout were integrated on the same InSb chip. Both approaches utilized intrinsic (band-to-band) photodetection with the attendant advantages over extrinsic detectors. The status of each of these detector readout concepts, with pertinent performance characteristics, was presented.

  11. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  12. Picosecond UV single photon detectors with lateral drift field: Concept and technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, M.; Oktyabrsky, S.; Murat, P.

    2015-09-01

    Group III–V semiconductor materials are being considered as a Si replacement for advanced logic devices for quite some time. Advances in III–V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metal-oxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting modemore » in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging.« less

  13. Report of the x ray and gamma ray sensors panel

    NASA Technical Reports Server (NTRS)

    Szymkowiak, Andrew; Collins, S.; Kurfess, J.; Mahoney, W.; Mccammon, D.; Pehl, R.; Ricker, G.

    1991-01-01

    Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas.

  14. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).

  15. Astronomical technology - the past and the future. Karl Schwarzschild Award Lecture 2015

    NASA Astrophysics Data System (ADS)

    Appenzeller, I.

    2016-07-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be expected in the next few decades. Based on the experience of the past, some of the main sources of technological progress can be identified.

  16. Direct-Write Printing on Three-Dimensional Geometries for Miniaturized Detector and Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Paquette, Beth; Samuels, Margaret; Chen, Peng

    2017-01-01

    Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.

  17. International Conference on Infrared and Millimeter Waves, 15th, Orlando, FL, Dec. 10-14, 1990, Conference Digest

    NASA Astrophysics Data System (ADS)

    Temkin, Richard J.

    Recent advances in IR and mm-wave (MMW) technology and applications are discussed in reviews and reports. Sections are devoted to MMW sources, high-Tc superconductors, atmospheric physics, FEL technology, astronomical instrumentation, MMW systems, measurement techniques, MMW guides, and MMW detectors and mixers. Also discussed are material properties, gyrotrons, guided propagation, semiconductors, submm detectors and devices, material characterization methods, ICs, MMW guides and plasma diagnostics, lasers, and MMW antennas. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  18. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector/TIA effort has improved the existing detector subsystem by: increasing its bandwidth to 5.4 MHz, exceeding the original goal of 5 MHz; reducing the overall mass from 18 lbs to <10 lbs; and increasing the duration of autonomous, service-free operation periods from 4 hrs to >24 hrs. The new detector subsystem will permit higher laser modulation rates, which provides greater flexibility for implementing thin-cloud discrimination algorithms as well as improving range resolution and error reduction, and will enable long-range flights on the Global Hawk. The cloud/aerosol discrimination work features development of new algorithms by Langley and Exelis for the avoidance of bias errors in the retrieval of column CO2 induced by the presence of thin clouds.

  19. Advanced technologies and devices for inhalational anesthetic drug dosing.

    PubMed

    Meyer, J-U; Kullik, G; Wruck, N; Kück, K; Manigel, J

    2008-01-01

    Technological advances in micromechanics, optical sensing, and computing have led to innovative and reliable concepts of precise dosing and sensing of modern volatile anesthetics. Mixing of saturated desflurane flow with fresh gas flow (FGF) requires differential pressure sensing between the two circuits for precise delivery. The medical gas xenon is administered most economically in a closed circuit breathing system. Sensing of xenon in the breathing system is achieved with miniaturized and unique gas detector systems. Innovative sensing principles such as thermal conductivity and sound velocity are applied. The combination of direct injection of volatile anesthetics and low-flow in a closed circuit system requires simultaneous sensing of the inhaled and exhaled gas concentrations. When anesthetic conserving devices are used for sedation with volatile anesthetics, regular gas concentration monitoring is advised. High minimal alveolar concentration (MAC) of some anesthetics and low-flow conditions bear the risk of hypoxic gas delivery. Oxygen sensing based on paramagnetic thermal transduction has become the choice when long lifetime and one-time calibration are required. Compact design of beam splitters, infrared filters, and detectors have led to multiple spectra detector systems that fit in thimble-sized housings. Response times of less than 500 ms allow systems to distinguish inhaled from exhaled gas concentrations. The compact gas detector systems are a prerequisite to provide "quantitative anesthesia" in closed circuit feedback-controlled breathing systems. Advanced anesthesia devices in closed circuit mode employ multiple feedback systems. Multiple feedbacks include controls of volume, concentrations of anesthetics, and concentration of oxygen with a corresponding safety system. In the ideal case, the feedback system delivers precisely what the patient is consuming. In this chapter, we introduce advanced technologies and device concepts for delivering inhalational anesthetic drugs. First, modern vaporizers are described with special attention to the particularities of delivering desflurane. Delivery of xenon is presented, followed by a discussion of direct injection of volatile anesthetics and of a device designed to conserve anesthetic drugs. Next, innovative sensing technologies are presented for reliable control and precise metering of the delivered volatile anesthetics. Finally, we discuss the technical challenges of automatic control in low-flow and closed circuit breathing systems in anesthesia.

  20. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.

    PubMed

    Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R

    2006-01-01

    At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.

  1. Advanced Technologies and Instrumentation at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  2. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  3. New frontiers in ground-based optical astronomy

    NASA Astrophysics Data System (ADS)

    Strom, Steve

    1991-07-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.

  4. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  5. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  6. LANL receiver system development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubscher, B.; Cooke, B.; Cafferty, M.

    1997-08-01

    The CALIOPE receiver system development at LANL is the story of two technologies. The first of these technologies consists of off-the-shelf mercury-cadmium-telluride (MCT) detectors and amplifiers. The vendor for this system is Kolmar Technologies. This system was fielded in the Tan Trailer I (TTI) in 1995 and will be referred to in this paper as GEN I. The second system consists of a MCT detector procured from Santa Barbara Research Center (SBRC) and an amplifier designed and built by LANL. This system was fielded in the Tan Trailer II (TTII) system at the NTS tests in 1996 and will bemore » referred to as GEN II. The LANL CALIOPE experimental plan for 1996 was to improve the lidar system by progressing to a higher rep rate laser to perform many shots in a much shorter period of time. In keeping with this plan, the receiver team set a goal of developing a detector system that was background limited for the projected 100 nanosecond (ns) laser pulse. A set of detailed simulations of the DIAL lidar experiment was performed. From these runs, parameters such as optimal detector size, field of view of the receiver system, nominal laser return power, etc. were extracted. With this information, detector physics and amplifier electronic models were developed to obtain the required specifications for each of these components. These derived specs indicated that a substantial improvement over commercially available, off-the-shelf, amplifier and detector technologies would be needed to obtain the goals. To determine if the original GEN I detector was usable, the authors performed tests on a 100 micron square detector at cryogenic temperatures. The results of this test and others convinced them that an advanced detector was required. Eventually, a suitable detector was identified and a number of these single element detectors were procured from SBRC. These single element detectors were witness for the detector arrays built for another DOE project.« less

  7. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  8. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.

  9. Radiation pager

    NASA Astrophysics Data System (ADS)

    Warren, John L.; Vadnais, Kenneth G.

    1997-01-01

    Recent advances in miniature photomultiplier tubes and low power electronics have made possible a new generation of small gamma-ray radiation detectors specifically designed for use by government and law enforcement agencies for the detection and interdiction of concealed nuclear materials. This paper describes an inexpensive pager sized radiation detector that can be worn on the belt or carried in a pocket for hands free operation, and which can quietly alert the operator to the presence of nuclear material. The sensitivity performance of the detector technology and the application of the instrument to law enforcement and nuclear smuggling are discussed.

  10. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  11. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  12. The lartge-area picosecond photo-detector (LAPPD) project

    NASA Astrophysics Data System (ADS)

    Varner, Gary

    2012-03-01

    The technological revolution that replaced the bulky Cathode Ray Tube with a wide variety of thin, reduced-cost display technologies, has yet to be realized for photosensors. Such a low-cost, robust and flexible photon detector, capable of efficient single photon measurement with good spatial and temporal resolution, would have numerous scientific, medical and industrial applications. To address the significant technological challenges of realizing such a disruptive technology, the Large Area Picosecond Photo-Detector (LAPPD) collaboration was formed, and has been strongly supported by the Department of Energy. This group leverages the inter-disciplinary capabilities and facilities at Argonne National Laboratory, the Berkeley Space Sciences Laboratory (SSL), electronics expertise at the Universities of Chicago and Hawaii, and close work with industrial partners to extend the known technologies. Advances in theory-inspired design and in-situ photocathode characterization during growth, Atomic Layer Deposition (ALD) for revolutionizing micro-channel plate fabrication, and compact, wave-form sampling CMOS ASIC readout of micro striplines are key tools toward realizing a viable LAPPD device. Progress toward a first 8" x 8" demonstrator module will be presented.

  13. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, M; Miyaoka, R; Shao, Y

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less

  14. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  15. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  16. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    NASA Astrophysics Data System (ADS)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter (>14 cm) wafers is being considered as the next step forward in germanium detector technology. A Small Business Innovative Research (SBIR) grant is funding the construction of such a counter, the world's largest, along with research into radiation hardness. The measurements reported here are encouraging for both ultra-high gamma-ray count rates and for neutron-damage, though reliable high temperature annealing to remove neutron-induced trapping centers will be essential for success.

  17. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  18. Bluetooth traffic detectors for use as permanently installed travel time instruments : [summary].

    DOT National Transportation Integrated Search

    2012-02-01

    In support of the Maryland State Highway Administration (SHA) business objectives : related to mobility and congestion relief, in 2009 the University of Marylands (UMD) : Center for Advanced Transportation Technology (CATT) proposed to develop the...

  19. Bluetooth traffic detectors for use as permanently installed travel time instruments.

    DOT National Transportation Integrated Search

    2012-02-06

    In February 2009, the University of Marylands (UMD) Center for Advanced Transportation Technology : (CATT) via a research grant from the Maryland State Highway Administration (SHA) set out to extend : Bluetooth TM traffic monitoring (BTM) technolo...

  20. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  1. Design and R&D of RICH detectors for EIC experiments

    NASA Astrophysics Data System (ADS)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  2. III-V infrared research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-08-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  3. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  4. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.

  5. AO wavefront sensing detector developments at ESO

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Baade, Dietrich; Iwert, Olaf; Hubin, Norbert; Reyes, Javier; Feautrier, Philippe; Gach, Jean-Luc; Balard, Philippe; Guillaume, Christian; Stadler, Eric; Magnard, Yves

    2010-07-01

    The detector is a critical component of any Adaptive Optics WaveFront Sensing (AO WFS) system. The required combination of fast frame rate, high quantum efficiency, low noise, large number and size of pixels, and low image lag can often only be met by specialized custom developments. ESO's very active WFS detector development program is described. Key test results are presented for newly developed detectors: a) the e2v L3Vision CCD220 (the fastest/lowest noise AO detector to date) to be deployed soon on 2nd Generation VLT instruments, and b) the MPI-HLL pnCCD with its superb high "red" response. The development of still more advanced laser/natural guide-star WFS detectors is critical for the feasibility of ESO's EELT. The paper outlines: a) the multi-phased development plan that will ensure detectors are available on-time for EELT first-light AO systems, b) results of design studies performed by industry during 2007 including a comparison of the most promising technologies, c) results from CMOS technology demonstrators that were built and tested over the past two years to assess and validate various technologies at the pixel level, their fulfillment of critical requirements (especially read noise and speed), and scalability to full-size. The next step will be towards Scaled-Down Demonstrators (SDD) to retire architecture and process risks. The SDD will be large enough to be used for E-ELT first-light AO WFS systems. For full operability, 30-50 full-scale devices will be needed.

  6. Overview of detector technologies for EO/IR sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal

    2016-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  7. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    PubMed

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  8. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  9. Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Csorba, Illes P.

    Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.

  10. Contraband detection using acoustic technology

    NASA Astrophysics Data System (ADS)

    George, Robert D.; Gauthier, Ronald D.; Denslow, Kayte D.; Cinson, Anthony M.; Diaz, Aaron A.; Griffin, Molly

    2008-03-01

    Maritime security personnel have a need for advanced technologies to address issues such as identification, confirmation or classification of substances and materials in sealed containers, both non-invasively and nondestructively in field and first response operations. Such substances include items such as hazardous/flammable liquids, drugs, contraband, and precursor chemicals used in the fabrication of illicit materials. Our initial efforts focused specifically on a commercial portable acoustic detector technology that was evaluated under operational conditions in a maritime environment. Technical/operational limitations were identified and enhancements were incorporated that would address these limitations. In this paper, application-specific improvements and performance testing/evaluation results will be described. Such enhancements will provide personnel/users of the detector a significantly more reliable method of screening materials for contraband items that might be hidden in cargo containers.

  11. OSMOSIS: a new joint laboratory between SOFRADIR and ONERA for the development of advanced DDCA with integrated optics

    NASA Astrophysics Data System (ADS)

    Druart, Guillaume; Matallah, Noura; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Jenouvrier, Pierre; Mallet, Eric; Reibel, Yann

    2014-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). SOFRADIR and ONERA have launched a new research and innovation partnership, called OSMOSIS, to develop disruptive technologies for DDCA to improve the performance and compactness of optronic systems. With this collaboration, we will break down the technological barriers of DDCA, a sealed and cooled environment dedicated to the infrared detectors, to explore Dewar-level integration of optics. This technological breakthrough will bring more compact multipurpose thermal imaging products, as well as new thermal capabilities such as 3D imagery or multispectral imagery. Previous developments will be recalled (SOIE and FISBI cameras) and new developments will be presented. In particular, we will focus on a dual-band MWIR-LWIR camera and a multichannel camera.

  12. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB polarization measurements.

  13. Design and R&D of RICH detectors for EIC experiments

    DOE PAGES

    Del Dotto, A.; Wong, C. -P.; Allison, L.; ...

    2017-03-18

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less

  14. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  15. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  16. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  17. Pixelated coatings and advanced IR coatings

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  18. Technology And Pregnant Pigs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    One of the interesting things about aerospace spinoff is the way it keeps cropping up in uncommon applications unimaginably remote from the original technology. For example, the pig pregnancy detector. The pig pregnancy detector? City folk may be surprised to learn that there is such a thing-and wonder why. The why is because it is a sow's job to produce piglets and farmers can't afford to keep those who don't; it costs about a half-dollar a day in feed, labor and facilities, and even in small herds that's intolerable. So the barren sow must go. Until recently, the best method of determining pig pregnancy was "eyeballing," daily visual examination over a period of time. The problem with eyeballing is that pregnancy is not evident until well advanced; when there is no pregnancy, the farmer learns too late that he has been feeding a sow that won't give him a litter. Advancing technology provided an answer: the quick, easy-to-use, accurate automatic detector for early evaluation of pregnancy status. Among the most popular of these devices are Scanopreg and Scanoprobe, to whose development NASA technology contributed. Scanopreg is an ultrasonic system which detects pregnancy about 30 days after breeding, long before eyeballing can provide an answer. The companion Scanoprobe is a dual-function unit which not only determines pregnancy but also gives farmers an analysis of a hog's meat-fat ratio, an important factor in breeding. Only a short time on the market, Scanopreg and Scanoprobe have already found wide acceptance among meat producers because they rapidly repay their cost.

  19. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  20. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  1. Market for advanced humanitarian mine detectors

    NASA Astrophysics Data System (ADS)

    Newnham, Peter; Daniels, David J.

    2001-10-01

    Uncleared landmines and unexploded ordnance remain a major humanitarian and economic threat in over 60 countries. It is estimated that world wide over US 60 million was spent on mien clearance in 1999. Most of this funding is provided by government aid, often channeled via the UN or European Community. The minefield threat is very varied, with many different types of mien, UXO, terrain and climate type. To cope with this variety a range of demining techniques are used: mechanical techniques such as flails are used for vegetation clearance, however the majority of demining work is still carried out by manual deminers using metal detectors and prodders. Over the last 5 years there has been considerable interest within the scientific and engineering communities in the application of advanced technologies to improve the safety and efficiency of this work. Nevertheless few new products have been introduced into, and accepted by, the demining community. Despite the high political profile of the landmine problem very little e hard dat is available on the real characteristics of the demining equipment market. As part of a European Union supported program to evacuate a multi-sensor handheld mien detector concept, Thales and ERA Technology Ltd have carried out an in-depth assessment of this market. This paper describes the cost- benefits that could accrue to the demining community associated with use of advanced equipment under appropriate conditions and the equipment requirements that result. The dynamics of the demining equipment market and the barriers to entry are discussed.

  2. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  3. La détection infrarouge avec les plans focaux non refroidis : état de l'artUncooled focal plane infrared detectors: the state of the art

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc

    2003-12-01

    The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J.-L. Tissot, C. R. Physique 4 (2003).

  4. Advances in Nuclear Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  5. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  6. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  7. Advanced Technology: It's Available at JPL

    NASA Technical Reports Server (NTRS)

    Edberg, James R.

    1996-01-01

    Non-NASA activities at JPL are the province of the JPL Technology and Applications Programs Directorate, and include working relationships with industry, academia, and other government agencies. Within this Directorate, the JPL Undersea Technology Program endeavors to apply and transfer these capabilities to the area of underwater research and operations. Of particular interest may be a Reversed Electron Attachment Detector (READ). It is a man-portable device capabable of unambiguous detection of unique chemical signatures associated with mines. In addition, there are other JPL technologies which merit investigation for marine applications.

  8. ENRAF Series 854 Advanced Technology Gauge (ATG) with SPU II card for Leak Detector Use Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH, S.G.

    1999-10-21

    The following Acceptance Test Procedure was written to test the ENRAF series 854 ATG with SPU II card prior to installation in the Tank Farms. The procedure sets various parameters and verifies the gauge and alarms functionality.

  9. Calibration methods for explosives detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Stephen J.; Rounbehler, David P.

    1992-05-01

    Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.

  10. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  11. Advances on Sensitive Electron-injection based Cameras for Low-Flux, Short-Wave-Infrared Applications

    NASA Astrophysics Data System (ADS)

    Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman

    2016-08-01

    Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the

  12. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  13. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  14. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  15. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; hide

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to >24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, A.; Wong, C. -P.; Allison, L.

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less

  17. Macromolecular crystallography with a large format CMOS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, Jay C., E-mail: jcnix@lbl.gov

    Recent advances in CMOS technology have allowed the production of large surface area detectors suitable for macromolecular crystallography experiments [1]. The Molecular Biology Consortium (MBC) Beamline 4.2.2 at the Advanced Light Source in Berkeley, CA, has installed a 2952 x 2820 mm RDI CMOS-8M detector with funds from NIH grant S10OD012073. The detector has a 20nsec dead pixel time and performs well with shutterless data collection strategies. The sensor obtains sharp point response and minimal optical distortion by use of a thin fiber-optic plate between the phosphor and sensor module. Shutterless data collections produce high-quality redundant datasets that can bemore » obtained in minutes. The fine-sliced data are suitable for processing in standard crystallographic software packages (XDS, HKL2000, D*TREK, MOSFLM). Faster collection times relative to the previous CCD detector have resulted in a record number of datasets collected in a calendar year and de novo phasing experiments have resulted in publications in both Science and Nature [2,3]. The faster collections are due to a combination of the decreased overhead requirements of shutterless collections combined with exposure times that have decreased by over a factor of 2 for images with comparable signal to noise of the NOIR-1 detector. The overall increased productivity has allowed the development of new beamline capabilities and data collection strategies.« less

  18. Evaluation of Carbon Dioxide Sensors for the Constellation Space Suit Life Support System for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Paul, Heather L.; Conger, Bruce C.

    2009-01-01

    This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial electrochemical sensor was not suitable for the Cx space suit for surface exploration. Finally, the paper identifies a number of techniques currently under development that offer significant advantages for EVA applications. These include miniaturized, room temperature, solid electrolyte systems and advanced optical detectors.

  19. International Conference on Infrared and Millimeter Waves, 13th, Honolulu, HI, Dec. 5-9, 1988, Conference Digest

    NASA Astrophysics Data System (ADS)

    Temkin, Richard J.

    Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.

