Science.gov

Sample records for advanced diagnostic methods

  1. Advanced diagnostic methods in avionics

    NASA Astrophysics Data System (ADS)

    Popyack, Leonard Joseph, Jr.

    Advanced diagnostic systems facilitate further enhancement of reliability and safety of modern aircraft. Unlike classical reliability analyses, addressing specific classes of systems or devices, this research is aimed at the development of methods for assessment of the individual reliability characteristics of particular system components subjected to their unique histories of operational conditions and exposure to adverse environmental factors. Individual reliability characteristics are crucial for the implementation of the most efficient maintenance practice of flight-critical system components, known as "condition-based maintenance." The dissertation presents hardware and software aspects of a computer-based system, Time-Stress Monitoring Device, developed to record, store, and analyze raw data characterizing operational and environmental conditions and performance of electro-mechanical flight control system components and aircraft electronics (avionics). Availability of this data facilitates formulation and solution of such diagnostic problems as estimation of the probability of failure and life expectancy of particular components, failure detection, identification, and prediction. Statistical aspects of system diagnostics are considered. Particular diagnostic procedures utilizing cluster analysis, Bayes' technique, and regression analysis are formulated. Laboratory and simulation experiment that verify the obtained results are provided.

  2. Advanced diagnostic methods in oral and maxillofacial pathology. Part II: immunohistochemical and immunofluorescent methods.

    PubMed

    Jordan, Richard C K; Daniels, Troy E; Greenspan, John S; Regezi, Joseph A

    2002-01-01

    The practice of pathology is currently undergoing significant change, in large part due to advances in the analysis of DNA, RNA, and proteins in tissues. These advances have permitted improved biologic insights into many developmental, inflammatory, metabolic, infectious, and neoplastic diseases. Moreover, molecular analysis has also led to improvements in the accuracy of disease diagnosis and classification. It is likely that, in the future, these methods will increasingly enter into the day-to-day diagnosis and management of patients. The pathologist will continue to play a fundamental role in diagnosis and will likely be in a pivotal position to guide the implementation and interpretation of these tests as they move from the research laboratory into diagnostic pathology. The purpose of this 2-part series is to provide an overview of the principles and applications of current molecular biologic and immunologic tests. In Part I, the biologic fundamentals of DNA, RNA, and proteins and methods that are currently available or likely to become available to the pathologist in the next several years for their isolation and analysis in tissue biopsies were discussed. In Part II, advances in immunohistochemistry and immunofluorescence methods and their application to modern diagnostic pathology are reviewed. PMID:11805778

  3. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  4. Advanced Imaging and Diagnostic Methods in the Assessment of Suspected Ischemic Heart Disease in Women.

    PubMed

    Joly, Joanna M; Bittner, Vera

    2016-09-01

    Although differences diminish with age, outcomes are overall worse for women compared to men who present with suspected acute coronary syndrome. The reasons for this discrepancy are multifactorial, including sex-related differences in atherosclerosis biology and fluid dynamics, as well as a premature conclusion by providers that chest pain must be noncardiac in the absence of obstructive coronary artery disease. In this review of existing literature, we explore the diverse differential diagnosis in this unique set of patients. Especially in women with persistent symptoms, absence of occlusive disease should prompt consideration for subangiographic plaque disruption, epicardial or microvascular endothelial dysfunction, transient neurohormonal imbalance predisposing to Takotsubo cardiomyopathy or spontaneous coronary artery dissection, underlying systemic inflammatory conditions, thromboembolic disease, myocarditis, and sequelae of congenital heart disease. As always, a thorough history and attentive physical exam will help guide further work-up, which in many cases may warrant noninvasive imaging, such as contrast-enhanced echocardiography, cardiac magnetic resonance imaging, or positron emission tomography, with their respective means of measuring myocardial perfusion and myocardial tissue pathology. Lastly, intracoronary imaging such as intravascular ultrasound and optical coherence tomography and invasive diagnostic methods such as coronary reactivity testing continue to add to our understanding that what appear to be atypical presentations of ischemic heart disease in women may in fact be typical presentations of pathologic cousin entities that remain incompletely defined. PMID:27443380

  5. DIAGNOSTIC METHODS IN AYURVEDA

    PubMed Central

    Thakar, V. J.

    1982-01-01

    This is an analytical study of the Diagnostic methods Prescribes in Ayurveda. As in the case of disease and treatments the concept of diagnosis also is unique in Ayurveda. It goes to the Nidana of Doshicimbalance by studying the physical, physiological, psychic and behavoural aspects of the patient. The paper gives an insight into the various diagnostic methods enunciated in Sastras which turns out to be a fore-runner of any of modern diagnostic methods. PMID:22556480

  6. Studies of the physical aspects of intumescence using advance diagnostics methods

    NASA Astrophysics Data System (ADS)

    Saeed, Hussain; Huang, Hua Wei; Zhang, Yang

    2014-04-01

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  7. Studies of the physical aspects of intumescence using advance diagnostics methods

    SciTech Connect

    Saeed, Hussain Huang, Hua Wei Zhang, Yang

    2014-04-11

    The use of intumescent paints as an active fire protection method has gained immense interest in recent years. A significant aspect of research has focused on studying the chemical aspects of the system to improve performance. The dynamics and physical aspects of intumescence in real time fire conditions are still unclear. The present research uses an experimental approach where diagnostics techniques such as thermal imaging camera was used to study intumescent characteristics that have been not been reported in great detail. T-panels are a substitute to the most commonly used part in construction, the I-beam. Studies were conducted using a cone calorimeter that provided a uniform heat flux through radiation on steel T-panel samples. The complex nature of char movement was recorded and a novel algorithm was used to track the growing char laye07r. The samples are designed to cater to different fire conditions. Therefore, the degree of intumescence was observed to be very different in the samples. The samples designed for low temperature cellulosic fires focus on high degree of intumesce. Whereas, mechanical strength is the focus for samples used in high temperature turbulent hydrocarbon fire conditions. The variation in the internal structure of the sample is presented. Furthermore, the phenomenon is phase shift is discussed. The phase shift is an essential part of the process of intumescence when the majority of intumescence occurs. It was observed to be different in all the samples. The movement of the samples is a property of great interest. This is because if any part of the substrate is exposed then the formulation does not meet strict commercialisation criterion. The movement was diagonal in nature as compared to flat panels where it is perpendicular. This is due tot the heating pattern of the plate that results in the web part of the panel to influence the growth of char on the flange part of the panel. A special case of char cracking is also highlighted and

  8. Advanced diagnostics for reacting flows

    NASA Astrophysics Data System (ADS)

    Hanson, R. K.; Baganoff, D.; Bowman, C. T.; Byer, R. L.; Cantwell, B. J.

    1983-11-01

    Progress is reported for the third year of an interdisciplinary program to innovate modern diagnostic techniques for application to reacting flows. Project areas are: (1) fiber optic absorption/fluorescence probes for species measurements employing tunable ultraviolet, visable and infrared laser sources; (2) wavelength modulation spectroscopy, using rapid-scanning ultraviolet, visible and infrared laser sources, for measurements of species, temperature and absorption lineshapes, (3) quantitative flow visualization, including temporally and spatially resolved species measurements in a plane, using laser-induced fluorescence; (4) multiple-point velocity visualization; (5) plasma diagnostics, utilizing planar laser-induced fluorescence and wavelength modulation techniques; (6) diagnostic techniques for thermionic converter plasmas; (7) application of advanced diagnostic techniques for studies of turbulent reacting flows; (8) development of measurement techniques and a novel facility for investigations of droplet evaporation in turbulent flows; (9) holographic display techniques for 3-D visualization of flowfield data; (10) coherent anti-Stokes Raman spectroscopy (CARS) for temperature and velocity measurements in a supersonic jet; and (11) computed absorption tomography system for species measurements in a plane.

  9. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    SciTech Connect

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-15

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  10. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  11. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method.

  12. Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method.

    PubMed

    Kim, Dong-Hwan; Hong, Suk-Ho; Park, Il-Seo; Lee, Hyo-Chang; Kang, Hyun-Ju; Chung, Chin-Wook

    2015-12-01

    Plasma characteristics in the far scrape-off layer region of tokamak play a crucial role in the stable plasma operation and its sustainability. Due to the huge facility, electrical diagnostic systems to measure plasma properties have extremely long cable length resulting in large stray current. To overcome this problem, a sideband harmonic method was applied to the Korea Superconducting Tokamak Advanced Research tokamak plasma. The sideband method allows the measurement of the electron temperature and the plasma density without the effect of the stray current. The measured plasma densities are compared with those from the interferometer, and the results show reliability of the method. PMID:26724028

  13. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  14. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  15. Diagnostic Advances in Multiple Myeloma.

    PubMed

    Barley, Kevin; Chari, Ajai

    2016-04-01

    There have been several advances in the diagnosis of multiple myeloma (MM) in recent years. Serum free light chains have improved the ability to diagnose light chain MM; however, there are still difficulties in the serologic diagnosis of MM in some cases, particularly IgA MM. A novel heavy/light chain assay is able to improve the accuracy of diagnosis in these cases. Free light chains may also improve the diagnosis of extramedullary disease in difficult cases such as disease involving the central nervous system, pleura, or ascites. Advances in imaging such as whole body low-dose computed tomography (CT) whole body magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) have improved sensitivity in identifying lytic bone lesions, which would enable earlier treatment, and monitoring of osseous disease particularly in non- or oligosecretory disease. New techniques such as fused PET/MRI may further enhance the diagnosis of both bone lesions and extramedullary disease.

  16. Advances in paper-based point-of-care diagnostics.

    PubMed

    Hu, Jie; Wang, ShuQi; Wang, Lin; Li, Fei; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2014-04-15

    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.

  17. Myasthenia Gravis: Tests and Diagnostic Methods

    MedlinePlus

    ... Affiliations Foundation Focus Newsletter E-Update Test & Diagnostic methods In addition to a complete medical and neurological ... How can I help? About MGFA Test & Diagnostic methods Treatment for MG FAQ's Upcoming Events Spring 2016 ...

  18. BOOK REVIEW: Advanced Diagnostics for Magnetic and Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Stott, PE; Wootton, A.; Gorini, G.; Sindoni, E.; Batani, D.

    2003-02-01

    This book is a collection of papers, written by specialists in the field, on advanced topics of nuclear fusion diagnostics. The 78 contributions were originally presented at the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion held at Villa Monastero, Italy in September 2001. Both magnetically confined and inertial fusion programmes are quite extensively covered, with more emphasis given to the former scheme. In the case of magnetic confinement, since the present international programme is strongly focused on next-step devices, particular attention is devoted to techniques and technologies viable in an environment with strong neutron fluxes. Indeed, in the first section, the various methods are considered in the perspective of performing the measurements of the relevant parameters in conditions approaching a burning plasma, mainly in the Tokamak configuration. The most demanding requirements, like the implications of the use of tritium and radiation resistance, are reviewed and the most challenging open issues, which require further research and development, are also clearly mentioned. The following three sections are devoted to some of the most recent developments in plasma diagnostics, which are grouped according to the following classification: `Neutron and particle diagnostics', `Optical and x-ray diagnostics' and `Interferometry, Polarimetry and Thomson Scattering'. In these chapters, several of the most recent results are given, covering measurements taken on the most advanced experiments around the world. Here the developments described deal more with the requirements imposed by the physical issues to be studied. They are therefore more focused on the approaches adopted to increase the spatial and time resolution of the diagnostics, on some methods to improve the characterisation of the turbulence and on fast particles. Good coverage is given to neutron diagnostics, which are assuming increasing relevance as the plasma

  19. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  20. Role of advanced diagnostics for eosinophilic esophagitis.

    PubMed

    Hirano, Ikuo

    2014-01-01

    In eosinophilic esophagitis (EoE), diagnostic tests aid in the identification of pathophysiologic consequences and accurate detection of the disease. The EoE Endoscopic Reference Score (EREFS) classifies and grades the severity of the five major endoscopically identified esophageal features of EoE (edema, rings, exudates, furrows and strictures). The EREFS may be useful in the evaluation of disease severity and as an objective outcome of response to therapy. pH monitoring identifies the presence of abnormal degrees of acid exposure in the esophagus that characterizes gastroesophageal reflux disease. The presence of acid reflux, however, does not indicate that the reflux is responsible for esophageal eosinophilia. Esophageal manometry has not demonstrated a characteristic abnormality with sufficient sensitivity to make the test of diagnostic value in clinical practice. On the other hand, manometric characteristics of esophageal pressurization and longitudinal muscle dysfunction may help identify important pathophysiologic consequences of EoE. Esophageal impedance testing has demonstrated increased baseline mucosal impedance that correlates with increased epithelial permeability in EoE. Reduced mucosal integrity may provide intraluminal allergens access to antigen-presenting cells, serving as an early event in the pathogenesis of EoE. The functional luminal impedance probe (FLIP) provides quantitative assessment of esophageal mural compliance, a physiologic correlate of remodeling in EoE. Studies using FLIP have associated reductions in esophageal distensibility in EoE with the important outcome of food impaction risk. Finally, confocal endomicroscopy, multiphoton fluorescence microscopy and novel eosinophil-enhancing contrast agents are emerging methods that may allow for in vivo visualization of esophageal eosinophilic inflammation, thereby improving the detection and understanding of this emerging disease. PMID:24603385

  1. Advances in Diagnostic Assays for Tuberculosis.

    PubMed

    Lawn, Stephen D

    2015-08-07

    Approximately one-third of the global burden of tuberculosis (TB) remains undiagnosed each year and the vast majority of cases of multidrug-resistant TB remain undetected. Many countries still place heavy reliance on outdated technologies that are blunt and ineffective tools for controlling this epidemic. However, during the past 10 years, there has been substantial progress within the TB diagnostics developmental pipeline. Old technologies have been reviewed and improved and new technologies have been developed and evaluated and are now being implemented. This review summarizes these developments and describes the currently available diagnostic tools. Consideration is given to the requirements of future diagnostic tests and how these should be evaluated not only with regard to their diagnostic accuracy and operational feasibility, but ultimately in terms of whether they impact clinical outcomes cost effectively, especially for those most in need.

  2. Advanced Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    2007-06-01

    This factsheet describes a research project whose objective is to develop and implement technologies that address advanced combustion diagnostics and rapid Btu measurements of fuels. These are the fundamental weaknesses associated with the combustion processes of a furnace.

  3. Genetics, diagnostics and therapeutic advances in NAFLD

    PubMed Central

    Rinella, Mary E.; Sanyal, Arun J.

    2016-01-01

    In 2014, NAFLD was confirmed as the fastest growing aetiology for hepatocellular cancer in the USA. However, 2014 also saw progress in our understanding of the heritability and pathogenesis of NAFLD, and an important clinical trial targeting the farnesoid X receptor pathway has illustrated advances in developing a pharmacological therapy. PMID:25560844

  4. Advances in diagnostic testing for gastroesophageal reflux disease.

    PubMed

    Gawron, Andrew J; Hirano, Ikuo

    2010-08-14

    Gastroesophageal reflux disease (GERD) contributes substantially to morbidity and to costs in the United States health care system. The burden of this disease has resulted in attempts at improving diagnosis and characterizing patients. Numerous research and technical advances have enhanced our understanding of both the utility and limitations of a variety of diagnostic modalities. The purpose of this review is to highlight recent advances in GERD diagnostic testing and to discuss their implications for use in clinical practice. Topics addressed include esophageal pH monitoring, impedance testing, symptom association analyses, narrow-band imaging, and histopathology. PMID:20698036

  5. Recent advances in molecular diagnostics of hepatitis B virus.

    PubMed

    Datta, Sibnarayan; Chatterjee, Soumya; Veer, Vijay

    2014-10-28

    Hepatitis B virus (HBV) is one of the important global health problems today. Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma. Presently, routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen (HBsAg). However, identification of HBV DNA positive cases, who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays, that are highly sensitive, specific and are to some extent tolerant to sequence variation. In the last few years, the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools, such as polymerase chain reaction (PCR) and real-time PCR. Recently, apart of PCR based amplification methods, a number of isothermal amplification assays, such as loop mediated isothermal amplification, transcription mediated amplification, ligase chain reaction, and rolling circle amplification have been utilized for HBV diagnosis. These assays also offer options for real time detection and integration into biosensing devices. In this manuscript, we review the molecular technologies that are presently available for HBV diagnostics, with special emphasis on isothermal amplification based technologies. We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV.

  6. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  7. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    SciTech Connect

    Koide, Y.

    2008-03-12

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  8. Advances in three-dimensional diagnostic radiology.

    PubMed

    ter Haar Romeny, B M; Zuiderveld, K J; Van Waes, P F; Van Walsum, T; Van Der Weijden, R; Weickert, J; Stokking, R; Wink, O; Kalitzin, S; Maintz, T; Zonneveld, F; Viergever, M A

    1998-10-01

    The maturity of current 3D rendering software in combination with recent developments in computer vision techniques enable an exciting range of applications for the visualisation, measurement and interactive manipulation of volumetric data, relevant both for diagnostic imaging and for anatomy. This paper reviews recent work in this area from the Image Sciences Institute at Utrecht University. The processes that yield a useful visual presentation are sequential. After acquisition and before any visualisation, an essential step is to prepare the data properly: this field is known as 'image processing' or 'computer vision' in analogy with the processing in human vision. Examples will be discussed of modern image enhancement and denoising techniques, and the complex process of automatically finding the objects or regions of interest, i.e. segmentation. One of the newer and promising methodologies for image analysis is based on a mathematical analysis of the human (cortical) visual processing: multiscale image analysis. After preprocessing the 3D rendering can be acquired by simulating the 'ray casting' in the computer. New possibilities are presented, such as the integrated visualisation in one image of (accurately registered) datasets of the same patient acquired in different modality scanners. Other examples include colour coding of functional data such as SPECT brain perfusion or functional magnetic resonance (MR) data and even metric data such as skull thickness on the rendered 3D anatomy from MR or computed tomography (CT). Optimal use and perception of 3D visualisation in radiology requires fast display and truly interactive manipulation facilities. Modern and increasingly cheaper workstations ( < $10000) allow this to be a reality. It is now possible to manipulate 3D images of 256 at 15 frames per second interactively, placing virtual reality within reach. The possibilities of modern workstations become increasingly more sophisticated and versatile. Examples

  9. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional

  10. Diagnostics for advanced laser acceleration experiments

    SciTech Connect

    Misuri, Alessio

    2002-06-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  11. Ultrasensitive microanalytical diagnostic methods for rickettsial pathogens

    SciTech Connect

    Hatch, A. V.

    2012-03-01

    A strategic CRADA was established between Sandia National Laboratories (SNL) and the University of Texas Medical Branch (UTMB) at Galveston to address pressing needs for US protection against biological weapons of mass destruction (WMD) and emerging infectious diseases. The combination of unique expertise and facilities at UTMB and SNL enabled interdisciplinary research efforts in the development of rapid and accurate diagnostic methods for early detection of trace priority pathogen levels. Outstanding postdoctoral students were also trained at both institutions to help enable the next generation of scientists to tackle the challenging interdisciplinary problems in the area of biodefense and emerging infectious diseases. Novel approaches to diagnostics were developed and the both the speed of assays as well as the detection sensitivity were improved by over an order of magnitude compared to traditional methods. This is a significant step toward more timely and specific detection of dangerous infections. We developed in situ polymerized porous polymer monoliths that can be used as (1) size exclusion elements for capture and processing of rickettsial infected cells from a sample, (2) photopatternable framework for grafting high densities of functionalized antibodies/fluorescent particles using novel monolith chemistry. Grafting affinity reagents specific to rickettsial particles enables rapid, ultra-sensitive assays by overcoming transport limitations of traditional planar assay approaches. We have selectively trapped particles and bacteria at the cell trap and have also detected picomolar mouse IL-6 captured with only 20 minutes total incubation times using the densely patterned monolith framework. As predicted, the monolith exhibits >10x improvements in both capture speed and capture density compared to traditional planar approaches. The most significant advancements as part of this CRADA is the optimization of techniques allowing the detection of <10 rickettsial

  12. Tomographic methods in flow diagnostics

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1993-01-01

    This report presents a viewpoint of tomography that should be well adapted to currently available optical measurement technology as well as the needs of computational and experimental fluid dynamists. The goals in mind are to record data with the fastest optical array sensors; process the data with the fastest parallel processing technology available for small computers; and generate results for both experimental and theoretical data. An in-depth example treats interferometric data as it might be recorded in an aeronautics test facility, but the results are applicable whenever fluid properties are to be measured or applied from projections of those properties. The paper discusses both computed and neural net calibration tomography. The report also contains an overview of key definitions and computational methods, key references, computational problems such as ill-posedness, artifacts, missing data, and some possible and current research topics.

  13. Cryptosporidiosis: multiattribute evaluation of six diagnostic methods.

    PubMed

    MacPherson, D W; McQueen, R

    1993-02-01

    Six diagnostic methods (Giemsa staining, Ziehl-Neelsen staining, auramine-rhodamine staining, Sheather's sugar flotation, an indirect immunofluorescence procedure, and a modified concentration-sugar flotation method) for the detection of Cryptosporidium spp. in stool specimens were compared on the following attributes: diagnostic yield, cost to perform each test, ease of handling, and ability to process large numbers of specimens for screening purposes by batching. A rank ordering from least desirable to most desirable was then established for each method by using the study attributes. The process of decision analysis with respect to the laboratory diagnosis of cryptosporidiosis is discussed through the application of multiattribute utility theory to the rank ordering of the study criteria. Within a specific health care setting, a diagnostic facility will be able to calculate its own utility scores for our study attributes. Multiattribute evaluation and analysis are potentially powerful tools in the allocation of resources in the laboratory.

  14. Trends in Laboratory Diagnostic Methods in Periodontology.

    PubMed

    Bolerázska, Beáta; Mareková, Mária; Markovská, Neda

    2016-01-01

    This work presents a summary of current knowledge on the laboratory diagnosis of periodontitis. It focuses on the theoretical foundations and is supplemented with new knowledge. It subsequently describes specifically the laboratory diagnosis methods of periodontitis: the protein expression of inflammation, oral microbiology and molecular diagnostics. Periodontitis is a serious disease worldwide and its confirmed association with systemic diseases means its severity is increasing. Its laboratory diagnosis has the potential to rise to the level of clinical and diagnostic imaging. The transfer of diagnostic methods from laboratory to clinical use is increasingly used in the prevention and monitoring of the exacerbation and treatment of periodontal disease, as well as of its impact on systemic disease. PMID:27131349

  15. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  16. Pertussis: the disease and new diagnostic methods.