  20. Emerging role of multi-detector computed tomography in the diagnosis of hematuria following percutaneous nephrolithotomy: A case scenario.

    PubMed

    Sivanandam, S E; Mathew, Georgie; Bhat, Sanjay H

    2009-07-01

    Persistent hematuria is one of the most dreaded complications following percutanous nephrolithotomy (PCNL). Although invasive, a catheter-based angiogram is usually used to localize the bleeding vessel and subsequently embolize it. Advances in imaging technology have now made it possible to use a non invasive multi-detector computed tomography (MDCT) angiogram with 3-D reconstruction to establish the diagnosis. We report a case of post-PCNL hemorrhage due to a pseudo aneurysm that was missed by a conventional angiogram and subsequently detected on MDCT angiogram.

  1. Terahertz: the Far-Ir Challenge

    NASA Astrophysics Data System (ADS)

    Dispenza, Massimiliano; Fiorello, Annamaria; Secchi, Alberto; Varasi, Mauro

    This chapter is an overview on terahertz technologies and applications for sensing. The most advanced imaging and spectroscopy techniques are described, considering current opportunities and limitations in comparison to probes in the adjacent regions of the e.m. spectrum. Potential applications are highlighted, with a specific focus on security for detection of illicit substances and revealing of hidden objects. The technological status and current bottlenecks on sources and detectors are reviewed and future trends discussed.

  2. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  3. Array-based infra-red detection: an enabling technology for people counting, sensing, tracking, and intelligent detection

    NASA Astrophysics Data System (ADS)

    Stogdale, Nick; Hollock, Steve; Johnson, Neil; Sumpter, Neil

    2003-09-01

    A 16x16 element un-cooled pyroelectric detector array has been developed which, when allied with advanced tracking and detection algorithms, has created a universal detector with multiple applications. Low-cost manufacturing techniques are used to fabricate a hybrid detector, intended for economic use in commercial markets. The detector has found extensive application in accurate people counting, detection, tracking, secure area protection, directional sensing and area violation; topics which are all pertinent to the provision of Homeland Security. The detection and tracking algorithms have, when allied with interpolation techniques, allowed a performance much higher than might be expected from a 16x16 array. This paper reviews the technology, with particular attention to the array structure, algorithms and interpolation techniques and outlines its application in a number of challenging market areas. Viewed from above, moving people are seen as 'hot blobs' moving through the field of view of the detector; background clutter or stationary objects are not seen and the detector works irrespective of lighting or environmental conditions. Advanced algorithms detect the people and extract size, shape, direction and velocity vectors allowing the number of people to be detected and their trajectories of motion to be tracked. Provision of virtual lines in the scene allows bi-directional counting of people flowing in and out of an entrance or area. Definition of a virtual closed area in the scene allows counting of the presence of stationary people within a defined area. Definition of 'counting lines' allows the counting of people, the ability to augment access control devices by confirming a 'one swipe one entry' judgement and analysis of the flow and destination of moving people. For example, passing the 'wrong way' up a denied passageway can be detected. Counting stationary people within a 'defined area' allows the behaviour and size of groups of stationary people to be analysed and counted, an alarm condition can also be generated when people stray into such areas.

  4. Developmental GPR mine detection technology known as Balanced Bridge

    NASA Astrophysics Data System (ADS)

    Sherbondy, Kelly D.; Lang, David A.

    1995-06-01

    The Balanced Bridge (BB) detection concept was developed just after the end of WWII. It has been researched for many years since then but it has never truly overcome the following inherent problems: sensitivity to antenna height and tilt variations, detectability of flush mines, sensitivity to soil moisture content, high false alarms, and most importantly, the inability to detect small anti-personnel (AP) mines. Even with all of these shortcomings, the BB sensor technology is still one of the most promising electrmagnetic mine detection systems. This paper will address a new BB detector and its preliminary field performance compared to earlier BB research. The new BB detector has superior capabilities compared to earlier BB efforts involving single frequency or single octave excitation because the new BB operates over a multi-octave bandwidth. The new BB detector also incorporates audio and visual presentations of digitally processed signals where earlier versions only had an audible announcement derived from a simple thresholding algorithm. New BB designs addressing previous BB deficiencies will also be discussed. Design changes include using a broadband printed circuit board antenna, RF transmit and receive components, and a digital signal processor. This new BB detector will be tested at an Advanced Technology Demonstration (ATD) evaluation in FY95. The ATD exit criteria will be discussed and compared to recent field testing of the new BB detector. Preliminary results with the new BB system have demonstrated encouraging results which will be incorporated in this paper.

  5. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements asmore » a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.« less

  6. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  7. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  8. Advanced IR sensing technology research in the city of Tomsk, USSR

    NASA Astrophysics Data System (ADS)

    Vavilov, Vladimir P.; Ivanov, A. I.; Isakov, A. V.; Reino, V. V.; Shiryaev, Vladimir V.; Tsvyk, Ruvim S.

    1990-03-01

    Some large scientific organisations in the city of Tomsk, Siberia, USSR are involved into the researchings on the advanced IR sensing technology. They are Polytechnic Institute founded in 1896, Uriiversity of Tomsk founded in 1888, Institute of Atmosphere's Optics, Academy of Sciences arid Institute of Automatized Control Systems and Radio electronics. Main fields are as follows: 1) thermal (IR) nondestructive testing of materials, machines and systems; 2) optoelectronics; 3) laser optics, transmission of infrared through the atmosphere and investigation of energy distribution in laser beams. Researching equipment includes Western and Russian industrial thermovisers, lasers, personal computers, IR detectors etc and some borne-made devices and components. There are optical arid JR detectors Lndustry in Tomsk that allows i.e produce spheric and aspheric mirrors and lenses, JR filters, cadmium-mercury-teilur and indium anlymonide T1 receivers arid to develop the scanning and measuring devices on the base mentioned above. Seine projects to develop the specific Tomsk thermoviser so far have nOt come true so the main accent was made onto the computerized thermographic systems suitable for solution of particular scientific problems.

  9. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  10. GOES SXI Monthly Project Status Report Lockheed Martin Advanced Technology Center Month of October 2004

    NASA Technical Reports Server (NTRS)

    Morrison, Mons D.

    2004-01-01

    The Lockheed Martin Missiles and Space Advanced Technology Center (LMATC) is developing three Solar X-ray Imager (SXI) instruments. Two are being built for flights on the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES) N and O, and one will be a flight spare. The SXI development is being managed by the NASA Goddard Space Flight Center. The SXI will image the full sun at wavelengths between approximately 6 and 60 A with a detector having 5 arcsec pixels. The launch of the first SXI will be on GOES N and the second SXI is to be launched on on GOES O or P.

  11. Advances in Multi-Pixel Photon Counter technology: First characterization results

    NASA Astrophysics Data System (ADS)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  12. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  13. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.

    PubMed

    Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus

    2016-06-01

    The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

  14. Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.

    Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.

  15. Present and Future Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Fulda, Paul

    In this chapter, we first briefly review the early history of gravitational wave detection, and how the research turned towards the large scale interferometers that proved to be the most effective devices for gravitational wave astronomy. We provide an overview of what is generically defined as the "first generation" of interferometric detectors, a number of instruments built around the globe at the end of the last century, differing in size, technology and scope. A more detailed description is dedicated to the "second generation", or "advanced detectors", and their main subsystems, which represent the state of the art of the science and technology in the field. In the final section, we give a glimpse of what the next generation of detectors may look like. Given the many similitudes between different projects, throughout the chapter we will use LIGO as the leading example, and highlight how the other projects compared to it both technologically and strategically. This choice is mainly due to the size of the LIGO project and of the LIGO Scientific Collaboration, and to the pivotal role they played in the history of the field and eventually in the first detection of gravitational waves. It is important to note, however, that the comparatively small amount of space and detail dedicated to other endeavors is not indicative of the importance of the role they have played and still play in the field.

  16. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  17. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  18. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge-based detectors and technology; 2) Ge zone refining and crystal growth; 3) Ge detector development; 4) Ge orientated business and applications; 5) Ge recycling and recovery; 6) introduction to underground sciences for young scientists; and 7) introduction of experimental techniques for low background experiments to young scientists. Sections 1-5 were dedicated to Ge detectors and technology. Each topic was complemented with a panel discussion on challenges, critical measures, and R&D activities. Sections 6-7 provided students and postdocs an opportunity to understand fundamental principles of underground sciences and experimental techniques on low background experiments. To these two sections, well-known scientists in the field were invited to give lectures and allow young scientists to make presentations on their own research activities. Fifty-six invited talks were delivered during the three-day workshop. Many critical questions were addressed not only in the specific talks but also in the panel discussions. Details of the panel discussions, as well as conference photos, the list of committees and the workshop website can be found in the PDF.

  19. The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance

    NASA Astrophysics Data System (ADS)

    Roed, Y.; Ding, Y.; Wen, Z.; Wang, J.; Pinsky, L.; Ibbott, G.

    2017-05-01

    Advances in radiotherapy technology have enabled more accurate delivery of radiation doses to anatomically complex tumor volumes, while sparing surrounding tissues. The most recent advanced treatment modality combines a radiation delivery system (either Cobalt-60 therapy heads or linear accelerator) with a diagnostic magnetic resonance (MR) scanner to perform MR-image guided radiotherapy (MR-IGRT). For a radiation treatment plan to be delivered successfully with MR-IGRT the compliance with previously established criteria to validate the passing of such plans has to be confirmed. Due to the added strong magnetic field a new set of quality assurance standards has to be developed. Ideal detectors are MR-compatible, can capture complex dose distributions and can be read out with MRI. Polymer gels were investigated as potential three dimensional MR-IGRT quality assurance detectors.

  20. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  1. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  2. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  3. Assessing alternatives for directional detection of a halo of weakly interacting massive particles

    NASA Astrophysics Data System (ADS)

    Copi, Craig J.; Krauss, Lawrence M.; Simmons-Duffin, David; Stroiney, Steven R.

    2007-01-01

    The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can explore a large range of WIMP parameter space using well-tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.

  4. 2009 Linear Collider Workshop of the Americas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Sally

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less

  5. Misalignments calibration in small-animal PET scanners based on rotating planar detectors and parallel-beam geometry.

    PubMed

    Abella, M; Vicente, E; Rodríguez-Ruano, A; España, S; Lage, E; Desco, M; Udias, J M; Vaquero, J J

    2012-11-21

    Technological advances have improved the assembly process of PET detectors, resulting in quite small mechanical tolerances. However, in high-spatial-resolution systems, even submillimetric misalignments of the detectors may lead to a notable degradation of image resolution and artifacts. Therefore, the exact characterization of misalignments is critical for optimum reconstruction quality in such systems. This subject has been widely studied for CT and SPECT scanners based on cone beam geometry, but this is not the case for PET tomographs based on rotating planar detectors. The purpose of this work is to analyze misalignment effects in these systems and to propose a robust and easy-to-implement protocol for geometric characterization. The result of the proposed calibration method, which requires no more than a simple calibration phantom, can then be used to generate a correct 3D-sinogram from the acquired list mode data.

  6. LDR system concepts and technology

    NASA Technical Reports Server (NTRS)

    Pittman, B.

    1985-01-01

    The Large Deployable Reflector is a 20 meter diameter infrared/submillimeter telescope planned for the late 1990's. The Astronomy Survey Committee of the National Academy of Sciences (Field Committee) recommended LDR as one of the two space based observatories that should start development in the 80's. LDR's large aperture will give it unequaled resolution in the wavelength range from 30 to 1000 microns. To meet LDR performance goals will call for advances in several technology disciplines including: optics, controls, thermal control, detectors, cryogenic cooling, and large space structures.

  7. Nuclear cardiograph and scintigraphy

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1975-01-01

    Extensive advances in the technology of detectors, data analysis systems, and tracers used have resulted in greatly expanded applications of radioisotopes to the assessment of cardiac function and disease. The development of nuclear cardiology has proceeded along four lines: (1) radionuclide angiography, (2) myocardial perfusion imaging, (3) intracoronary microsphere imaging, and (4) regional myocardial blood flow determination using inert gases.

  8. Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis; Maquieira, Angel

    2014-09-01

    This editorial comments on the balance and perspectives of compact disk technology applied to molecular diagnostics. The development of sensitive, rapid and multiplex assays using Blu-ray technology for the determination of biomarkers, drug allergens, pathogens and detection of infections would have a direct impact on diagnostics. Effective tests for use in clinical, environmental and food applications require versatile and low-cost platforms as well as cost-effective detectors. Blu-ray technology accomplishes those requirements and advances on the concept of high density arrays for massive screening to achieve the demands of point of care or in situ analysis.

  9. Independent Testing of JWST Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Figer, D. F.; Rauscher, B. J.; Regan, M. W.; Balleza, J.; Bergeron, L.; Morse, E.; Stockman, H. S.

    2003-01-01

    The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (MU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors under a NASA Grant. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z approx. 10 - 20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6 - 5 approx. mum bandpass and in an ultra-low background (less than 0.01 e'/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the IDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.

  10. Independent Testing of JWST Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Figer, Donald F.; Rauscher, Bernie J.; Regan, Michael W.; Morse, Ernie; Balleza, Jesus; Bergeron, Louis; Stockman, H. S.

    2004-01-01

    The Independent Detector Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-infrared detectors. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z is approximately 10-20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance infrared detectors to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST detectors developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6-5 micron bandpass and in an ultra-low background (less than 0.01 e(-)/s/pixel) environment. We describe results from the JWST Detector Characterization Project that is being performed in the LDTL. In this project, we are measuring first-order detector parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.

  11. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    NASA Astrophysics Data System (ADS)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.

  12. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  13. Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Parsai, E. I.; Kang, J.

    2008-02-01

    In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.

  14. Abstract ID: 242 Simulation of a Fast Timing Micro-Pattern Gaseous Detector for TOF-PET.

    PubMed

    Radogna, Raffaella; Verwilligen, Piet

    2018-01-01

    Micro-Pattern Gas Detectors (MPGDs) are a new generation of gaseous detectors that have been developed thanks to advances in micro-structure technology. The main features of the MPGDs are: high rate capability (>50 MHz/cm 2 ); excellent spatial resolution (down to 50 μm); good time resolution (down to 3 ns); reduced radiation length, affordable costs, and possible flexible geometries. A new detector layout has been recently proposed that aims at combining both the high spatial resolution and high rate capability (100 MHz/cm 2 ) of the current state-of-the-art MPGDs with a high time resolution. This new type of MPGD is named the Fast Timing MPGD (FTM) detector [1,2]. The FTM developed for detecting charged particles can potentially reach sub-millimeter spatial resolution and 100 ps time resolution. This contribution introduces a Fast Timing MPGD technology optimized to detect photons, as an innovative PET imaging detector concept and emphases the importance of full detector simulation to guide the design of the detector geometry. The design and development of a new FTM, combining excellent time and spatial resolution, while exploiting the advantages of a reasonable energy resolution, will be a boost for the design of affordable TOF-PET scanner with improved image contrast. The use of such an affordable gas detector allows to instrument large areas in a cost-effective way, and to increase in image contrast for shorter scanning times (lowering the risk for the patient) and better diagnosis of the disease. In this report a dedicated simulation study is performed to optimize the detector design in the contest of the INFN project MPGD-Fatima. Results are obtained with ANSYS, COMSOL, GARFIELD++ and GEANT4 simulation tools. The final detector layout will be trade-off between fast time and good energy resolution. Copyright © 2017.

  15. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  16. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The Borrelly encounter was a scientific hallmark providing the first clear, high resolution images and excellent, short-wavelength infrared spectra of the surface of an active comet's nucleus. ?? 2007 Springer Science+Business Media, Inc.

  17. Tunable laser techniques for improving the precision of observational astronomy

    NASA Astrophysics Data System (ADS)

    Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew

    2012-09-01

    Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.

  18. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  19. Medical beam monitor—Pre-clinical evaluation and future applications

    NASA Astrophysics Data System (ADS)

    Frais-Kölbl, Helmut; Griesmayer, Erich; Schreiner, Thomas; Georg, Dietmar; Pernegger, Heinz

    2007-10-01

    Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.

  20. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  1. Diluted Magnetic Semiconductors for Magnetic Field Tunable Infrared Detectors

    DTIC Science & Technology

    2005-06-30

    significantly improved performance and technological advances of quantum well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well Infrared Photodetector 5c...fabrication in II-VI materials, quantum well infrared photodetector device design and magneto-optical characterisation are all well understood

  2. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  3. General review of multispectral cooled IR development at CEA-Leti, France

    NASA Astrophysics Data System (ADS)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  4. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  5. Assessing alternatives for directional detection of a halo of weakly interacting massive particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copi, Craig J.; Krauss, Lawrence M.; Department of Astronomy, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-7079

    2007-01-15

    The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can explore a large range of WIMP parameter space using well-tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with andmore » without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.« less

  6. Advances in TlBr detector development

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo

    2013-09-01

    Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.

  7. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  8. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  9. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  10. Germanium blocked impurity band far infrared detectors

    NASA Astrophysics Data System (ADS)

    Rossington, Carolyn Sally

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the Star Wars nuclear defense scheme proposed by the Reagan administration.

  11. Detector and readout performance goals for quantum well and strained layer superlattice focal plane arrays imaging under tactical and strategic backgrounds

    NASA Astrophysics Data System (ADS)

    Bandara, Sumith V.

    2009-11-01

    Advancements in III-V semiconductor based, Quantum-well infrared photodetector (QWIP) and Type-II Strained-Layer Superlattice detector (T2SLS) technologies have yielded highly uniform, large-format long-wavelength infrared (LWIR) QWIP FPAs and high quantum efficiency (QE), small format, LWIR T2SLS FPAs. In this article, we have analyzed the QWIP and T2SLS detector level performance requirements and readout integrated circuit (ROIC) noise levels for several staring array long-wavelength infrared (LWIR) imaging applications at various background levels. As a result of lower absorption QE and less than unity photoconductive gain, QWIP FPAs are appropriate for high background tactical applications. However, if the application restricts the integration time, QWIP FPA performance may be limited by the read noise of the ROIC. Rapid progress in T2SLS detector material has already demonstrated LWIR detectors with sufficient performance for tactical applications and potential for strategic applications. However, significant research is needed to suppress surface leakage currents in order to reproduce performances at pixel levels of T2SLS FPAs.

  12. Focal plane for the next generation of earth observation instruments

    NASA Astrophysics Data System (ADS)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  13. Man-Machine Impact of Technology on Coast Guard Missions and Systems

    DTIC Science & Technology

    1979-12-01

    t Cost of Rar~dom, Acce~ss eoy~mAlr 97 f-Al 1000 MOS RAM-(409 BITS/CHIP) . 100 _ I• z LLJ 10 (I) UI 1.04 I.-I- ’ YEAR ii A .. I. FiueA-.oecs pedo ...of these advances will iTOSt likely be accomplished through focal plane arrays of detectors, charge coupled device readout techniques for the video

  14. Miniaturization as a key factor to the development and application of advanced metrology systems

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza

    2012-10-01

    Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.

  15. Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris

    2010-01-01

    A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.

  16. The sPHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Pérez Lara, Carlos E.

    2018-02-01

    Our understanding of QCD under extreme conditions has advanced tremendously in the last 20 years with the discovery of the Quark Gluon Plasma and its characterisation in heavy ion collisions at RHIC and LHC. The sPHENIX detector planned at RHIC is designed to further study the microscopic nature of the QGP through precision measurements of jet, upsilon and open heavy flavor probes over a broad pT range. The multi-year sPHENIX physics program will commence in early 2023, using state-of-the art detector technologies to fully exploit the highest RHIC luminosities. The experiment incorporates the 1.4 T former BaBar solenoid magnet, and will feature high precision tracking and vertexing capabilities, provided by a compact TPC, Si-strip intermediate tracker and MAPS vertex detector. This is complemented by highly granular electromagnetic and hadronic calorimetry with full azimuthal coverage. In this document I describe the sPHENIX detector design and physics program, with particular emphasis on the comprehensive open heavy flavour program enabled by the experiment's large coverage, high rate capability and precision vertexing.

  17. In-Vivo Real-Time X-ray μ-Imaging

    NASA Astrophysics Data System (ADS)

    Dammer, Jiri; Holy, Tomas; Jakubek, Jan; Jakubek, Martin; Pospisil, Stanislav; Vavrík, Daniel

    2007-11-01

    The technique of X-ray transmission imaging is available for more than 100 years and it is still one of the fastest and easiest ways how to study the internal structure of living biological samples. The advances in semiconductor technology in last years make possible to fabricate new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Especially semiconductor pixel detectors seem to be very promising. Compared to the film technique they bring single-quantum and real-time digital information about the studied object with high resolution, high sensitivity and broad dynamic range. These pixel detector-based imaging stand promising as a new tool in the field of small animal imaging, for cancer research and for observation of dynamic processes inside organisms. These detectors open up for instance new possibilities for researchers to perform non-invasive studies of tissue for mutations or pathologies and to monitor disease progression or response to therapy.

  18. Two color high operating temperature HgCdTe photodetectors grown by molecular beam epitaxy on silicon substrates

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.

    2013-09-01

    The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.

  19. A Thermal Imaging Instrument with Uncooled Detectors

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the interconnections between anthropogenic water management and changes in hydrologic budget at scales of human influence; and 3) complimentary field-scale moisture values for interpreting coarser resolution datasets. There is a clear need for continuing innovation in thermal remote sensing detector technology.

  20. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    NASA Astrophysics Data System (ADS)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  1. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  2. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  3. RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology

    NASA Technical Reports Server (NTRS)

    McLeod, Catherine D.

    2015-01-01

    The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.

  4. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy.

    PubMed

    Bottigli, U; Golosio, B; Masala, G L; Oliva, P; Stumbo, S; Delogu, P; Fantacci, M E; Abbene, L; Fauci, F; Raso, G

    2006-09-01

    We describe a portable system for mammographic x-ray spectroscopy, based on a 2 X 2 X 1 mm3 cadmium telluride (CdTe) solid state detector, that is greatly improved over a similar system based on a 3 X 3 X 2 mm3 cadmium zinc telluride (CZT) solid state detector evaluated in an earlier work. The CdTe system utilized new pinhole collimators and an alignment device that facilitated measurement of mammographic x-ray spectra. Mammographic x-ray spectra acquired by each system were comparable. Half value layer measurements obtained using an ion chamber agreed closely with those derived from the x-ray spectra measured by either detector. The faster electronics and other features of the CdTe detector allowed its use with a larger pinhole collimator than could be used with the CZT detector. Additionally, the improved pinhole collimator and alignment features of the apparatus permitted much more rapid setup for acquisition of x-ray spectra than was possible on the system described in the earlier work. These improvements in detector technology, collimation and ease of alignment, as well as low cost, make this apparatus attractive as a tool for both laboratory research and advanced mammography quality control.

  5. Prototype Demonstration of Gamma- Blind Tensioned Metastable Fluid Neutron/Multiplicity/Alpha Detector – Real Time Methods for Advanced Fuel Cycle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean M.

    The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU)more » isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the more significant hazards from a radiation protection standpoint. However, alpha and neutron emitting uranium and TRU elements represent the more significant safeguards and security concerns. Table 1.1 presents a representative PWR inventory of the uranium and actinide isotopes present in a used fuel assembly. The uranium and actinide isotopes (chiefly the Pu, Am and Cm elements) are all emitters of alpha particles and some of them release significant quantities of neutrons through spontaneous fissions« less

  6. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    NASA Astrophysics Data System (ADS)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and nuclear recoil discrimination. Furthermore, early results from running the 100g detector in the Stanford Underground Facility (SUF) indicate that competitive dark matter results are achievable with the current detector design. Much of the design and testing of the experimental apparatus and instrumentation is described as well.

  7. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X; Lou, K; Rice University, Houston, TX

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less

  8. History of infrared optronics in France

    NASA Astrophysics Data System (ADS)

    Fouilloy, J. P.; Siriex, Michel B.

    1995-09-01

    In France, the real start of work on the applications of infrared radiations occurred around 1947 - 1948. During many years, technological research was performed in the field of detectors, optical material, modulation techniques, and a lot of measurements were made in order to acquire a better knowledge of the propagation medium and radiation of IR sources, namely those of jet engines. The birth of industrial infrared activities in France started with the Franco-German missile guidance programs: Milan, HOT, Roland and the French air to air missile seeker programs: R530, MAGIC. At these early stages of IR technologies development, it was a great technical adventure for both the governmental agencies and industry to develop: detector technology with PbS and InSb, detector cooling for 3 - 5 micrometer wavelength range, optical material transparent in the infrared, opto mechanical design, signal processing and related electronic technologies. Etablissement Jean Turck and SAT were the pioneers associated with Aerospatiale, Matra and under contracts from the French Ministry of Defence (DGA). In the 60s, the need arose to enhance night vision capability of equipment in service with the French Army. TRT was chosen by DGA to develop the first thermal imagers: LUTHER 1, 2, and 3 with an increasing number of detectors and image frequency rate. This period was also the era in which the SAT detector made rapid advance. After basic work done in the CNRS and with the support of DGA, SAT became the world leader of MCT photovoltaic detector working in the 8 to 12 micron waveband. From 1979, TRT and SAT were given the responsibility for the joint development and production of the first generation French thermal imaging modular system so-called SMT. Now, THOMSON TTD Optronique takes over the opto-electronics activities of TRT. Laser based systems were also studied for military application using YAG type laser and CO2 laser: Laboratoire de Marcousis, CILAS, THOMSON CSF and SAT have developed during the 70s prototypes for a laser range finder, lidar, laser weapon, and target designator. The constant need to develop increasingly efficient infrared equipment led to a significant increase in the number of detector elements implying the integration of the detector and multiplexer electronic. After tests on several possible technologies at SAT, THOMSON CSF, and LETI, the work performed by these teams in 1980 was concentrated on the development of an MCT type IRCCD detector. The selection of this detector technology for the TRIGAT program led to the creation in 1986 of SOFRADIR with the pooling of the different existing expertise. Much other equipment of the first generation was created during the 80s and is now in production: IRST for naval and airborne applications; IR line scanner for airborne reconnaissance; light thermal imagers for man-portable weapons; infrared seekers for ground to air and air to air missiles; thermal sights for submarine, tank, and missile launch systems; night vision systems for flying helicopter and aircraft; air to ground attack pods for night and day operations.

  9. SPIDER: Next Generation Chip Scale Imaging Sensor Update

    NASA Astrophysics Data System (ADS)

    Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    2016-09-01

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).

  10. Development of a motorized cryovalve for the control of superfluid liquid helium

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.

    1988-01-01

    Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew Scott; Bennett, D. A.; Croce, Mark Philip

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to closemore » the performance gap between NDA and DA methods to address the needs of nuclear facilities.« less

  12. Neural network tracking and extension of positive tracking periods

    NASA Technical Reports Server (NTRS)

    Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre

    2004-01-01

    Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.

  13. Neural network tracking and extension of positive tracking periods

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Chao, Tien-Hsin; Moreels, Pierre

    2004-04-01

    Feature detectors have been considered for the role of supplying additional information to a neural network tracker. The feature detector focuses on areas of the image with significant information. Basically, if a picture says a thousand words, the feature detectors are looking for the key phrases (keypoints). These keypoints are rotationally invariant and may be matched across frames. Application of these advanced feature detectors to the neural network tracking system at JPL has promising potential. As part of an ongoing program, an advanced feature detector was tested for augmentation of a neural network based tracker. The advance feature detector extended tracking periods in test sequences including aircraft tracking, rover tracking, and simulated Martian landing. Future directions of research are also discussed.

  14. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  15. UV-visible sensors based on polymorphous silicon

    NASA Astrophysics Data System (ADS)

    Guedj, Cyril S.; Cabarrocas, Pere R. i.; Massoni, Nicolas; Moussy, Norbert; Morel, Damien; Tchakarov, Svetoslav; Bonnassieux, Yvan

    2003-09-01

    UV-based imaging systems can be used for low-altitude rockets detection or biological agents identification (for instance weapons containing ANTHRAX). Compared to conventional CCD technology, CMOS-based active pixel sensors provide several advantages, including excellent electro-optical performances, high integration, low voltage operation, low power consumption, low cost, long lifetime, and robustness against environment. The monolithic integration of UV, visible and infrared detectors on the same uncooled CMOS smart system would therefore represent a major advance in the combat field, for characterization and representation of targets and backgrounds. In this approach, we have recently developped a novel technology using polymorphous silicon. This new material, fully compatible with above-IC silicon technology, is made of nanometric size ordered domains embedded in an amorphous matrix. The typical quantum efficiency of detectors made of this nano-material reach up to 80 % at 550 nm and 30 % in the UV range, depending of the design and the growth parameters. Furthermore, a record dark current of 20 pA/cm2 at -3 V has been reached. In addition, this new generation of sensors is significantly faster and more stable than their amorphous silicon counterparts. In this paper, we will present the relationship between the sensor technology and the overall performances.

  16. Characterization of single α-tracks by photoresist detection and AFM analysis-focus on biomedical science and technology

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.

    2013-11-01

    The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.

  17. Prospects for future experiments to search for nucleon decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, D.S.; Heller, K.; LoSecco, J.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modesmore » to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.« less

  18. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon installs an X-ray detector onto the payload’s detector plate. The detectors are protected by red caps during installation because they are very sensitive to dust and other foreign object debris. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. LIGO-India: expanding the international network of gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Iyer, Balasubramanian

    2015-04-01

    The first detection of Gravitational Waves (GW) by ground based detectors will open up a fundamentally new observational window to the Universe with implications for astrophysics and eventually cosmology and fundamental physics. The realization of GW astronomy requires a global network of Advanced GW detectors including upcoming observatories like KAGRA (Japan) and LIGO-India to provide good sky localization of the GW sources. LIGO-India is expected to play a key role in locating and deciphering the sources contributing to the GW symphony. The current status of LIGO-India project and the exciting future research opportunities of this ambitious Indo-US collaboration in science, technology and computation will be finally indicated. Acknowledge CISA and APS for the Award of a APS Beller Lectureship. BRI supported by the AIRBUS Group Corporate Foundation through a visiting professorship, which is part of the ``Mathematics of Complex Systems'' chair at ICTS.

  20. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.

  1. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  2. Infrared engineering for the advancement of science: A UK perspective

    NASA Astrophysics Data System (ADS)

    Baker, Ian M.

    2017-02-01

    Leonardo MW (formerly Selex ES) has been developing infrared sensors and cameras for over 62 years at two main sites at Southampton and Basildon. Funding mainly from UK MOD has seen the technology progress from single element PbSe sensors to advanced, high definition, HgCdTe cameras, widely deployed in many fields today. However, in the last 10 years the major challenges and research funding has come from projects within the scientific sphere, particularly: astronomy and space. Low photon flux, high resolution spectroscopy and fast frame rates are the motivation to drive the sensitivity of infrared detectors to the single photon level. These detectors make use of almost noiseless avalanche gain in HgCdTe to achieve the sensitivity and speed of response. Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates, provides the capability for crucial bandgap engineering to suppress breakdown currents and allow high avalanche gain even in very low background conditions. This paper describes the progress so far and provides a glimpse of the future.

  3. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    NASA Astrophysics Data System (ADS)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  4. Noise Performance of the Advanced LIGO Detectors

    NASA Astrophysics Data System (ADS)

    Hall, Evan; LIGO Scientific Collaboration

    2016-03-01

    Advanced LIGO has completed a four-month search for gravitational wave events using two 4-km laser interferometers separated by a 3000 km baseline. These instruments can sense spacetime strain to better than 10-23 /Hz 1 / 2 in their most sensitive frequency band (80 Hz to 400 Hz). The interferometers' sensitivity is limited by a variety of noise sources, including thermal fluctuations of the test masses and their suspensions, quantum and classical fluctuations of the laser light used to interrogate the test masses, residual environmental disturbances, and noises arising from the sensing and control of the interferometers' length and angular degrees of freedom. We present a budget of these noise sources as they appeared during the first observing run, and discuss ongoing improvements as we look forward to Advanced LIGO achieving full design sensitivity. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-0757058.

  5. Microcantilever sensor platform for UGV-based detection

    NASA Astrophysics Data System (ADS)

    Lawrence, Tyson T.; Halleck, A. E.; Schuler, Peter S.; Mahmud, K. K.; Hicks, David R.

    2010-04-01

    The increased use of Unmanned Ground Vehicles (UGVs) drives the need for new lightweight, low cost sensors. Microelectromechanical System (MEMS) based microcantilever sensors are a promising technology to meet this need, because they can be manufactured at low cost on a mass scale, and are easily integrated into a UGV platform for detection of explosives and other threat agents. While the technology is extremely sensitive, selectivity is a major challenge and the response modes are not well understood. This work summarizes advances in characterizing ultrasensitive microcantilever responses, sampling considerations, and sensor design and cantilever coating methodologies consistent with UGV point detector needs.

  6. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  7. Transition of advanced technology to military, homeland security, and law enforcement users

    NASA Astrophysics Data System (ADS)

    Jarrett, Stephen M.

    2004-09-01

    With the attack on the United States and the subsequent war on terror and the wars in Afghanistan and Iraq a need has been exposed for the transition of technology to all of our defenders both combat forces on the foreign battlefield and domestic forces here at home. The establishment of the Department of Homeland Security has also provided a focus on inserting technology to dramatically improve the capability of airport security forces, law enforcement, and all first responder networks. The drastic increase in the use of Special Forces in combat has also required new advanced technology capabilities at a much faster rate of development than the standard military procurement system. Technology developers must address the questions of interoperability, cost, commercialization, of how these groups will use the technology delivered and the adoption criteria of users in the deployment environment. The successful transition to the field must address the formation of complex concepts of operations in the user's adoption criteria. Prototype transition for two systems, a pocket infrared camera and an acoustic/seismic detector, will be highlighted in their effect on the wars in Iraq and Afghanistan and in the heightening of homeland security.

  8. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/√{Hz } at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  9. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel

    The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less

  10. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  11. The majorana experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rielage, Keith R; Elliott, Steven R; Boswell, Melissa

    2010-12-13

    The MAJORANA Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, MAJORANA aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype DEMONSTRATOR module are presented. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of P-PC Ge detectors present advances in background rejection and a Significantly lower energy threshold than conventional Ge detector technologies. The lower energymore » threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. The DEMONSTRATOR should establish that the backgrounds are low enough to justify scaling to tonne-scale experiment, probe the neutrino effective mass region above 100 meV, and search the low energy region with a sensitivity to dark matter. The DEMONSTRATOR will be sited at the 4850-ft level (4200 m.w.e) of the Sanford Underground Laboratory at Homestake and preparations for construction are currently underway.« less

  12. 10μm pitch family of InSb and XBn detectors for MWIR imaging

    NASA Astrophysics Data System (ADS)

    Gershon, G.; Avnon, E.; Brumer, M.; Freiman, W.; Karni, Y.; Niderman, T.; Ofer, O.; Rosenstock, T.; Seref, D.; Shiloah, N.; Shkedy, L.; Tessler, R.; Shtrichman, I.

    2017-02-01

    There has been a growing demand over the past few years for infrared detectors with a smaller pixel dimension. On the one hand, this trend of pixel shrinkage enables the overall size of a given Focal Plan Array (FPA) to be reduced, allowing the production of more compact, lower power, and lower cost electro-optical (EO) systems. On the other hand, it enables a higher image resolution for a given FPA area, which is especially suitable in infrared systems with a large format that are used with a wide Field of View (FOV). In response to these market trends SCD has developed the Blackbird family of 10 μm pitch MWIR digital infrared detectors. The Blackbird family is based on three different Read- Out Integrated Circuit (ROIC) formats: 1920×1536, 1280×1024 and 640×512, which exploit advanced and mature 0.18 μm CMOS technology and exhibit high functionality with relatively low power consumption. Two types of 10 μm pixel sensing arrays are supported. The first is an InSb photodiode array based on SCD's mature planar implanted p-n junction technology, which covers the full MWIR band, and is designed to operate at 77K. The second type of sensing array covers the blue part of the MWIR band and uses the patented XBn-InAsSb barrier detector technology that provides electro-optical performance equivalent to planar InSb but at operating temperatures as high as 150 K. The XBn detector is therefore ideal for low Size, Weight and Power (SWaP) applications. Both sensing arrays, InSb and XBn, are Flip-chip bonded to the ROICs and assembled into custom designed Dewars that can withstand harsh environmental conditions while minimizing the detector heat load. A dedicated proximity electronics board provides power supplies and timing to the ROIC and enables communication and video output to the system. Together with a wide range of cryogenic coolers, a high flexibility of housing designs and various modes of operation, the Blackbird family of detectors presents solutions for EO systems which cover both the very high-end and the low SWaP types of application. In this work we present in detail the EO performance of the Blackbird detector family.

  13. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  14. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and extending to 10 GHz can be realized with quasi-periodic phononic structures. A few 10^-19 WHz-1/2 detector sensitivity is readily accessible with phononic filter thermal isolation. Phononic filters are naturally compact, <20 μm in longest dimension, and contribute negligible heat capacity to a thermal sensor. We propose a three-year effort to fabricate and test phononic-isolated Transition- Edge Sensor arrays suitable for background-limited operation in a Far-IR Sur- veyor. We emphasize that phononic thermal isolation offers a viable path towards detector sensitivities an order of magnitude above that achieved with current state-of-the-art thermal detector technologies. Our effort addresses the APRA solicitation for advancing detector design and operation towards highly sensitive, compact, and robust characteristics.

  15. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  16. Which strategy for a protein crystallization project?

    NASA Technical Reports Server (NTRS)

    Kundrot, C. E.

    2004-01-01

    The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.

  17. Which Strategy for a Protein Crystallization Project?

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    2003-01-01

    The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.

  18. Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Levin, Craig

    2017-03-01

    Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.

  19. MIXI: Mobile Intelligent X-Ray Inspection System

    NASA Astrophysics Data System (ADS)

    Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy

    2017-07-01

    A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.

  20. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  1. Volumetric breast density measurement: sensitivity analysis of a relative physics approach

    PubMed Central

    Lau, Susie; Abdul Aziz, Yang Faridah

    2016-01-01

    Objective: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. Methods: 3317 raw digital mammograms were processed with Volpara® (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Results: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Conclusion: Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Advances in knowledge: Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be. PMID:27452264

  2. Smart Sensors: Why and when the origin was and why and where the future will be

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2013-12-01

    Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.

  3. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  4. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  5. Update on Advanced LIGO: the second observing run

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa; LIGO Scientific Collaboration Collaboration

    2017-01-01

    After several months of detector improvements, the two Advanced LIGO gravitational wave detectors are coming back on-line by the end of 2016 for their second Observing run, O2. In this talk I will discuss the status of Advanced LIGO and its observing plan.

  6. LIGO: The instruments that launched gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Fritschel, Peter; LIGO Scientific Collaboration

    2018-01-01

    After decades of development, the advanced gravitational wave detectors are now in the business of making detections of the types of astrophysical sources they were designed for. And yet these detectors still have a ways to go to reach their designed sensitivity levels. This talk will cover the design and performance of these advanced detectors, with emphasis on Advanced LIGO. I will lay out the path to reaching design sensitivity, and then turn to plans for future improvements to the existing LIGO detectors’ sensitivity. Looking even further into the future, I will discuss concepts for a new generation of detectors that will be needed to probe much deeper into the cosmos.

  7. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

    PubMed

    Bartesaghi, Alberto; Merk, Alan; Banerjee, Soojay; Matthies, Doreen; Wu, Xiongwu; Milne, Jacqueline L S; Subramaniam, Sriram

    2015-06-05

    Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM. Copyright © 2015, American Association for the Advancement of Science.