    PubMed Central

    Friedman, R L

    1988-01-01

    Bordetella pertussis, the causative agent of whooping cough, produces an acute and chronic respiratory infection in infants and young children. B. pertussis is still a major health problem of young children throughout the world even though effective immunization against whooping cough is available. While predominantly a childhood disease, it has been reported also to be a cause of persistent cough in adults. This review discusses the numerous bacterial virulence factors that may play roles in the pathogenesis of pertussis and in immunity to infection. The present problems with pertussis diagnosis, recent advances, and future prospects for new and improved rapid diagnostics tests also are explored. PMID:2906814

  17. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  18. Metabolomics-Based Methods for Early Disease Diagnostics: A Review

    PubMed Central

    Nagana Gowda, G. A.; Zhang, Shucha; Gu, Haiwei; Asiago, Vincent; Shanaiah, Narasimhamurthy; Raftery, Daniel

    2013-01-01

    The emerging field of “metabolomics,” in which a large number of small molecule metabolites from body fluids or tissues are detected quantitatively in a single step, promises immense potential for early diagnosis, therapy monitoring and for understanding the pathogenesis of many diseases. Metabolomics methods are mostly focused on the information rich analytical techniques of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Analysis of the data from these high-resolution methods using advanced chemometric approaches provides a powerful platform for translational and clinical research, and diagnostic applications. In this review, the current trends and recent advances in NMR- and MS-based metabolomics are described with a focus on the development of advanced NMR and MS methods, improved multivariate statistical data analysis and recent applications in the area of cancer, diabetes, inborn errors of metabolism, and cardiovascular diseases. PMID:18785810

  19. Neurogenic thoracic outlet syndrome: current diagnostic criteria and advances in MRI diagnostics.

    PubMed

    Magill, Stephen T; Brus-Ramer, Marcel; Weinstein, Philip R; Chin, Cynthia T; Jacques, Line

    2015-09-01

    Neurogenic thoracic outlet syndrome (nTOS) is caused by compression of the brachial plexus as it traverses from the thoracic outlet to the axilla. Diagnosing nTOS can be difficult because of overlap with other complex pain and entrapment syndromes. An nTOS diagnosis is made based on patient history, physical exam, electrodiagnostic studies, and, more recently, interpretation of MR neurograms with tractography. Advances in high-resolution MRI and tractography can confirm an nTOS diagnosis and identify the location of nerve compression, allowing tailored surgical decompression. In this report, the authors review the current diagnostic criteria, present an update on advances in MRI, and provide case examples demonstrating how MR neurography (MRN) can aid in diagnosing nTOS. The authors conclude that improved high-resolution MRN and tractography are valuable tools for identifying the source of nerve compression in patients with nTOS and can augment current diagnostic modalities for this syndrome.

  20. Advanced Diagnostics for Developing High-Brightness Electron Beams

    SciTech Connect

    Ben-Zvi, I.; Babzien, M.; Malone, R.; Wang, X.-J.; Yakimenko, V.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  1. ADVANCED DIAGNOSTICS FOR DEVELOPING HIGH-BRIGHTNESS ELECTRON BEAMS.

    SciTech Connect

    BEN-ZVI,I.

    1998-11-24

    The production of high-brightness particle beams calls for the development of advanced beam diagnostics. High brightness beams, meaning beams with a high density in phase space, are important for many applications, such as short-wavelength Free-Electron Lasers and advanced accelerator systems. A diagnostic that provides detailed information on the density distribution of the electron bunch in multi-dimensional phase-space is an essential tool for obtaining small emittance at a high charge. This diagnostic system has been developed at Brookhaven National Laboratory. One component of the system is the measurement of a slice emittance which provides a measurement of transverse beam properties (such as emittance) as a function of the longitudinal position. Changing the laser pulse profile of a photocathode RF gun has been suggested as one way to achieve non-linear emittance compensation and improve the brightness and that can be diagnosed by the slice emittance system. The other element of the diagnostic is the tomographic reconstruction of the transverse phase. In our work we give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This high precision phase space tomography together with the ability to modify the radial charge distribution of the electron beam presents an opportunity to improve the emittance and apply non-linear radial emittance corrections. Combining the slice emittance and tomography diagnostics leads to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections. This should lead to great improvements in the beam brightness.

  2. Performance of Advanced Light Source particle beam diagnostics

    SciTech Connect

    Hinkson, J.

    1993-05-01

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 {Omega} Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed.

  3. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  4. [Culture based diagnostic methods for tuberculosis].

    PubMed

    Baylan, Orhan

    2005-01-01

    Culture methods providing isolates for identification and drug susceptibility testing, still represent the gold standard for the definitive diagnosis of tuberculosis, although the delay in obtaining results still remains a problem. Traditional solid media are recommended for use along with liquid media in primary isolation of mycobacteria. At present, a number of elaborate culture systems are available commercially. They range from simple bottles and tubes such as MGIT (BD Diagnostic Systems, USA), Septi-Chek AFB (BD, USA) and MB Redox (Biotest Diagnostics, USA) to semiautomated system (BACTEC 460TB, BD, USA) and fully automated systems (BACTEC 9000 MB [BD, USA], BACTEC MGIT 960 [BD, USA], ESP Culture System II [Trek Diagnostics, USA], MB/BacT ALERT 3D System [BioMérieux, NC], TK Culture System [Salubris Inc, Turkey]). Culture methods available today are sufficient to permit laboratories to develop an algoritm that is optimal for patients and administrative needs. In this review article, the culture systems used for the diagnosis of tuberculosis, their mechanisms, advantages and disadvantages have been discussed under the light of recent literature.

  5. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  6. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  7. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  8. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  9. Diagnostic imaging advances in murine models of colitis

    PubMed Central

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-01

    Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD. PMID:26811642

  10. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor.

    PubMed

    Evans, Mark I; Wapner, Ronald J; Berkowitz, Richard L

    2016-09-01

    The past few years have seen extraordinary advances in prenatal genetic practice led by 2 major technological advances; next-generation sequencing of cell-free DNA in the maternal plasma to noninvasively identify fetal chromosome abnormalities, and microarray analysis of chorionic villus sampling and amniotic fluid samples, resulting in increased cytogenetic resolution. Noninvasive prenatal screening of cell-free DNA has demonstrated sensitivity and specificity for trisomy 21 superior to all previous screening approaches with slightly lower performance for other common aneuploidies. These tests have rapidly captured an increasing market share, with substantial reductions in the number of chorionic villus sampling and amniocentesis performed suggesting that physicians and patients regard such screening approaches as an equivalent replacement for diagnostic testing. Simultaneously, many clinical programs have noted significant decreases in patient counseling. In 2012 the Eunice Kennedy Shriver National Institute of Child Health and Human Development funded a blinded comparison of karyotype with the emerging technology of array comparative genomic hybridization showing that in patients with a normal karyotype, 2.5% had a clinically relevant microdeletion or duplication identified. In pregnancies with an ultrasound-detected structural anomaly, 6% had an incremental finding, and of those with a normal scan, 1.6% had a copy number variant. For patients of any age with a normal ultrasound and karyotype, the chance of a pathogenic copy number variant is greater than 1%, similar to the age-related risk of aneuploidy in the fetus of a 38 year old. This risk is 4-fold higher than the risk of trisomy 21 in a woman younger than 30 years and 5- to 10-fold higher than the present accepted risk of a diagnostic procedure. Based on this, we contend that every patient, regardless of her age, be educated about these risks and offered the opportunity to have a diagnostic procedure with

  11. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  12. [Chlamydia pneumoniae infections--diagnostic methods].

    PubMed

    Stepień, Ewa; Pieniazek, Piotr; Branicka, Agnieszka; Bozek, Maria

    2002-01-01

    Gram-negative bacteria Chlamydia pneumonia was found in 1989 to cause acute and chronic respiratory tract infections. This agent has been as well associated with other disease: atherogenesis and coronary heart disease. This study is aimed both at making an introduction to the issues related to C. pneumoniae diagnosis and presenting contemporary laboratory methods. Given the limitations of traditional diagnostics methods, serodiagnosis (EIA) and nucleic acids amplification (PCR, hybridisation) provide the most convincing evidence of C. pneumoniae infections. Culture and direct fluorescence antibody (DFA) may be useful in confirming these results. A variety of methods applied can provide an opportunity to detect bacteria in different clinical samples--incl. sputum, nasopharyngeal and throat swabs, bronchoalveolar lavage (BAL) and tissues from biopsy and autopsy. PMID:12184026

  13. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.; Sapozhnikov, O. A.; Khokhlova, V. A.

    Recent advances in the field of physical acoustics, imaging technologies, piezoelectric materials, and ultrasonic transducer design have led to emerging of novel methods and apparatus for ultrasonic diagnostics, therapy and body aesthetics. The paper presents the results on development and experimental study of different high intensity focused ultrasound (HIFU) transducers. Technological peculiarities of the HIFU transducer design as well as theoretical and numerical models of such transducers and the corresponding HIFU fields are discussed. Several HIFU transducers of different design have been fabricated using different advanced piezoelectric materials. Acoustic field measurements for those transducers have been performed using a calibrated fiber optic hydrophone and an ultrasonic measurement system (UMS). The results of ex vivo experiments with different tissues as well as in vivo experiments with blood vessels are presented that prove the efficacy, safety and selectivity of the developed HIFU transducers and methods.

  14. Recent advances in low-cost microfluidic platforms for diagnostic applications.

    PubMed

    Tomazelli Coltro, Wendell Karlos; Cheng, Chao-Min; Carrilho, Emanuel; de Jesus, Dosil Pereira

    2014-08-01

    The use of inexpensive materials and cost-effective manufacturing processes for mass production of microfluidic devices is very attractive and has spurred a variety of approaches. Such devices are particularly suited for diagnostic applications in limited resource settings. This review describes the recent and remarkable advances in the use of low-cost substrates for the development of microfluidic devices for diagnostics and clinical assays. Thus, a plethora of new and improved fabrication methods, designs, capabilities, detections, and applications of microfluidic devices fabricated with paper, plastic, and threads are covered.

  15. Advanced clinical monitoring: considerations for real-time hemodynamic diagnostics.

    PubMed

    Goldman, J M; Cordova, M J

    1994-01-01

    In an effort to ease staffing burdens and potentially improve patient outcome in an intensive care unit (ICU) environment, we are developing a real-time system to accurately and efficiently diagnose cardiopulmonary emergencies. The system is being designed to utilize all relevant routinely-monitored physiological data in order to automatically diagnose potentially fatal events. The initial stage of this project involved formulating the overall system design and appropriate methods for real-time data acquisition, data storage, data trending, waveform analysis, and implementing diagnostic rules. Initially, we defined a conceptual analysis of the minimum physiologic data set, and the monitoring time-frames (trends) which would be required to diagnose cardiopulmonary emergencies. Following that analysis, we used a fuzzy logic diagnostic engine to analyze physiological data during a simulated arrhythmic cardiac arrest (ACA) in order to assess the validity of our diagnostic methodology. We used rate, trend, and morphologic data extracted from the following signals: expired CO2 time-concentration curve (capnogram), electrocardiogram, and arterial blood pressure. The system performed well: The fuzzy logic engine effectively diagnosed the likelihood of ACA from the subtle hemodynamic trends which preceded the complete arrest. As the clinical picture worsened, the fuzzy logic-based system accurately indicated the change in patient condition. Termination of the simulated arrest was rapidly detected by the diagnostic engine. In view of the effectiveness of this fuzzy logic implementation, we plan to develop additional fuzzy logic modules to diagnose other cardiopulmonary emergencies.

  16. Advances in Optical Fiber-Based Faraday Rotation Diagnostics

    SciTech Connect

    White, A D; McHale, G B; Goerz, D A

    2009-07-27

    In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreement with our FRDs and other current sensors.

  17. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  18. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. PMID:26574729

  19. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    PubMed

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required.

  20. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines

    PubMed Central

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A.; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-01-01

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid–based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. PMID:26409271

  1. Charged-particle beam diagnostics for the advanced photon source

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1993-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e -, e +) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest X-ray sources in the 10-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV injector synchrotron (IS), 7-GeV storage ring (SR), and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  2. New advanced radio diagnostics tools for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Rothkaehl, H.; Atamaniuk, B.; Morawski, M.; Zakharenkova, I.; Cherniak, I.; Otmianowska-Mazur, K.

    2013-12-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities.

  3. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    SciTech Connect

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE`s nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer.

  4. Advances in genetic diagnostics for hereditary hearing loss.

    PubMed

    Idan, Natali; Brownstein, Zippora; Shivatzki, Shaked; Avraham, Karen B

    2013-01-01

    Hereditary hearing loss affects a significant proportion of the hearing impaired, with genetic mutations estimated to be responsible for its etiology in over 50% of this population. The methods for molecular diagnostics are changing as a result of the transition from linkage analysis to next generation sequencing to identify the genes responsible for hearing loss in affected families. In this review, we summarize the attitudes of the hearing impaired towards genetic testing, the latest techniques for identifying mutations, and provide a comprehensive list of the mutations found in the Israeli Jewish hearing-impaired population.

  5. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  6. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10129808

  7. Advanced epidemiologic and analytical methods.

    PubMed

    Albanese, E

    2016-01-01

    Observational studies are indispensable for etiologic research, and are key to test life-course hypotheses and improve our understanding of neurologic diseases that have long induction and latency periods. In recent years a plethora of advanced design and analytic techniques have been developed to strengthen the robustness and ultimately the validity of the results of observational studies, and to address their inherent proneness to bias. It is the responsibility of clinicians and researchers to critically appraise and appropriately contextualize the findings of the exponentially expanding scientific literature. This critical appraisal should be rooted in a thorough understanding of advanced epidemiologic methods and techniques commonly used to formulate and test relevant hypotheses and to keep bias at bay. PMID:27637951

  8. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  9. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  10. Recent Advances in Diagnostic Strategies for Diabetic Peripheral Neuropathy

    PubMed Central

    2016-01-01

    Diabetes is an increasing epidemic in Korea, and associated diabetic peripheral neuropathy (DPN) is its most common and disabling complication. DPN has an insidious onset and heterogeneous clinical manifestations, making it difficult to detect high-risk patients of DPN. Early diagnosis is recommended and is the key factor for a better prognosis and preventing diabetic foot ulcers, amputation, or disability. However, diagnostic tests for DPN are not clearly established because of the various pathophysiology developing from the nerve injury to clinical manifestations, differences in mechanisms according to the type of diabetes, comorbidities, and the unclear natural history of DPN. Therefore, DPN remains a challenge for physicians to screen, diagnose, follow up, and evaluate for treatment response. In this review, diagnosing DPN using various methods to assess clinical symptoms and/or signs, sensorineural impairment, and nerve conduction studies will be discussed. Clinicians should rely on established modalities and utilize current available testing as complementary to specific clinical situations. PMID:27246283

  11. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  12. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, John S.

    1995-01-01

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.

  13. Method and apparatus for holographic wavefront diagnostics

    DOEpatents

    Toeppen, J.S.

    1995-04-25

    A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.

  14. Advances in Microfluidic PCR for Point-of-Care Infectious Disease Diagnostics

    PubMed Central

    Park, Seungkyung; Zhang, Yi; Lin, Shin; Wang, Tza-Huei; Yang, Samuel

    2011-01-01

    Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics. PMID:21741465

  15. DNA technological progress toward advanced diagnostic tools to support human hookworm control.

    PubMed

    Gasser, R B; Cantacessi, C; Loukas, A

    2008-01-01

    Blood-feeding hookworms are parasitic nematodes of major human health importance. Currently, it is estimated that 740 million people are infected worldwide, and more than 80 million of them are severely affected clinically by hookworm disease. In spite of the health problems caused and the advances toward the development of vaccines against some hookworms, limited attention has been paid to the need for improved, practical methods of diagnosis. Accurate diagnosis and genetic characterization of hookworms is central to their effective control. While traditional diagnostic methods have considerable limitations, there has been some progress toward the development of molecular-diagnostic tools. The present article provides a brief background on hookworm disease of humans, reviews the main methods that have been used for diagnosis and describes progress in establishing polymerase chain reaction (PCR)-based methods for the specific diagnosis of hookworm infection and the genetic characterisation of the causative agents. This progress provides a foundation for the rapid development of practical, highly sensitive and specific diagnostic and analytical tools to be used in improved hookworm prevention and control programmes.

  16. [Diagnostic methods of nasal respiratory function].

    PubMed

    Mlynski, G; Beule, A

    2008-01-01

    Objective assessment of nasal obstruction may help with preoperative planning for rhinosurgery and indicate different aspects of endonasal pathology. To improve quality control, preoperative and postoperative objective assessment is desirable. This review presents objective functional diagnostic tools and explains their appropriate uses, the information obtained, and their limitations. An algorithm is presented for analysing nasal obstruction by means of objective functional assessment. Examples illustrate how to use this information for preoperative planning in rhinosurgery. PMID:18210011

  17. A Refined QSO Selection Method Using Diagnostics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won; Protopapas, Pavlos; Trichas, Markos; Rowan-Robinson, Michael; Khardon, Roni; Alcock, Charles; Byun, Yong-Ik

    2012-04-01

    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) that were selected using multiple diagnostics. We started with a set of 2,566 QSO candidates selected using the methodology presented in our previous work based on time variability of the MACHO LMC light curves. We then obtained additional information for the candidates by cross-matching them with the Spitzer SAGE, the 2MASS, the Chandra, the XMM, and an LMC UBVI catalogues. Using that information, we specified diagnostic features based on mid-IR colours, photometric redshifts using SED template fitting, and X-ray luminosities, in order to discriminate more high-confidence QSO candidates in the absence of spectral information. We then trained a one-class Support Vector Machine model using those diagnostics features. We applied the trained model to the original candidates, and finally selected 663 high-confidence QSO candidates. We cross-matched those 663 QSO candidates with 152 newly-confirmed QSOs and 275 non-QSOs in the LMC fields, and found that the false positive rate was less than 1%.

  18. Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Borguet, Sebastien; Leonard, Olivier; Zhang, Xiaodong (Frank)

    2013-01-01

    Recent technology reviews have identified the need for objective assessments of aircraft engine health management (EHM) technologies. To help address this issue, a gas path diagnostic benchmark problem has been created and made publicly available. This software tool, referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), has been constructed based on feedback provided by the aircraft EHM community. It provides a standard benchmark problem enabling users to develop, evaluate and compare diagnostic methods. This paper will present an overview of ProDiMES along with a description of four gas path diagnostic methods developed and applied to the problem. These methods, which include analytical and empirical diagnostic techniques, will be described and associated blind-test-case metric results will be presented and compared. Lessons learned along with recommendations for improving the public benchmarking processes will also be presented and discussed.

  19. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  20. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    NASA Technical Reports Server (NTRS)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and

  1. Advanced smile diagnostics using CAD/CAM mock-ups.

    PubMed

    Sancho-Puchades, Manuel; Fehmer, Vincent; Hämmerle, Christoph; Sailer, Irena

    2015-01-01

    Diagnostics are essential for predictable restorative dentistry. Both patient and clinician must agree on a treatment goal before the final restorations are delivered to avoid future disappointments. However, fully understanding the patient's desires is difficult. A useful tool to overcome this problem is the diagnostic wax-up and mock-up. A potential treatment outcome is modeled in wax prior to treatment and transferred into the patient's mouth using silicon indexes and autopolymerizing resin to obtain the patient's approval. Yet, this time-consuming procedure only produces a single version of the possible treatment outcome, which can be unsatisfactory for both the patient and the restorative team. Contemporary digital technologies may provide advantageous features to aid in this diagnostic treatment step. This article reviews opportunities digital technologies offer in the diagnostic phase, and presents clinical cases to illustrate the procedures.

  2. Advancing the development of diagnostic tests and biomarkers for tuberculosis.

    PubMed

    Yasinskaya, Y; Plikaytis, B; Sizemore, C; Sacks, L

    2011-07-01

    High costs and limited returns on investment have hampered progress in developing new diagnostic tests and treatments for tuberculosis (TB). We need new biomarkers to develop assays that can rapidly, efficiently and reliably detect Mycobacterium tuberculosis infection and disease, identify drug resistance and expedite drug and vaccine development. This can only be accomplished through cross-disciplinary collaborations to facilitate access to human specimens. The Food and Drug Administration, Centers for Disease Control and Prevention, National Institutes of Health, the industry and academia experts came together in a June 2010 workshop to examine the field of TB diagnostic test development and biomarker discovery, identify areas of most urgent need and formulate strategies to address those needs.

  3. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  4. Strategic steps for advanced molecular imaging with magnetic resonance-based diagnostic modalities.

    PubMed

    Belkic, Dž; Belkic, K

    2015-02-01

    With the rapidly-expanding sophistication in our understanding of cancer cell biology, molecular imaging offers a critical bridge to oncology. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about many metabolites at the same time. Since MRS entails no ionizing radiation, repeated monitoring, including screening can be performed. However, MRS via the fast Fourier transform (FFT) has poor resolution and signal-to-noise ratio (SNR). Moreover, subjective and non-unique (ambiguous) fittings of FFT spectra cannot provide reliable quantification of clinical usefulness. In sharp contrast, objective and unique (unambiguous) signal processing by the fast Padé transform (FPT) can increase resolution and retrieve the true quantitative metabolic information. To illustrate, we apply the FPT to in vitro MRS data as encoded from malignant ovarian cyst fluid and perform detailed analysis. This problem area is particularly in need of timely diagnostics by more advanced modalities, such as high-resolution MRS, since conventional methods usually detect ovarian cancers at late stages with poor prognosis, whereas at an early stage the prognosis is excellent. The reliability and robustness of the FPT is assessed for time signals contaminated with varying noise levels. In the presence of higher background noise, all physical metabolites were unequivocally identified and their concentrations precisely extracted, using small fractions of the total signal length. Via the "signal-noise separation" concept alongside the "stability test", all non-physical information was binned, such that fully denoised spectra were generated. These results imply that a reformulation of data acquisition is needed, as guided by the FPT in MRS, since a small number of short transient time signals can provide high resolution and good SNR. This would enhance the diagnostic accuracy of MRS and shorten examination times, thereby improving efficiency and cost-effectiveness of

  5. Diagnostic Value of Halitosis Examination Methods.

    PubMed

    Aydin, Murat; Bollen, Curd M L; Özen, Murat Eren

    2016-03-01

    There are many methods and varied protocols for examining halitosis. Chemical and enzymatic tests determine the presence of bacterial species and their metabolic products or enzymes in the mouth, while halitometers precisely quantify gases but not halitosis itself. Examinations by the human nose (ie, self assessment, feedback from others, or organoleptic test by an examiner) directly target halitosis, however organoleptic examination alone is insufficient for a definitive diagnosis when the individual has no complaints about halitosis. The underlying reasons why patients seek consultation concerning halitosis are usually based on their own assessment and the opinion of others, even if those assessments are not correlated with oral odorous gas measurements. This article seeks to summarize findings and review methods of examining halitosis to determine their usefulness. PMID:26977897

  6. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  7. Potentials and limitations of molecular diagnostic methods in food safety

    PubMed Central

    Mariani, Paola O.

    2008-01-01

    Molecular methods allow the detection of pathogen nucleic acids (DNA and RNA) and, therefore, the detection of contamination in food is carried out with high selectivity and rapidity. In the last 2 decades molecular methods have accompanied traditional diagnostic methods in routine pathogen detection, and might replace them in the upcoming future. In this review the implementation in diagnostics of four of the most used molecular techniques (PCR, NASBA, microarray, LDR) are described and compared, highlighting advantages and limitations of each of them. Drawbacks of molecular methods with regard to traditional ones and the difficulties encountered in pathogen detection from food or clinical specimen are also discussed. Moreover, criteria for the choice of the target sequence for a secure detection and classification of pathogens and possible developments in molecular diagnostics are also proposed. PMID:19067016

  8. New diagnostic methods for esophageal carcinoma.

    PubMed

    Bohorfoush, A G

    2000-01-01

    The increasingly severe problem of esophageal carcinoma on world public health merits the application of new endoscopic methods to assist in early detection and screening. Older methods, such as tissue staining, combined with magnification endoscopy, have shown promising results, while newer techniques capitalize on measurements that discriminate benign from malignant cells based on a wide array of different attributes, ranging from the molecular to the macroscopic level. Instrumentation based on laser-induced fluorescence spectroscopy, ratio fluorescence imaging, elastic scattering spectroscopy, Raman spectroscopy, and optical coherence tomography is presently being tested and compared with standard endoscopic techniques. Using pathologic interpretation of pinch biopsies as the "gold standard," these techniques have shown the ability to identify dysplastic or malignant regions of tissue that would not be visible to the unassisted endoscopist and offer increased sensitivity for detection compared to rigorous random biopsy protocols. The rapid speed of the instruments allows the provision of information to the endoscopist almost instantaneously, potentially allowing therapeutic decisions to be conducted within the confines of the same endoscopic procedure, thereby achieving gains in efficiency and reductions in overall cost. Large, multicenter trials will be necessary to determine the sensitivity and specificity of individual and combined techniques, as well as their ability to favorably influence the early detection, management, and overall outcome of this disease.