  8. WE-DE-207A-00: Advances in Image-Guided Neurointerventions-Clinical Pull and Technology Push

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less

  9. Calibration uncertainty for Advanced LIGO's first and second observing runs

    NASA Astrophysics Data System (ADS)

    Cahillane, Craig; Betzwieser, Joe; Brown, Duncan A.; Goetz, Evan; Hall, Evan D.; Izumi, Kiwamu; Kandhasamy, Shivaraj; Karki, Sudarshan; Kissel, Jeff S.; Mendell, Greg; Savage, Richard L.; Tuyenbayev, Darkhan; Urban, Alex; Viets, Aaron; Wade, Madeline; Weinstein, Alan J.

    2017-11-01

    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.

  10. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  11. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  12. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  13. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  14. SoLid Detector Technology

    NASA Astrophysics Data System (ADS)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  15. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing amore » He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.« less

  16. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    PubMed

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  17. MCT (HgCdTe) IR detectors: latest developments in France

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard

    2010-10-01

    This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.

  18. Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.

    2009-07-01

    We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.

  19. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; et al.

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less

  20. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  1. CORSAIR-Calibrated Observations of Radiance Spectra from the Atmosphere in the Far- Infrared

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D.; Abedin, N.; Liu, X.; Kratz, D.; Jordan, D.; Wang, J.; Bingham, G.; Latvakoski, H.; Bowman, K.; Kaplan, S.

    2008-12-01

    The CORSAIR project is a new NASA Instrument Incubator Project (IIP) whose primary goal is to develop and demonstrate the necessary technologies to achieve SI-traceable, on-orbit measurements of Earth's spectral radiance in the far-infrared (far-IR). The far-IR plays a vital role in the energy balance of the Earth yet its spectrum has not been comprehensively observed from space for the purposes of climate sensing. The specific technologies being developed under CORSAIR include: passively cooled, antenna-coupled terahertz detectors for the far-IR (by Raytheon Vision Systems); accurately calibrated, SI-traceable blackbody sources for the far-IR (by Space Dynamics Laboratory); and high-performance broad bandpass beamsplitters (by ITT). These technologies complement those already developed under past Langley IIP projects (FIRST; INFLAME) in the areas of Fourier Transform Spectrometers and dedicated far-IR beamsplitters. The antenna-coupled far-IR detectors will be validated in the FIRST instrument at Langley. The SI-traceable far-IR blackbodies will be developed in conjunction with the National Institute of Standards and Technology (NIST). An overview of the CORSAIR technologies will be presented as well as their larger role in the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Upon successful completion of CORSAIR these IIP efforts will provide the necessary technologies to achieve the first comprehensive, accurate, high-resolution measurements from a satellite of the far-IR spectrum of the Earth and its atmosphere, enabling major advances in our understanding of Earth's climate.

  2. Scintillator and solid-state neutron detectors and their applications

    NASA Astrophysics Data System (ADS)

    Carturan, Sara Maria; Marchi, Tommaso; Fanchini, Erica; De Vita, Raffaella; Finocchiaro, Paolo; Pappalardo, Alfio

    2014-10-01

    The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.

  3. Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes.

    PubMed

    Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2016-12-01

    Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.

  4. Development of a Broad High-Energy Gamma-Ray Telescope using Silicon Strip Detectors

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1998-01-01

    The research effort has led to the development and demonstration of technology to enable the design and construction of a next-generation high-energy gamma-ray telescope that operates in the pair-production regime (E greater than 10 MeV). In particular, the technology approach developed is based on silicon-strip detector technology. A complete instrument concept based on this technology for the pair-conversion tracker and the use of CsI(T1) crystals for the calorimeter is now the baseline instrument concept for the Gamma-ray Large Area Space Telescope (GLAST) mission. GLAST is NASA's proposed high-energy gamma-ray mission designed to operate in the energy range from 10 MeV to approximately 300 GeV. GLAST, with nearly 100 times the sensitivity of EGRET, operates through pair conversion of gamma-rays and measurement of the direction and energy of the resulting e (+) - e (-) shower. The baseline design, developed with support from NASA includes a charged particle anticoincidence shield, a tracker/converter made of thin sheets of high-Z material interspersed with Si strip detectors, a CsI calorimeter and a programmable data trigger and acquisition system. The telescope is assembled as an array of modules or towers. Each tower contains elements of the tracker, calorimeter, and anticoincidence system. As originally proposed, the telescope design had 49 modules. In the more optimized design that emerged at the end of the grant period the individual modules are larger and the total number in the GLAST array is 25. Also the calorimeter design was advanced substantially to the point that it has a self-contained imaging capability, albeit much cruder than the tracker.

  5. A novel dual-detector micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas

    2005-01-01

    Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.

  6. Distributed state machine supervision for long-baseline gravitational-wave detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less

  7. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adekola, A.S.; Colaresi, J.; Douwen, J.

    2015-07-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. Themore » detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm{sup 3}. The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable concentrations compared to Traditional Well detectors. The SAGe Well detectors are compatible with Marinelli beakers and compete very well with semi-planar and coaxial detectors for large samples in many applications. (authors)« less

  8. Quantitative Secondary Electron Detector (QSED)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Subu; Joy, David C.

    2013-12-31

    Research is proposed to investigate the feasibility of applying recent advances in semiconductor technology to fabricate direct digital Quantitative Secondary Electron Detectors (QSED) for scanning electron microscopes (SEMs). If successful, commercial versions of the QSED would transform the SEM into a quantitative, metrological system with enhanced capabilities that, in turn, would broaden research horizons across industries. This project will be conducted in collaboration with Dr. David C Joy at the University of Tennessee, who has demonstrated limited (to the 1keV range) digital collection of the energy from backscattered signals in a SEM using a modified silicon drift detector. Several detectormore » configurations will be fabricated and tested for sensitivities, background noise reduction, DC offset elimination, and metrological capabilities (linearity, accuracy, etc.) against a set of commercially important performance criteria to ascertain concept feasibility. Once feasibility is proven, the solid state digital device array and its switching frequency will be scaled-up, in Phase II, to improve temporal resolution. If successful, this work will produce a crucial advancement in electron microscopy with wide-ranging applications. The following are key advantages anticipated from direct digital QSED: 1. High signal-to-noise ratio will improve SEM resolution in nano-scale, which is critical for dimensional metrology in any application. 2. Quantitative measurement will enhance process control and design validation in semiconductors, photo-voltaics, bio-medical devices and catalysts; and will improve accuracy in predicting the reliability and the lifecycle of materials across industries. 3. Video and dynamic-imaging capabilities will advance study in nano-scale phenomena in a variety of industries, including pharmaceutical and semiconductor materials. 4. Lower cost will make high-performing electron microscopes affordable to more researchers. 5. Compact size and ease of integration with imaging software will enable customers to retrofit and upgrade existing SEM equipment. ScienceTomorrow’s direct digital QSED concept has generated enthusiastic interest among a number of microscope makers, service companies, and microscope users. The company has offers of support from several companies. The roles these companies would play in supporting the project are described in the proposal. The proposed QSED advance sits squarely in the middle of ScienceTomorrow’s mission to provide next-generation technology solutions to today’s critical problems and, if successful, will further the company’s business strategy by launching an advanced, high-margin product that will enable the company and its partners to create at least 17 net-new jobs by the end of 2018.« less

  9. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hand-Held Cell Phone Detector Devices AGENCY: National Institute of Justice, Department of Justice...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...

  10. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    PubMed

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  11. Analysis of the development of missile-borne IR imaging detecting technologies

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.

  12. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  13. Infrared imaging: a potential powerful tool for neuroimaging and neurodiagnostics

    PubMed Central

    Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2017-01-01

    Abstract. Infrared (IR) imaging is used to detect the subtle changes in temperature needed to accurately detect and monitor disease. Technological advances have made IR a highly sensitive and reliable detection tool with strong potential in medical and neurophotonics applications. An overview of IR imaging specifically investigating quantum well IR detectors developed at Jet Propulsion Laboratory for a noninvasive, nonradiating imaging tool is provided, which could be applied for neuroscience and neurosurgery where it involves sensitive cellular temperature change. PMID:28382311

  14. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  15. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  16. WE-DE-207A-04: Advances in Radiological Neuro-Endovascular Interventional Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, S.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less

  17. WE-DE-207A-03: Recent Advances in Devices Used in Neuro--Interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gounis, M.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less

  18. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less

  19. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  20. LWIR detector requirements for low-background space applications

    NASA Technical Reports Server (NTRS)

    Deluccia, Frank J.

    1990-01-01

    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.

  1. Type II superlattice technology for LWIR detectors

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  2. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  3. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  4. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  5. Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors.

    PubMed

    Yu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L; Fulda, Paul; Grote, Hartmut; Sigg, Daniel

    2018-04-06

    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z≃6 and would be sensitive to intermediate-mass black holes up to 2000  M_{⊙}. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

  6. Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L.; Fulda, Paul; Grote, Hartmut; Sigg, Daniel

    2018-04-01

    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z ≃6 and would be sensitive to intermediate-mass black holes up to 2000 M⊙. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

  7. Analyzing Noise for the Muon Silicon Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchan, Miguelangel; Utes, Michael

    2017-01-01

    The development of a silicon muon tomography detector is a joint project between Fermilab and National Security Technologies, LLC. The goal of this detector is to detect nuclear materials better than technology in the past. Using silicon strip detectors and readout chips used by experiments at CERN we have been developing the detector. This summer we have been testing components of the detector and have been analyzing noise characteristics.

  8. Progress on uncooled PbSe detectors for low-cost applications

    NASA Astrophysics Data System (ADS)

    Vergara, German; Gomez, Luis J.; Villamayor, Victor; Alvarez, M.; Rodrigo, Maria T.; del Carmen Torquemada, Maria; Sanchez, Fernando J.; Verdu, Marina; Diezhandino, Jorge; Rodriguez, Purificacion; Catalan, Irene; Almazan, Rosa; Plaza, Julio; Montojo, Maria T.

    2004-08-01

    This work reports on progress on development of polycrystalline PbSe infrared detectors at the Centro de Investigacion y Desarrollo de la Armada (CIDA). Since mid nineties, the CIDA owns an innovative technology for processing uncooled MWIR detectors of polycrystalline PbSe. Based on this technology, some applications have been developed. However, future applications demand smarter, more complex, faster yet cheaper detectors. Aiming to open new perspectives to polycrystalline PbSe detectors, we are currently working on different directions: 1) Processing of 2D arrays: a) Designing and processing low density x-y addressed arrays with 16x16 and 32x32 elements, as an extension of our standard technology. b) Trying to make compatible standard CMOS and polycrystalline PbSe technologies in order to process monolithic large format arrays. 2) Adding new features to the detector such as monolithically integrated spectral discrimination.

  9. LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2015-02-20

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transientmore » signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg{sup 2} in 2015 and 60-110 deg{sup 2} in 2016, although knowledge of the waveform can reduce this to as little as 22 deg{sup 2}. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.« less

  10. Implementation of a new technology for point detection

    NASA Astrophysics Data System (ADS)

    Petinarides, John; Griffin, M. Todd; Miller, Ranaan A.; Nazarov, Erkinjon G.; Bashall, Anthony D.

    2005-05-01

    General Dynamics ATP (GDATP) and Sionex Corporation (Sionex) are carrying out a cooperative development for a handheld chemical agent detector, being called JUNO, which will have lower false positives, higher sensitivity, and improved interference rejection compared with presently available detectors. This enhanced performance is made possible by the use of a new principle of ion separation called Differential Mobility Spectrometry (DMS). The enhanced selectivity is provided by the field tunable nature of the Sionex differential mobility technology (microDMxTM) which forms the analytical heart of the JUNO system and enables fingerprinting of molecules by characterization of the ionized molecular behavior under multiple electric field conditions. This enhanced selectivity is valuable in addressing not only the traditional list of chemical warfare agents (CWA) but also the substantial list of Toxic Industrial Compounds (TICs) and Toxic Industrial Materials (TIMs) which may be released in warfare or terrorist situations. Experimental results showing the ability of the microDMx to reject interferences, detect and resolve live agents are presented. An additional breakthrough in the technology was realized by operating the device at a reduced pressure of around 0.5 atmospheres. This reduced pressure operation resulted in roughly doubling the spectrometers resolution over what has previously been reported [1]. Advances have also been made in power consumption and packaging leading to a device suitable for portable, handheld, applications. Experimental results illustrating the performance of the microDMx technology employed in JUNO are highlighted.

  11. The Common Data Acquisition Platform in the Helmholtz Association

    NASA Astrophysics Data System (ADS)

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  12. Resonant dampers for parametric instabilities in gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M.

    2015-10-01

    Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ˜1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.

  13. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  14. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, M; Gingold, E; Jones, A

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less

  15. Liquid crystal foil for the detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk

    2016-09-01

    Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.

  16. 100 years of photometry and radiometry

    NASA Astrophysics Data System (ADS)

    Hardis, Jonathan E.

    2001-06-01

    Measurement of light is an old subject, though the past 100 years have seen significant advances. 100 years ago, photometry - the art and science of measuring light as it is perceived by people - had the greater technological importance. Even today SI (the metric system) retains a base unit for photometry, the candela. However, early work at NBS included pivotal projects in the field of radiometry - the measurement of the physical characteristics of light. These included the validation of Planck's newly-minted theory of blackbody radiation, determining the radiation constants with good accuracy, and the definitive analysis of the spectral responsivity of human vision, so as to relate photometry to radiometry. This latter work has only increased in importance over the past 75 years as the definition of the candela has changed and improved. Today, NIST makes radiometric, and hence photometric measurements, with unprecedented precision. Cryogenic radiometers based on the principle of electrical substitution measure optical flux with uncertainties of 0.02%. Additional facilities enable measurement of spectral responsivity, spectral radiance, and spectral irradiance. Novel detectors, such as light-traps, allow the best accuracy to be transferred from the primary standards to routinely-used instruments and to calibration customers. Filtered detectors are used to realize photometric scales, radiation temperature scales, and other specialized measurements. Indeed, the story of the metrology of light is the story of continuous improvement, both driven by and enabled by advances in technology. We touch upon some of these as a prelude to the other talks in this Conference.

  17. MS Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assessmore » current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.« less

  18. Test and Recommendation of Flight-forward Resistive Temperature Detector for Resource Prospector Mission

    NASA Technical Reports Server (NTRS)

    Hinricher, Jesse

    2014-01-01

    The Resource Prospector Mission (RPM) is an in-situ resource utilization (ISRU) technology demonstration mission planned to launch in 2018. The mission will use the Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) Payload to prospect for lunar volatiles such as water, oxygen, and carbon dioxide. These compounds will validate ISRU capability. The payload, particularly the Lunar Advanced Volatile Analysis (LAVA) subsystem, requires numerous temperature measurements to accurately control on-board heaters that keep the volatiles in the vapor phase to allow quantification and prevent the clogging of delivery lines. Previous spaceflight missions have proven that Resistive Temperature Detector (RTD) failure impedes mission success. The research resulted in a recommendation for a flight-forward RTD. The recommendation was based on accuracy, consistency, and ease of installation of RTDs procured from IST, QTI, and Honeywell.

  19. Test and Recommendation of Flight-Forward Resistive Temperature Detector for Resource Prospector Mission

    NASA Technical Reports Server (NTRS)

    Hinricher, Jesse John

    2012-01-01

    The Resource Prospector Mission (RPM) is an in-situ resource utilization (ISRU) technology demonstration mission planned to launch in 2018. The mission will use the Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) Payload to prospect for lunar volatiles such as water, oxygen, and carbon dioxide. These compounds will validate ISRU capability. The payload, particularly the Lunar Advanced Volatile Analysis (LAVA) subsystem, requires numerous temperature measurements to accurately control on-board heaters that keep the volatiles in the vapor phase to allow quantification and prevent the clogging of delivery lines. Previous spaceflight missions have proven that Resistive Temperature Detector (RTD) failure impedes mission success. The research resulted in a recommendation for a flight-forward RTD. The recommendation was based on accuracy, consistency, and ease of installation of RTDs procured from IST, QTI, and Honeywell.

  20. The detection of dissolved gases in transformer oil by gas chromatography with helium ionization detector

    NASA Astrophysics Data System (ADS)

    Deng, Xian-qin; Fang, Hua; Li, Min-xian

    2017-07-01

    The GC-PDD with the technology of valve cutting and helium ionization detector was used to analyze the dissolved gases in ultra-high voltage(UHV) and extra-high voltage(EHV) transformer oil. The detection limit(DL) reached ppb grade, especially for the featuring gas—C2H2 and H2, whose DL could reach 5ppb and 11ppb respectively. The test reproducibility of the instrument was about 1% and the correlation coefficient of standard curve-r is greater or equal to 0.99, which showed obvious advantage compared with normal GC. In addition, the auxiliary gas of H2 was not used in this instrument, which completely improved the safety performance. Thus, the application of GC-PDD has significant meaning in warning potential malfunction inside the ultra-high voltage transformer in advance.

  1. IR in Norway

    NASA Astrophysics Data System (ADS)

    Haakenaasen, Randi; Lovold, Stian

    2003-01-01

    Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.

  2. High-Reflection Coatings for Gravitational-Wave Detectors: State of The Art and Future Developments

    NASA Astrophysics Data System (ADS)

    Amato, Alex; Cagnoli, Gianpietro; Canepa, Maurizio; Coillet, Elodie; Degallaix, Jerome; Dolique, Vincent; Forest, Daniele; Granata, Massimo; Martinez, Valérie; Michel, Christophe; Pinard, Laurent; Sassolas, Benoit; Teillon, Julien

    2018-02-01

    We report on the optical, mechanical and structural characterization of the sputtered coating materials of Advanced LIGO, Advanced Virgo and KAGRA gravitational- waves detectors. We present the latest results of our research program aiming at decreasing coating thermal noise through doping, optimization of deposition parameters and post- deposition annealing. Finally, we propose sputtered Si3N4 as a candidate material for the mirrors of future detectors.

  3. X-ray characterization of a multichannel smart-pixel array detector.

    PubMed

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  4. Recent developments in Geant4

    DOE PAGES

    Allison, J.; Amako, K.; Apostolakis, J.; ...

    2016-07-01

    Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. In conclusion, the adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions tomore » the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.« less

  5. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  6. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  7. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  8. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  9. WE-DE-207A-01: Parallels in the Evolution of X-Ray Angiographic Systems and Devices Used for Minimally Invasive Endovascular Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strother, C.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less

  10. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI

    PubMed Central

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-01-01

    Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919

  11. Design and Operational Characteristics of the Shuttle Coherent Wind Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Spiers, Gary D.; Peters, Bruce R.; Li, Ye; Blackwell, Timothy S.; Geary, Joseph M.

    1998-01-01

    NOAA has identified the measurement of atmospheric wind velocities as one of the key unmet data sets for its next generation of sensing platforms. The merits of coherent lidars for the measurement of atmospheric winds from space platforms have been widely recognized; however, it is only recently that several key technologies have advanced to a point where a compact, high fidelity system could be created. Advances have been made in the areas of the diode-pumped, eye-safe, solid state lasers and room temperature, wide bandwidth, semiconductor detectors operating in the near-infrared region. These new lasers can be integrated into efficient and compact optical systems creating new possibilities for the development of low-cost, reliable, and compact coherent lidar systems for wind measurements. Over the past five years, the University of Alabama in Huntsville (UAH) has been working toward further advancing the solid state coherent lidar technology for the measurement of atmospheric winds from space. As part of this effort, UAH had established the design characteristics and defined the expected performance for three different proposed space-based instruments: a technology demonstrator, an operational prototype, and a 7-year lifetime operational instrument. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE instrument's major physical and environmental design constraints, optical and mechanical designs, and its operational characteristics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gatingmore » time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.« less

  13. Uncooled 17 μm ¼ VGA IRFPA development for compact and low power systems

    NASA Astrophysics Data System (ADS)

    Robert, P.; Tissot, J.; Pochic, D.; Gravot, V.; Bonnaire, F.; Clerambault, H.; Durand, A.; Tinnes, S.