  9. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings

    PubMed Central

    Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-01-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725

  10. Differential temperature integrating diagnostic method and apparatus

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1976-01-01

    A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.

  11. Design of quasi-traveling wave pinger magnet for beam diagnostics on the Advanced Light Source

    SciTech Connect

    Anderson, D.E.; Stover, G.

    1997-05-01

    A beam diagnostic tool to modify single bunch orbits in all four quadrants is proposed for measuring various machine physics parameters at the Advanced Light Source (ALS). Quasi-Traveling Wave pinger magnets were chosen to provide programmable bipolar horizontal and vertical kicks of sufficient duration while providing negligible deflection on subsequent beam revolutions in the storage ring. This magnet technology, originally investigated at the SSC, provides a cost-effective method of achieving the moderately fast pulse requirements of the pinger application. The design of the pinger magnet and associated pulsed power drive unit will be presented. Electrical response results of initial pinger magnet prototypes and ceramic beam pipe coatings will be given.

  12. Design of Quasi-Travelling Wave Pinger Magnet for Beam Diagnostics on the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Anderson, D. E.; Stover, G.; Thur, W.

    1997-05-01

    A beam diagnostic tool to modify single bunch orbits in all four quadrants is proposed for measuring various machine physics parameters at the Advanced Light Source (ALS). Quasi-Travelling Wave Pinger magnets were chosen to provide programmable bipolar horizontal and vertical kicks of sufficient duration while providing negligible deflection on subsequent beam revolutions in the storage ring. This magnet technology, originally investigated at the SSC(D. Anderson and L. Schneider, "Design and Preliminary Testing of the LEB Extraction Kicker Magnet at the SSC", Proceedings of 1993 Particle Accelerator Conference, May 1993, pp. 1354-6.), provides a cost-effective method of achieving the moderately fast pulse requirements of the pinger application. The design of the pinger magnet and associated pulsed power drive unit will be presented. Electrical response results of initial pinger magnet prototypes and ceramic beampipe coatings will also be given.

  13. Advanced Neuropsychological Diagnostics Infrastructure (ANDI): A Normative Database Created from Control Datasets

    PubMed Central

    de Vent, Nathalie R.; Agelink van Rentergem, Joost A.; Schmand, Ben A.; Murre, Jaap M. J.; Huizenga, Hilde M.

    2016-01-01

    In the Advanced Neuropsychological Diagnostics Infrastructure (ANDI), datasets of several research groups are combined into a single database, containing scores on neuropsychological tests from healthy participants. For most popular neuropsychological tests the quantity, and range of these data surpasses that of traditional normative data, thereby enabling more accurate neuropsychological assessment. Because of the unique structure of the database, it facilitates normative comparison methods that were not feasible before, in particular those in which entire profiles of scores are evaluated. In this article, we describe the steps that were necessary to combine the separate datasets into a single database. These steps involve matching variables from multiple datasets, removing outlying values, determining the influence of demographic variables, and finding appropriate transformations to normality. Also, a brief description of the current contents of the ANDI database is given. PMID:27812340

  14. Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2012-04-27

    Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are relative longitudinal position and energy deviation with respect to the reference particle. Methods to achieve exact phase space exchanges, i.e., mapping x to z, x' to {delta}, z to x, and {delta} to x', are suggested. Schemes to mitigate and completely compensate for the thick-lens effect of the transverse cavity on emittance exchange are studied. Some applications of the phase space exchange for advanced beam manipulation and diagnostics are discussed.

  15. Endoscopy and polyps-diagnostic and therapeutic advances in management

    PubMed Central

    Steele, Scott R; Johnson, Eric K; Champagne, Bradley; Davis, Brad; Lee, Sang; Rivadeneira, David; Ross, Howard; Hayden, Dana A; Maykel, Justin A

    2013-01-01

    Despite multiple efforts aimed at early detection through screening, colon cancer remains the third leading cause of cancer-related deaths in the United States, with an estimated 51000 deaths during 2013 alone. The goal remains to identify and remove benign neoplastic polyps prior to becoming invasive cancers. Polypoid lesions of the colon vary widely from hyperplastic, hamartomatous and inflammatory to neoplastic adenomatous growths. Although these lesions are all benign, they are common, with up to one-quarter of patients over 60 years old will develop pre-malignant adenomatous polyps. Colonoscopy is the most effective screening tool to detect polyps and colon cancer, although several studies have demonstrated missed polyp rates from 6%-29%, largely due to variations in polyp size. This number can be as high as 40%, even with advanced (> 1 cm) adenomas. Other factors including sub-optimal bowel preparation, experience of the endoscopist, and patient anatomical variations all affect the detection rate. Additional challenges in decision-making exist when dealing with more advanced, and typically larger, polyps that have traditionally required formal resection. In this brief review, we will explore the recent advances in polyp detection and therapeutic options. PMID:23885138

  16. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  17. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Huang, J.; Heidbrink, W. W.; Wan, B.; von Hellermann, M. G.; Zhu, Y.; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Shi, Y.; Ye, M.; Hu, L.; Hu, C.

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  18. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak.

    PubMed

    Huang, J; Heidbrink, W W; Wan, B; von Hellermann, M G; Zhu, Y; Gao, W; Wu, C; Li, Y; Fu, J; Lyu, B; Yu, Y; Shi, Y; Ye, M; Hu, L; Hu, C

    2014-11-01

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  19. Recent advances in the molecular diagnostics of gastric cancer

    PubMed Central

    Kanda, Mitsuro; Kodera, Yasuhiro

    2015-01-01

    Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined. PMID:26379391

  20. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease.

    PubMed

    Knowles, Michael R; Daniels, Leigh Anne; Davis, Stephanie D; Zariwala, Maimoona A; Leigh, Margaret W

    2013-10-15

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia that leads to oto-sino-pulmonary diseases and organ laterality defects in approximately 50% of cases. The estimated incidence of PCD is approximately 1 per 15,000 births, but the prevalence of PCD is difficult to determine, primarily because of limitations in diagnostic methods that focus on testing ciliary ultrastructure and function. Diagnostic capabilities have recently benefitted from (1) documentation of low nasal nitric oxide production in PCD and (2) discovery of biallelic mutations in multiple PCD-causing genes. The use of these complementary diagnostic approaches shows that at least 30% of patients with PCD have normal ciliary ultrastructure. More accurate identification of patients with PCD has also allowed definition of a strong clinical phenotype, which includes neonatal respiratory distress in >80% of cases, daily nasal congestion and wet cough starting soon after birth, and early development of recurrent/chronic middle-ear and sinus disease. Recent studies, using advanced imaging and pulmonary physiologic assessments, clearly demonstrate early onset of lung disease in PCD, with abnormal air flow mechanics by age 6-8 years that is similar to cystic fibrosis, and age-dependent onset of bronchiectasis. The treatment of PCD is not standardized, and there are no validated PCD-specific therapies. Most patients with PCD receive suboptimal management, which should include airway clearance, regular surveillance of pulmonary function and respiratory microbiology, and use of antibiotics targeted to pathogens. The PCD Foundation is developing a network of clinical centers, which should improve diagnosis and management of PCD.

  1. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  2. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-01-01

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems.

  3. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a

  4. Advanced reliability methods - A review

    NASA Astrophysics Data System (ADS)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  5. Advances in Performance of Microchannel Plate Detectors for HEDP Diagnostics

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Ken Moy, Greg Rochau

    2009-10-01

    In recent years, a team from NSTec and SNL has built a unique capability to develop microchannel plate (MCP)?based framing x-ray cameras for HEDP diagnostics. At the SNL Z facility, multistrip MCP detectors to record up to eight channels are employed in 2-D, sub-nanosecond time-resolved imaging and time- and space-resolved spectroscopy diagnostics. Progressively more stringent technical temporal resolution and response uniformity requirements have necessitated a systematic design approach based on iterative modeling of the MCP using inputs from electrical circuit characterization. An inherently large exponential dependence in MCP gain, V{sup 11.5}, has mandated a firm understanding of the applied voltage pulse shape propagating across the strip. We pioneered direct measurements of the propagating waveform using a Picoprobe{reg_sign} and developed a Monte Carlo code to simulate MCP response to compare against test measurements. This scheme is shown in Figure 1. The simulation detailed a physical model of the cascade and amplification process of the MCP that includes energy conservation for the secondary electrons, the effects of elastic scattering of low-energy electrons from the channel wall, and gain saturation mechanisms from wall charging and space charge. Our model can simulate MCP response for both static and pulsed voltage waveforms. Using this design approach, we began to characterize the newly developed second-generation detector (H-CA-65) by using a Manson x-ray source to evaluate the following DC characteristics: MCP sensitivity as a function of bias voltage, flat-field uniformity and spatial resolution, and variation of spatial resolution and sensitivity as a function of phosphor bias voltage. Dynamic performance and temporal response were obtained by using an NSTec short-pulse laser to measure optical gate profiles, saturation, and dynamic range. These data were processed and combined to obtain the gain variation and gate profiles for any position along

  6. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    SciTech Connect

    Thakur, M.L.

    1991-04-30

    This patent describes a method for directly labeling proteins with radionuclides for use in diagnostic imaging and therapy. It comprises: the steps of incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein-containing solution and incubating.

  7. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  8. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  9. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  10. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  11. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria.

    PubMed

    Dubois, Bruno; Feldman, Howard H; Jacova, Claudia; Hampel, Harald; Molinuevo, José Luis; Blennow, Kaj; DeKosky, Steven T; Gauthier, Serge; Selkoe, Dennis; Bateman, Randall; Cappa, Stefano; Crutch, Sebastian; Engelborghs, Sebastiaan; Frisoni, Giovanni B; Fox, Nick C; Galasko, Douglas; Habert, Marie-Odile; Jicha, Gregory A; Nordberg, Agneta; Pasquier, Florence; Rabinovici, Gil; Robert, Philippe; Rowe, Christopher; Salloway, Stephen; Sarazin, Marie; Epelbaum, Stéphane; de Souza, Leonardo C; Vellas, Bruno; Visser, Pieter J; Schneider, Lon; Stern, Yaakov; Scheltens, Philip; Cummings, Jeffrey L

    2014-06-01

    In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD. PMID:24849862

  12. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1991-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  13. Method to directly radiolabel antibodies for diagnostic imaging and therapy

    DOEpatents

    Thakur, Mathew L.

    1994-01-01

    The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.

  14. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae

    PubMed Central

    Diaz, Maureen H.; Winchell, Jonas M.

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen. PMID:27014191

  15. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses

    PubMed Central

    Chen, Haifeng; Hu, Yuan

    2016-01-01

    Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses. PMID:27335620

  16. Patenting genetic diagnostic methods: NGS, GWAS, SNPs and patents.

    PubMed

    Lawson, Charles

    2015-06-01

    This article reviews the problems posed by patent claims to genetic diagnostic methods associated with genome-wide association studies (GWAS) adopting methodologies using next-generation sequencing (NGS) and single nucleotide polymorphisms (SNP). These problems are essentially about experimental reproducibility and the credibility and veracity of reported developments. An analysis of the relevant law demonstrates that the current Australian and United States laws about suitable patentable subject matter differ, and that the current reproducibility (sufficiency, enablement and inutility) standards are unlikely to address these problems. The article concludes that following the United States approach excluding these genetic diagnostic method claims from patenting is one solution. Failing this, improving analysis and quality controls that are now being adopted in the basic research will reduce the nature of the problems, although this will remain problematic for patent examiners and the broader public.

  17. Advancing the science of measurement of diagnostic errors in healthcare: the Safer Dx framework

    PubMed Central

    Singh, Hardeep; Sittig, Dean F

    2015-01-01

    Diagnostic errors are major contributors to harmful patient outcomes, yet they remain a relatively understudied and unmeasured area of patient safety. Although they are estimated to affect about 12 million Americans each year in ambulatory care settings alone, both the conceptual and pragmatic scientific foundation for their measurement is under-developed. Health care organizations do not have the tools and strategies to measure diagnostic safety and most have not integrated diagnostic error into their existing patient safety programs. Further progress toward reducing diagnostic errors will hinge on our ability to overcome measurement-related challenges. In order to lay a robust groundwork for measurement and monitoring techniques to ensure diagnostic safety, we recently developed a multifaceted framework to advance the science of measuring diagnostic errors (The Safer Dx framework). In this paper, we describe how the framework serves as a conceptual foundation for system-wide safety measurement, monitoring and improvement of diagnostic error. The framework accounts for the complex adaptive sociotechnical system in which diagnosis takes place (the structure), the distributed process dimensions in which diagnoses evolve beyond the doctor's visit (the process) and the outcomes of a correct and timely “safe diagnosis” as well as patient and health care outcomes (the outcomes). We posit that the Safer Dx framework can be used by a variety of stakeholders including researchers, clinicians, health care organizations and policymakers, to stimulate both retrospective and more proactive measurement of diagnostic errors. The feedback and learning that would result will help develop subsequent interventions that lead to safer diagnosis, improved value of health care delivery and improved patient outcomes. PMID:25589094

  18. Non-Intrusive Optical Diagnostic Methods for Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Terrell, Charles A.; Spraggins, Darrell; Lee, Ja. H.; Weinstein, Leonard M.

    1997-01-01

    Non-intrusive optical diagnostic techniques such as Electron Beam Fluorescence (EBF), Laser-Induced Fluorescence (LIF), and Focusing Schlieren (FS) have been setup for high-speed flow characterization and large flowfield visualization, respectively. Fluorescence emission from the First Negative band of N2(+) with the (0,0) vibration transition (at lambda =391.44 nm) was obtained using the EBF technique and a quenching rate of N2(+)* molecules by argon gas was reported. A very high sensitivity FS system was built and applied in the High-Speed Flow Generator (HFG) at NASA LaRC. A LIF system is available at the Advanced Propulsion Laboratory (APL) on campus and a plume exhaust velocity measurement, measuring the Doppler shift from lambda = 728.7 nm of argon gas, is under way.

  19. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  20. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  1. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-07-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  2. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  3. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  4. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Cui, Z Q; Chen, Z J; Xie, X F; Peng, X Y; Hu, Z M; Du, T F; Ge, L J; Zhang, X; Yuan, X; Xia, Z W; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Fan, T S; Chen, J X; Li, X Q; Zhang, G H

    2014-11-01

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  5. Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections

    PubMed Central

    Arvanitis, Marios; Anagnostou, Theodora; Fuchs, Beth Burgwyn; Caliendo, Angela M.

    2014-01-01

    SUMMARY Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use. PMID:24982319

  6. Application of modern diagnostic methods to environmental improvement. Annual progress report, January--October 1994

    SciTech Connect

    Shepard, W.S.

    1994-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), a research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to real world processes; measurements are made in hot, highly corrosive atmospheres in which conventional measurement devices are ineffective. Task 1 of this agreement is concerned with the development and application of various diagnostic methods to characterize the plasma properties, the melt properties and the downstream emissions from a plasma torch facility designed to vitrify mixed waste. Correlation of the measured properties with the operating parameters of the torch will be sought to improve, optimize and control the overall operation of the plasma treatment process. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and control purposes of treatment processes in general. Task 2 of this agreement is concerned with the development of a system to monitor and control the combustion stoichiometry in real time in order to minimize environmental impact and maximize process efficiency. Staged fuel injection is also being studied to minimize NO{sub x} formation.

  7. PCR diagnostic methods for Ascosphaera infections in bees.

    PubMed

    James, R R; Skinner, J S

    2005-10-01

    Fungi in the genus Ascosphaera are the causative agents of chalkbrood, a major disease affecting bee larval viability. Identification of individual Ascosphaera species based on morphological features has been difficult due to a lack of distinguishing characteristics. Most identifications are based on the size and shape of the ascomata, spore balls and conidia. Unfortunately, much overlap occurs in the size of these structures, and some Ascosphaera species will not produce sexual structures in vitro. We report a quick and reliable diagnostic method for identifying Ascosphaera infections in Megachile bees (leafcutting bees) using PCR markers that employ genus-specific primers for Ascosphaera, and species-specific primers for species known to be associated with Megachile spp. Using these methods, species identifications can be performed directly on bees, including asymptomatic individuals. Furthermore, the PCR markers can detect co-infections of multiple Ascosphaera species in a single host. We also identified a marker for Ascosphaera apis, the predominant cause of chalkbrood in Apis mellifera, the honey bee. Our diagnostic methods eliminate the need for culturing samples, and could be used to process a large number of field collected bee larvae. PMID:16214164

  8. Editorial: Latest methods and advances in biotechnology.

    PubMed

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli.

  9. Recent advances in salivary cancer diagnostics enabled by biosensors and bioelectronics.

    PubMed

    Mishra, Saswat; Saadat, Darius; Kwon, Ohjin; Lee, Yongkuk; Choi, Woon-Seop; Kim, Jong-Hoon; Yeo, Woon-Hong

    2016-07-15

    There is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers. The salivary diagnostic method holds great potential for early-stage cancer diagnostics without any complicated and expensive procedures. Here, we review various cancer biomarkers in saliva and compare the biomarkers efficacy with traditional diagnostics and state-of-the-art bioelectronics. We summarize biomarkers in four major groups: genomics, transcriptomics, proteomics, and metabolomics/microbiota. Representative bioelectronic systems for each group are summarized based on various stages of a cancer. Systematic study of oxidative stress establishes the relationship between macromolecules and cancer biomarkers in saliva. We also introduce the most recent examples of salivary diagnostic electronics based on nanotechnologies that can offer rapid, yet highly accurate detection of biomarkers. A concluding section highlights areas of opportunity in the further development and applications of these technologies. PMID:26946257

  10. Comparison of diagnostic laboratory methods for identification of Burkholderia pseudomallei.

    PubMed

    Inglis, Timothy J J; Merritt, Adam; Chidlow, Glenys; Aravena-Roman, Max; Harnett, Gerry

    2005-05-01

    Limited experience and a lack of validated diagnostic reagents make Burkholderia pseudomallei, the cause of melioidosis, difficult to recognize in the diagnostic microbiology laboratory. We compared three methods of confirming the identity of presumptive B. pseudomallei strains using a collection of Burkholderia species drawn from diverse geographic, clinical, and environmental sources. The 95 isolates studied included 71 B. pseudomallei and 3 B. thailandensis isolates. The API 20NE method identified only 37% of the B. pseudomallei isolates. The agglutinating antibody test identified 82% at first the attempt and 90% including results of a repeat test with previously negative isolates. Gas-liquid chromatography analysis of bacterial fatty acid methyl esters (GLC-FAME) identified 98% of the B. pseudomallei isolates. The agglutination test produced four false positive results, one B. cepacia, one B. multivorans, and two B. thailandensis. API produced three false positive results, one positive B. cepacia and two positive B. thailandensis. GLC-FAME analysis was positive for one B. cepacia isolate. On the basis of these results, the most robust B. pseudomallei discovery pathway combines the previously recommended isolate screening tests (Gram stain, oxidase test, gentamicin and polymyxin susceptibility) with monoclonal antibody agglutination on primary culture, followed by a repeat after 24 h incubation on agglutination-negative isolates and GLC-FAME analysis. Incorporation of PCR-based identification within this schema may improve percentages of recognition further but requires more detailed evaluation. PMID:15872242

  11. Methods in virus diagnostics: from ELISA to next generation sequencing.

    PubMed

    Boonham, Neil; Kreuze, Jan; Winter, Stephan; van der Vlugt, René; Bergervoet, Jan; Tomlinson, Jenny; Mumford, Rick

    2014-06-24

    Despite the seemingly continuous development of newer and ever more elaborate methods for detecting and identifying viruses, very few of these new methods get adopted for routine use in testing laboratories, often despite the many and varied claimed advantages they possess. To understand why the rate of uptake of new technologies is so low, requires a strong understanding of what makes a good routine diagnostic tool to begin. This can be done by looking at the two most successfully established plant virus detection methods: enzyme-linked immunosorbant assay (ELISA) and more recently introduced real-time polymerase chain reaction (PCR). By examining the characteristics of this pair of technologies, it becomes clear that they share many benefits, such as an industry standard format and high levels of repeatability and reproducibility. These combine to make methods that are accessible to testing labs, which are easy to establish and robust in their use, even with new and inexperienced users. Hence, to ensure the establishment of new techniques it is necessary to not only provide benefits not found with ELISA or real-time PCR, but also to provide a platform that is easy to establish and use. In plant virus diagnostics, recent developments can be clustered into three core areas: (1) techniques that can be performed in the field or resource poor locations (e.g., loop-mediated isothermal amplification LAMP); (2) multiplex methods that are able to detect many viruses in a single test (e.g., Luminex bead arrays); and (3) methods suited to virus discovery (e.g., next generation sequencing, NGS). Field based methods are not new, with Lateral Flow Devices (LFDs) for the detection being available for a number of years now. However, the widespread uptake of this technology remains poor. LAMP does offer significant advantages over LFDs, in terms of sensitivity and generic application, but still faces challenges in terms of establishment. It is likely that the main barrier to the

  12. Simulation methods for advanced scientific computing

    SciTech Connect

    Booth, T.E.; Carlson, J.A.; Forster, R.A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to create effective new algorithms for solving N-body problems by computer simulation. The authors concentrated on developing advanced classical and quantum Monte Carlo techniques. For simulations of phase transitions in classical systems, they produced a framework generalizing the famous Swendsen-Wang cluster algorithms for Ising and Potts models. For spin-glass-like problems, they demonstrated the effectiveness of an extension of the multicanonical method for the two-dimensional, random bond Ising model. For quantum mechanical systems, they generated a new method to compute the ground-state energy of systems of interacting electrons. They also improved methods to compute excited states when the diffusion quantum Monte Carlo method is used and to compute longer time dynamics when the stationary phase quantum Monte Carlo method is used.

  13. Plasma diagnostic method using intermodulation frequencies in a Langmuir probe

    SciTech Connect

    Kim, Dong-Hwan; Lee, Hyo-Chang; Kim, Yu-Sin; Chung, Chin-Wook

    2013-08-19

    A plasma diagnostic method using intermodulation frequencies is developed. When dual-frequency (ω{sub 1},ω{sub 2}) voltage signals are applied to a probe, the intermodulation frequencies (ω{sub 2}±ω{sub 1}, ω{sub 2}±2ω{sub 1}) between the signals are generated due to the nonlinearity of the sheath. From the analysis of the intermodulation frequencies, the plasma parameters, such as the electron temperature and the plasma density, can be obtained. The measured plasma parameters from this method are compared to the results from the measured electron energy distribution function, and they are in good agreement. Because the intermodulation currents originated from the plasma not from the stray component of the measurement system, an accurate measurement of the plasma parameters is achievable.

  14. A composite likelihood method for bivariate meta-analysis in diagnostic systematic reviews

    PubMed Central

    Liu, Yulun; Ning, Jing; Nie, Lei; Zhu, Hongjian; Chu, Haitao

    2014-01-01

    Diagnostic systematic review is a vital step in the evaluation of diagnostic technologies. In many applications, it involves pooling pairs of sensitivity and specificity of a dichotomized diagnostic test from multiple studies. We propose a composite likelihood method for bivariate meta-analysis in diagnostic systematic reviews. This method provides an alternative way to make inference on diagnostic measures such as sensitivity, specificity, likelihood ratios and diagnostic odds ratio. Its main advantages over the standard likelihood method are the avoidance of the non-convergence problem, which is non-trivial when the number of studies are relatively small, the computational simplicity and some robustness to model mis-specifications. Simulation studies show that the composite likelihood method maintains high relative efficiency compared to that of the standard likelihood method. We illustrate our method in a diagnostic review of the performance of contemporary diagnostic imaging technologies for detecting metastases in patients with melanoma. PMID:25512146

  15. A significant diagnostic method in torture investigation: bone scintigraphy.

    PubMed

    Ozkalipci, Onder; Unuvar, Umit; Sahin, Umit; Irencin, Sukran; Fincanci, Sebnem Korur

    2013-03-10

    Torture appears to be a permanent feature in countries, which have experienced military coups or ruled by oppressive governments in the past, such as Turkey. The Human Rights Foundation of Turkey (HRFT) was established in 1990 to serve torture victims, mainly those who were the victims of the 1980 military regime. Since then the HRFT has been providing rehabilitation and documentation for torture survivors. Bone scintigraphy can be one of the diagnostic methods to reveal trauma, particularly after several years when it is challenging to find any physical or radiological evidence. The HRFT's Istanbul Branch referred 97 of their applicants for bone scintigraphy between 1992 and 2010. In this retrospective survey of 97 cases, 17 of them were female and 80 of them were male. Several aspects were evaluated, including working conditions, change of torture methods practiced in certain time periods, time since torture and duration of exposure to torture in comparison with findings of bone scintigraphies. The torture methods varied from beating to falanga, electric shock, suspension and several other types of torture within the period of practice, although beating was a common denominator among all. The findings were classified according to time since torture and duration of exposure to torture. More than half of the cases (59%) had a detectable bone lesion on bone scintigraphy, and the detectable bone lesion on scintigraphy increased significantly with the duration of exposure to torture, particularly among cases who had been subjected to torture for a longer period (8 days and more). Bone scintigraphy should be considered as a valuable non-invasive diagnostic method to assess and document long term torture practices and/or cases with no detectable marks upon physical examination.

  16. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  17. An Analysis of Inhalation Injury Diagnostic Methods and Patient Outcomes.

    PubMed

    Ching, Jessica A; Ching, Yiu-Hei; Shivers, Steven C; Karlnoski, Rachel A; Payne, Wyatt G; Smith, David J

    2016-01-01

    The purpose of this study was to compare patient outcomes according to the method of diagnosing burn inhalation injury. After approval from the American Burn Association, the National Burn Repository Dataset Version 8.0 was queried for patients with a diagnosis of burn inhalation injury. Subgroups were analyzed by diagnostic method as defined by the National Burn Repository. All diagnostic methods listed for each patient were included, comparing mortality, hospital days, intensive care unit (ICU) days, and ventilator days (VDs). Z-tests, t-tests, and linear regression were used with a statistical significance of P value of less than .05. The database query yielded 9775 patients diagnosed with inhalation injury. The greatest increase in mortality was associated with diagnosis by bronchoscopy or carbon monoxide poisoning. A relative increase in hospital days was noted with diagnosis by bronchoscopy (9 days) or history (2 days). A relative increase in ICU days was associated with diagnosis according to bronchoscopy (8 days), clinical findings (2 days), or history (2 days). A relative increase in VDs was associated with diagnosis by bronchoscopy (6 days) or carbon monoxide poisoning (3 days). The combination of diagnosis by bronchoscopy and clinical findings increased the relative difference across all comparison measures. The combination of diagnosis by bronchoscopy and carbon monoxide poisoning exhibited decreased relative differences when compared with bronchoscopy alone. Diagnosis by laryngoscopy showed no mortality or association with poor outcomes. Bronchoscopic evidence of inhalation injury proved most useful, predicting increased mortality, hospital, ICU, and VDs. A combined diagnosis determined by clinical findings and bronchoscopy should be considered for clinical practice. PMID:26594867

  18. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  19. Recent advances in analytical methods for mycotoxins.

    PubMed

    Gilbert, J

    1993-01-01

    Recent advances in analytical methods are reviewed using the examples of aflatoxins and trichothecene mycotoxins. The most dramatic advances are seen as being those based on immunological principles utilized for aflatoxins to produce simple screening methods and for rapid specific clean-up. The possibilities of automation using immunoaffinity columns is described. In contrast for the trichothecenes immunological methods have not had the same general impact. Post-column derivatization using bromine or iodine to enhance fluorescence for HPLC detection of aflatoxins has become widely employed and there are similar possibilities for improved HPLC detection for trichothecenes using electrochemical or trichothecene-specific post-column reactions. There have been improvements in the use of more rapid and specific clean-up methods for trichothecenes, whilst HPLC and GC remain equally favoured for the end-determination. More sophisticated instrumental techniques such as mass spectrometry (LC/MS, MS/MS) and supercritical fluid chromatography (SFC/MS) have been demonstrated to have potential for application to mycotoxin analysis, but have not as yet made much general impact.

  20. Recent advances on optical reflectometry for access network diagnostics and distributed sensing

    NASA Astrophysics Data System (ADS)

    He, Zuyuan; Fan, Xinyu; Liu, Qingwen; Du, Jiangbing

    2015-07-01

    In this invited talk, we will present the advances in research and development activities of optical reflectometry in our laboratory. The performance of phase-sensitive coherent OTDR, which is developed for distributed vibration measurement, is reported with the results of field tests. The performance of time-gated digital OFDR, which is developed for optical access network diagnostics, is also reported. We will also discuss how to increase the frequency sweep span of the linearly-swept optical source, a very important part for improving the performance of optical reflectometry.

  1. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  2. Pedophilia: an evaluation of diagnostic and risk prediction methods.

    PubMed

    Wilson, Robin J; Abracen, Jeffrey; Looman, Jan; Picheca, Janice E; Ferguson, Meaghan

    2011-06-01

    One hundred thirty child sexual abusers were diagnosed using each of following four methods: (a) phallometric testing, (b) strict application of Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision [DSM-IV-TR]) criteria, (c) Rapid Risk Assessment of Sex Offender Recidivism (RRASOR) scores, and (d) "expert" diagnoses rendered by a seasoned clinician. Comparative utility and intermethod consistency of these methods are reported, along with recidivism data indicating predictive validity for risk management. Results suggest that inconsistency exists in diagnosing pedophilia, leading to diminished accuracy in risk assessment. Although the RRASOR and DSM-IV-TR methods were significantly correlated with expert ratings, RRASOR and DSM-IV-TR were unrelated to each other. Deviant arousal was not associated with any of the other methods. Only the expert ratings and RRASOR scores were predictive of sexual recidivism. Logistic regression analyses showed that expert diagnosis did not add to prediction of sexual offence recidivism over and above RRASOR alone. Findings are discussed within a context of encouragement of clinical consistency and evidence-based practice regarding treatment and risk management of those who sexually abuse children.

  3. [Imputation methods for missing data in educational diagnostic evaluation].

    PubMed

    Fernández-Alonso, Rubén; Suárez-Álvarez, Javier; Muñiz, José

    2012-02-01

    In the diagnostic evaluation of educational systems, self-reports are commonly used to collect data, both cognitive and orectic. For various reasons, in these self-reports, some of the students' data are frequently missing. The main goal of this research is to compare the performance of different imputation methods for missing data in the context of the evaluation of educational systems. On an empirical database of 5,000 subjects, 72 conditions were simulated: three levels of missing data, three types of loss mechanisms, and eight methods of imputation. The levels of missing data were 5%, 10%, and 20%. The loss mechanisms were set at: Missing completely at random, moderately conditioned, and strongly conditioned. The eight imputation methods used were: listwise deletion, replacement by the mean of the scale, by the item mean, the subject mean, the corrected subject mean, multiple regression, and Expectation-Maximization (EM) algorithm, with and without auxiliary variables. The results indicate that the recovery of the data is more accurate when using an appropriate combination of different methods of recovering lost data. When a case is incomplete, the mean of the subject works very well, whereas for completely lost data, multiple imputation with the EM algorithm is recommended. The use of this combination is especially recommended when data loss is greater and its loss mechanism is more conditioned. Lastly, the results are discussed, and some future lines of research are analyzed.

  4. Diagnostic Methods for Platelet Bacteria Screening: Current Status and Developments

    PubMed Central

    Störmer, Melanie; Vollmer, Tanja

    2014-01-01

    Summary Bacterial contamination of blood components and the prevention of transfusion-associated bacterial infection still remains a major challenge in transfusion medicine. Over the past few decades, a significant reduction in the transmission of viral infections has been achieved due to the introduction of mandatory virus screening. Platelet concentrates (PCs) represent one of the highest risks for bacterial infection. This is due to the required storage conditions for PCs in gas-permeable containers at room temperature with constant agitation, which support bacterial proliferation from low contamination levels to high titers. In contrast to virus screening, since 1997 in Germany bacterial testing of PCs is only performed as a routine quality control or, since 2008, to prolong the shelf life to 5 days. In general, bacterial screening of PCs by cultivation methods is implemented by the various blood services. Although these culturing systems will remain the gold standard, the significance of rapid methods for screening for bacterial contamination has increased over the last few years. These new methods provide powerful tools for increasing the bacterial safety of blood components. This article summarizes the course of policies and provisions introduced to increase bacterial safety of blood components in Germany. Furthermore, we give an overview of the different diagnostic methods for bacterial screening of PCs and their current applicability in routine screening processes. PMID:24659944

  5. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    SciTech Connect

    Barry, Walter; Chin, Mike; Robin, David; Sannibale, Fernando; Scarvie, Tom; Steier, Christoph

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is described in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.

  6. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  7. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  8. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  9. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  10. Point-of-care diagnostics: an advancing sector with nontechnical issues.

    PubMed

    Huckle, David

    2008-11-01

    The particular reasons for the relative lack in development of point-of-care (PoC) diagnostics in a business context were discussed in our sister journal, Expert Review of Medical Devices, over 2 years ago. At that time, it could be seen that the concept of PoC testing was being revisited for at least the fifth time in the last 20 years. There had been important advances in technology but, with changes in global healthcare structures and funding, the overall in vitro diagnostics sector has had sluggish growth. Only molecular diagnostics and PoC testing are growing strongly. PoC testing is now a quarter of the total global in vitro diagnostics market, but largely due to use in diabetes monitoring. An increased focus on areas other than glucose self-testing has created a disturbance in the market. An implementation issue from this disturbance is that of control between central laboratories and the proposed sites for PoC testing. Evidence is presented to show that the first step is likely to be increased use in clinics and outpatient facilities closely linked with the laboratory. The aim will be to control the quality of the test, maintenance of equipment and provide support for the clinician in interpretation. The major problem for effective PoC implementation will be the significant changes to patient pathways that are required. The changes will benefit the patient and clinical outcomes but will require healthcare professionals to change their work patterns. This will be an uphill task!

  11. Advances in plant gene silencing methods.

    PubMed

    Pandey, Prachi; Senthil-Kumar, Muthappa; Mysore, Kirankumar S

    2015-01-01

    Understanding molecular mechanisms of transcriptional and posttranscriptional gene silencing pathways in plants over the past decades has led to development of tools and methods for silencing a target gene in various plant species. In this review chapter, both the recent understanding of molecular basis of gene silencing pathways and advances in various widely used gene silencing methods are compiled. We also discuss the salient features of the different methods like RNA interference (RNAi) and virus-induced gene silencing (VIGS) and highlight their advantages and disadvantages. Gene silencing technology is constantly progressing as reflected by rapidly emerging new methods. A succinct discussion on the recently developed methods like microRNA-mediated virus-induced gene silencing (MIR-VIGS) and microRNA-induced gene silencing (MIGS) is also provided. One major bottleneck in gene silencing approaches has been the associated off-target silencing. The other hurdle has been the lack of a universal approach that can be applied to all plants. For example, we face hurdles like incompatibility of VIGS vectors with the host and inability to use MIGS for plant species which are not easily transformable. However, the overwhelming research in this direction reflects the scope for overcoming the short comings of gene silencing technology.

  12. Computer methods for ITER-like materials LIBS diagnostics

    NASA Astrophysics Data System (ADS)

    Łepek, Michał; Gąsior, Paweł

    2014-11-01

    Recent development of Laser-Induced Breakdown Spectroscopy (LIBS) caused that this method is considered as the most promising for future diagnostic applications for characterization of the deposited materials in the International Thermonuclear Experimental Reactor (ITER), which is currently under construction. In this article the basics of LIBS are shortly discussed and the software for spectra analyzing is presented. The main software function is to analyze measured spectra with respect to the certain element lines presence. Some program operation results are presented. Correct results for graphite and aluminum are obtained although identification of tungsten lines is a problem. The reason for this is low tungsten lines intensity, and thus low signal to noise ratio of the measured signal. In the second part artificial neural networks (ANNs) as the next step for LIBS spectra analyzing are proposed. The idea is focused on multilayer perceptron network (MLP) with backpropagation learning method. The potential of ANNs for data processing was proved through application in several LIBS-related domains, e.g. differentiating ancient Greek ceramics (discussed). The idea is to apply an ANN for determination of W, Al, C presence on ITER-like plasma-facing materials.

  13. Diagnostic Methods for Bile Acid Malabsorption in Clinical Practice

    PubMed Central

    Vijayvargiya, Priya; Camilleri, Michael; Shin, Andrea; Saenger, Amy

    2013-01-01

    Altered bile acid (BA) concentrations in the colon may cause diarrhea or constipation. BA malabsorption (BAM) accounts for >25% of patients with irritable bowel syndrome (IBS) with diarrhea and chronic diarrhea in Western countries. As BAM is increasingly recognized, proper diagnostic methods are desired in clinical practice to help direct the most effective treatment course for the chronic bowel dysfunction. This review appraises the methodology, advantages and disadvantages of 4 tools that directly measure BAM: 14C-glycocholate breath and stool test, 75Selenium HomotauroCholic Acid Test (SeHCAT), 7 α-hydroxy-4-cholesten-3-one (C4) and fecal BAs. 14C-glycocholate is a laborious test no longer widely utilized. 75SeHCAT is validated, but not available in the United States. Serum C4 is a simple, accurate method that is applicable to a majority of patients, but requires further clinical validation. Fecal measurements to quantify total and individual fecal BAs are technically cumbersome and not widely available. Regrettably, none of these tests are routinely available in the U.S., and a therapeutic trial with a BA binder is used as a surrogate for diagnosis of BAM. Recent data suggest there is an advantage to studying fecal excretion of the individual BAs and their role in BAM; this may constitute a significant advantage of the fecal BA method over the other tests. Fecal BA test could become a routine addition to fecal fat measurement in patients with unexplained diarrhea. In summary, availability determines the choice of test among C4, SeHCAT and fecal BA; more widespread availability of such tests would enhance clinical management of these patients. PMID:23644387

  14. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Beall, M.; Schroeder, J.; Settles, G.; Feng, P.; Kinley, J. S.; Gota, H.; Thompson, M. C.

    2016-11-01

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 1016 m-2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  15. Diagnostic Methods for Detection of Blood-Borne Candidiasis.

    PubMed

    Clancy, Cornelius J; Nguyen, M Hong

    2016-01-01

    β-D-glucan (Fungitell) and polymerase chain reaction-based (T2Candida) assays of blood samples are FDA-approved adjuncts to cultures for diagnosing candidemia and other types of invasive candidiasis, but their clinical roles are unclear. In this chapter, we describe laboratory protocols for performing Fungitell and T2Candida assays. We then discuss step-by-step methods for interpreting test results at the bedside using a Bayesian framework, and for incorporating assays into rational patient management strategies. Prior to interpreting results, clinicians must recognize that test performance varies based on the type of invasive candidiasis being diagnosed. In general, the type of invasive candidiasis that is most likely in a given patient can be identified, and the pretest likelihood of disease estimated. From there, positive and negative predictive values (PPV, NPV) for an assay can be calculated. At a population level, tests can be incorporated into screening strategies for antifungal treatment. NPV and PPV thresholds can be defined for discontinuing antifungal prophylaxis or initiating preemptive treatment, respectively. Using the thresholds, it is possible to assign windows of pretest likelihood for invasive candidiasis (and corresponding patient populations) in which tests are most likely to valuable. At the individual patient level, tests may be useful outside of the windows proposed for screening populations. The interpretive and clinical decision-making processes we discuss will be applicable to other diagnostic assays as they enter the clinic, and to existing assays as more data emerge from various populations.

  16. Image processing methods and architectures in diagnostic pathology.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Salido, Jesús; Rojo, Marcial García

    2009-01-01

    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory.

  17. Image processing methods and architectures in diagnostic pathology.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Salido, Jesús; Rojo, Marcial García

    2009-01-01

    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory. PMID:20430740

  18. Validation of the beam tracing method for heating and diagnostics

    SciTech Connect

    Maj, O.; Pereverzev, G. V.; Poli, E.

    2009-11-26

    The beam tracing approximate description of the propagation and absorption of wave beams is studied and compared to the corresponding exact solution of the wave equation for two simplified models relevant to electron cyclotron resonance heating and reflectometry diagnostics.

  19. Chronic intraoral pain--assessment of diagnostic methods and prognosis.

    PubMed

    Pigg, Maria

    2011-01-01

    The overall goal of this thesis was to broaden our knowledge of chronic intraoral pain. The research questions were: What methods can be used to differentiate inflammatory, odontogenic tooth pain from pain that presents as toothache but is non-odontogenic in origin? What is the prognosis of chronic tooth pain of non-odontogenic origin, and which factors affect the prognosis? Atypical odontalgia (AO) is a relatively rare but severe and chronic pain condition affecting the dentoalveolar region. Recent research indicates that the origin is peripheral nerve damage: neuropathic pain. The condition presents as tooth pain and is challenging to dentists because it is difficult to distinguish from ordinary toothache due to inflammation or infection. AO is of interest to the pain community because it shares many characteristics with other chronic pain conditions, and pain perpetuation mechanisms are likely to be similar. An AO diagnosis is made after a comprehensive examination and assessment of patients' self-reported characteristics: the pain history. Traditional dental diagnostic methods do not appear to suffice, since many patients report repeated care-seeking and numerous treatment efforts with little or no pain relief. Developing methods that are useful in the clinical setting is a prerequisite for a correct diagnosis and adequate treatment decisions. Quantitative sensory testing (QST) is used to assess sensory function on skin when nerve damage or disease is suspected. A variety of stimuli has been used to examine the perception of, for example, touch, temperature (painful and non-painful), vibration, pinprick pain, and pressure pain. To detect sensory abnormalities and nerve damage in the oral cavity, the same methods may be possible to use. Study I examined properties of thermal thresholds in and around the mouth in 30 pain-free subjects: the influence of measurement location and stimulation area size on threshold levels, and time variability of thresholds

  20. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  1. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  2. Summary of the British Thoracic Society guidelines for advanced diagnostic and therapeutic flexible bronchoscopy in adults.

    PubMed

    Du Rand, I A; Barber, P V; Goldring, J; Lewis, R A; Mandal, S; Munavvar, M; Rintoul, R C; Shah, P L; Singh, S; Slade, M G; Woolley, A

    2011-11-01

    This new guideline covers the rapidly advancing field of interventional bronchoscopy using flexible bronchoscopy. It includes the use of more complex diagnostic procedures such as endobronchial ultrasound, interventions for the relief of central airway obstruction due to malignancy and the recent development of endobronchial therapies for chronic obstructive pulmonary disease and asthma. The guideline aims to help all those who undertake flexible bronchoscopy to understand more about this important area. It also aims to inform respiratory physicians and other specialists dealing with lung cancer of the procedures possible in the management and palliation of central airway obstruction. The guideline covers transbronchial needle aspiration and endobronchial ultrasound-guided transbronchial needle aspiration, electrocautery/diathermy, argon plasma coagulation and thermal laser, cryotherapy, cryoextraction, photodynamic therapy, brachytherapy, tracheobronchial stenting, electromagnetic navigation bronchoscopy, endobronchial valves for emphysema and bronchial thermoplasty for asthma.

  3. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    SciTech Connect

    Lumpkin, A.H.; Chung, Y.; Kahana, E.; Patterson, D.; Sellyey, W.; Votaw, A.; Wang, X.

    1993-07-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1,104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS.

  4. Overview of charged-particle beam diagnostics for the Advanced Photon Source (APS)

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Votaw, A.; Wang, X.; Chung, Y.

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FEL's and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  5. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-08-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-), e(+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  6. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Votaw, A.; Wang, X.; Chung, Y.

    1992-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  7. Installation of the advanced heavy ion beam probing diagnostic on the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Bondarenko, I. S.; Chmyga, A. A.; Dreval, N. B.; Khrebtov, S. M.; Komarov, A. D.; Kozachok, A. S.; Krupnik, L. I.; Melnikov, A. V.; Yudina, O. A.; Coelho, P.; Cunha, M.; Goncalves, B.; Malaquias, A.; Nedzelskiy, I. S.; Varandas, C. F. A.; Hidalgo, C.; Garcia-Cortes, I.

    2000-12-01

    An advanced heavy ion beam diagnostic has been developed for the TJ-II stellarator based on the simultaneous utilisation of two different detection systems for the secondary ions: a multiple cell array detector and a 30° Proca-Green electrostatic energy analyser. This innovative design aims at enlarging the HIBD capabilities to allow the instanteneous measurements of electron density and plasma potential profiles together with their respective fluctuations. This paper presents the detailed description of the main parts of HIBD and their characteristics obtained during the first operation on TJ-II. Special attention is paid to the control and data acquisition system built on two VME controllers. The results of the diagnostic beam propagating through the magnetic structure of TJ-II into electrostatic energy analyser are presented and compared with the trajectory calculations. The operation and calibration of a 30° electrostatic energy analyser free of guard rings and with a new biased split detector are described. High intensities of the caesium and thallium ions was obtained from thermionic source using new stable and long-time special operation regimes.

  8. Advanced fault diagnosis methods in molecular networks.

    PubMed

    Habibi, Iman; Emamian, Effat S; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally.

  9. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  10. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  11. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article. PMID:24365338

  12. Application of nanotechnology in miniaturized systems and its use for advanced analytics and diagnostics - an updated review.