    2012-11-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop ¼ VGA IRFPA formats with 17μm pixel-pitch to enable the development of small power, small weight (SWAP) and high performance IR systems. ROIC architecture will be described where innovations are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction…), is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC) supplied to the ROIC which feeds back pixel, line and frame synchronizations. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analog mode at 60 Hz and < 175 mW in digital mode (14 bits). A wide electrical dynamic range (2.4V) is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node associated with advanced packaging technique, paves the way to compact low power system.

  14. Easy to use uncooled ¼ VGA 17 µm FPA development for high performance compact and low-power systems

    NASA Astrophysics Data System (ADS)

    Robert, P.; Tissot, JL.; Pochic, D.; Gravot, V.; Bonnaire, F.; Clerambault, H.; Durand, A.; Tinnes, S.

    2012-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop ¼ VGA IRFPA formats with 17μm pixel-pitch to enable the development of small power, small weight (SWAP) and high performance IR systems. ROIC architecture will be described where innovations are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction...), is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC) supplied to the ROIC which feeds back pixel, line and frame synchronizations. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analog mode at 60 Hz and < 175 mW in digital mode (14 bits). A wide electrical dynamic range (2.4V) is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design. This technology node associated with advanced packaging technique, paves the way to compact low power system.

  15. Neutron and Gamma Imaging for National Security Applications

    NASA Astrophysics Data System (ADS)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  16. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W.-T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2018-04-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg^2 requires at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  17. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Appert, S; Arai, K; Araya, A; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Asada, H; Ascenzi, S; Ashton, G; Aso, Y; Ast, M; Aston, S M; Astone, P; Atsuta, S; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Awai, K; Babak, S; Bacon, P; Bader, M K M; Baiotti, L; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Fiore, L Di; Giovanni, M Di; Girolamo, T Di; Lieto, A Di; Pace, S Di; Palma, I Di; Virgilio, A Di; Doctor, Z; Doi, K; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Eda, K; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fujii, Y; Fujimoto, M-K; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hagiwara, A; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Hayama, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hirose, E; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Ioka, K; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Itoh, Y; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kagawa, T; Kajita, T; Kakizaki, M; Kalaghatgi, C V; Kalogera, V; Kamiizumi, M; Kanda, N; Kandhasamy, S; Kanemura, S; Kaneyama, M; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Kataoka, Y; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawai, N; Kawamura, S; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, H; Kim, J C; Kim, J; Kim, W; Kim, Y-M; Kimbrell, S J; Kimura, N; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Kojima, Y; Kokeyama, K; Koley, S; Komori, K; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kotake, K; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, Rahul; Kumar, Rakesh; Kuo, L; Kuroda, K; Kutynia, A; Kuwahara, Y; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mano, S; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marchio, M; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Matsumoto, N; Matsushima, F; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Michimura, Y; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyamoto, A; Miyamoto, T; Miyoki, S; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morii, W; Morisaki, S; Moriwaki, Y; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Nagano, S; Nakamura, K; Nakamura, T; Nakano, H; Nakano, Masaya; Nakano, Masayuki; Nakao, K; Napier, K; Nardecchia, I; Narikawa, T; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Ni, W-T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohashi, M; Ohishi, N; Ohkawa, M; Ohme, F; Okutomi, K; Oliver, M; Ono, K; Ono, Y; Oohara, K; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Peña Arellano, F E; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sago, N; Saijo, M; Saito, Y; Sakai, K; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sasaki, Y; Sassolas, B; Sathyaprakash, B S; Sato, S; Sato, T; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sekiguchi, T; Sekiguchi, Y; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shibata, M; Shikano, Y; Shimoda, T; Shoda, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somiya, K; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Sugimoto, Y; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Suzuki, T; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tagoshi, H; Takada, S; Takahashi, H; Takahashi, R; Takamori, A; Talukder, D; Tanaka, H; Tanaka, K; Tanaka, T; Tanner, D B; Tápai, M; Taracchini, A; Tatsumi, D; Taylor, R; Telada, S; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomaru, T; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Tsubono, K; Tsuzuki, T; Turconi, M; Tuyenbayev, D; Uchiyama, T; Uehara, T; Ueki, S; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Ushiba, T; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Putten, M H P M; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wakamatsu, T; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yamamoto, K; Yamamoto, T; Yancey, C C; Yano, K; Yap, M J; Yokoyama, J; Yokozawa, T; Yoon, T H; Yu, Hang; Yu, Haocun; Yuzurihara, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zeidler, S; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-01-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  18. Advanced protection technology for ground combat vehicles.

    PubMed

    Bosse, Timothy G

    2012-01-01

    Just as highway drivers use radar detectors to attempt to stay ahead of police armed with the latest radar technology, the Armed Forces are locked in a spiral to protect combat vehicles and their crews against the latest threats in both the contemporary operating environment and the anticipated operating environment (ie, beyond 2020). In response to bigger, heavier, or better-protected vehicles, adversaries build and deploy larger explosive devices or bombs. However, making improvements to combat vehicles is much more expensive than deploying larger explosives. In addition, demand is increasing for lighter-weight vehicles capable of rapid deployment. Together, these two facts give the threat a clear advantage in the future. To protect vehicles and crews, technologies focusing on detection and hit avoidance, denial of penetration, and crew survivability must be combined synergistically to provide the best chance of survival on the modern battlefield.

  19. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. • KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.« less

  20. Promising New Photon Detection Concepts for High-Resolution Clinical and Preclinical PET

    PubMed Central

    Levin, Craig S.

    2013-01-01

    The ability of PET to visualize and quantify regions of low concentration of PET tracer representing subtle cellular and molecular signatures of disease depends on relatively complex biochemical, biologic, and physiologic factors that are challenging to control, as well as on instrumentation performance parameters that are, in principle, still possible to improve on. Thus, advances to the latter can somewhat offset barriers of the former. PET system performance parameters such as spatial resolution, contrast resolution, and photon sensitivity contribute significantly to PET’s ability to visualize and quantify lower concentrations of signal in the presence of background. In this report we present some technology innovations under investigation toward improving these PET system performance parameters. We focus particularly on a promising advance known as 3-dimensional position-sensitive detectors, which are detectors capable of distinguishing and measuring the position, energy, and arrival time of individual interactions of multi-interaction photon events in 3 dimensions. If successful, these new strategies enable enhancements such as the detection of fewer diseased cells in tissue or the ability to characterize lower-abundance molecular targets within cells. Translating these advanced capabilities to the clinic might allow expansion of PET’s roles in disease management, perhaps to earlier stages of disease. In preclinical research, such enhancements enable more sensitive and accurate studies of disease biology in living subjects. PMID:22302960

  1. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  2. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  3. Analysis of periodically patterned metallic nanostructures for infrared absorber

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  4. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  5. Integrated detector array technology for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.

    1984-01-01

    The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.

  6. 78 FR 21077 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... all three advance pneumatic detectors (APDs) with new detector assemblies. That NPRM was prompted by reports of ADPs for engine fire/overheat detector assemblies failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This action...

  7. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  8. Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.

    2018-01-01

    The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.

  9. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  10. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-07-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  11. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  12. Enhancing the detector for advanced neutron capture experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Mosby, S.; Baramsai, B.

    2015-05-28

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We, thus, report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. Furthermore, the upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  13. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very encouraging for the future development of the advanced CZT imaging detectors (ProtoEXIST2, with 0.6 mm pixels), which will take advantage of the modularization architecture employed in ProtoEXIST1.

  14. The Case for Space-Borne Far-Infrared Line Surveys

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Bradford, C. M.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.

    2004-01-01

    The combination of sensitive direct detectors and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-infrared and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct detector technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct detectors. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-infrared and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-infrared line survey 10 6 times faster than planned capabilities, assuming existing detector technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-infrared galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.

  15. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.

  16. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    NASA Astrophysics Data System (ADS)

    Jenkins, David

    2015-06-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.

  17. Continuous Dropout.

    PubMed

    Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng

    2017-10-03

    Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.

  18. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  19. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Barriga, P.; Blair, D. G.; Coward, D.; Davidson, J.; Dumas, J.-C.; Howell, E.; Ju, L.; Wen, L.; Zhao, C.; McClelland, D. E.; Scott, S. M.; Slagmolen, B. J. J.; Inta, R.; Munch, J.; Ottaway, D. J.; Veitch, P.; Hosken, D.; Melatos, A.; Chung, C.; Sammut, L.; Galloway, D. K.; Marx, J.; Whitcomb, S.; Shoemaker, D.; Hughes, S. A.; Reitze, D. H.; Iyer, B. R.; Dhurandhar, S. V.; Souradeep, T.; Unnikrishnan, C. S.; Rajalakshmi, G.; Man, C. N.; Heidmann, A.; Cohadon, P.-F.; Briant, T.; Grote, H.; Danzmann, K.; Lück, H.; Willke, B.; Strain, K. A.; Sathyaprakash, B. S.; Cao, J.; Cheung, Y.-K. E.; Zhang, Y.

    2010-04-01

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  20. Comparative investigation of the detective quantum efficiency of direct and indirect conversion detector technologies in dedicated breast CT.

    PubMed

    Kuttig, Jan D; Steiding, Christian; Kolditz, Daniel; Hupfer, Martin; Karolczak, Marek; Kalender, Willi A

    2015-06-01

    To investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT. We analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor. The measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm(-1) and 3.2 mm(-1), and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm(-1), and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm(-1) and a DQE(0) value of 85%. The photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  2. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

  3. Using wheel temperature detector technology to monitor railcar brake system effectiveness.

    DOT National Transportation Integrated Search

    2013-12-01

    Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...

  4. Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

    NASA Astrophysics Data System (ADS)

    Meng, Xiang

    The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).

  5. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    NASA Technical Reports Server (NTRS)

    Gong, Qian; McElwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Hilton, George; Perrin, Marshall; Sayson, Llop; Domingo, Jorge; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  6. X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.

    2012-05-01

    The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.

  7. Past, Present and Future of UHECR Observations

    NASA Astrophysics Data System (ADS)

    Dawson, B. R.; Fukushima, M.; Sokolsky, P.

    2017-12-01

    Great advances have been made in the study of ultra-high energy cosmic rays (UHECR) in the past two decades. These include the discovery of the spectral cut-off near 5 x 10^19 eV and complex structure at lower energies, as well as increasingly precise information about the composition of cosmic rays as a function of energy. Important improvements in techniques, including extensive surface detector arrays and high resolution air fluorescence detectors, have been instrumental in facilitating this progress. We discuss the status of the field, including the open questions about the nature of spectral structure, systematic issues related to our understanding of composition, and emerging evidence for anisotropy at the highest energies. We review prospects for upgraded and future observatories including Telescope Array, Pierre Auger and JEM-EUSO and other space-based proposals, and discuss promising new technologies based on radio emission from extensive air showers produced by UHECR.

  8. Development of a Space-Flight ADR Providing Continuous Cooling at 50 Mk with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Byron; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  9. An acoustical bubble counter for superheated drop detectors.

    PubMed

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  10. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  11. Overview of RICOR tactical cryogenic refrigerators for space missions

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  12. Development of a Space-Flight ADR Providing Continuous Cooling at 50 mK with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Canavan, Ed; DeLee, Hudson; Dipirro, Michael; Jahromi, Amir; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  13. Semi-autonomous inline water analyzer: design of a common light detector for bacterial, phage, and immunological biosensors.

    PubMed

    Descamps, Elodie C T; Meunier, Damien; Brutesco, Catherine; Prévéral, Sandra; Franche, Nathalie; Bazin, Ingrid; Miclot, Bertrand; Larosa, Philippe; Escoffier, Camille; Fantino, Jean-Raphael; Garcia, Daniel; Ansaldi, Mireille; Rodrigue, Agnès; Pignol, David; Cholat, Pierre; Ginet, Nicolas

    2017-01-01

    The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.

  14. Status of the Advanced Virgo gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Adams, T.; Agatsuma, K.; Aiello, L.; Allocca, A.; Amato, A.; Antier, S.; Arnaud, N.; Ascenzi, S.; Astone, P.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Barone, F.; Barsuglia, M.; Barta, D.; Basti, A.; Bawaj, M.; Bazzan, M.; Bejger, M.; Belahcene, I.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Bloemen, S.; Boer, M.; Bogaert, G.; Bondu, F.; Bonnand, R.; Boom, B. A.; Boschi, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Canepa, M.; Canizares, P.; Capocasa, E.; Carbognani, F.; Casanueva Diaz, J.; Casentini, C.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Christensen, N.; Chua, S.; Ciolfi, R.; Cirone, A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Conti, L.; Cortese, S.; Coulon, J.-P.; Cuoco, E.; D'Antonio, S.; Dattilo, V.; Davier, M.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; De Rosa, R.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Dolique, V.; Ducrot, M.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Flaminio, R.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frey, V.; Gammaitoni, L.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Germain, V.; Ghosh, A.; Ghosh, S.; Giazotto, A.; Gonzalez Castro, J. M.; Gosselin, M.; Gouaty, R.; Grado, A.; Granata, M.; Greco, G.; Groot, P.; Gruning, P.; Guidi, G. M.; Harms, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Hoak, D.; Hofman, D.; Huet, D.; Intini, G.; Isac, J.-M.; Jacqmin, T.; Jaranowski, P.; Jonker, R. J. G.; Kéfélian, F.; Khan, I.; Koley, S.; Kowalska, I.; Królak, A.; Kutynia, A.; Lartaux-Vollard, A.; Lazzaro, C.; Leaci, P.; Leonardi, M.; Leroy, N.; Letendre, N.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Lumaca, D.; Majorana, E.; Maksimovic, I.; Man, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Martelli, F.; Martellini, L.; Masserot, A.; Mastrogiovanni, S.; Meidam, J.; Merzougui, M.; Metzdorff, R.; Mezzani, F.; Michel, C.; Milano, L.; Miller, A.; Minazzoli, O.; Minenkov, Y.; Moggi, A.; Mohan, M.; Montani, M.; Mours, B.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, M.; Nichols, D.; Nissanke, S.; Nocera, F.; Palomba, C.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pedurand, R.; Perreca, A.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pillant, G.; Pinard, L.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rapagnani, P.; Razzano, M.; Regimbau, T.; Rei, L.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Salconi, L.; Sassolas, B.; Schmidt, P.; Sentenac, D.; Sequino, V.; Sieniawska, M.; Singhal, A.; Sorrentino, F.; Stratta, G.; Swinkels, B. L.; Tacca, M.; Tiwari, S.; Tonelli, M.; Travasso, F.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.; Vardaro, M.; Vasúth, M.; Vedovato, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vocca, H.; Walet, R.; Wang, G.; Was, M.; Yvert, M.; Zadrożny, A.; Zelenova, T.; Zendri, J.-P.

    2017-10-01

    Advanced Virgo is the French-Italian second generation laser gravitational wave detector, successor of the Initial Virgo. This new interferometer keeps only the infrastructure of its predecessor and aims to be ten times more sensitive, with its first science run planned for 2017. This article gives an overview of the Advanced Virgo design and the technical choices behind it. Finally, the up-to-date progresses and the planned upgrade for the following years are detailed.

  15. MCP detector development for UV space missions

    NASA Astrophysics Data System (ADS)

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-04-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.

  16. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration system for the reflected solar portion of CLARREO. SOLARIS provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections.

  17. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD infrared arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.

  18. Survey of Fire Detection Technologies and System Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments

    NASA Technical Reports Server (NTRS)

    Cleary, T.; Grosshandler, W.

    1999-01-01

    As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.

  19. 35t Prototype Detector for Experiment at Long Base Line Neutrino Facility (ELBNF) Far Detector

    NASA Astrophysics Data System (ADS)

    Santucci, Gabriel; Elbnf Collaboration

    2015-04-01

    The 35ton prototype detector is a Liquid Argon Time Projection Chamber (LAr TPC) utilizing a membrane cryostat. It serves as a prototype for testing technology proposed for the ELBNF far detector. The construction of the prototype is an essential part of the ELBNF project due to the large amount of new technologies introduced for the far detector. In early 2014, it was shown that the membrane cryostat technology was able to reach and maintain the required LAr purity and an electron lifetime of 2.5 ms was achieved. The goals for the next phase include the installation of a fully functional TPC using the novel designs for the ELBNF far detector as much as possible. This includes the installation of the cold electronics, scintillation photon detectors and multiple Anode Plane Arrays with wrapped wires. In this talk I will review the status of the 35t prototype detector and describe what has been accomplished during 2014 and early 2015, including the commissioning phase and the early stages of data taking from cosmic-rays.

  20. The Future of Single- to Multi-band Detector Technologies: Review

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.

    2006-01-01

    Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.

  1. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

    PubMed

    de Jong, Ebbing P; Lucy, Charles A

    2006-05-01

    Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

  2. Characterization of AlMn TES Impedance, Noise, and Optical Efficiency in the First 150 mm Multichroic Array for Advanced ACTPol

    NASA Technical Reports Server (NTRS)

    Crowley, Kevin T.; Choi, Steve K.; Kuan, Jeffrey; Austermann, Jason E.; Beall, James A.; Datta, Rahul; Duff, Shannon M.; Gallardo, Patricia A.; Hasselfield, Matthew; Henderson, Shawn W.; hide

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope features large arrays of multichroic pixels consisting of two orthogonal-polarization pairs of superconducting bolometers at two observing frequency bands. We present measurements of the detector properties and noise data in a subset of a fielded multichroic array of AlMn transition-edge sensor (TES) detectors. In this array, the distribution of critical temperature T(sub c) across detectors appears uniform at the percent level. The measured noise-equivalent power (NEP) distributions over approximately 1200 detectors are consistent with expectations. We find median NEPs of 4.0×10(exp -17) W/ v Hz for low-band detectors and 6.2×10(exp -17) W/ v Hz for high-band detectors under covered-window telescope test conditions with optical loading comparable to observing with precipitable water vapor approximately 0.5 mm. Lastly, we show the estimated detector optical efficiency, and demonstrate the ability to perform optical characterization over hundreds of detectors at once using a cryogenic blackbody source.

  3. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  4. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A photo taken during the NICER range-of-motion test at NASA’s Goddard Space Flight Center shows the photographer’s reflection in the mirror-like radiator surface of the detector plate. Teflon-coated silver tape is used to keep NICER’s detectors cool. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Advancing the Search for Dark Matter: from CDMS II to SuperCDMS

    NASA Astrophysics Data System (ADS)

    Hertel, Scott A.

    An overwhelming proportion of the universe (83% by mass) is composed of particles we know next to nothing about. Detecting these dark matter particles directly, through hypothesized weak-force-mediated recoils with nuclear targets here on earth, could shed light on what these particles are, how they relate to the standard model, and how the standard model fits within a more fundamental understanding. This thesis describes two such experimental efforts: CDMS II (2007-2009) and SuperCDMS Soudan (ongoing). The general abilities and sensitivities of both experiments are laid out, placing a special emphasis on the detector technology, and how this technology has evolved from the first to the second experiment. Some topics on which I spent significant efforts are described here only in overview (in particular the details of the CDMS II analysis, which has been laid out many times before), and some topics which are not described elsewhere are given a somewhat deeper treatment. In particular, this thesis is hopefully a good reference for those interested in the annual modulation limits placed on the low-energy portion of the CDMS II exposure, the design of the detectors for SuperCDMS Soudan, and an overview of the extremely informative data these detectors produce. It is an exciting time. The technology I've had the honor to work on the past few years provides a wealth of information about each event, more so than any other direct detection experiment, and we are still learning how to optimally use all this information. Initial tests from the surface and now underground suggest this technology has the background rejection abilities necessary for a planned 200kg experiment or even ton-scale experiment, putting us on the threshold of probing parameter space orders of magnitude from where the field currently stands. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  6. Advancing the Search for Dark Matter: from CDMS II to SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, Scott A.