    PubMed

    Sandetskaya, Natalia; Allelein, Susann; Kuhlmeier, Dirk

    2013-12-01

    A combination of Micro-Electro-Mechanical Systems and nanoscale structures allows for the creation of novel miniaturized devices, which broaden the boundaries of the diagnostic approaches. Some materials possess unique properties at the nanolevel, which are different from those in bulk materials. In the last few years these properties became a focus of interest for many researchers, as well as methods of production, design and operation of the nanoobjects. Intensive research and development work resulted in numerous inventions exploiting nanotechnology in miniaturized systems. Modern technical and laboratory equipment allows for the precise control of such devices, making them suitable for sensitive and accurate detection of the analytes. The current review highlights recent patents in the field of nanotechnology in microdevices, applicable for medical, environmental or food analysis. The paper covers the structural and functional basis of such systems and describes specific embodiments in three principal branches: application of nanoparticles, nanofluidics, and nanosensors in the miniaturized systems for advanced analytics and diagnostics. This overview is an update of an earlier review article.

  13. A Comparison Between Two Methods for Display of Programmed Diagnostic Tests.

    ERIC Educational Resources Information Center

    Graham, Peter

    Two methods for presentation of programed diagnostic tests were compared. One method used a five-screen, tape and slide format and the other used television in the form of videotape recording. The electronics course used for the study employed 10 diagnostic tests, five for each method. Evaluation was made on the basis of test scores and attitude…

  14. An Analysis of Categorical Definitions, Diagnostic Methods, Diagnostic Criteria and Personnel Utilization in the Classification of Handicapped Children.

    ERIC Educational Resources Information Center

    Newkirk, Diane; And Others

    The project report provides information relevant to the status, function, and effect of currently used definitions of handicapped children and the diagnostic methods used. An initial section serves as both an introduction to and summary of the process used during the project, and includes project conclusions. Section II contains analyses of…

  15. Evaluation of an Advanced-Practice Physical Therapist in a Specialty Shoulder Clinic: Diagnostic Agreement and Effect on Wait Times

    PubMed Central

    Robarts, Susan; Kennedy, Deborah; McKnight, Cheryl; MacLeod, Anne Marie; Holtby, Richard

    2013-01-01

    ABSTRACT Purpose: To examine the role of an advanced-practice physiotherapist (APP) with respect to (1) agreement with an orthopaedic surgeon on diagnosis and management of patients with shoulder problems; (2) wait times; and (3) satisfaction with care. Methods: This prospective study involved patients with shoulder complaints who were referred to a shoulder specialist in a tertiary care centre. Agreement was examined on seven major diagnostic categories, need for further examination and surgery, and type of surgical procedure. Wait times were compared between the APP- and surgeon-led clinics from referral date to date of initial consultation, date of final diagnostic test, and date of confirmed diagnosis and planned treatment. A modified and validated version of the Visit-Specific Satisfaction Instrument assessed satisfaction in seven domains. Kappa (κ) coefficients and bias- and prevalence-adjusted kappa (PABAK) values were calculated, and strength of agreement was categorized. Wait time and satisfaction data were examined using non-parametric statistics. Results: Agreement on major diagnostic categories varied from 0.68 (good) to 0.96 (excellent). Agreement with respect to indication for surgery was κ=0.75, p<0.001; 95% CI, 0.62–0.88 (good). Wait time for APP assessment was significantly shorter than wait time for surgeon consultation at all time points (p<0.001); the surgeon's wait time was significantly reduced over 3 years. High satisfaction was reported in all components of care received from both health care providers. Conclusions: Using experienced physiotherapists in an extended role reduces wait times without compromising patient clinical management and overall satisfaction. PMID:24381382

  16. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440

  17. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  18. Advanced electromagnetic methods for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-06-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  19. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  20. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  1. [Cognitive functions, their development and modern diagnostic methods].

    PubMed

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    provided a theory. The psychometric approach concentrates on studying the differences in intelligence. The aim of this approach is to test intelligence by means of standardized tests (e.g. WISC-R, WAIS-R) used to show the individual differences among humans. Human cognitive functions determine individuals' adaptation capabilities and disturbances in this area indicate a number of psychopathological changes and are a symptom enabling to differentiate or diagnose one with a disorder. That is why the psychological assessment of cognitive functions is an important part of patients' diagnosis. Contemporary neuropsychological studies are to a great extent based computer tests. The use of computer methods has a number of measurement-related advantages. It allows for standardized testing environment, increasing therefore its reliability and standardizes the patient assessment process. Special attention should be paid to the neuropsychological tests included in the Vienna Test System (Cognitron, SIGNAL, RT, VIGIL, DAUF), which are used to assess the operational memory span, learning processes, reaction time, attention selective function, attention continuity as well as attention interference resistance. It also seems justified to present the CPT id test (Continuous Performance Test) as well as Free Recall. CPT is a diagnostic tool used to assess the attention selective function, attention continuity of attention, attention interference resistance as well as attention alertness. The Free Recall test is used in the memory processes diagnostics to assess patients' operational memory as well as the information organization degree in operational memory. The above mentioned neuropsychological tests are tools used in clinical assessment of cognitive function disorders.

  2. [Cognitive functions, their development and modern diagnostic methods].

    PubMed

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    provided a theory. The psychometric approach concentrates on studying the differences in intelligence. The aim of this approach is to test intelligence by means of standardized tests (e.g. WISC-R, WAIS-R) used to show the individual differences among humans. Human cognitive functions determine individuals' adaptation capabilities and disturbances in this area indicate a number of psychopathological changes and are a symptom enabling to differentiate or diagnose one with a disorder. That is why the psychological assessment of cognitive functions is an important part of patients' diagnosis. Contemporary neuropsychological studies are to a great extent based computer tests. The use of computer methods has a number of measurement-related advantages. It allows for standardized testing environment, increasing therefore its reliability and standardizes the patient assessment process. Special attention should be paid to the neuropsychological tests included in the Vienna Test System (Cognitron, SIGNAL, RT, VIGIL, DAUF), which are used to assess the operational memory span, learning processes, reaction time, attention selective function, attention continuity as well as attention interference resistance. It also seems justified to present the CPT id test (Continuous Performance Test) as well as Free Recall. CPT is a diagnostic tool used to assess the attention selective function, attention continuity of attention, attention interference resistance as well as attention alertness. The Free Recall test is used in the memory processes diagnostics to assess patients' operational memory as well as the information organization degree in operational memory. The above mentioned neuropsychological tests are tools used in clinical assessment of cognitive function disorders. PMID:17471820

  3. Comparison of Self-Instruction Methods for Teaching Diagnostic Testing.

    ERIC Educational Resources Information Center

    Puskas, Jane C.

    1991-01-01

    Self-teaching booklets and computer media were evaluated for teaching diagnostic testing with first (n=49), second (n=41) and third year (n=71) dental students as a foundation for further development of clinical decision-making skills. Results found the media more effective than no instruction and equally effective to the traditional lecture…

  4. Sherlock Holmes' methods of deductive reasoning applied to medical diagnostics.

    PubMed

    Miller, L

    1985-03-01

    Having patterned the character of Sherlock Holmes after one of his professors, Sir Arthur Conan Doyle, himself a physician, incorporated many of the didactic qualities of the 19th century medical diagnostician into the character of Holmes. In this paper I explore Holmes's techniques of deductive reasoning and their basis in 19th and 20th century medical diagnostics.

  5. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  6. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  7. State of the art: diagnostic tools and innovative therapies for treatment of advanced thymoma and thymic carcinoma.

    PubMed

    Ried, Michael; Marx, Alexander; Götz, Andrea; Hamer, Okka; Schalke, Berthold; Hofmann, Hans-Stefan

    2016-06-01

    In this review article, state-of-the-art diagnostic tools and innovative treatments of thymoma and thymic carcinoma (TC) are described with special respect to advanced tumour stages. Complete surgical resection (R0) remains the standard therapeutic approach for almost all a priori resectable mediastinal tumours as defined by preoperative standard computed tomography (CT). If lymphoma or germ-cell tumours are differential diagnostic considerations, biopsy may be indicated. Resection status is the most important prognostic factor in thymoma and TC, followed by tumour stage. Advanced (Masaoka-Koga stage III and IVa) tumours require interdisciplinary therapy decisions based on distinctive findings of preoperative CT scan and ancillary investigations [magnetic resonance imaging (MRI)] to select cases for primary surgery or neoadjuvant strategies with optional secondary resection. In neoadjuvant settings, octreotide scans and histological evaluation of pretherapeutic needle biopsies may help to choose between somatostatin agonist/prednisolone regimens and neoadjuvant chemotherapy as first-line treatment. Finally, a multimodality treatment regime is recommended for advanced and unresectable thymic tumours. In conclusion, advanced stage thymoma and TC should preferably be treated in experienced centres in order to provide all modern diagnostic tools (imaging, histology) and innovative therapy techniques. Systemic and local (hyperthermic intrathoracic chemotherapy) medical treatments together with extended surgical resections have increased the therapeutic options in patients with advanced or recurrent thymoma and TC.

  8. [THE METHODICAL APPROACHES TO DIAGNOSTIC OF NIGHT PAROXYSMAL HEMOGLOBINURIA].

    PubMed

    Plekhanova, O S; Naumova, E V; Lugovskaya, S A; Potchtar, M E; Bugrov, I Yu; Dolgov, V V

    2016-03-01

    The article presents diagnostic of night paroxysmal hemoglobinuria. The night paroxysmal hemoglobinuria is an orphan disease characterized by absence of GPI-anchor on blood cells as a result of mutation of PIG-A gene on the short arm of X-chromosome. The particular proteins bounded with GPI-anchor implement function of defense from activation of components of complement and development of membrane-attacking complex. The erythrocytes exposed to destruction in bloodstream are among the most impacted. Therefore, one of the main signs of night paroxysmal hemoglobinuria is complement-depending intravascular hemolysis which indicators for a long time played a key role in diagnostic of night paroxysmal hemoglobinuria. The actual technique of diagnostic of night paroxysmal hemoglobinuria is flow cytometry. The analysis of night paroxysmal hemoglobinuria clone is recommended to patients with hemolysis of unclear genesis, thrombosis of cerebral and abdominal veins, thrombocytopenia and macrocytosis and also patients with AA, myelodysplastic syndrome, myelofibrosis. The international protocol recommended by the International Society of Clinical Cytometry (2010) is implemented to diagnose night paroxysmal hemoglobinuria. The original technique of evaluation of reticulocytes was developed with purpose to detect night paroxysmal hemoglobinuria clone. The high correlation was substantiated between size of night paroxysmal hemoglobinuria clone measured among reticulocytes according to proposed mode and night paroxysmal hemoglobinuria clone measured among granulocytes and monocytes detected according international standardized approach. PMID:27506106

  9. [THE METHODICAL APPROACHES TO DIAGNOSTIC OF NIGHT PAROXYSMAL HEMOGLOBINURIA].

    PubMed

    Plekhanova, O S; Naumova, E V; Lugovskaya, S A; Potchtar, M E; Bugrov, I Yu; Dolgov, V V

    2016-03-01

    The article presents diagnostic of night paroxysmal hemoglobinuria. The night paroxysmal hemoglobinuria is an orphan disease characterized by absence of GPI-anchor on blood cells as a result of mutation of PIG-A gene on the short arm of X-chromosome. The particular proteins bounded with GPI-anchor implement function of defense from activation of components of complement and development of membrane-attacking complex. The erythrocytes exposed to destruction in bloodstream are among the most impacted. Therefore, one of the main signs of night paroxysmal hemoglobinuria is complement-depending intravascular hemolysis which indicators for a long time played a key role in diagnostic of night paroxysmal hemoglobinuria. The actual technique of diagnostic of night paroxysmal hemoglobinuria is flow cytometry. The analysis of night paroxysmal hemoglobinuria clone is recommended to patients with hemolysis of unclear genesis, thrombosis of cerebral and abdominal veins, thrombocytopenia and macrocytosis and also patients with AA, myelodysplastic syndrome, myelofibrosis. The international protocol recommended by the International Society of Clinical Cytometry (2010) is implemented to diagnose night paroxysmal hemoglobinuria. The original technique of evaluation of reticulocytes was developed with purpose to detect night paroxysmal hemoglobinuria clone. The high correlation was substantiated between size of night paroxysmal hemoglobinuria clone measured among reticulocytes according to proposed mode and night paroxysmal hemoglobinuria clone measured among granulocytes and monocytes detected according international standardized approach.

  10. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  11. Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5.

    PubMed

    Chmielewski, Michael; Clark, Lee Anna; Bagby, R Michael; Watson, David

    2015-08-01

    Diagnostic reliability is essential for the science and practice of psychology, in part because reliability is necessary for validity. Recently, the DSM-5 field trials documented lower diagnostic reliability than past field trials and the general research literature, resulting in substantial criticism of the DSM-5 diagnostic criteria. Rather than indicating specific problems with DSM-5, however, the field trials may have revealed long-standing diagnostic issues that have been hidden due to a reliance on audio/video recordings for estimating reliability. We estimated the reliability of DSM-IV diagnoses using both the standard audio-recording method and the test-retest method used in the DSM-5 field trials, in which different clinicians conduct separate interviews. Psychiatric patients (N = 339) were diagnosed using the SCID-I/P; 218 were diagnosed a second time by an independent interviewer. Diagnostic reliability using the audio-recording method (N = 49) was "good" to "excellent" (M κ = .80) and comparable to the DSM-IV field trials estimates. Reliability using the test-retest method (N = 218) was "poor" to "fair" (M κ = .47) and similar to DSM-5 field-trials' estimates. Despite low test-retest diagnostic reliability, self-reported symptoms were highly stable. Moreover, there was no association between change in self-report and change in diagnostic status. These results demonstrate the influence of method on estimates of diagnostic reliability.

  12. Jet Noise Diagnostics Supporting Statistical Noise Prediction Methods

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity. NASA has been investing in development of statistical jet noise prediction tools because these seem to fit the middle ground that allows enough flexibility and fidelity for jet noise source diagnostics while having reasonable computational requirements. These tools rely on Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) solutions as input for computing far-field spectral directivity using an acoustic analogy. There are many ways acoustic analogies can be created, each with a series of assumptions and models, many often taken unknowingly. And the resulting prediction can be easily reverse-engineered by altering the models contained within. However, only an approach which is mathematically sound, with assumptions validated and modeled quantities checked against direct measurement will give consistently correct answers. Many quantities are modeled in acoustic analogies precisely because they have been impossible to measure or calculate, making this requirement a difficult task. The NASA team has spent considerable effort identifying all the assumptions and models used to take the Navier-Stokes equations to the point of a statistical calculation via an acoustic analogy very similar to that proposed by Lilley. Assumptions have been identified and experiments have been developed to test these assumptions. In some cases this has resulted in assumptions being changed. Beginning with the CFD used as input to the acoustic analogy, models for turbulence closure used in RANS CFD codes have been explored and

  13. Advances in the Treatment of Aortic Valve Disease: is it Time for Companion Diagnostics?

    PubMed Central

    Hinton, Robert B.

    2014-01-01

    Purpose of the review Aortic valve disease (AVD) is a growing public health problem, and the pathogenesis underlying AVD is complex. The lack of durable bioprostheses and pharmacologic therapies remain central needs in care. The purpose of this review is to highlight recent clinical studies that impact the care of children with AVD and to explore ongoing translational research efforts. Recent findings Clinical studies have evaluated the durability of bioprosthetics and surgical strategies, tested statins during early disease, and identified new predictive biomarkers. Large animal models have demonstrated the effectiveness of a novel bioprosthetic scaffold. Mouse models of latent AVD have advanced our ability to elucidate natural history and perform preclinical studies that test new treatments in the context of early disease. Summary Current priorities for AVD patients include identifying new pharmacologic treatments and developing durable bioprostheses. Multidisciplinary efforts are needed that bridge pediatric and adult programs, bring together different types of expertise and leverage network and consortium resources. As our understanding of the underlying complex genetics is better defined, companion diagnostics may transform future clinical trials and ultimately improve the care of patients with AVD by promoting personalized medicine and early intervention. PMID:25089943

  14. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  15. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  16. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak.

    PubMed

    Li, Y L; Xu, G S; Tritz, K; Zhu, Y B; Wan, B N; Lan, H; Liu, Y L; Wei, J; Zhang, W; Hu, G H; Wang, H Q; Duan, Y M; Zhao, J L; Wang, L; Liu, S C; Ye, Y; Li, J; Lin, X; Li, X L

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  17. Why Video? How Technology Advances Method

    ERIC Educational Resources Information Center

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  18. The Revised Research Diagnostic Criteria for Temporomandibular Disorders: Methods used to Establish and Validate Revised Axis I Diagnostic Algorithms

    PubMed Central

    Schiffman, Eric L.; Ohrbach, Richard; Truelove, Edmond L.; Feng, Tai; Anderson, Gary C.; Pan, Wei; Gonzalez, Yoly M.; John, Mike T.; Sommers, Earl; List, Thomas; Velly, Ana M.; Kang, Wenjun; Look, John O.

    2011-01-01

    AIMS To derive reliable and valid revised Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) Axis I diagnostic algorithms for clinical TMD diagnoses. METHODS The multi-site RDC/TMD Validation Project’s dataset (614 TMD community and clinic cases, and 91 controls) was used to derive revised algorithms for Axis I TMD diagnoses. Validity of diagnostic algorithms was assessed relative to reference standards, the latter based on consensus diagnoses rendered by 2 TMD experts using criterion examination data, including temporomandibular joint imaging. Cut-offs for target validity were sensitivity ≥ 0.70 and specificity ≥ 0.95. Reliability of revised algorithms was assessed in 27 study participants. RESULTS Revised algorithm sensitivity and specificity exceeded the target levels for myofascial pain (0.82, 0.99, respectively) and myofascial pain with limited opening (0.93, 0.97). Combining diagnoses for any myofascial pain showed sensitivity of 0.91 and specificity of 1.00. For joint pain, target sensitivity and specificity were observed (0.92, 0.96) when arthralgia and osteoarthritis were combined as “any joint pain.” Disc displacement without reduction with limited opening demonstrated target sensitivity and specificity (0.80, 0.97). For the other Group II disc displacements and Group III osteoarthritis and osteoarthrosis, sensitivity was below target (0.35 to 0.53), and specificity ranged from 0.80 to meeting target. Kappa for revised algorithm diagnostic reliability was ≥ 0.63. CONCLUSION Revised RDC/TMD Axis I TMD diagnostic algorithms are recommended for myofascial pain and joint pain as reliable and valid. However, revised clinical criteria alone, without recourse to imaging, are inadequate for valid diagnosis of two of the three disc displacements and osteoarthritis/osteoarthrosis. PMID:20213032

  19. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  20. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  1. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  2. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  3. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  4. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  5. Diagnostic efficacy of in vitro methods vs. skin testing in patients with inhalant allergies

    SciTech Connect

    Corey, J.P.; Liudahl, J.J.; Young, S.A.; Rodman, S.M. )

    1991-03-01

    The purpose of our study was to investigate the diagnostic efficacy of two selected methods of in vitro allergy testing. Specifically, the PRIST/modified RAST I125 isotope systems and the Quantizyme/modified EAST alkaline phosphatase method were compared. The time, expense, convenience, and diagnostic efficacy of the two procedures are discussed. Special attention is given to the practicality of each method for the practicing physician.

  6. Increasing role of arthropod bites in tularaemia transmission in Poland - case reports and diagnostic methods.

    PubMed

    Formińska, Kamila; Zasada, Aleksandra A; Rastawicki, Waldemar; Śmietańska, Karolina; Bander, Dorota; Wawrzynowicz-Syczewska, Marta; Yanushevych, Mariya; Niścigórska-Olsen, Jolanta; Wawszczak, Marek

    2015-01-01

    The study describes four cases of tularaemia - one developed after contact with rabbits and three developed after an arthropod bite. Due to non-specific clinical symptoms, accurate diagnosis of tularaemia may be difficult. The increasing contribution of the arthropod vectors in the transmission of the disease indicates that special effort should be made to apply sensitive and specific diagnostic methods for tularaemia, and to remind health-care workers about this route of Francisella tularensis infections. The advantages and disadvantages of various diagnostic methods - molecular, serological and microbiological culture - are discussed. The PCR as a rapid and proper diagnostic method for ulceroglandular tularaemia is presented.

  7. Bayesian analysis of two diagnostic methods for paediatric ringworm infections in a teaching hospital.

    PubMed

    Rath, S; Panda, M; Sahu, M C; Padhy, R N

    2015-09-01

    Quantitatively, conventional methods of diagnosis of tinea capitis or paediatric ringworm, microscopic and culture tests were evaluated with Bayes rule. This analysis would help in quantifying the pervasive errors in each diagnostic method, particularly the microscopic method, as a long-term treatment would be involved to eradicate the infection by the use of a particular antifungal chemotherapy. Secondly, the analysis of clinical data would help in obtaining digitally the fallible standard of the microscopic test method, as the culture test method is taken as gold standard. Test results of 51 paediatric patients were of 4 categories: 21 samples were true positive (both tests positive), and 13 were true negative; the rest samples comprised both 14 false positive (microscopic test positivity with culture test negativity) and 3 false negative (microscopic test negativity with culture test positivity) samples. The prevalence of tinea infection was 47.01% in the population of 51 children. The microscopic test of a sample was efficient by 87.5%, in arriving at a positive result on diagnosis, when its culture test was positive; and, this test was efficient by 76.4%, in arriving at a negative result, when its culture test was negative. But, the post-test probability value of a sample with both microscopic and culture tests would be correct in distinguishing a sample from a sick or a healthy child with a chance of 71.5%. However, since the sensitivity of the analysis is 87.5%, the microscopic test positivity would be easier to detect in the presence of infection. In conclusion, it could be stated that Trychophyton rubrum was the most prevalent species; sensitivity and specificity of treating the infection, by antifungal therapy before ascertaining by the culture method remain as 0.8751 and 0.7642, respectively. A correct/coveted diagnostic method of fungal infection would be could be achieved by modern molecular methods (matrix-assisted laser desorption ionisation

  8. The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis

    PubMed Central

    Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio

    2015-01-01

    Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid

  9. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  10. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    SciTech Connect

    Katti, K.V.; Karra, S.R.; Berning, D.E.; Smith, C.J.; Volkert, W.A.; Ketring, A.R.

    2000-04-25

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  11. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    2000-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  12. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Karra, Srinivasa Rao; Berning, Douglas E.; Smith, C. Jeffrey; Volkert, Wynn A.; Ketring, Alan R.

    1999-01-01

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand.

  13. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  14. Frequency-Domain Methods for Characterization of Pulsed Power Diagnostics

    SciTech Connect

    White, A D; Anderson, R A; Ferriera, T J; Goerz, D A

    2009-07-27

    This paper discusses methods of frequency-domain characterization of pulsed power sensors using vector network analyzer and spectrum analyzer techniques that offer significant simplification over time-domain methods, while mitigating or minimizing the effect of the difficulties present in time domain characterization. These methods are applicable to characterization of a wide variety of sensors.

  15. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  16. Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User's Guide

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    This report is a User's Guide for the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES). ProDiMES is a standard benchmarking problem and a set of evaluation metrics to enable the comparison of candidate aircraft engine gas path diagnostic methods. This Matlab (The Mathworks, Inc.) based software tool enables users to independently develop and evaluate diagnostic methods. Additionally, a set of blind test case data is also distributed as part of the software. This will enable the side-by-side comparison of diagnostic approaches developed by multiple users. The Users Guide describes the various components of ProDiMES, and provides instructions for the installation and operation of the tool.

  17. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  18. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  19. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  20. Diagnostic methods and treatment modalities of dry eye conditions.

    PubMed

    Holly, F J

    1993-06-01

    One may view dry eye conditions as a group of diseases in which the ocular surface is adversely affected. Tear film instability invariably leads to some degree of cellular surface damage over the cornea and conjunctiva. In turn, ocular epitheliopathy may adversely affect tear film stability. The clinical presentation of the disease may not yield a clue as to its etiology. In recent years considerable progress was made both in the diagnosis and the treatment of the disease and promising studies are planned or are underway. The diagnostic techniques can be divided into four groups. The first is concerned with the clinical presentation. The second is concerned with the bulk properties of the aqueous tears including dynamic characteristics, composition, and colligative properties. The third is tear-film related and includes the film break-up time, evaporation rate, and lipid abnormality. The fourth is concerned with the ocular surface and includes vital staining, impression cytology, and surface microscopy. The most promising attempts are being made in the second group by attempting to elucidate the role of enzyme and enzyme activator activity and inhibitor contents as well as the tear protein profiles and correlating them with the specific disease states. The treatment modalities belong to three major groups aside from surgical intervention; the supplementation, preservation, and the stimulation of tears. The modern version of tear supplementation is expected to include the topical use of efficacious aqueous formulations that typically contain film stabilizing polymers, nutrients, and/or--in the future--biochemically active ingredients such as enzyme activators and inhibitors.

  1. Tokamak physics studies using x-ray diagnostic methods

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

  2. A Simplified Diagnostic Method for Elastomer Bond Durability

    NASA Technical Reports Server (NTRS)

    White, Paul

    2009-01-01

    A simplified method has been developed for determining bond durability under exposure to water or high humidity conditions. It uses a small number of test specimens with relatively short times of water exposure at elevated temperature. The method is also gravimetric; the only equipment being required is an oven, specimen jars, and a conventional laboratory balance.

  3. Advances in methods for deepwater TLP installations

    SciTech Connect

    Wybro, P.G.

    1995-10-01

    This paper describes a method suitable for installing deepwater TLP structures in water depths beyond 3,000 ft. An overview is presented of previous TLP installation, wherein an evaluation is made of the various methods and their suitability to deepwater applications. A novel method for installation of deepwater TLP`s is described. This method of installation is most suitable for deepwater and/or large TLP structures, but can also be used in moderate water depth as well. The tendon installation method utilizes the so-called Platform Arrestor Concept (PAC), wherein tendon sections are transported by barges to site, and assembled vertically using a dynamically position crane vessel. The tendons are transferred to the platform where they are hung off until there are a full complement of tendons. The hull lock off operation is performed on all tendons simultaneously, avoiding dangerous platform resonant behavior. The installation calls for relatively simple installation equipment, and also enables the use of simple tendon tie-off equipment, such as a single piece nut.

  4. Technological advances in diagnostic testing for von Willebrand disease: new approaches and challenges.

    PubMed

    Hayward, C P M; Moffat, K A; Graf, L

    2014-06-01

    Diagnostic tests for von Willebrand disease (VWD) are important for the assessment of VWD, which is a commonly encountered bleeding disorder worldwide. Technical innovations have been applied to improve the precision and lower limit of detection of von Willebrand factor (VWF) assays, including the ristocetin cofactor activity assay (VWF:RCo) that uses the antibiotic ristocetin to induce plasma VWF binding to glycoprotein (GP) IbIXV on target platelets. VWF-collagen-binding assays, depending on the type of collagen used, can improve the detection of forms of VWD with high molecular weight VWF multimer loss, although the best method is debatable. A number of innovations have been applied to VWF:RCo (which is commonly performed on an aggregometer), including replacing the target platelets with immobilized GPIbα, and quantification by an enzyme-linked immunosorbent assay (ELISA), immunoturbidimetric, or chemiluminescent end-point. Some common polymorphisms in the VWF gene that do not cause bleeding are associated with falsely low VWF activity by ristocetin-dependent methods. To overcome the need for ristocetin, some new VWF activity assays use gain-of-function GPIbα mutants that bind VWF without the need for ristocetin, with an improved precision and lower limit of detection than measuring VWF:RCo by aggregometry. ELISA of VWF binding to mutated GPIbα shows promise as a method to identify gain-of-function defects from type 2B VWD. The performance characteristics of many new VWF activity assays suggest that the detection of VWD, and monitoring of VWD therapy, by clinical laboratories could be improved through adopting newer generation VWF assays.

  5. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  6. Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Yoshikawa, M.; Yasuhara, R.; Chikatsu, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakasima, Y.; Imai, T.; Ichimura, M.; Yamada, I.; Funaba, H.; Minami, T.

    2016-11-01

    We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.

  7. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  8. A diagnostic method that uses causal knowledge and linear programming in the application of Bayes' formula.

    PubMed

    Cooper, G F

    1986-04-01

    Bayes' formula has been applied extensively in computer-based medical diagnostic systems. One assumption that is often made in the application of the formula is that the findings in a case are conditionally independent. This assumption is often invalid and leads to inaccurate posterior probability assignments to the diagnostic hypotheses. This paper discusses a method for using causal knowledge to structure findings according to their probabilistic dependencies. An inference procedure is discussed which propagates probabilities within a network of causally related findings in order to calculate posterior probabilities of diagnostic hypotheses. A linear programming technique is described that bounds the values of the propagated probabilities subject to known probabilistic constraints.

  9. [Unconventional diagnostic and therapeutic methods in environmental medicine].

    PubMed

    Oepen, I

    1998-07-01

    In the sphere of environmental medicine--analogous to other fields like oncology and chronic diseases--not only proven and approved methods, but also unconvential methods are offered, without evidence of efficacy. The application of these methods has the possible consequence of wrong diagnosis and malpractice. Examples are discussed such as Kirlian photography, electroacupuncture according to Voll, bioresonance diagnosis/therapy, kinesiology, regulation therapy according to Rost, "clinical ecology" according to Runow with, among others, the provocation/neutralisation test, a vaccination therapy with E. coli and finally electrosmog as an environmental noxa. Concerning the admissibility of contested methods, statements of medical specialist societies, judgements, and the law of medical products are quoted. In conclusion, the question of the origin of the ideas and alleged results of unconvential medicine is followed up and conclusions are drawn. PMID:9738351

  10. Restrictive Stochastic Item Selection Methods in Cognitive Diagnostic Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Huebner, Alan

    2011-01-01

    This paper proposes two new item selection methods for cognitive diagnostic computerized adaptive testing: the restrictive progressive method and the restrictive threshold method. They are built upon the posterior weighted Kullback-Leibler (KL) information index but include additional stochastic components either in the item selection index or in…

  11. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed

  12. Application of optical flow method for imaging diagnostic in JET

    NASA Astrophysics Data System (ADS)

    Craciunescu, T.; Murari, A.; Alonso, A.; Lang, P. T.; Kocsis, G.; Tiseanu, I.; Zoita, V.; JET EFDA Contributors

    2010-05-01

    An optical flow method is applied to the study of several fusion plasma relevant issues, including plasma wall interactions. A multi-resolution coarse-to-fine procedure is used in order to cope with large displacements of objects between consecutive frames, characteristic of plasma images captured by JET fast visible camera. Occlusion modeling is also implemented. The method is able to provide good results for JET fast visible camera images which can be affected by saturation, discontinuous movement, reshaping of image objects, low gray-level in-depth resolution. Significant experimental cases concerning pellet injection, plasma filaments and MARFEs are analysed. The method is able to provide the real velocity for objects moving close to structures.

  13. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  14. Analytical and numerical methods; advanced computer concepts

    SciTech Connect

    Lax, P D

    1991-03-01

    This past year, two projects have been completed and a new is under way. First, in joint work with R. Kohn, we developed a numerical algorithm to study the blowup of solutions to equations with certain similarity transformations. In the second project, the adaptive mesh refinement code of Berger and Colella for shock hydrodynamic calculations has been parallelized and numerical studies using two different shared memory machines have been done. My current effort is towards the development of Cartesian mesh methods to solve pdes with complicated geometries. Most of the coming year will be spent on this project, which is joint work with Prof. Randy Leveque at the University of Washington in Seattle.

  15. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations.

  16. Optical methods for diagnostic of cell-tissue grafts

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  17. Calreticulin Mutations in Myeloproliferative Neoplasms: Comparison of Three Diagnostic Methods

    PubMed Central

    Park, Ji-Hye; Sevin, Margaux; Ramla, Selim; Truffot, Aurélie; Verrier, Tiffany; Bouchot, Dominique; Courtois, Martine; Bas, Mathilde; Benali, Sonia; Bailly, François; Favre, Bernardine; Guy, Julien; Martin, Laurent; Maynadié, Marc; Carillo, Serge; Girodon, François

    2015-01-01

    Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments. PMID:26501981

  18. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  19. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  20. Fraley's syndrome: case report and update on current diagnostic methods

    SciTech Connect

    Zuckier, L.S.; Patel, Y.D.; Fine, E.J.; Koenigsberg, M.

    1988-01-01

    A 38-year-old woman presented with fever, right flank pain, and a clinical diagnosis of pyelonephritis. Work-up revealed the presence of a crossing arterial branch causing obstruction of the superior infundibulum of the right kidney, which is an uncommon cause of nephralgia and urinary infection initially described by Fraley in 1966. Intravenous urography, retrograde pyelography, and angiography remain the mainstay of diagnosis, much as in the initial descriptions of this entity. (/sup 131/I)Hippuran imaging, with analysis of the upper and lower pole regions of interest, provides a simple yet powerful method of evaluating functional and excretory changes in the superior infundibulum, and has proved more efficacious than previously reported whole-kidney renograms. Renal scintigraphy represents a relatively noninvasive method of serial functional examination in this disorder. Ultrasound imaging, by monitoring upper-pole dilatation, may provide complementary morphologic information important for long-term follow-up.

  1. Multiple light scattering methods for multiphase flow diagnostics

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi

    2015-11-01

    Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.

  2. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    DOEpatents

    Duan, Yixiang; Cao, Wenqing

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  3. Method and ethics in advancing jury research.

    PubMed

    Robertshaw, P

    1998-10-01

    In this article the contemporary problems of the jury and jury research are considered. This is timely, in view of the current Home Office Consultation Paper on the future of, and alternatives to, the jury in serious fraud trials, to which the author has submitted representations on its jury aspects. The research position is dominated by the prohibitions in the Contempt of Court Act 1981. The types of indirect research on jury deliberation which have been achieved within this stricture are outlined. In the USA, direct research of the jury is possible but, for historical reasons, it has been in television documentaries that direct observation of the deliberation process has been achieved. The first issue is discussed and the problems of inauthenticity, 'the observer effect', and of existential invalidity in 'mock' or 'shadow' juries are noted. Finally, the kinds of issues that could be addressed if licensed jury deliberation research was legalized, are proposed. It is also suggested that there are methods available to transcend the problems associated with American direct research. PMID:9808945

  4. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  5. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.

    1990-01-01

    High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.

  6. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  7. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  8. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect

    Andrews, J.W.

    1996-04-01

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  9. A new method with general diagnostic utility for the calculation of immunoglobulin G avidity.

    PubMed

    Korhonen, M H; Brunstein, J; Haario, H; Katnikov, A; Rescaldani, R; Hedman, K

    1999-09-01

    The reference method for immunoglobulin G (IgG) avidity determination includes reagent-consuming serum titration. Aiming at better IgG avidity diagnostics, we applied a logistic model for the reproduction of antibody titration curves. This method was tested with well-characterized serum panels for cytomegalovirus, Epstein-Barr virus, rubella virus, parvovirus B19, and Toxoplasma gondii. This approach for IgG avidity calculation is generally applicable and attains the diagnostic performance of the reference method while being less laborious and twice as cost-effective.

  10. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade.

    PubMed

    Tobias, B; Kong, X; Liang, T; Spear, A; Domier, C W; Luhmann, N C; Classen, I G J; Boom, J E; van de Pol, M J; Jaspers, R; Donné, A J H; Park, H K; Munsat, T

    2009-09-01

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  11. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    SciTech Connect

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C. Jr.; Classen, I. G. J.; Boom, J. E.; Pol, M. J. van de; Jaspers, R.; Donne, A. J. H.; Park, H. K.; Munsat, T.

    2009-09-15

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  12. Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Kong, X.; Liang, T.; Spear, A.; Domier, C. W.; Luhmann, N. C.; Classen, I. G. J.; Boom, J. E.; van de Pol, M. J.; Jaspers, R.; Donné, A. J. H.; Park, H. K.; Munsat, T.

    2009-09-01

    A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.

  13. Using the Revised Diagnostic Criteria for Frontotemporal Dementia in India: Evidence of an Advanced and Florid Disease

    PubMed Central

    Ghosh, Amitabha; Dutt, Aparna; Ghosh, Madhura; Bhargava, Pallavi; Rao, Sulakshana

    2013-01-01

    Background The International Consortium (FTDC) that revised the diagnostic criteria for behavioural variant frontotemporal dementia (bvFTD) did not have an Asian representation. Whether the revised criteria are equally useful in the early detection of Asian bvFTD patients therefore remains largely unexplored. Earlier studies have indicated differences in clinical manifestations in Indian and other Asian bvFTD patients when compared to western groups. There is an urgent need for clarification, given the projected exponential rise in dementia in these countries and the imminent clinical trials on bvFTD. Objective To assess how Indian bvFTD patients fulfil the FTDC criteria, hypothesizing that our patients might present differently early in the illness. Method In a hospital-based retrospective observational study, we assessed 48 probable bvFTD patients, diagnosed according to the FTDC criteria, for the speed with which these criteria were fulfilled, the frequency of individual symptoms and their order of appearance during the illness. Results Most of our patients presented with moderate to severe dementia, in spite of having relatively short onset to diagnosis times. Patients on average took 1.4 years from onset to meet the FTDC criteria, with 90% of them presenting with four or more symptoms at diagnosis. Disinhibition was the commonest symptom and the first symptom in most patients. Conclusion With most patients presenting with advanced and florid disease, the FTDC criteria have little additional impact in early identification of bvFTD in India. Modifying the criteria further could allow detection of Indian patients early enough for their inclusion in future clinical trials. PMID:23596513

  14. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound

    PubMed Central

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874

  15. Making Diagnostic Inferences about Cognitive Attributes Using the Rule-Space Model and Attribute Hierarchy Method

    ERIC Educational Resources Information Center

    Gierl, Mark J.

    2007-01-01

    The purpose of this paper is to describe the logic and identify key assumptions associated with making cognitive inferences using two attribute-based psychometric methods. The first method is Kikumi Tatsuoka's rule-space model. This model provides a strong point of reference for studying the nature of diagnostic inferences because it is important…

  16. Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees' Cognitive Skills in Critical Reading

    ERIC Educational Resources Information Center

    Wang, Changjiang; Gierl, Mark J.

    2011-01-01

    The purpose of this study is to apply the attribute hierarchy method (AHM) to a subset of SAT critical reading items and illustrate how the method can be used to promote cognitive diagnostic inferences. The AHM is a psychometric procedure for classifying examinees' test item responses into a set of attribute mastery patterns associated with…

  17. Thomson scattering as a method for laser plasma diagnostics

    SciTech Connect

    Alayi, Y.

    1983-12-01

    The Thomson scattering has been used to determine the density and temperature of an inhomogeneous nonstationary plasma. A common method to calibrate the Thomson scattering device consists in replacing the plasma by a gas and measuring the Rayleigh scattering cross section. The angular distribution of the scattered light in Argon is measured, the incident light is a ruby laser with ..delta..t = 30ns and lambda = 6943nm and vertically polarized. We have found that angular distribution is strongly favored in the forward direction (30/sup 0/, 45/sup 0/, 60/sup 0/) and defavored for backward direction (90/sup 0/, 120/sup 0/, 135/sup 0/, 150/sup 0/) in agreement with the results of George, et al, but in disagreement with the Rayleigh theory which assumes a uniform distribution. Our results may be related to the form of the scattered light spectrum which undergoes a dramatic change through the kinetic-hydrodynamic transition. The general form of the spectrum is determined by the parameter y = 1/Kl (where K = 4..pi.. sin (theta/2)/lambda, theta is the scattering angle and l is the free path path), which increases in the direction of the hydrodynamic regime (small angles). By analogy, the Thomson scattering presents the same aspects with ..cap alpha.. = 1/Klambda /SUB D/ (where lambda /SUB D/ is the Debye length). The deviation from the uniform distribution provides the possibility to determine the plasma turbulence spectrum from the scattered light.

  18. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  19. Investigation of PACVD protective coating processes using advanced diagnostics techniques. Performance report, 1 September 1992--30 April 1993

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB{sub 2} and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB{sub 2}.

  20. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  1. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... for Tuberculosis; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS... of Diagnostic Tests and Biomarkers for Tuberculosis (TB).'' The purpose of the workshop is to provide... Medicine, Ending Neglect: The Elimination of Tuberculosis in the United States, Committee on...

  2. Relevance of the choice of diagnostic methods to investigate laser damage resistance in optical material

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Wagner, Frank; Gallais, Laurent; Commandré, Mireille

    2012-01-01

    Laser induced damage in optical material in nanosecond regime is widely attributed to local precursors in range of nanometer to micrometer size. The damage precursors nature strongly depends on materials (coatings, non linear crystals, substrates,..), breakdown location (bulk, surface, interface) and irradiation parameters (wavelength, pulse duration...). The weakness of knowledge on parameters as sizes, densities and natures of precursors, let think that the choice of the diagnostic method which reveals laser damage has to be adapted to each situation of irradiation. Concerning the LIDT determination, destructive methods are usually involved: we can cite full size test using the "real" final configuration of irradiation, raster scan method using a focused laser beam allowing laboratory test and statistic approach allowing study with different beam sizes in order to probe the material homogeneity in terms of precursors. This multi-scale approaches give relevant information on material properties regarding high power laser irradiation. In order to investigate the laser damage initiation mechanisms, it appears necessary to involve non-destructive diagnostics. These diagnostics permit to highlight modifications linked to precursors before material breakdown. The main difficulty here is the local character of the diagnostic added to the low density of initiating center. A multi-scale approach is thus also well adapted to the non-destructive case. Interest of diagnostics as local fluorescence and photothermal deflexion both correlated with LIDT results will be discussed. To illustrate the purpose, examples on non linear crystals and coatings will be shown.

  3. Relevance of the choice of diagnostic methods to investigate laser damage resistance in optical material

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Wagner, Frank; Gallais, Laurent; Commandré, Mireille

    2011-11-01

    Laser induced damage in optical material in nanosecond regime is widely attributed to local precursors in range of nanometer to micrometer size. The damage precursors nature strongly depends on materials (coatings, non linear crystals, substrates,..), breakdown location (bulk, surface, interface) and irradiation parameters (wavelength, pulse duration...). The weakness of knowledge on parameters as sizes, densities and natures of precursors, let think that the choice of the diagnostic method which reveals laser damage has to be adapted to each situation of irradiation. Concerning the LIDT determination, destructive methods are usually involved: we can cite full size test using the "real" final configuration of irradiation, raster scan method using a focused laser beam allowing laboratory test and statistic approach allowing study with different beam sizes in order to probe the material homogeneity in terms of precursors. This multi-scale approaches give relevant information on material properties regarding high power laser irradiation. In order to investigate the laser damage initiation mechanisms, it appears necessary to involve non-destructive diagnostics. These diagnostics permit to highlight modifications linked to precursors before material breakdown. The main difficulty here is the local character of the diagnostic added to the low density of initiating center. A multi-scale approach is thus also well adapted to the non-destructive case. Interest of diagnostics as local fluorescence and photothermal deflexion both correlated with LIDT results will be discussed. To illustrate the purpose, examples on non linear crystals and coatings will be shown.

  4. Diagnostic methods for assessing maxillary skeletal and dental transverse deficiencies: A systematic review

    PubMed Central

    Sawchuk, Dena; Currie, Kris; Vich, Manuel Lagravere; Palomo, Juan Martin

    2016-01-01

    Objective To evaluate the accuracy and reliability of the diagnostic tools available for assessing maxillary transverse deficiencies. Methods An electronic search of three databases was performed from their date of establishment to April 2015, with manual searching of reference lists of relevant articles. Articles were considered for inclusion if they reported the accuracy or reliability of a diagnostic method or evaluation technique for maxillary transverse dimensions in mixed or permanent dentitions. Risk of bias was assessed in the included articles, using the Quality Assessment of Diagnostic Accuracy Studies tool-2. Results Nine articles were selected. The studies were heterogeneous, with moderate to low methodological quality, and all had a high risk of bias. Four suggested that the use of arch width prediction indices with dental cast measurements is unreliable for use in diagnosis. Frontal cephalograms derived from cone-beam computed tomography (CBCT) images were reportedly more reliable for assessing intermaxillary transverse discrepancies than posteroanterior cephalograms. Two studies proposed new three-dimensional transverse analyses with CBCT images that were reportedly reliable, but have not been validated for clinical sensitivity or specificity. No studies reported sensitivity, specificity, positive or negative predictive values or likelihood ratios, or ROC curves of the methods for the diagnosis of transverse deficiencies. Conclusions Current evidence does not enable solid conclusions to be drawn, owing to a lack of reliable high quality diagnostic studies evaluating maxillary transverse deficiencies. CBCT images are reportedly more reliable for diagnosis, but further validation is required to confirm CBCT's accuracy and diagnostic superiority.

  5. Diagnostic methods for assessing maxillary skeletal and dental transverse deficiencies: A systematic review

    PubMed Central

    Sawchuk, Dena; Currie, Kris; Vich, Manuel Lagravere; Palomo, Juan Martin

    2016-01-01

    Objective To evaluate the accuracy and reliability of the diagnostic tools available for assessing maxillary transverse deficiencies. Methods An electronic search of three databases was performed from their date of establishment to April 2015, with manual searching of reference lists of relevant articles. Articles were considered for inclusion if they reported the accuracy or reliability of a diagnostic method or evaluation technique for maxillary transverse dimensions in mixed or permanent dentitions. Risk of bias was assessed in the included articles, using the Quality Assessment of Diagnostic Accuracy Studies tool-2. Results Nine articles were selected. The studies were heterogeneous, with moderate to low methodological quality, and all had a high risk of bias. Four suggested that the use of arch width prediction indices with dental cast measurements is unreliable for use in diagnosis. Frontal cephalograms derived from cone-beam computed tomography (CBCT) images were reportedly more reliable for assessing intermaxillary transverse discrepancies than posteroanterior cephalograms. Two studies proposed new three-dimensional transverse analyses with CBCT images that were reportedly reliable, but have not been validated for clinical sensitivity or specificity. No studies reported sensitivity, specificity, positive or negative predictive values or likelihood ratios, or ROC curves of the methods for the diagnosis of transverse deficiencies. Conclusions Current evidence does not enable solid conclusions to be drawn, owing to a lack of reliable high quality diagnostic studies evaluating maxillary transverse deficiencies. CBCT images are reportedly more reliable for diagnosis, but further validation is required to confirm CBCT's accuracy and diagnostic superiority. PMID:27668196

  6. New method of acne disease fluorescent diagnostics in natural and fluorescent light and treatment control

    NASA Astrophysics Data System (ADS)

    Karimova, L. N.; Berezin, A. N.; Shevchik, S. A.; Kharnas, S. S.; Kusmin, S. G.; Loschenov, V. B.