    2012-09-01

    An overwhelming proportion of the universe (83% by mass) is composed of particles we know next to nothing about. Detecting these dark matter particles directly, through hypothesized weak-force-mediated recoils with nuclear targets here on earth, could shed light on what these particles are, how they relate to the standard model, and how the standard model ts within a more fundamental understanding. This thesis describes two such experimental eorts: CDMS II (2007-2009) and SuperCDMS Soudan (ongoing). The general abilities and sensitivities of both experiments are laid out, placing a special emphasis on the detector technology, and how this technology has evolvedmore » from the rst to the second experiment. Some topics on which I spent signicant eorts are described here only in overview (in particular the details of the CDMS II analysis, which has been laid out many times before), and some topics which are not described elsewhere are given a somewhat deeper treatment. In particular, this thesis is hopefully a good reference for those interested in the annual modulation limits placed on the low-energy portion of the CDMS II exposure, the design of the detectors for SuperCDMS Soudan, and an overview of the extremely informative data these detectors produce. It is an exciting time. The technology I've had the honor to work on the past few years provides a wealth of information about each event, more so than any other direct detection experiment, and we are still learning how to optimally use all this information. Initial tests from the surface and now underground suggest this technology has the background rejection abilities necessary for a planned 200kg experiment or even ton-scale experiment, putting us on the threshold of probing parameter space orders of magnitude from where the eld currently stands.« less

  7. Readout technologies for directional WIMP Dark Matter detection

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Irastorza, I. G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.; Colas, P.; Consiglio, L.; Dafni, T.; D'Ambrosio, N.; Deaconu, C.; De Lellis, G.; Descombes, T.; Di Crescenzo, A.; Di Marco, N.; Druitt, G.; Eggleston, R.; Ferrer-Ribas, E.; Fusayasu, T.; Galán, J.; Galati, G.; García, J. A.; Garza, J. G.; Gentile, V.; Garcia-Sciveres, M.; Giomataris, Y.; Guerrero, N.; Guillaudin, O.; Guler, A. M.; Harton, J.; Hashimoto, T.; Hedges, M. T.; Iguaz, F. J.; Ikeda, T.; Jaegle, I.; Kadyk, J. A.; Katsuragawa, T.; Komura, S.; Kubo, H.; Kuge, K.; Lamblin, J.; Lauria, A.; Lee, E. R.; Lewis, P.; Leyton, M.; Loomba, D.; Lopez, J. P.; Luzón, G.; Mayet, F.; Mirallas, H.; Miuchi, K.; Mizumoto, T.; Mizumura, Y.; Monacelli, P.; Monroe, J.; Montesi, M. C.; Naka, T.; Nakamura, K.; Nishimura, H.; Ochi, A.; Papevangelou, T.; Parker, J. D.; Phan, N. S.; Pupilli, F.; Richer, J. P.; Riffard, Q.; Rosa, G.; Santos, D.; Sawano, T.; Sekiya, H.; Seong, I. S.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Sugiyama, A.; Taishaku, R.; Takada, A.; Takeda, A.; Tanaka, M.; Tanimori, T.; Thorpe, T. N.; Tioukov, V.; Tomita, H.; Umemoto, A.; Vahsen, S. E.; Yamaguchi, Y.; Yoshimoto, M.; Zayas, E.

    2016-11-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  8. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  9. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  10. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    NASA Astrophysics Data System (ADS)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  11. Advanced MCT technologies at LETI for space applications

    NASA Astrophysics Data System (ADS)

    Durand, A.; Destefanis, G.; Gravrand, O.; Rothmann, J.

    This document is a recap of an oral presentation made at Nice during the INSU Astrophysics Detector Workshop 2008. It aims at giving an overview of the achievements and ongoing developments presently carried out at CEA-LETI in the field of Infrared focal plane array. Although most of the research actually performed at LETI is not driven by space oriented application, the excellence and the cutting edge of the outcome is or can be applied to space-dedicated components. This paper focus on features and developments from which astrophysics observation would benefit in the near future on the European market. This encompassed “traditionnal” developments such as format enlargement, low dark current technology such as p/n structure but it also shade light on promising and thrilling development such as avalanche photodiode array. It eventually gives some hints of none MCT technologies processed at LETI.

  12. The Scope Of Fourier Transform Infrared (FTIR)

    NASA Astrophysics Data System (ADS)

    Hirschfeld, T.

    1981-10-01

    Three auarters of a century after its inception, a generation after its advantages were recognized, and a decade after its first commercialization, FT-IR dominates the growth of the IR market, and reigns alone over its high performance end. What lies ahead for FT-IR now? On one hand, the boundary between it and the classical scanning spectrometers is becoming fuzzy, as gratings attempt to use as much of FT-IR's computer technology as they can handle, and smaller FT systems invade the medium cost instrument range. On the other hand, technology advances in IR detectors, non-Fourier interference devices, and the often announced tunable laser are at long last getting set to make serious inroads in the field (although not necessarily in the manner most of us expected). However, the dominance of FT-IR as the leading edge of IR spectroscopy seems assured for a good many years. The evolution of FT-IR will be dominated by demands not yet fully satisfied such as rapid sample turnover, better quantitation, automated interpretation, higher GC-IR sensitivity, improved LC-IR, and, above all else, reliability and ease of use. These developments will be based on multiple small advances in hardware, large advances in the way systems are put together, and the traditional yearly revolutionary advances of the computer industry. The big question in the field will, however, still be whether our ambition and our skill can continue to keep up with the advances of our tools. It will be fun.

  13. Differential mobility spectroscopy for chemical agent detection

    NASA Astrophysics Data System (ADS)

    Griffin, M. Todd

    2006-05-01

    General Dynamics ATP (GDATP) and Sionex Corporation (Sionex) are carrying out a cooperative development for a handheld chemical agent detector, being called JUNO TM, which will have lower false positives, higher sensitivity, and improved interference rejection compared with presently available detectors. This enhanced performance is made possible by the use of a new principle of ion separation called Differential Mobility Spectrometry (DMS). The enhanced selectivity is provided by the field tunable nature of the Sionex differential mobility technology (microDMxTM) which forms the analytical heart of the JUNO system and enables fingerprinting of molecules by characterization of the ionized molecular behavior under multiple electric field conditions. This enhanced selectivity is valuable in addressing not only the traditional list of chemical warfare agents (CWA) but also the substantial list of Toxic Industrial Compounds (TICs) and Toxic Industrial Materials (TIMs) which may be released in warfare or terrorist situations. Experimental results showing the ability of the microDMx to reject interferences, detect and resolve live agents are presented. An additional breakthrough in the technology was realized by operating the device at a reduced pressure of around 0.5 atmospheres. This reduced pressure operation resulted in roughly doubling the spectrometers resolution over what has previously been reported [1]. Advances have also been made in power consumption and packaging leading to a device suitable for portable, handheld, applications. Experimental results illustrating the performance of the microDMx technology employed in JUNO are highlighted.

  14. Quantum communication with coherent states of light

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  15. Quantum communication with coherent states of light.

    PubMed

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-08-06

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  16. Small blob identification in medical images using regional features from optimum scale.

    PubMed

    Zhang, Min; Wu, Teresa; Bennett, Kevin M

    2015-04-01

    Recent advances in medical imaging technology have greatly enhanced imaging-based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this research, we are interested in one type of imaging objects: small blobs. Examples of small blob objects are cells in histopathology images, glomeruli in MR images, etc. This problem is particularly challenging because the small blobs often have in homogeneous intensity distribution and an indistinct boundary against the background. Yet, in general, these blobs have similar sizes. Motivated by this finding, we propose a novel detector termed Hessian-based Laplacian of Gaussian (HLoG) using scale space theory as the foundation. Like most imaging detectors, an image is first smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale on which a presegmentation is conducted. The advantage of the Hessian process is that it is capable of delineating the blobs. As a result, regional features can be retrieved. These features enable an unsupervised clustering algorithm for postpruning which should be more robust and sensitive than the traditional threshold-based postpruning commonly used in most imaging detectors. To test the performance of the proposed HLoG, two sets of 2-D grey medical images are studied. HLoG is compared against three state-of-the-art detectors: generalized LoG, Radial-Symmetry and LoG using precision, recall, and F-score metrics.We observe that HLoG statistically outperforms the compared detectors.

  17. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  18. Polycrystalline lead selenide: the resurgence of an old infrared detector

    NASA Astrophysics Data System (ADS)

    Vergara, G.; Montojo, M. T.; Torquemada, M. C.; Rodrigo, M. T.; Sánchez, F. J.; Gómez, L. J.; Almazán, R. M.; Verdú, M.; Rodríguez, P.; Villamayor, V.; Álvarez, M.; Diezhandino, J.; Plaza, J.; Catalán, I.

    2007-06-01

    The existing technology for uncooled MWIR photon detectors based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element detectors and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing detectors, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging detectors sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe detector in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers. Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal detectors are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR detectors, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR detectors and MWIR fast uncooled detectors for security and defence applications. The new method of processing again converts PbSe into an emerging technology.

  19. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects.

  20. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  1. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  2. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; van den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  3. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron detection technologies.

  4. Technological advances in cosmogenic neutron detectors for measuring soil water content

    NASA Astrophysics Data System (ADS)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is placed on the surface. Once this detector is calibrated, it can be useful in calibrating the wide-area detector, for example over stony soils that are difficult to sample physically for water content determination, and in high-resolution mapping of neutron intensity and soil moisture.

  5. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  6. LSST and the Physics of the Dark Universe

    ScienceCinema

    Tyson, Anthony [UC Davis, California, United States

    2017-12-09

    The physics that underlies the accelerating cosmic expansion is unknown. This, 'dark energy' and the equally mysterious 'dark matter' comprise most of the mass-energy of the universe and are outside the standard model. Recent advances in optics, detectors, and information technology, has led to the design of a facility that will repeatedly image an unprecedented volume of the universe: LSST. For the first time, the sky will be surveyed wide, deep and fast. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. I will review the technology of LSST, and focus on several independent probes of the nature of dark energy and dark matter. These new investigations will rely on the statistical precision obtainable with billions of galaxies.

  7. 4D tracking with ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò

    2018-02-01

    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.

  8. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  9. Detection of long wavelength infrared at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Tredwell, T. J.

    1977-01-01

    Technical approaches for the advanced development of 8-12 micrometer detectors operating at elevated temperatures were defined. The theoretical limits to performance of 8-12 micrometer quantum detectors (photoconductive and photovoltaic) and thermal detectors (pyroelectrics, bolometers etc). An analytic model of signal and noise in both quantum detectors and pyroelectric detectors was developed and candidate materials for both detector types were identified and examined. The present status of both quantum and thermal detectors was assessed as well as the parameters limiting operating temperature and detectivity. The areas of research and development likely to lead to detector performance near the theoretical limit are identified.

  10. Technology advancements for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura

    2017-09-01

    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  11. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  12. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  13. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  14. 77 FR 60060 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-400 series airplanes. This proposed AD was prompted by reports of engine fire/overheat detector assemblies advance pneumatic detectors (APDs) failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This proposed AD would...

  15. Driving from Chicago to Buenos Aires: instrumentation courses during a road trip across the Americas

    NASA Astrophysics Data System (ADS)

    Izraelevitch, Federico

    2017-01-01

    The Escaramujo Project (www.escaramujo.net) was a series of hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in eight Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching these courses. During these sessions, groups of advanced undergraduate and graduate students built a modern cosmic ray detector based on plastic scintillators and SiPMs, specifically designed for this project. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved, build the device, start it up, characterize it, acquire data and analyze it, in the way of real particle Physics experiment. After the five-days courses, a functional detector remained at each institution to train future students and to support and enable local research activities. About a hundred talented and highly motivated students were reached out with the initiative. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of academic institutions in Latin America within the international scientific community.

  16. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  17. Propulsion Technology Needs for Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2007-01-01

    The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.

  18. Verification of Minimum Detectable Activity for Radiological Threat Source Search

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Myjak, Mitchell; Baciak, James; Detwiler, Rebecca; Seifert, Carolyn

    2015-10-01

    The Department of Homeland Security's Domestic Nuclear Detection Office is working to develop advanced technologies that will improve the ability to detect, localize, and identify radiological and nuclear sources from airborne platforms. The Airborne Radiological Enhanced-sensor System (ARES) program is developing advanced data fusion algorithms for analyzing data from a helicopter-mounted radiation detector. This detector platform provides a rapid, wide-area assessment of radiological conditions at ground level. The NSCRAD (Nuisance-rejection Spectral Comparison Ratios for Anomaly Detection) algorithm was developed to distinguish low-count sources of interest from benign naturally occurring radiation and irrelevant nuisance sources. It uses a number of broad, overlapping regions of interest to statistically compare each newly measured spectrum with the current estimate for the background to identify anomalies. We recently developed a method to estimate the minimum detectable activity (MDA) of NSCRAD in real time. We present this method here and report on the MDA verification using both laboratory measurements and simulated injects on measured backgrounds at or near the detection limits. This work is supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-12-X-00376. This support does not constitute an express or implied endorsement on the part of the Gov't.

  19. BTDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Eckardt, Andreas; Krutz, David

    2017-11-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.

  20. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  1. Costas loop lock detection in the advanced receiver

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1989-01-01

    The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.

  2. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  3. 78 FR 53633 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    .... Model DHC-8-400 series airplanes. This AD was prompted by reports of advance pneumatic detectors (APDs) for engine fire/ overheat detector assemblies failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This AD requires...

  4. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  5. Advanced optical instruments technology

    NASA Astrophysics Data System (ADS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  6. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  7. Electrochemical detection for microscale analytical systems: a review.

    PubMed

    Wang, Joseph

    2002-02-11

    As the field of chip-based microscale systems continues its rapid growth, there are urgent needs for developing compatible detection modes. Electrochemistry detection offers considerable promise for such microfluidic systems, with features that include remarkable sensitivity, inherent miniaturization and portability, independence of optical path length or sample turbidity, low cost, low-power requirements and high compatibility with advanced micromachining and microfabrication technologies. This paper highlights recent advances, directions and key strategies in controlled-potential electrochemical detectors for miniaturized analytical systems. Subjects covered include the design and integration of the electrochemical detection system, its requirements and operational principles, common electrode materials, derivatization reactions, electrical-field decouplers, typical applications and future prospects. It is expected that electrochemical detection will become a powerful tool for microscale analytical systems and will facilitate the creation of truly portable (and possibly disposable) devices.

  8. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  9. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  10. Cryogenic gaseous photomultipliers and liquid hole- multipliers: advances in THGEM-based sensors for future noble-liquid TPCs

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; A, Breskin

    2015-11-01

    Dual-phase noble-liquid TPCs are presently the most sensitive instruments for direct dark matter detection. Scaling up existing ton-scale designs to the multi-ton regime may prove to be technologically challenging. This includes both large-area coverage with affordable high-QE UV-photon detectors, and maintaining high precision in measuring the charge and light signals of rare events with keV-scale energy depositions. We present our recent advances in two complementary approaches to these problems: large-area cryogenic gaseous photomultipliers (GPM) for UV-photon detection, and liquid-hole multipliers (LHM) that provide electroluminescence light in response to ionization electrons and primary scintillation photons, using perforated electrodes immersed within the noble liquid. Results from a 10 cm diameter GPM coupled to a dual-phase liquid- xenon TPC demonstrate the feasibility of recording - for the first time - both primary (“S1”) and secondary (“S2”) scintillation signals, over a very broad dynamic range. The detector, comprising a triple-THGEM structure with CsI on the first element, has been operating stably at 180 K with gains larger than 105; it provided high single-photon detection efficiency - in the presence of massive alpha-particle induced S2 signals; S1 scintillation signals were recorded with time resolutions of 1.2 ns (RMS). Results with the LHM operated in liquid xenon yielded large photon gains, with a pulse-height resolution of 11% (RMS) for alpha-particle induced S2 signals. The detector response was stable over several months. The response of the S2 signals to rapid changes in pressure lead to the conclusion that the underlying mechanism for S2 light is electroluminescence in xenon bubbles trapped below the immersed THGEM electrode. Both studies have the potential of paving the way towards new designs of dual- and single-phase noble-liquid TPCs that could simplify the conception of future multi-ton detectors of dark matter and other rare events.

  11. New developments in the diagnostics for the fusion products on JET in preparation for ITER (invited).

    PubMed

    Murari, A; Angelone, M; Bonheure, G; Cecil, E; Craciunescu, T; Darrow, D; Edlington, T; Ericsson, G; Gatu-Johnson, M; Gorini, G; Hellesen, C; Kiptily, V; Mlynar, J; Perez von Thun, C; Pillon, M; Popovichev, S; Syme, B; Tardocchi, M; Zoita, V L

    2010-10-01

    Notwithstanding the advances of the past decades, significant developments are still needed to satisfactorily diagnose “burning plasmas.” D–T plasmas indeed require a series of additional measurements for the optimization and control of the configuration: the 14 MeV neutrons, the isotopic composition of the main plasma, the helium ash, and the redistribution and losses of the alpha particles. Moreover a burning plasma environment is in general much more hostile for diagnostics than purely deuterium plasmas. Therefore, in addition to the development and refinement of new measuring techniques, technological advances are also indispensable for the proper characterization of the next generation of devices. On JET an integrated program of diagnostic developments, for JET future and in preparation for ITER, has been pursued and many new results are now available. In the field of neutron detection, the neutron spectra are now routinely measured in the energy range of 1–18 MeV by a time of flight spectrometer and they have allowed studying the effects of rf heating on the fast ions. A new analysis method for the interpretation of the neutron cameras measurements has been refined and applied to the data of the last trace tritium campaign (TTE). With regard to technological upgrades, chemical vapor deposition diamond detectors have been qualified both as neutron counters and as neutron spectrometers, with a potential energy resolution of about one percent. The in situ calibration of the neutron diagnostics, in preparation for the operation with the ITER-like wall, is also promoting important technological developments. With regard to the fast particles, for the first time the temperature of the fast particle tails has been obtained with a new high purity Germanium detector measuring the gamma emission spectrum from the plasma. The effects of toroidal Alfven eigenmodes modes and various MHD instabilities on the confinement of the fast particles have been determined with a combination of gamma ray cameras, neutral particle analyzers, scintillator probe, and Faraday cups. From a more technological perspective, various neutron filters have been tested to allow measurement of the gamma ray emission also at high level of neutron yield.

  12. New developments in the diagnostics for the fusion products on JET in preparation for ITER (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murari, A.; Angelone, M.; Pillon, M.

    Notwithstanding the advances of the past decades, significant developments are still needed to satisfactorily diagnose ''burning plasmas.'' D-T plasmas indeed require a series of additional measurements for the optimization and control of the configuration: the 14 MeV neutrons, the isotopic composition of the main plasma, the helium ash, and the redistribution and losses of the alpha particles. Moreover a burning plasma environment is in general much more hostile for diagnostics than purely deuterium plasmas. Therefore, in addition to the development and refinement of new measuring techniques, technological advances are also indispensable for the proper characterization of the next generation ofmore » devices. On JET an integrated program of diagnostic developments, for JET future and in preparation for ITER, has been pursued and many new results are now available. In the field of neutron detection, the neutron spectra are now routinely measured in the energy range of 1-18 MeV by a time of flight spectrometer and they have allowed studying the effects of rf heating on the fast ions.A new analysis method for the interpretation of the neutron cameras measurements has been refined and applied to the data of the last trace tritium campaign (TTE). With regard to technological upgrades, chemical vapor deposition diamond detectors have been qualified both as neutron counters and as neutron spectrometers, with a potential energy resolution of about one percent. The in situ calibration of the neutron diagnostics, in preparation for the operation with the ITER-like wall, is also promoting important technological developments. With regard to the fast particles, for the first time the temperature of the fast particle tails has been obtained with a new high purity Germanium detector measuring the gamma emission spectrum from the plasma. The effects of toroidal Alfven eigenmodes modes and various MHD instabilities on the confinement of the fast particles have been determined with a combination of gamma ray cameras, neutral particle analyzers, scintillator probe, and Faraday cups. From a more technological perspective, various neutron filters have been tested to allow measurement of the gamma ray emission also at high level of neutron yield.« less

  13. Smartphones for cell and biomolecular detection.

    PubMed

    Liu, Xiyuan; Lin, Tung-Yi; Lillehoj, Peter B

    2014-11-01

    Recent advances in biomedical science and technology have played a significant role in the development of new sensors and assays for cell and biomolecular detection. Generally, these efforts are aimed at reducing the complexity and costs associated with diagnostic testing so that it can be performed outside of a laboratory or hospital setting, requiring minimal equipment and user involvement. In particular, point-of-care (POC) testing offers immense potential for many important applications including medical diagnosis, environmental monitoring, food safety, and biosecurity. When coupled with smartphones, POC systems can offer portability, ease of use and enhanced functionality while maintaining performance. This review article focuses on recent advancements and developments in smartphone-based POC systems within the last 6 years with an emphasis on cell and biomolecular detection. These devices typically comprise multiple components, such as detectors, sample processors, disposable chips, batteries, and software, which are integrated with a commercial smartphone. One of the most important aspects of developing these systems is the integration of these components onto a compact and lightweight platform that requires minimal power. Researchers have demonstrated several promising approaches employing various detection schemes and device configurations, and it is expected that further developments in biosensors, battery technology and miniaturized electronics will enable smartphone-based POC technologies to become more mainstream tools in the scientific and biomedical communities.

  14. Sensor Web and Intelligent Sensors for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2002-01-01

    There is a significant interest in the Earth Science remote sensing community in substantially increasing the number of observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal and surface coverage of measurements. However, there is little analysis available in terms of benefits, costs and optimized set of sensors needed to make these necessary observations. This is a complex problem that should be carefully studied and balanced over many boundaries. For example, the question of technology maturity versus users' desire for obtaining additional measurements is noncongruent. This is further complicated by the limitations of the laws of physics and the economic conditions. With the advent of advanced technology, it is anticipated that developments in spacecraft technology will enable advanced capabilities to become more affordable. However, specialized detector subsystems, and precision flying techniques may still require substantial innovation, development time and cost. Additionally, the space deployment scheme should also be given careful attention because of the high associated expense. Nonetheless, it is important to carefully examine the science priorities and steer the development efforts that can commensurate with the tangible requirements. This presentation will focus on a possible set of architectural concepts beneficial for future Earth science studies and research its and potential benefits.

  15. NEMO: Status of the Project

    NASA Astrophysics Data System (ADS)

    Migneco, E.; Aiello, S.; Amato, E.; Ambriola, M.; Ameli, F.; Andronico, G.; Anghinolfi, M.; Battaglieri, M.; Bellotti, R.; Bersani, A.; Boldrin, A.; Bonori, M.; Cafagna, F.; Capone, A.; Caponnetto, L.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; D'Amico, V.; De Marzo, C.; De Vita, R.; Distefano, C.; Gabrielli, A.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Italiano, A.; Leonardi, M.; Lo Nigro, L.; Lo Presti, D.; Margiotta, A.; Martini, A.; Masetti, M.; Masullo, R.; Montaruli, T.; Mosetti, R.; Musumeci, M.; Nicolau, C. A.; Occhipinti, R.; Papaleo, R.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Romita, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, M.; Sapienza, P.; Schuller, J. P.; Sedita, M.; Sokalski, I.; Spurio, M.; Taiuti, M.; Trasatti, L.; Ursella, L.; Valente, V.; Vicini, P.; Zanarini, G.

    2004-11-01

    The activities towards the realisation of a km3 Cherenkov neutrino detector, carried out by the NEMO Collaboration are described. Long term exploration of a 3500 m deep site close to the Sicilian coast has shown that it is optimal for the installation of the detector. A complete feasibility study, that has considered all the components of the detector as well as its deployment, has been carried out demonstrating that technological solutions exist for the realization of an underwater km3 detector. The realization of a technological demonstrator (the NEMO Phase 1 project) is under way.

  16. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  17. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  18. Testbed Experiment for SPIDER: A Photonic Integrated Circuit-based Interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Badham, K.; Duncan, A.; Kendrick, R. L.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Thurman, S. T.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. In this paper we describe the photonic integrated circuit design and the testbed used to create the first images of extended scenes. We summarize the image reconstruction steps and present the final images. We also describe our next generation PIC design for a larger (16x area, 4x field of view) image.

  19. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  20. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review.

    PubMed

    Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo

    2014-04-25

    Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.

  1. FIR Detector Sensitivity, Dynamic Range, and Multiplexing Requirements for the Origins Space Telescope (OST)

    NASA Astrophysics Data System (ADS)

    Staguhn, Johannes G.

    2018-05-01

    Spectroscopic, cold, space-based mid-to-far-infrared (FIR) missions, such as the Origins Space Telescope, will require large (tens of kilopixels), ultra-sensitive FIR detector arrays with sufficient dynamic range and high-density multiplexing schemes for the readout, in order to optimize the scientific return while staying within a realistic cost range. Issues like power consumption of multiplexers and their readout are significantly more important for space missions than they are for ground-based or suborbital applications. In terms of the detectors and their configuration into large arrays, significant development efforts are needed even for both of the most mature candidate superconducting detector technologies, namely transition edge sensors and (microwave) kinetic inductance detectors. Here we explore both practical and fundamental limits for those technologies in order to lay out a realistic path forward for both technologies. We conclude that beyond the need to enhance the detector sensitivities and pixel numbers by about an order of magnitude over currently existing devices, improved concepts for larger dynamic range and multiplexing density will be needed in order to optimize the scientific return of future cold FIR space missions. Background-limited, very high spectral resolution instruments will require photon-counting detectors.

  2. The state-of-the-art of cryogenic thermometry and signal conditioners and their potential for standardized space hardware

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle payloads were investigated. These payloads operate from .3 kelvin to 300 kelvin. Standard detectors were selected and matching signal conditioning equipment compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical Earth orbiting spacecraft. Work statements to better define and advance detector performance were presented.

  3. A Thermal Imaging Instrument with Uncooled Detectors

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; Barrentine, E.; Brown, A.

    2018-01-01

    In this work, we performed an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We evaluated two different uncooled detector technologies uncooled microbolometers and thermopiles. We have also evaluated materials for use in in a uncooled thermopile detector concept.

  4. Target-based optimization of advanced gravitational-wave detector network operations

    NASA Astrophysics Data System (ADS)

    Szölgyén, Á.; Dálya, G.; Gondán, L.; Raffai, P.

    2017-04-01

    We introduce two novel time-dependent figures of merit for both online and offline optimizations of advanced gravitational-wave (GW) detector network operations with respect to (i) detecting continuous signals from known source locations and (ii) detecting GWs of neutron star binary coalescences from known local galaxies, which thereby have the highest potential for electromagnetic counterpart detection. For each of these scientific goals, we characterize an N-detector network, and all its (N  -  1)-detector subnetworks, to identify subnetworks and individual detectors (key contributors) that contribute the most to achieving the scientific goal. Our results show that aLIGO-Hanford is expected to be the key contributor in 2017 to the goal of detecting GWs from the Crab pulsar within the network of LIGO and Virgo detectors. For the same time period and for the same network, both LIGO detectors are key contributors to the goal of detecting GWs from the Vela pulsar, as well as to detecting signals from 10 high interest pulsars. Key contributors to detecting continuous GWs from the Galactic Center can only be identified for finite time intervals within each sidereal day with either the 3-detector network of the LIGO and Virgo detectors in 2017, or the 4-detector network of the LIGO, Virgo, and KAGRA detectors in 2019-2020. Characterization of the LIGO-Virgo detectors with respect to goal (ii) identified the two LIGO detectors as key contributors. Additionally, for all analyses, we identify time periods within a day when lock losses or scheduled service operations could result with the least amount of signal-to-noise or transient detection probability loss for a detector network.

  5. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; McGregor, Douglas; Ugorowski, Phil

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chambermore » and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A project meeting was held at KSU to discuss the roles and responsibilities between INL and KSU for development of the HT MPFDs. Provide input to various irradiation programs for installation of the MPFD technology in irradiation tests. As documented in this report, FY15 funding has allowed the project to meet year one planned accomplishments to develop a HT MPFD that offers US MTR users enhanced capabilities for real-time measurement of flux and temperature with a single detector. In addition, the accomplishments of this project have attracted funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for additional applications. The work in those programs will build on current activities completed in this NEETASI HT MPFD project, but the MPFD will be specifically tailored to meet their program needs.« less

  6. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    NASA Astrophysics Data System (ADS)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  7. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  8. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  9. Design and Specification of Optical Bandpass Filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Tsevetanov, Zlatan; Woodruff, Bob; Mooney, Thomas A.

    1998-01-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) have been developed on a filter-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device (CCD) detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey (SDSS) which are optimized for astronomical photometry using today's charge-coupled-devices (CCD's). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  10. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  11. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-10-01

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30. 5-3.0+5.7M⊙ and 25 .3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 54 0-210+130 Mpc , corresponding to a redshift of z =0.1 1-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  12. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, A; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-06

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5_{-3.0}^{+5.7}M_{⊙} and 25.3_{-4.2}^{+2.8}M_{⊙} (at the 90% credible level). The luminosity distance of the source is 540_{-210}^{+130}  Mpc, corresponding to a redshift of z=0.11_{-0.04}^{+0.03}. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160   deg^{2} using only the two LIGO detectors to 60  deg^{2} using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  13. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  14. High-Speed, Three Dimensional Object Composition Mapping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials andmore » the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.« less

  15. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  16. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  17. Imaging detectors and electronics—a view of the future

    NASA Astrophysics Data System (ADS)

    Spieler, Helmuth

    2004-09-01

    Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.

  18. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.

  19. High-performance MCT and QWIP IR detectors at Sofradir

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.

    2012-11-01

    Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.

  20. SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Akino, Y

    Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less

  1. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; hide

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  2. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; hide

    2011-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-waveleng thinfrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  3. Advanced combined iodine dispenser and detector. [for microorganism annihilation in potable water

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Schubert, F. H.; Jensen, F. C.; Powell, J. D.

    1977-01-01

    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals.

  4. Continued development of room temperature semiconductor nuclear detectors

    NASA Astrophysics Data System (ADS)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  5. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  7. Atomic electron tomography: 3D structures without crystals

    DOE PAGES

    Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.

    2016-09-23

    Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.

    Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less

  9. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  10. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  11. Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Raffanti, Rick; Cumming, Harley; Seljak, Andrej; Virta, Vihtori; Varner, Gary

    2016-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last three decades (e.g. EUVE, FUSE, COS on Hubble etc.) and been mentioned for instruments on future large telescopes in space such as LUVOIR14. Using cross strip anodes, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x10) resulting in lower high voltage requirements and longer MCP lifetimes. A crossed strip anode MCP readout starts with a set of orthogonal conducting strips (e.g. 80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital converter (ADC). All of the ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T) and pass this information to a downstream computer. Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a NASA Strategic Astrophysics Technology (SAT) grant to raise the TRL of a cross strip detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass, and volume requirements of the detector electronics. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). ASICs designed for this program have been successfully fabricated and are undergoing extensive testing. We will present the latest progress on these ASIC designs and their performance. We will also show our preliminary work on scaling these designs (detector and electronics) to a flight qualified 100 x 100 mm cross strip detector, which has recently been funded through a follow on SAT grant.

  12. Pipe Crawler{reg_sign} internal piping characterization system - deactivation and decommissioning focus area. Innovative Technology Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, andmore » intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.« less

  13. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less

  14. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Lütticke, F.

    2013-02-01

    The existing Japanese Flavour Factory (KEKB) is currently being upgraded and is foreseen to be comissioned by 2014. The new e+e- collider (SuperKEKB) will have an instantaneous luminosity of 8 × 1035cm-2s-1, 40 times higher than the current world record set by KEKB. In order to handle the increased event rate and the higher background and provide high data quality, the Belle detector is upgraded to Belle II. The increased particle rate requires a new vertex pixel detector with high granularity. This silicon detector will be based on DEPFET technology and will consist of two layers of active pixel sensors. By integrating a field effect transistor into every pixel on top of a fully depleted bulk, the DEPFET technology combines detection and in-pixel amplification. This technology allows good signal to noise performance with a very low material budget.

  15. Design and properties of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał

    2013-07-01

    The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.

  16. Advances in traffic data collection and management : white paper.

    DOT National Transportation Integrated Search

    2003-01-31

    This white paper identifies innovative approaches for improving data quality through Quality Control. Quality Control emphasizes good data by ensuring selection of the most accurate detector then optimizing detector system performance. This is contra...

  17. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  18. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  19. Technology Development Plan for the Baseline Detector System of the X-Ray Microcalorimeter Spectrometer (XMS) of the International X-Ray Observatory (IXO)

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Boriese, W. B.

    2010-01-01

    The primary purpose of this document is to present the technology development plan for the XMS detector system. It covers the current status (including assessment of the Technology Readiness Level, TRL, and a justification of the level assigned), the roadmap to progress to a level between TRL 5 and TRL 6 by the middle of 2012, and an assessment of the associated cost. A secondary purpose of this document is to address the Action Items raised at the XMS Phase-A Study Mid-Term Review that pertain to the detector system (AI #4, #8, and #9).

  20. High-performance IR detectors at SCD present and future

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Klipstein, P. C.

    2005-09-01

    For over 27 years, SCD has been manufacturing and developing a wide range of high performance infra-red detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, Time Delay Integration scanning systems, Hand-Held cameras, Missile Warning Systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2-D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2-D Focal Plane Array (FPA) detectors have a format of 320×256 elements for a 30 μm pitch and 480×384 or 640×512 elements for a 20 μm pitch. Typical operating temperatures are around 77-85K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of Antimonide Based Compound Semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wave-length range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and Time Delay and Integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype un-cooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm and a typical NETD of 50mK at F/1. In this paper we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.

  1. High-performance IR detectors at SCD present and future

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Klipstein, P. C.

    2006-03-01

    For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD's technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD's analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-μm pitch and 480×384 or 640×512 elements for a 20-μm pitch. Typical operating temperatures are around 77-85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wavelength range SCD manufactures both linear Hg1-xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.

  2. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  3. History of HgTe-based photodetectors in Poland

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2010-09-01

    In Poland, the HgCdTe studies began in 1960 at the Institute of Physics, Warsaw University. The material processing laboratory was created by Giriat and later by Dziuba, Gałązka, and others. Bridgman technique with sealed thick wall quartz ampoules was used to grow material suitable for research and experimental devices. Among the first papers published in 1961 and 1963 there were the Polish works devoted to preparation, doping, and electrical properties of HgCdTe. Infrared detector's research and development efforts in Poland were concentrated mostly on uncooled market niche. At the beginning, a modified isothermal vapour phase epitaxy has been used for research and commercial fabrication of photoconductive, photoelectromagnetic and other HgCdTe devices. Bulk growth and liquid phase epitaxy were also used. Recently, the fabrication of infrared devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition. At present stage of development, the photoconductive and photoelectromagnetic (PEM) detectors are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, photodiodes offer high performance and very fast response. However, conventional photovoltaic uncooled detectors suffer from low quantum efficiency and very low junction resistance. The problems have been solved with advanced band gap engineered architecture, multiple cell heterojunction devices connected in series, and monolithic integration of the detectors with microoptics. In final part of the paper, the Polish achievements in technology and performance of HgMnTe and HgZnTe photodetectors are presented.

  4. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

    PubMed Central

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-01-01

    Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835

  5. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    PubMed

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  6. Chem/bio sensing with non-classical light and integrated photonics.

    PubMed

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  7. β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)

    NASA Astrophysics Data System (ADS)

    Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.

    Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.

  8. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the originalmore » 1.5-MVp value.« less

  9. Optical Modeling and Polarization Calibration for CMB Measurements with Actpol and Advanced Actpol

    NASA Technical Reports Server (NTRS)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016.We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.

  10. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016. We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.

  11. Lead salt room-temperature MWIR FPA

    NASA Astrophysics Data System (ADS)

    Murphy, Paul F.; Jost, Steven R.; Barrett, John L.; Reese, Dan; Winn, Michael L.

    2001-10-01

    The development of low-cost uncooled thermal LWIR FPAs is resulting in the emergence of a new generation of infrared sensors for applications where affordability is the prerequisite for volume production. Both ferroelectric detector arrays and silicon-based microbolometers are finding numerous applications from gun sights to automotive FLIRs. There would be significant interest in a similar uncooled offering in the MWIR, but to date, thermal detectors have lacked sufficient sensitivity. The existing uncooled MWIR photon detector technology, based on polycrystalline lead salts, has been relegated to single-element detectors and relatively small linear arrays due to the high dark current and the stigma of being a 50-year-old technology.

  12. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E; Nelson, J; Hangiandreou, N

    Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidencebased medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. CT 2.0: CT has been undergoing a dramatic transition in themore » last few decades. While the changes in the technology merits discussions of their own, an important question is how clinical medical physicists are expected to effectively engage with the new realities of CT technology and practice. Consistent with the upcoming paradigm of Medical Physics 2.0, this CT presentation aims to provide definitions and demonstration of the components of the new clinical medical physics practice pertaining CT. The topics covered include physics metrics and analytics that aim to provide higher order clinicallyrelevant quantification of system performance as pertains to new (and not so new) technologies. That will include the new radiation and dose metrics (SSDE, organ dose, risk indices), image quality metrology (MTF/NPS/d’), task-based phantoms, and the effect of patient size. That will follow with a discussion of the testing implication of new CT hardware (detectors, tubes), acquisition methods (innovative helical geometries, AEC, wide beam CT, dual energy, inverse geometry, application specialties), and image processing and analysis (iterative reconstructions, quantitative CT, advanced renditions). The presentation will conclude with a discussion of clinical and operational aspects of Medical Physics 2.0 including training and communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications. Identify approaches for implementing comprehensive medical physics services in future imaging practices.« less

  13. Detection of Explosive Devices using X-ray Backscatter Radiation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.

    2002-09-01

    It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.

  14. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    NASA Astrophysics Data System (ADS)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  15. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  16. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  17. An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology

    NASA Astrophysics Data System (ADS)

    Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akin, Tayfun

    2017-02-01

    This paper introduces an 80x80 microbolometer array with a 35 μm pixel pitch operating in the 8-12 μm wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer approaches, MikroSens' CIR detector technology does not require the use of special high TCR materials like VOx or a-Si, instead, it allows to implement microbolometers with standard CMOS layers, where the suspended bulk micromachined structure is obtained by only few consecutive selective MEMS etching steps while protecting the wirebond pads with a simple lithograpy step. This approach not only reduces the fabrication cost but also increases the production yield. In addition, needing simple subtractive post-CMOS fabrication steps allows the CIR technology to be carried out in any CMOS and MEMS foundry in a truly fabless fashion, where industrially mature and Au-free wafer level vacuum packaging technologies can also be carried out, leading to cost advantage, simplicity, scalability, and flexibility. The CIR approach is used to implement an 80x80 FPA with 35 μm pixel pitch, namely MS0835A, using a 0.18 μm CMOS process. The fabricated sensor is measured to provide NETD (Noise Equivalent Temperature Difference) value of 163 mK at 17 fps (frames per second) and 71 mK at 4 fps with F/1.0 optics in a dewar environment. The measurement results of the wafer level vacuum packaged sensors with one side AR coating shows an NETD values of 112 mK at 4 fps with F/1.1 optics, i.e., demonstrates a good performance for high volume low-cost applications like advanced presence detection and human counting applications. The CIR approach of MikroSens is scalable and can be used to reduce the pixel pitch even further while increasing the array size if necessary for various other low-cost, high volume applications.

  18. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.

  19. Volumetric breast density measurement: sensitivity analysis of a relative physics approach.

    PubMed

    Lau, Susie; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah

    2016-10-01

    To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.