    2005-08-01

    In the given research the new method of fluorescent diagnostics (FD) and photodynamic therapy (PDT) control of acne disease is submitted. Method is based on simultaneous diagnostics in natural and fluorescent light. PDT was based on using 5-ALA (5- aminolevulinic acid) preparation and 600-730 nanometers radiation. If the examined site of a skin possessed a high endogenous porphyrin fluorescence level, PDT was carried out without 5-ALA. For FD and treatment control a dot spectroscopy and the fluorescent imaging of the affected skin were used.

  7. OCT corneal epithelial topographic asymmetry as a sensitive diagnostic tool for early and advancing keratoconus

    PubMed Central

    Kanellopoulos, Anastasios John; Asimellis, George

    2014-01-01

    Purpose To investigate epithelial thickness-distribution characteristics in a large group of keratoconic patients and their correlation to normal eyes employing anterior-segment optical coherence tomography (AS-OCT). Materials and methods The study group (n=160 eyes) consisted of clinically diagnosed keratoconus eyes; the control group (n=160) consisted of nonkeratoconic eyes. Three separate, three-dimensional epithelial thickness maps were obtained employing AS-OCT, enabling investigation of the pupil center, average, mid-peripheral, superior, inferior, maximum, minimum, and topographic epithelial thickness variability. Intraindividual repeatability of measurements was assessed. We introduced correlation of the epithelial data via newly defined indices. The epithelial thickness indices were then correlated with two Scheimpflug imaging-derived AS-irregularity indices: the index of height decentration, and the index of surface variance highly sensitive to early and advancing keratoconus diagnosis as validation. Results Intraindividual repeatability of epithelial thickness measurement in the keratoconic group was on average 1.67 μm. For the control group, repeatability was on average 1.13 μm. In the keratoconic group, pupil-center epithelial thickness was 51.75±7.02 μm, while maximum and minimum epithelial thickness were 63.54±8.85 μm and 40.73±8.51 μm. In the control group, epithelial thickness at the center was 52.54±3.23 μm, with maximum 55.33±3.27 μm and minimum 48.50±3.98 μm epithelial thickness. Topographic variability was 6.07±3.55 μm in the keratoconic group, while for the control group it was 1.59±0.79 μm. In keratoconus, topographic epithelial thickness change from normal, correlated tightly with the topometric asymmetry indices of IHD and ISV derived from Scheimpflug imaging. Conclusion Simple, OCT-derived epithelial mapping, appears to have critical potential in early and advancing keratoconus diagnosis, confirmed with its correlation

  8. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  9. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  10. [Methodical features of the molding of diagnostic competences in medical parasitology workers].

    PubMed

    Dovgalev, A S; Astanina, S Iu; Avdiukhina, T I; Serdiuk, A P; Imamkuliev, K D

    2015-01-01

    The paper provides a rationale for a procedure to mold diagnostic competences in medical workers of the laboratories of therapeutic-and-prophylactic institutions and hygiene and epidemiology centers, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare. The methodical features of molding diagnostic competences in the above contingents are the design and organization of an educational process by applying systems integration and competence-based approaches; increased active self-directed learning of audience; a procedure to organize its unsupervised extracurricular activities. Professional habits and skills in laboratory specialists should be molded on the basis of didactic principles and in compliance with the found methodical patterns. The eventual result (molded competences) and its compliance with the practical health care requirements is assessed using all control types (incoming, running, intermediate, and ultimate ones). This ensures the stability and predictability of molding diagnostic competences in parasitology specialists.

  11. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  12. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  13. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  14. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility

    DOE PAGES

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Despotopulos, J. D.; Faye, S. A.; Jedlovec, D. R.; Yeamans, C. B.

    2016-08-05

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. As a result, the collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  15. Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Despotopulos, J. D.; Faye, S. A.; Jedlovec, D. R.; Yeamans, C. B.

    2016-11-01

    The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.

  16. Advancing the Use of Administrative Data for Emergency Department Diagnostic Imaging Research.

    PubMed

    Kuehl, Damon R; Berdahl, Carl T; Jackson, Tiffany D; Venkatesh, Arjun K; Mistry, Rakesh D; Bhargavan-Chatfield, Mythreyi; Raukar, Neha P; Carr, Brendan G; Schuur, Jeremiah D; Kocher, Keith E

    2015-12-01

    Administrative data are critical to describing patterns of use, cost, and appropriateness of imaging in emergency care. These data encompass a range of source materials that have been collected primarily for a nonresearch use: documenting clinical care (e.g., medical records), administering care (e.g., picture archiving and communication systems), or financial transactions (e.g., insurance claims). These data have served as the foundation for large, descriptive studies that have documented the rise and expanded role of diagnostic imaging in the emergency department (ED). This article summarizes the discussions of the breakout session on the use of administrative data for emergency imaging research at the May 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The authors describe the areas where administrative data have been applied to research evaluating the use of diagnostic imaging in the ED, the common sources for these data, and the strengths and limitations of administrative data. Next, the future role of administrative data is examined for answering key research questions in an evolving health system increasingly focused on measuring appropriateness, ensuring quality, and improving value for health spending. This article specifically focuses on four thematic areas: data quality, appropriateness and value, special populations, and policy interventions.

  17. Advanced digital methods for solid propellant burning rate determination

    NASA Astrophysics Data System (ADS)

    Jones, Daniel A.

    The work presented here is a study of a digital method for determining the combustion bomb burning rate of a fuel-rich gas generator propellant sample using the ultrasonic pulse-echo technique. The advanced digital method, which places user defined limits on the search for the ultrasonic echo from the burning surface, is computationally faster than the previous cross correlation method, and is able to analyze data for this class of propellant that the previous cross correlation data reduction method could not. For the conditions investigated, the best fit burning rate law at 800 psi from the ultrasonic technique and advanced cross correlation method is within 3 percent of an independent analysis of the same data, and is within 5 percent of the best fit burning rate law found from parallel research of the same propellant in a motor configuration.

  18. Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, K.V.; Karra, S.R.; Berning, D.E.; Smith, C.J.; Volkert, W.A.; Ketring, A.R.

    1999-01-05

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand. 21 figs.

  19. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

    1998-12-01

    A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

  20. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOEpatents

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  1. Depression and Spinal Cord Injury: A Review of Diagnostic Methods for Depression, 1985 to 2000.

    ERIC Educational Resources Information Center

    Skinner, Amy L.; Armstrong, Kevin J.; Rich, John

    2003-01-01

    Studies of depression in individuals with spinal cord injuries (SCI) over a 15-year period were examined to determine if researchers used consistent diagnostic measures. The Beck Depression Inventory was the most frequently used instrument, but there was inconsistency among methods employed and disagreement regarding the inclusion of somatic…

  2. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  3. Recent advances in optical measurement methods in physics and chemistry

    SciTech Connect

    Gerardo, J.B.

    1985-01-01

    Progress being made in the development of new scientific measurement tools based on optics and the scientific advances made possible by these new tools is impressive. In some instances, new optical-based measurement methods have made new scientific studies possible, while in other instances they have offered an improved method for performing these studies, e.g., better signal-to-noise ratio, increased data acquisition rate, remote analysis, reduced perturbation to the physical or chemical system being studied, etc. Many of these advances were made possible by advances in laser technology - spectral purity, spectral brightness, tunability, ultrashort pulse width, amplitude stability, etc. - while others were made possible by improved optical components - single-made fibers, modulators, detectors, wavelength multiplexes, etc. Attention is limited to just a few of many such accomplishments made recently at Sandia. 17 references, 16 figures.

  4. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  5. 7 CFR 27.92 - Method of payment; advance deposit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27.92 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD...

  6. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  7. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  8. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.

  9. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  10. Advances in diagnostic and treatment options in patients with fibromyalgia syndrome

    PubMed Central

    Gur, Ali; Oktayoglu, Pelin

    2009-01-01

    Fibromyalgia (FM) is characterized as a chronic, painful, noninflammatory syndrome affecting the musculoskeletal system. In addition to pain, common co-morbid symptoms associated with FM include sleep disturbances, fatigue, morning stiffness, affective disorders, chronic daily headache, dyscognition, irritable bowel syndrome, and irritable bladder. Fibromyalgia is usually classified by application of the American College of Rheumatology (ACR) criteria. Although these criteria are accepted among investigators who agree with the concept of fibromyalgia, they do so with some reservations. Tender points and widespread pain alone does not describe the esence of fibromyalgia. New diagnostic tools including either clinical or radiological components are studied to diminish these problems. Although various pharmacological solutions have been studied for treating fibromyalgia, no single drug or groups of drugs have proved to be useful in treating fibromyalgia patients. Recently, three drugs, pregabalin, duloxetine and milnacipran, were approved for the treatment of FM by the US Food and Drug Administration (FDA). Novel therapeutic approaches to the management of FM include cannabinoids, sodium channel blockade and new generation antiepileptics. This review evaluates both new diagnostic tools, including clinical or radiological regimes, and tries to highlight the efficacy of medicinal and nonmedicinal treatments with new therapeutic approaches in the management of FM with a wide perspective.

  11. An Epidemiological Survey of Cachexia in Advanced Cancer Patients and Analysis on Its Diagnostic and Treatment Status.

    PubMed

    Sun, Lei; Quan, Xiao-Qing; Yu, Shiying

    2015-01-01

    Recently, an international consensus diagnostic criterion for cancer cachexia was proposed. The aim of the study is to assess the prevalence of cachexia in patients with advanced cancer and to assess the current status of the diagnosis and management of cancer cachexia. A total of 390 patients with advanced cancer were included. There were 140 patients with cachexia and the prevalence was 35.9%. The prevalence was highest in pancreatic cancer (88.9%), followed by gastric cancer (76.5%) and esophageal cancer (52.9%). Sixty-three patients with cancer cachexia have CT scans available for muscle mass evaluation and 98.4% were sarcopenic. Cachectic patients have a significantly lower overall quality of life and a higher symptom burden. According to oncology physicians, only 33 patients were considered to have cancer cachexia. The false negative rate amounted to 76.4%. The positive rate was related to the body mass index and Eastern Cooperative Oncology Group performance status of the patients. There were few types of pharmacological approaches for cancer cachexia and more than half of cachectic patients did not receive any anticachexia treatment. These results indicate that the prevalence of cachexia in advanced cancer patients was high. However, cancer cachexia was rarely recognized and clinical management for cancer cachexia was very inadequate. PMID:26317149

  12. Advances of vibrational spectroscopic methods in phytomics and bioanalysis.

    PubMed

    Huck, Christian W

    2014-01-01

    During the last couple of years great advances in vibrational spectroscopy including near-infrared (NIR), mid-infrared (MIR), attenuated total reflection (ATR) and imaging and also mapping techniques could be achieved. On the other hand spectral treatment features have improved dramatically allowing filtering out relevant information from spectral data much more efficiently and providing new insights into the biochemical composition. These advances offer new possible quality control strategies in phytomics and enable to get deeper insights into biochemical background in terms of medicinal relevant questions. It is the aim of the present article pointing out the technical and methodological advancements in the NIR and MIR field and to demonstrate the individual methods efficiency by discussing distinct selected applications.

  13. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  14. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  15. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  16. Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2005-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.

  17. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  18. Advanced diagnostic imaging in privately insured patients: recent trends in utilization and payments.

    PubMed

    Horný, Michal; Burgess, James F; Horwitt, Jedediah; Cohen, Alan B

    2014-07-01

    Recent studies have reported that the rate of growth in utilization of noninvasive diagnostic imaging has slowed, with a concomitant reduction in total payments to providers in the Medicare Part B fee-for-service population. Utilization and payment growth trends in commercially insured populations, however, are not as well understood. We used the Truven Health Analytics MarketScan® Commercial Claims and Encounters database containing more than 29 million individuals to investigate commercially insured population trends in utilization of and payments for CT, MRI, PET, and ultrasound procedures in the years 2007-2011. We found that imaging use--after a brief downturn in 2010--rose again in 2011, coupled with substantial increases in adjusted payments for all four imaging modalities, raising concerns about future efforts to stem growth in imaging use and associated spending.

  19. 30-kW class Arcjet Advanced Technology Transition Demonstration (ATTD) flight experiment diagnostic package

    NASA Astrophysics Data System (ADS)

    Kriebel, M. M.; Stevens, N. J.

    1992-07-01

    TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.

  20. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  1. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  2. Improved method of HIPOT testing of advanced ignition system product

    SciTech Connect

    Baker, P.C.

    1992-04-01

    A new method of high potential (HIPOT) testing of advanced ignition system (AIS) product was developed. The new incorporated using a silver-filled RTV silicone as the electrodes of the HIPOT tester instead of the preformed, semi-rigid aluminum electrodes of the current tester. Initial results indicate that the developed method was more sensitive to the testing requirements of the HIPOT test. A patent for the combination of the material used and the method of testing developed was attempted but was withdrawn following a patent search by the US Patent Office.

  3. High resolution and high definition anorectal manometry and pressure topography: diagnostic advance or a new kid on the block?

    PubMed

    Lee, Yeong Yeh; Erdogan, Askin; Rao, Satish S C

    2013-12-01

    The recent development of closely spaced circumferential solid state transducers has paved the way for novel technology that includes high resolution anorectal manometry and topography (HRAM) and 3-D high definition anorectal manometry (HDAM). These techniques are increasingly being used for the assessment of anorectal neuromuscular function. However, whether they constitute a diagnostic advantage or a mere refinement of an old technology is unknown. Unlike the traditional manometry that utilized 3 or 6 unidirectional sensors, the closely spaced circumferential arrangement facilitates superior spatiotemporal mapping of pressures at rest and during various dynamic maneuvers. HDAM can provide knowledge of the three muscles that govern the anal continence namely, the puborectalis, and the internal and external anal sphincters, and can show how they mediate the rectoanal inhibitory reflex and sensorimotor responses and the spatiotemporal orientation of these muscles. Also, anal sphincter defects can be mapped and readily detected using 3-D technology. Similarly, HRAM has facilitated confirmation and development of phenotypes of dyssynergic defecation. Recently, normative data have also been reported with HRAM and HDAM, together with the influence of age, gender, and test instructions. The greater yield of anatomical and functional information may supersede the limitations of costs, fragility, and shorter life-span associated with these new techniques. Thus, HDAM and HRAM are not just new gadgets but constitute a significant and novel diagnostic advance. However, more prospective studies are needed to better define anorectal disorders with these techniques and to confirm their superiority.

  4. Diagnostic utility of the cell block method versus the conventional smear study in pleural fluid cytology

    PubMed Central

    Shivakumarswamy, Udasimath; Arakeri, Surekha U; Karigowdar, Mahesh H; Yelikar, BR

    2012-01-01

    Background: The cytological examinations of serous effusions have been well-accepted, and a positive diagnosis is often considered as a definitive diagnosis. It helps in staging, prognosis and management of the patients in malignancies and also gives information about various inflammatory and non-inflammatory lesions. Diagnostic problems arise in everyday practice to differentiate reactive atypical mesothelial cells and malignant cells by the routine conventional smear (CS) method. Aims: To compare the morphological features of the CS method with those of the cell block (CB) method and also to assess the utility and sensitivity of the CB method in the cytodiagnosis of pleural effusions. Materials and Methods: The study was conducted in the cytology section of the Department of Pathology. Sixty pleural fluid samples were subjected to diagnostic evaluation for over a period of 20 months. Along with the conventional smears, cell blocks were prepared by using 10% alcohol–formalin as a fixative agent. Statistical analysis with the ‘z test’ was performed to identify the cellularity, using the CS and CB methods. Mc. Naemer's χ2test was used to identify the additional yield for malignancy by the CB method. Results: Cellularity and additional yield for malignancy was 15% more by the CB method. Conclusions: The CB method provides high cellularity, better architectural patterns, morphological features and an additional yield of malignant cells, and thereby, increases the sensitivity of the cytodiagnosis when compared with the CS method. PMID:22438610

  5. Methods and recommendations for evaluating and reporting a new diagnostic test.

    PubMed

    Hess, A S; Shardell, M; Johnson, J K; Thom, K A; Strassle, P; Netzer, G; Harris, A D

    2012-09-01

    No standardized guidelines exist for the biostatistical methods appropriate for studies evaluating diagnostic tests. Publication recommendations such as the STARD statement provide guidance for the analysis of data, but biostatistical advice is minimal and application is inconsistent. This article aims to provide a self-contained, accessible resource on the biostatistical aspects of study design and reporting for investigators. For all dichotomous diagnostic tests, estimates of sensitivity and specificity should be reported with confidence intervals. Power calculations are strongly recommended to ensure that investigators achieve desired levels of precision. In the absence of a gold standard reference test, the composite reference standard method is recommended for improving estimates of the sensitivity and specificity of the test under evaluation.

  6. Methods and recommendations for evaluating and reporting a new diagnostic test

    PubMed Central

    Shardell, M.; Johnson, J. K.; Thom, K. A.; Strassle, P.; Netzer, G.; Harris, A. D.

    2013-01-01

    No standardized guidelines exist for the biostatistical methods appropriate for studies evaluating diagnostic tests. Publication recommendations such as the STARD statement provide guidance for the analysis of data, but biostatistical advice is minimal and application is inconsistent. This article aims to provide a self-contained, accessible resource on the biostatistical aspects of study design and reporting for investigators. For all dichotomous diagnostic tests, estimates of sensitivity and specificity should be reported with confidence intervals. Power calculations are strongly recommended to ensure that investigators achieve desired levels of precision. In the absence of a gold standard reference test, the composite reference standard method is recommended for improving estimates of the sensitivity and specificity of the test under evaluation. PMID:22476385

  7. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  8. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    SciTech Connect

    Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M.; Strum, G.

    2012-08-15

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  9. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method.

    PubMed

    Hurvitz, G; Ehrlich, Y; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  10. Update in salivary gland cytopathology: Recent molecular advances and diagnostic applications.

    PubMed

    Pusztaszeri, Marc P; Faquin, William C

    2015-07-01

    Salivary gland tumors (SGT) are notorious for their extraordinary diversity and for the morphological overlap that exists between many of these entities. Fine-needle aspiration biopsy (FNAB) has a well-established role in the evaluation of patients with a salivary gland lesion, helping to guide clinical management. However, salivary gland FNAB has several limitations and does not allow for a specific diagnosis in some cases. For these reasons, salivary gland FNAB is considered one of the most challenging areas in cytopathology. Over the last decade, new salivary gland entities have been recognized, enlarging SGT diversity and complexity even more. In addition, a subset of SGT, including common entities such as pleomorphic adenoma and uncommon new entities such as mammary analog secretory carcinoma, have been characterized cytogenetically by the presence of specific translocations. The molecular consequences of these translocations and their potential prognostic and therapeutic values are not yet well characterized. However, these translocations and their resulting fusion oncogenes and oncoproteins can be used as diagnostic clues in salivary gland FNAB material in order to overcome the limitations of cytomorphological evaluation alone. In this review, we focus on SGTs currently known to harbor translocations and fusion genes, including uncommon and recently recognized entities, and discuss their potential application to salivary gland FNAB.

  11. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    SciTech Connect

    Ul'yanov, S S; Laskavyi, V N; Glova, Alina B; Polyanina, T I; Ul'yanova, O V; Fedorova, V A; Ul'yanov, A S

    2012-05-31

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  12. On line diagnostics and self-tuning method for the fluidized bed temperature controller

    NASA Astrophysics Data System (ADS)

    Porzuczek, Jan

    2016-03-01

    The paper presents the method of on-line diagnostics of the bed temperature controller for the fluidized bed boiler. Proposed solution is based on the methods of statistical process control. Detected decrease of the bed temperature control quality is used to activate the controller self-tuning procedure. The algorithm that provides optimal tuning of the bed temperature controller is also proposed. The results of experimental verification of the presented method is attached. Experimental studies were carried out using the 2 MW bubbling fluidized bed boiler.

  13. Adaptation of LASCA method for diagnostics of malignant tumours in laboratory animals

    NASA Astrophysics Data System (ADS)

    Ul'yanov, S. S.; Laskavyi, V. N.; Glova, Alina B.; Polyanina, T. I.; Ul'yanova, O. V.; Fedorova, V. A.; Ul'yanov, A. S.

    2012-05-01

    The LASCA method is adapted for diagnostics of malignant neoplasms in laboratory animals. Tumours are studied in mice of Balb/c inbred line after inoculation of cells of syngeneic myeloma cell line Sp.2/0 — Ag.8. The appropriateness of using the tLASCA method in tumour investigations is substantiated; its advantages in comparison with the sLASCA method are demonstrated. It is found that the most informative characteristic, indicating the presence of a tumour, is the fractal dimension of LASCA images.

  14. Method for remote diagnostics of the internal structure of layered media

    SciTech Connect

    Lychagov, V V; Kal'yanov, A L; Ryabukho, V P; Lyakin, D V

    2008-06-30

    The method of autocorrelation low coherence interferometry is proposed for diagnostics of inhomogeneities and the internal structure of layered technical and biological samples. In this method the low coherence optical field reflected from the layered sample is analysed by using a Michelson interferometer. Because the object is outside the interferometer, the distance between the interferometer and the object under study is not limited and thus the object can move during the measurements. Theoretical substantiation of the autocorrelation method for media with discrete and continuous optical structure modifications is presented. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  15. The analysis of diagnostics possibilities of the Dual- Drive electric power steering system using diagnostics scanner and computer method

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Dobaj, K.

    2016-09-01

    The article presents the analysis of diagnostics possibilities of electric power steering system using computer diagnostics scanner. Several testing attempts were performed. There were analyzed the changes of torque moment exerted on steering wheel by the driver and the changes of the angle of rotation steering wheel accompanying them. The tests were conducted in variable conditions comprising wheel load and the friction coefficient of tyre road interaction. Obtained results enabled the analysis of the influence of changeable operations conditions, possible to acquire in diagnostics scanners of chosen parameters of electric power steering system. Moreover, simulation model of operation, electric drive power steering system with the use of the Matlab simulation software was created. The results of the measurements obtained in road conditions served to verify this model. Subsequently, model response to inputs change of the device was analyzed and its reaction to various constructional and exploitative parameters was checked. The entirety of conducted work constitutes a step to create a diagnostic monitor possible to use in self-diagnosis of electric power steering system.

  16. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs

    PubMed Central

    Molinaro, Marilisa; Ameri, Pietro; Marone, Giancarlo; Petretta, Mario; Abete, Pasquale; Di Lisa, Fabio; De Placido, Sabino; Bonaduce, Domenico; Tocchetti, Carlo G.

    2015-01-01

    Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure. PMID:26583088

  17. Advances in Huntington's disease diagnostics: development of a standard reference material.

    PubMed

    Levin, Barbara C; Richie, Kristy L; Jakupciak, John P

    2006-07-01

    Huntington's disease (HD) is a neurodegenerative disease that affects four to seven individuals per 100,000. The onset of symptoms usually begins in middle age, although approximately 5% become symptomatic as juveniles. Death occurs approximately 15 years following the onset of symptoms, which include choreic movements, cognitive decline and psychiatric changes. HD is an autosomal dominant inherited disease that is associated with an expansion of a trinucleotide (CAG) repeat located on chromosome 4. Physicians rely on a positive family history, and diagnostic and genetic tests to detect the expansion in the number of CAG trinucleotide repeats in the HD gene to confirm the diagnosis. More than 99% of HD patients have 40 or more CAG triplet repeats and, therefore, targeted mutational analysis is greater than 99% sensitive. Individuals with 26 triplet repeats or less are normal, and while those with 27-35 repeats may not demonstrate symptoms themselves, their offspring may have the disease. Individuals with 36-39 repeats may or may not exhibit symptoms. The College of American Pathology/American College of Medical Genetics Biochemical and Molecular Genetics Resource Committee has emphasized the need to standardize the methodology for the determination of the accurate number of CAG repeats. This will prevent false-positive or -negative results when conducting predictive or prenatal testing of at-risk individuals. The National Institute of Standards and Technology is developing a standard reference material to provide these positive and negative controls needed by clinical testing laboratories. The use of a HD standard reference material will provide the quality control and assurance that data from different laboratories are both comparable and accurate.