  20. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  1. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Blas; Gratta, Giorgio

    2013-08-30

    Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performancemore » period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on the first 120 days of data is the second best but, when translated into a Majorana mass scale, it is one of the most stringent constraint we have on neutrino masses. Indeed, such a limit was the first result to contradict a claim of discovery in 76-Ge for most nuclear matrix elements calculations. As we continue data taking and plan some modest upgrades to EXO-200 our group is also very active in the design of nEXO, a 5 tonne detector based on the technology demonstrated by EXO-200. Over the years we have made it a tradition to explore the frontier and not to be shy about looking in new directions and re-inventing ourselves to best take advantage of the precious few opportunities provided by Nature. We have also cultivated a number of young people at all levels and, by now, many of the undergraduates, graduate students and postdocs educated by this group have leading positions in academia and industry around the world.« less

  2. Advances in high-performance cryocoolers and production variants at Raytheon Infrared Operations

    NASA Astrophysics Data System (ADS)

    Ross, Bradley A.; Black, Stephen H.

    2001-10-01

    Raytheon has consolidated the products and expertise of the former Hughes Mahwah (Magnavox) and Torrance cryocooler operations to the Raytheon Infrared Operations (RIO) located in Goleta, CA (formerly SBRC). Co-location of the cryocooler operations with the detector/dewar operations yields infrared systems with reduced cost. This paper describes the current capabilities of the linear and rotary cryocooler products as well as developments underway and planned. Development goals include cost reduction, high performance while operating in extreme environmental conditions (> 90°C skin temperatures), and long life (> 20,000 hrs). Technologies developed by a Raytheon sister division for space cryocoolers are now being applied to tactical cryocoolers at RIO. Data, specifications, and a technology roadmap for the product-line cryocoolers encompassing cooling capacities including 0.2-, 0.35-, 0.75-, 1.0- and 1.75-watt ranges will be shown.

  3. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less

  4. Multigigabit optical transceivers for high-data rate military applications

    NASA Astrophysics Data System (ADS)

    Catanzaro, Brian E.; Kuznia, Charlie

    2012-01-01

    Avionics has experienced an ever increasing demand for processing power and communication bandwidth. Currently deployed avionics systems require gigabit communication using opto-electronic transceivers connected with parallel optical fiber. Ultra Communications has developed a series of transceiver solutions combining ASIC technology with flip-chip bonding and advanced opto-mechanical molded optics. Ultra Communications custom high speed ASIC chips are developed using an SoS (silicon on sapphire) process. These circuits are flip chip bonded with sources (VCSEL arrays) and detectors (PIN diodes) to create an Opto-Electronic Integrated Circuit (OEIC). These have been combined with micro-optics assemblies to create transceivers with interfaces to standard fiber array (MT) cabling technology. We present an overview of the demands for transceivers in military applications and how new generation transceivers leverage both previous generation military optical transceivers as well as commercial high performance computing optical transceivers.

  5. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  6. Cleanroom Contaminant Monitor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research (SBIR) contract from Kennedy Space Center (KSC), Femtometrics, Inc. developed the Real-Time Non-Volatile Residue (NVR) monitor. Criteria established by KSC called for a technology that could regulate the accumulation of nonvolatile residues in cleanroom environments. The company accommodated the Center's need with an advanced, highly sensitive surface acoustic wave (SAW) microsensor capable of detecting sub-monolayer deposition in cleanrooms where aerospace systems are assembled. Years earlier, Femtometrics responded to and received SBIR contracts from Langley Research Center for highly sensitive aerosol detectors for environmental researchers. Stimulated by the SBIR wins, the company set about to develop the SAW resonator technology. A new type of sensor has evolved from the research, one that has the ability to measure a range of chemical vapors by applying chemical-specific coating on the sensing surface. Commercial applications of the Real-Time NVR include Class 1 cleanrooms at semiconductor and hard-disk manufacturing plants.

  7. Large aperture and wide field of view space telescope for the detection of ultra high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro

    2017-11-01

    New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.

  8. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  9. Advanced detectors and signal processing for bubble memories

    NASA Technical Reports Server (NTRS)

    Kryder, M. H.; Rasky, P. H. L.; Greve, D. W.

    1985-01-01

    The feasibility of combining silicon and magnetic bubble technologies is demonstrated. Results of bubble film annealing indicate that a low temperature silicon on garnet technology is the most likely one to succeed commercially. Annealing ambients are also shown to have a major effect on the magnetic properties of bubble films. Functional MOSFETs were fabricated on bubble films coated with thick (approximately 1 micron) SiO2 layers. The two main problems with these silicon on garnet MOSFETs are low electron mobilities and large gate leakage currents. Results indicate that the laser recrystallized silicon and gate oxide (SiO2) layers are contaminated. The data suggest that part of the contaminating ions originate in the sputtered oxide spacer layer and part originates in the bubble film itself. A diffusion barrier, such as silicon nitride, placed between the bubble film and the silicon layer should eliminate the contamination induced problem.

  10. Wind shear predictive detector technology study status

    NASA Technical Reports Server (NTRS)

    Gandolfi, C.

    1990-01-01

    Among the different elements to be investigated when considering the Wind Shear hazard, the Aeronautical Navigation Technical Service (STNA/3E), whose task is to participate in the development of new technologies and equipments, focused its effort on airborne and ground sensors for the detection of low-level wind shear. The first task, initiated in 1986, consists in the evaluation of three candidate techniques for forward-looking sensors: lidar, sodar, and radar. No development is presently foreseen for an infrared based air turbulence advance warning system although some flight experiments took place in the 70's. A Thomson infrared radiometer was then installed on an Air France Boeing 707 to evaluate its capability of detecting clear air turbulence. The conclusion showed that this technique was apparently able to detect cloud layers but that additional experiments were needed; on the other hand, the rarity of the phenomenon and the difficulty in operating on a commercial aircraft were also mentioned.

  11. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  12. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  13. Superconducting Detectors Come of Age, or Ready to Leave the Lab

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2008-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provide a mechanism for high sensitivity detection of submillil.neter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large-scale superconducting detection systems is now being deployed. Improved understanding of the operation of these detectors, combined with rapidly improving fabrication techniques, is quickly expanding the capability of these detectors. I will review the development and application of superconductor-based detectors, the ultimate limits to their performance, and consider prospects for their future applications. Continued advances promise to enable important new measurements in physics, and with appropriate advances in cryogenic infrastncturem, ay result in the use of these detectors in everyday monitoring applications.

  14. Cryo-EM in drug discovery: achievements, limitations and prospects.

    PubMed

    Renaud, Jean-Paul; Chari, Ashwin; Ciferri, Claudio; Liu, Wen-Ti; Rémigy, Hervé-William; Stark, Holger; Wiesmann, Christian

    2018-06-08

    Cryo-electron microscopy (cryo-EM) of non-crystalline single particles is a biophysical technique that can be used to determine the structure of biological macromolecules and assemblies. Historically, its potential for application in drug discovery has been heavily limited by two issues: the minimum size of the structures it can be used to study and the resolution of the images. However, recent technological advances - including the development of direct electron detectors and more effective computational image analysis techniques - are revolutionizing the utility of cryo-EM, leading to a burst of high-resolution structures of large macromolecular assemblies. These advances have raised hopes that single-particle cryo-EM might soon become an important tool for drug discovery, particularly if they could enable structural determination for 'intractable' targets that are still not accessible to X-ray crystallographic analysis. This article describes the recent advances in the field and critically assesses their relevance for drug discovery as well as discussing at what stages of the drug discovery pipeline cryo-EM can be useful today and what to expect in the near future.

  15. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  16. An end-to-end approach to developing biological and chemical detector requirements

    NASA Astrophysics Data System (ADS)

    Teclemariam, Nerayo P.; Purvis, Liston K.; Foltz, Greg W.; West, Todd; Edwards, Donna M.; Fruetel, Julia A.; Gleason, Nathaniel J.

    2009-05-01

    Effective defense against chemical and biological threats requires an "end-to-end" strategy that encompasses the entire problem space, from threat assessment and target hardening to response planning and recovery. A key element of the strategy is the definition of appropriate system requirements for surveillance and detection of threat agents. Our end-to-end approach to venue chem/bio defense is captured in the Facilities Weapons of Mass Destruction Decision Analysis Capability (FacDAC), an integrated system-of-systems toolset that can be used to generate requirements across all stages of detector development. For example, in the early stage of detector development the approach can be used to develop performance targets (e.g., sensitivity, selectivity, false positive rate) to provide guidance on what technologies to pursue. In the development phase, after a detector technology has been selected, the approach can aid in determining performance trade-offs and down-selection of competing technologies. During the application stage, the approach can be employed to design optimal defensive architectures that make the best use of available technology to maximize system performance. This presentation will discuss the end-to-end approach to defining detector requirements and demonstrate the capabilities of the FacDAC toolset using examples from a number of studies for the Department of Homeland Security.

  17. LYRA, solar uv radiometer on the technology demonstration platform PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; Hochedez, J.-F.; Schmutz, W.; BenMoussa, A.; Defise, J.-M.; Denis, F.; D'Olieslaeger, M.; Dominique, M.; Haenen, K.; Halain, J.-P.; Koller, S.; Koizumi, S.; Mortet, V.; Rochus, P.; Schühle, U.; Soltani, A.; Theissen, A.

    2017-11-01

    LYRA is a solar radiometer part of the PROBA 2 micro satellite payload. LYRA will monitor the solar irradiance in four soft X-Ray - VUV passbands. They have been chosen for their relevance to Solar Physics, Aeronomy and SpaceWeather: 1/ Lyman Alpha channel, 2/ Herzberg continuum range, 3/ Aluminium filter channel (including He II at 30.4 nm) and 4/ Zirconium filter channel. The radiometric calibration is traceable to synchrotron source standards. The stability will be monitored by on-board calibration sources (LEDs), which allow us to distinguish between potential degradations of the detectors and filters. Additionally, a redundancy strategy maximizes the accuracy and the stability of the measurements. LYRA will benefit from wide bandgap detectors based on diamond: it will be the first space assessment of revolutionary UV detectors. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to visible light) and therefore, make dispensable visible light blocking filters. To correlate the data of this new detector technology, well known technology, such as Si detectors are also embarked. The SWAP EUV imaging telescope will operate next to LYRA on PROBA-2. Together, they will provide a high performance solar monitor for operational space weather nowcasting and research. LYRA demonstrates technologies important for future missions such as the ESA Solar Orbiter.

  18. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  19. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  20. Survey report on the state-of-the-art of cryogenic thermometry and signal conditioners and their potential for standardized space hardware

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle Payloads was investigated. These payloads operate from .3 Kelvin to 300 Kelvin. Standard detectors were selected and matching signal conditioning equipment were specified. This equipment will operate in a spacecraft environment and be compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical earth orbiting spacecraft. Work statements to better define and advance detector performance are presented.

  1. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  2. Panoramic thermal imaging: challenges and tradeoffs

    NASA Astrophysics Data System (ADS)

    Aburmad, Shimon

    2014-06-01

    Over the past decade, we have witnessed a growing demand for electro-optical systems that can provide continuous 3600 coverage. Applications such as perimeter security, autonomous vehicles, and military warning systems are a few of the most common applications for panoramic imaging. There are several different technological approaches for achieving panoramic imaging. Solutions based on rotating elements do not provide continuous coverage as there is a time lag between updates. Continuous panoramic solutions either use "stitched" images from multiple adjacent sensors, or sophisticated optical designs which warp a panoramic view onto a single sensor. When dealing with panoramic imaging in the visible spectrum, high volume production and advancement of semiconductor technology has enabled the use of CMOS/CCD image sensors with a huge number of pixels, small pixel dimensions, and low cost devices. However, in the infrared spectrum, the growth of detector pixel counts, pixel size reduction, and cost reduction is taking place at a slower rate due to the complexity of the technology and limitations caused by the laws of physics. In this work, we will explore the challenges involved in achieving 3600 panoramic thermal imaging, and will analyze aspects such as spatial resolution, FOV, data complexity, FPA utilization, system complexity, coverage and cost of the different solutions. We will provide illustrations, calculations, and tradeoffs between three solutions evaluated by Opgal: A unique 3600 lens design using an LWIR XGA detector, stitching of three adjacent LWIR sensors equipped with a low distortion 1200 lens, and a fisheye lens with a HFOV of 180º and an XGA sensor.

  3. New technologies for HWIL testing of WFOV, large-format FPA sensor systems

    NASA Astrophysics Data System (ADS)

    Fink, Christopher

    2016-05-01

    Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

  4. R-process experiments with the Advanced Implantation Detector Array

    NASA Astrophysics Data System (ADS)

    Estrade, Alfredo; Griffin, Chris; Davinson, Tom; Bruno, Carlo; Hall, Oscar; Liu, Zhong; Woods, Phil; Coleman-Smith, Patrick; Labiche, Marc; Lazarus, Ian; Pucknell, Victor; Simpson, John; Harkness-Brennan, Laura; Page, Robert; Kiss, Gabor; Liu, Jiajiang; Matsui, Keishi; Nishimura, Shunji; Phong, Vi; Lorusso, Giuseppe; Montes, Fernando; Nepal, Neerajan; Briken Collaboration; Ribf106 Experiment Team

    2017-09-01

    Decay properties of neutron rich isotopes, such as half-lives and β-delayed neutron emission probabilities, are an important input for astrophysical models of the r-process. A new generation of fragmentation beam facilities has made it possible to access large regions of the nuclear chart that are close to the path of the r-process for some astrophysical models. The Advanced Implantation Detector Array (AIDA) is a segmented active-stopper detector designed for decay experiments with fast ion beams, which was recently commissioned at the Radioactive Ion Beam Factory in RIKEN, Japan. In this presentation we describe the main characteristics of AIDA, and present preliminary results of the first experiments in the region of neutron-rich selenium isotopes and along the N=82 shell closure.

  5. Atacama Cosmology Telescope: Polarization calibration analysis for CMB measurements with ACTPol and Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Koopman, Brian; ACTPol Collaboration

    2015-04-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade for the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. Achieving first light in 2013, ACTPol is entering its third observation season. Advanced ACTPol is a next generation upgrade for ACTPol, with additional frequencies, polarization modulation, and new detector arrays, that will begin in 2016. I will first present an overview of the two projects and then focus on describing the methods used for polarization angle calibration of the ACTPol detectors. These methods utilize polarization ray tracing in the optical design software CODEV together with detector positions determined from planet observations and represent a critical input for mapping the polarization of the CMB.

  6. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  7. Field Evaluation of Detection-Control System

    DOT National Transportation Integrated Search

    2015-04-01

    In this research, a field evaluation of the Detection-Control System (D-CS) was conducted at eight sites located in four States. D-CS is similar to a traditional advance detector system in that it uses information from detectors located upstream of t...

  8. Joint STFC Futures/BIR workshop "Cancer care: new detector and sensor technologies and their potential impact", Harwell Oxford, 5-6 October 2011.

    PubMed

    Camanzi, B; Green, S

    2012-12-01

    The workshop "Cancer care: new detector and sensor technologies and their potential impact", organised jointly by the Science and Technology Facilities Council (STFC) and the British Institute of Radiology, brought together representatives from the cancer community (clinicians, medical physicists, National Health Service representatives and general practitioners with an interest in cancer) and STFC-supported scientists involved in basic research in physics and technology. The workshop aimed to raise awareness of the cancer challenge, share knowledge and identify novel solutions in the area of detectors and sensors to addressing the cancer challenge. A further aim of this workshop was to commence discussion on the formation of new multidisciplinary community networks. The workshop identified the synergies between the two communities and the potential for developing new collaborative ideas and projects.

  9. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Many of NICER’s 56 X-ray “concentrators” seen from within the instrument optical bench. Light reflected from the gold surfaces of the 24 concentric foils in each concentrator is focused onto detectors slightly more than 1 meter (3.5 feet) away. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  11. A low-cost miniaturised detector for environmental radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Briggs, Aaron; Hastings, Peter; Harrison, R. Giles; Marlton, Graeme; Baird, Adam

    2017-04-01

    We have developed a low-cost (£ few hundred), low-power (40mA), low-mass (30g) detector for environmental radioactivity measurements, using scintillator and solid state technology. The detector can measure energy and therefore has the capability to distinguish between different types of energetic particle. Results from recent tests, when our detector was integrated with a meteorological radiosonde system, and flew on a balloon up to 25km, identified the transition region between energetic particles near the surface, dominated by terrestrial gamma emissions, and higher-energy particles in the free troposphere from cosmic rays. The detector can be used with Bluetooth technology for remote monitoring, which is particularly useful for hazardous areas. It is also small and cheap enough to be used in sensor networks for a wide range of applications, from atmospheric science to disaster monitoring.

  12. Design of a portable dose rate detector based on a double Geiger-Mueller counter

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Xiao-Bin; Gong, Pin; Huang, Xi; Wen, Liang-Sheng; Han, Zhen-Yang; He, Jian-Ping

    2018-01-01

    A portable dose rate detector was designed to monitor radioactive pollution and radioactive environments. The portable dose detector can measure background radiation levels (0.1 μSv/h) to nuclear accident radiation levels (>10 Sv/h). Both automatic switch technology of a double Geiger-Mueller counter and time-to-count technology were adopted to broaden the measurement range of the instrument. Global positioning systems and the 3G telecommunication protocol were installed to prevent radiation damage to the human body. In addition, the Monte Carlo N-Particle code was used to design the thin layer of metal for energy compensation, which was used to flatten energy response The portable dose rate detector has been calibrated by the standard radiation field method, and it can be used alone or in combination with additional radiation detectors.

  13. Relative performance analysis of IR FPA technologies from the perspective of system level performance

    NASA Astrophysics Data System (ADS)

    Haran, Terence L.; James, J. Christopher; Cincotta, Tomas E.

    2017-08-01

    The majority of high performance infrared systems today utilize FPAs composed of intrinsic direct bandgap semiconductor photon detectors such as MCT or InSb. Quantum well detector technologies such as QWIPs, QDIPs, and SLS photodetectors are potentially lower cost alternatives to MCT and InSb, but the relative performance of these technologies has not been sufficiently high to allow widespread adoption outside of a handful of applications. While detectors are often evaluated using figures of merit such as NETD or D∗, these metrics, which include many underlying aspects such as spectral quantum efficiency, dark current, well size, MTF, and array response uniformity, may be far removed from the performance metrics used to judge performance of a system in an operationally relevant scenario. True comparisons of performance for various detector technologies from the perspective of end-to-end system performance have rarely been conducted, especially considering the rapid progress of the newer quantum well technologies. System level models such as the US Army's Night Vision Integrated Performance Model (NV-IPM) can calculate image contrast and spatial frequency content using data from the target/background, intervening atmosphere, and system components. This paper includes results from a performance parameter sensitivity analysis using NV-IPM to determine the relative importance of various FPA performance parameters to the overall performance of a long range imaging system. Parameters included are: QE, dark current density, quantum well capacity, downstream readout noise, well fill, image frame rate, frame averaging, and residual fixed pattern noise. The state-of-the art for XBn, QWIP, and SLS detector technologies operating in the MWIR and LWIR bands will be surveyed to assess performance of quantum structures compared to MCT and InSb. The intent is to provide a comprehensive assessment of quantum detector performance and to identify areas where increased research could provide the most benefit to overall system level performance.

  14. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  15. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  16. 32-element beta detector developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Yakushev, Alexander; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new .silicon detector for detection of electrons (below named as beta detector) developed at the Institute of Electron Technology (ITE). The detector will be used for research on transactinide elements at the GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (GSI). The detector consists of a monolithic 32-element array with an active area diameter of 90 mm and a thickness of 0.9 mm. The starting material is a high-resistivity ν silicon wafer (5 kΩcm resistivity). 32 planar p+-ν junctions are formed by boron diffusion on the top side of the wafer. On the bottom side, an n+ region, which forms a common cathode, is formed on the entire surface by phosphorus diffusion. The array is mounted on a special epoxy-glass laminate substrate, copper-clad on both sides. Two model detectors have been fabricated and studied. Very good electrical parameters have been achieved. For the first array, with supply voltage VR = 20 V, the minimum dark current was 8 nA, the maximum dark current 97.1 nA, and the average dark current 25.1 nA. For the second array, it was 11.5 nA, 378.8 nA and 40.0 nA respectively.

  17. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  18. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  19. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  20. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

Top