  18. Advances in Statistical Methods for Substance Abuse Prevention Research

    PubMed Central

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  19. The advance of non-invasive detection methods in osteoarthritis

    NASA Astrophysics Data System (ADS)

    Dai, Jiao; Chen, Yanping

    2011-06-01

    Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.

  20. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism.

    PubMed

    Nieciecki, Michał; Cacko, Marek; Królicki, Leszek

    2015-12-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated.

  1. Development of a diagnostic method applicable to various serotypes of hantavirus infection in rodents.

    PubMed

    Sanada, Takahiro; Kariwa, Hiroaki; Saasa, Ngonda; Yoshikawa, Keisuke; Seto, Takahiro; Morozov, Vyacheslav G; Tkachenko, Evgeniy A; Ivanov, Leonid I; Yoshimatsu, Kumiko; Arikawa, Jiro; Yoshii, Kentaro; Takashima, Ikuo

    2012-09-01

    Antigenic diversity among different hantaviruses requires a variety of reagents for diagnosis of hantavirus infection. To develop a diagnostic method applicable to various hantavirus infections with a single set of reagents, we developed an enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid proteins of three hantaviruses, Amur, Hokkaido, and Sin Nombre viruses. This novel cocktail antigen-based ELISA enabled detection of antibodies against Hantaan, Seoul, Amur, Puumala, and Sin Nombre viruses in immunized laboratory animals. In wild rodent species, including Apodemus, Rattus, and Myodes, our ELISA detected antibodies against hantaviruses with high sensitivity and specificity. These data suggest that our novel diagnostic ELISA is a useful tool for screening hantavirus infections and could be effectively utilized for serological surveillance and quarantine purposes.

  2. Recent Advances in Point-of-Care Diagnostics for Cardiac Markers

    PubMed Central

    2014-01-01

    National and international cardiology guidelines have recommended a 1-hour turnaround time for reporting results of cardiac troponin to emergency department personnel, measured from the time of blood collection to reporting. Use of point-of-care testing (POCT) can reduce turnaround times for cardiac markers, but current devices are not as precise or sensitive as central laboratory assays. The gap is growing as manufacturers of mainframe immunoassay instruments have or will release troponin assays that are even higher than those currently available. These assays have analytical sensitivity that enables detection of nearly 100% of all healthy subjects which is not possible for current POCT assays. Use of high sensitivity troponin results in a lower value for the 99th percentile of a healthy population. Clinically, this enables for the detection of more cases of myocardial injury. In order to compete analytically, next generation POCT assays will to make technologic advancements, such as the use of microfluidic to better control sample delivery, nanoparticles or nanotubes to increase the surface-to-volume ratios for analytes and antibodies, and novel detection schemes such as chemiluminescence and electrochemical detectors to enhance analytical sensitivity. Multi-marker analysis using POCT is also on the horizon for tests that complement cardiac troponin.

  3. [Forensic medical diagnostics of intra-vitality of the strangulation mark by morphological methods].

    PubMed

    Bogomolov, D V; Zbrueva, Yu V; Putintsev, V A; Denisova, O P

    2016-01-01

    The objective of the present study WaS to overview the current domestic and foreign literature concerning the up-to-date methods employed for the expert evaluation of intra-vitality of the strangulation mark. The secondary objective was to propose the new approaches for addressing this problem. The methods of expert diagnostics with a view to determining the time of infliction of injuries as exemplified by mechanical asphyxia are discussed. It is concluded that immunohistochemical and morphometric studies provide the most promising tools for the evaluation of intra-vitality of the strangulation mark for the purpose of forensic medical expertise.

  4. [Forensic medical diagnostics of intra-vitality of the strangulation mark by morphological methods].

    PubMed

    Bogomolov, D V; Zbrueva, Yu V; Putintsev, V A; Denisova, O P

    2016-01-01

    The objective of the present study WaS to overview the current domestic and foreign literature concerning the up-to-date methods employed for the expert evaluation of intra-vitality of the strangulation mark. The secondary objective was to propose the new approaches for addressing this problem. The methods of expert diagnostics with a view to determining the time of infliction of injuries as exemplified by mechanical asphyxia are discussed. It is concluded that immunohistochemical and morphometric studies provide the most promising tools for the evaluation of intra-vitality of the strangulation mark for the purpose of forensic medical expertise. PMID:27358932

  5. Inversion methods for the measurements of MHD-like density fluctuations by Heavy Ion Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Nedzelsky, I. S.

    2015-09-01

    We report here on the recent developments in the deconvolution of the path integral effects for the study of MHD pressure-like fluctuations measured by Heavy Ion Beam Diagnostic. In particular, we develop improved methods to account for and remove the path integral effect on the determination of the ionization generation factors, including the double ionization of the primary beam. We test the method using the HIBD simulation code which computes the real beam trajectories and attenuations due to electron impact ionization for any selected synthetic profiles of plasma current, plasma potential, electron temperature and density. Simulations have shown the numerical method to be highly effective in ISTTOK within an overall accuracy of a few percent (< 3%). The method here presented can effectively reduce the path integral effects and may serve as the basis to develop improved retrieving techniques for plasma devices working even in higher density ranges. The method is applied to retrieve the time evolution and spatial structure of m=1 and m=2 modes. The 2D MHD mode-like structure is reconstructed by means of a spatial projection of all 1D measurements obtained during one full rotation of the mode. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  6. Novel glass inspection method for advanced photomask blanks

    NASA Astrophysics Data System (ADS)

    Tanabe, Masaru; Kikuchi, Toshiharu; Hashimoto, Masahiro; Ohkubo, Yasushi

    2007-05-01

    Recently, extremely-high-quality-quartz substrates have been demanded for advancing ArF-lithography. HOYA has developed a novel inspection method for interior defects as well as surface defects. The total internal reflection of the substrate is employed to produce an ideal dark field illumination. The novel inspection method can detect a "nano-pit" of 12nm-EDS, the Equivalent of the Diameter of a Sphere (EDS). It will meet the sensitivity for 32nm node and beyond. Moreover, a type of unique defect is detected, which induces Serious Transmittance Error for Arf-LiTHography. We call it the "STEALTH" defect. It is a killer defect in wafer printing; but it cannot be detected with any conventional inspection in the mask-making process so far. In this paper, the performance of the novel inspection method for quartz substrates and the investigation of "STEALTH" are reported.

  7. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  8. Personality Assessment in the Diagnostic Manuals: On Mindfulness, Multiple Methods, and Test Score Discontinuities

    PubMed Central

    Bornstein, Robert F.

    2015-01-01

    Recent controversies have illuminated the strengths and limitations of different frameworks for conceptualizing personality pathology (e.g., trait perspectives, categorical models), and stimulated debate regarding how best to diagnose personality disorders (PDs) in DSM-5, and in other diagnostic systems (i.e., the International Classification of Diseases, the Psychodynamic Diagnostic Manual). In this article I argue that regardless of how PDs are conceptualized and which diagnostic system is employed, multi-method assessment must play a central role in PD diagnosis. By complementing self-reports with evidence from other domains (e.g., performance-based tests), a broader range of psychological processes are engaged in the patient, and the impact of self-perception and self-presentation biases may be better understood. By providing the assessor with evidence drawn from multiple modalities, some of which provide converging patterns and some of which yield divergent results, the assessor is compelled to engage this evidence more deeply. The mindful processing that ensues can help minimize the deleterious impact of naturally occurring information processing bias and distortion on the part of the clinician (e.g., heuristics, attribution errors), bringing greater clarity to the synthesis and integration of assessment data. PMID:25856565

  9. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    , 3D scan time of 500 micros was achieved with a trapezoidal scan profile, generating five new slices per sweep at 1000 Hz scan rate. The system was applied to 3 wt.% and 6 wt.% HPC methanol gelled droplet combustion in 1 atm, and at room temperature. The system had sufficient spatial and temporal resolution to provide a more complete picture of the complex asymmetrical and random flame structure of the gelled droplet combustion. However, the technique had limited capabilities for resolving the impinging jet spray combustion flow field. For the ammonium perchlorate (AP)/ hydroxyl-terminated polybutadiene (HTPB) combustion study with 3D OH PLIF, 40 wt.% coarse AP crystal (400 microm), 40 wt.% fine AP crystal (20 microm), and 20 wt.% HTPB binder formulation with pellet diameter of 6.35 mm was used. The scan rate was reduced to 250 Hz, resulting in 20 images generated per scan, 500 scans per second, and 2 ms scan time, with 1.5 mm scan distance. The test pressure ranged from 3.4 - 6.1 atm of nitrogen, with test temperature at room condition. The results from 3D OH PLIF of AP/HTPB combustion showed a diffusion flame structure, with a lack of OH in the middle of the flame. This is the first time a direct observation of the diffusion flame and the OH structure have been made at elevated pressure. The preliminary results show a good agreement with the BDP model, with a second order increase in the diffusion flame height with increased coarse crystal diameter. Although the scan of 3D OH PLIF is non-instantaneous, no other systems in the literature can scan reacting flow field at such a high 3D repetition rate. Since the identification of the transient flame patterns is facilitated by the ability to visualize the flame front at multiple planes, the 3D OH PLIF technique offers great promise as a diagnostic for dynamic combustion events.

  10. Vertical root fracture: Biological effects and accuracy of diagnostic imaging methods

    PubMed Central

    Baageel, Turki M.; Allah, Emad Habib; Bakalka, Ghaida T.; Jadu, Fatima; Yamany, Ibrahim; Jan, Ahmed M.; Bogari, Dania F.; Alhazzazi, Turki Y.

    2016-01-01

    This review assessed the most up-to-date literature on the accuracy of detecting vertical root fractures (VRFs] using the currently available diagnostic imaging methods. In addition, an overview of the biological and clinical aspects of VRFs will also be discussed. A systematic review of the literature was initiated in December of 2015 and then updated in May of 2016. The electronic databases searched included PubMed, Emabse, Ovid, and Google Scholar. An assessment of the methodological quality was performed using a modified version of the quality assessment of diagnostic accuracy studies tool. Twenty-two studies were included in this systematic review after applying specific inclusion and exclusion criteria. Of those, 12 favored using cone beam computed tomography (CBCT) for detecting VRF as compared to periapical radiographs, whereas 5 reported no differences between the two methods. The remaining 5 studies confirmed the advantages associated with using CBCT when diagnosing VRF and described the parameters and limitations associated with this method, but they were not comparative studies. In conclusion, overwhelming evidence suggests that the use of CBCT is a preferred method for detecting VRFs. Nevertheless, additional well controlled and high quality studies are needed to produce solid evidence and guidelines to support the routine use of CBCT in the diagnosis of VRFs as a standard of care. PMID:27652254

  11. Vertical root fracture: Biological effects and accuracy of diagnostic imaging methods

    PubMed Central

    Baageel, Turki M.; Allah, Emad Habib; Bakalka, Ghaida T.; Jadu, Fatima; Yamany, Ibrahim; Jan, Ahmed M.; Bogari, Dania F.; Alhazzazi, Turki Y.

    2016-01-01

    This review assessed the most up-to-date literature on the accuracy of detecting vertical root fractures (VRFs] using the currently available diagnostic imaging methods. In addition, an overview of the biological and clinical aspects of VRFs will also be discussed. A systematic review of the literature was initiated in December of 2015 and then updated in May of 2016. The electronic databases searched included PubMed, Emabse, Ovid, and Google Scholar. An assessment of the methodological quality was performed using a modified version of the quality assessment of diagnostic accuracy studies tool. Twenty-two studies were included in this systematic review after applying specific inclusion and exclusion criteria. Of those, 12 favored using cone beam computed tomography (CBCT) for detecting VRF as compared to periapical radiographs, whereas 5 reported no differences between the two methods. The remaining 5 studies confirmed the advantages associated with using CBCT when diagnosing VRF and described the parameters and limitations associated with this method, but they were not comparative studies. In conclusion, overwhelming evidence suggests that the use of CBCT is a preferred method for detecting VRFs. Nevertheless, additional well controlled and high quality studies are needed to produce solid evidence and guidelines to support the routine use of CBCT in the diagnosis of VRFs as a standard of care.

  12. Vertical root fracture: Biological effects and accuracy of diagnostic imaging methods.

    PubMed

    Baageel, Turki M; Allah, Emad Habib; Bakalka, Ghaida T; Jadu, Fatima; Yamany, Ibrahim; Jan, Ahmed M; Bogari, Dania F; Alhazzazi, Turki Y

    2016-08-01

    This review assessed the most up-to-date literature on the accuracy of detecting vertical root fractures (VRFs] using the currently available diagnostic imaging methods. In addition, an overview of the biological and clinical aspects of VRFs will also be discussed. A systematic review of the literature was initiated in December of 2015 and then updated in May of 2016. The electronic databases searched included PubMed, Emabse, Ovid, and Google Scholar. An assessment of the methodological quality was performed using a modified version of the quality assessment of diagnostic accuracy studies tool. Twenty-two studies were included in this systematic review after applying specific inclusion and exclusion criteria. Of those, 12 favored using cone beam computed tomography (CBCT) for detecting VRF as compared to periapical radiographs, whereas 5 reported no differences between the two methods. The remaining 5 studies confirmed the advantages associated with using CBCT when diagnosing VRF and described the parameters and limitations associated with this method, but they were not comparative studies. In conclusion, overwhelming evidence suggests that the use of CBCT is a preferred method for detecting VRFs. Nevertheless, additional well controlled and high quality studies are needed to produce solid evidence and guidelines to support the routine use of CBCT in the diagnosis of VRFs as a standard of care. PMID:27652254

  13. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.

  14. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  15. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  16. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    SciTech Connect

    Piccinini, M. Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M.; Ambrosini, F.; Nichelatti, E.

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  17. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  18. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  19. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  20. New diagnostic methods for laser plasma- and microwave-enhanced combustion.

    PubMed

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-08-13

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  1. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  2. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia

    PubMed Central

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-01-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called ‘gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing. PMID:21811306

  3. White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods.

    PubMed

    McGuire, Liam P; Turner, James M; Warnecke, Lisa; McGregor, Glenna; Bollinger, Trent K; Misra, Vikram; Foster, Jeffrey T; Frick, Winifred F; Kilpatrick, A Marm; Willis, Craig K R

    2016-03-01

    White-nose syndrome is caused by the fungus Pseudogymnoascus destructans and has killed millions of hibernating bats in North America but the pathophysiology of the disease remains poorly understood. Our objectives were to (1) assess non-destructive diagnostic methods for P. destructans infection compared to histopathology, the current gold-standard, and (2) to evaluate potential metrics of disease severity. We used data from three captive inoculation experiments involving 181 little brown bats (Myotis lucifugus) to compare histopathology, quantitative PCR (qPCR), and ultraviolet fluorescence as diagnostic methods of P. destructans infection. To assess disease severity, we considered two histology metrics (wing area with fungal hyphae, area of dermal necrosis), P. destructans fungal load (qPCR), ultraviolet fluorescence, and blood chemistry (hematocrit, sodium, glucose, pCO2, and bicarbonate). Quantitative PCR was most effective for early detection of P. destructans, while all three methods were comparable in severe infections. Correlations among hyphae and necrosis scores, qPCR, ultraviolet fluorescence, blood chemistry, and hibernation duration indicate a multi-stage pattern of disease. Disruptions of homeostasis occurred rapidly in late hibernation. Our results provide valuable information about the use of non-destructive techniques for monitoring, and provide novel insight into the pathophysiology of white-nose syndrome, with implications for developing and implementing potential mitigation strategies. PMID:26957435

  4. Combined Use of Cytogenetic and Molecular Methods in Prenatal Diagnostics of Chromosomal Abnormalities

    PubMed Central

    Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Mehinovic, Lejla; Konjhodzic, Rijad

    2015-01-01

    Aim: The aim of prenatal diagnostics is to provide information of the genetic abnormalities of the fetus early enough for the termination of pregnancy to be possible. Chromosomal abnormalities can be detected in an unborn child through the use of cytogenetic, molecular- cytogenetic and molecular methods. In between them, central spot is still occupied by cytogenetic methods. In cases where use of such methods is not informative enough, one or more molecular cytogenetic methods can be used for further clarification. Combined use of the mentioned methods improves the quality of the final findings in the diagnostics of chromosomal abnormalities, with classical cytogenetic methods still occupying the central spot. Material and methods: Conducted research represent retrospective-prospective study of a four year period, from 2008 through 2011. In the period stated, 1319 karyotyping from amniotic fluid were conducted, along with 146 FISH analysis. Results: Karyotyping had detected 20 numerical and 18 structural aberrations in that period. Most common observed numerical aberration were Down syndrome (75%), Klinefelter syndrome (10%), Edwards syndrome, double Y syndrome and triploidy (5% each). Within observed structural aberrations more common were balanced chromosomal aberrations then non balanced ones. Most common balanced structural aberrations were as follows: reciprocal translocations (60%), Robertson translocations (13.3%), chromosomal inversions, duplications and balanced de novo chromosomal rearrangements (6.6% each). Conclusion: With non- balanced aberrations observed in the samples of amniotic fluid, non- balanced translocations, deletions and derived chromosomes were equally represented. Number of detected aneuploidies with FISH, prior to obtaining results with karyotyping, were 6. PMID:26005269

  5. Development of Advanced Beam Halo Diagnostics at the Jefferson Lab Free-Electron-Laser Facility

    SciTech Connect

    Shukui Zhang, Stephen Benson, Dave Douglas, Frederick Wilson, Hao Zhang, Anatoly Shkvarunets, Ralph Fiorito

    2011-03-01

    High average current and high brightness electron beams are needed for many applications. At the Jefferson Lab FEL facility, the search for dark matter with the FEL laser beam has produced some interesting results, and a second very promising experiment called DarkLight, using the JLab Energy-recovery-linac (ERL) machine has been put forward. Although the required beam current has been achieved on this machine, one key challenge is the management of beam halo. At the University of Md. (UMD) we have demonstrated a high dynamic range halo measurement method using a digital micro-mirror array device (DMD). A similar system has been established at the JLab FEL facility as a joint effort by UMD and JLab to measure the beam halo on the high current ERL machine. Preliminary experiments to characterize the halo were performed on the new UV FEL. In this paper, the limitations of the present system will be analyzed and a discussion of other approaches (such as an optimized coronagraph) for further extending the dynamic range will be presented. We will also discuss the possibility of performing both longitudinal and transverse (3D) halo measurements together on a single system.

  6. Pancreaticobiliary reflux as a high-risk factor for biliary malignancy: Clinical features and diagnostic advancements

    PubMed Central

    Sugita, Reiji

    2015-01-01

    Pancreaticobiliary junction is composed of complex structure with which biliary duct and pancreatic duct assemble and go out into the ampulla of Vater during duodenum wall surrounding the sphincter of Oddi. Although the sphincter of Oddi functionally prevents the reflux of pancreatic juice, pancreaticobiliary reflux (PBR) occurs when function of the sphincter of Oddi halt. The anatomically abnormal junction is termed pancreaticobiliary maljunction (PBM) and is characterized by pancreatic and bile ducts joining outside of the duodenal wall. PBM is an important anatomical finding because many studies have revealed that biliary malignancies are related due to the carcinogenetic effect of the pancreatic back flow on the biliary mucosa. On the other hand, several studies have been published on the reflux of pancreatic juice into the bile duct without morphological PBM, and the correlation of such cases with biliary diseases, especially biliary malignancies, is drawing considerable attention. Although it has long been possible to diagnose PBM by various imaging modalities, PBR without PBM has remained difficult to assess. Therefore, the pathological features of PBR without PBM have not been yet fully elucidated. Lately, a new method of diagnosing PBR without PBM has appeared, and the features of PBR without PBM should soon be better understood. PMID:26167246

  7. Detecting microcalcifications in mammograms by using SVM method for the diagnostics of breast cancer

    NASA Astrophysics Data System (ADS)

    Wan, Baikun; Wang, Ruiping; Qi, Hongzhi; Cao, Xuchen

    2005-01-01

    Support vector machine (SVM) is a new statistical learning method. Compared with the classical machine learning methods, SVM learning discipline is to minimize the structural risk instead of the empirical risk of the classical methods, and it gives better generative performance. Because SVM algorithm is a convex quadratic optimization problem, the local optimal solution is certainly the global optimal one. In this paper a SVM algorithm is applied to detect the micro-calcifications (MCCs) in mammograms for the diagnostics of breast cancer that has not been reported yet. It had been tested with 10 mammograms and the results show that the algorithm can achieve a higher true positive in comparison with artificial neural network (ANN) based on the empirical risk minimization, and is valuable for further study and application in the clinical engineering.

  8. Dusty plasma diagnostics methods for charge, electron temperature, and ion density

    SciTech Connect

    Liu Bin; Goree, J.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Thomas, H. M.; Ivlev, A. V.

    2010-05-15

    Diagnostic methods are developed to measure the microparticle charge Q and two plasma parameters, electron temperature T{sub e}, and ion density n{sub i}, in the main plasma region of a dusty plasma. Using video microscopy to track microparticles yields a resonance frequency, which along with a charging model allows an estimation of Q and T{sub e}. Only measurements of microparticle position and velocity are required, unlike other methods that use measurements of T{sub e} and plasma parameters as inputs. The resonance frequency measurement can also be used with an ion drag model to estimate n{sub i}. These methods are demonstrated using a single-layer dusty plasma suspension under microgravity conditions.

  9. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  10. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. E.; Chental, Victor V.; Komov, D.; Vaculovskaya, E.; Tabolinovskaya, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikhin, V.; Loschenov, Victor B.; Meerovich, Gennady A.; Stratonnikov, A. A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, E.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  11. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures.

    PubMed

    Martinez, Raquel M; Bauerle, Elizabeth R; Fang, Ferric C; Butler-Wu, Susan M

    2014-07-01

    The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician.

  12. Evaluation of Three Rapid Diagnostic Methods for Direct Identification of Microorganisms in Positive Blood Cultures

    PubMed Central

    Martinez, Raquel M.; Bauerle, Elizabeth R.; Fang, Ferric C.

    2014-01-01

    The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician. PMID:24808235

  13. A quantitative diagnostic method for oral mucous precancerosis by Rose Bengal fluorescence spectroscopy.

    PubMed

    Zhang, Lei; Bi, Liangjia; Shi, Jinna; Zhang, Zhiguo; Cao, Wenwu; Lin, Jiang; Li, Chengzhang; Bi, Jiarui; Yu, Yang

    2013-01-01

    A novel in vivo fluorescence spectroscopic diagnostic method has been developed in an animal model to make a quantified precancer diagnosis. In the study, 40 golden hamsters were randomly divided into four groups (groups A, B, C, and D), with group A being the control group and the other three groups being inducted at different precancer stages. A 1% Rose Bengal (RB) solution was used for the fluorescence spectroscopic diagnosis. A parameter K defined as K = I(RB)/I(auto) was introduced to reflect the amount of RB in the tissue, where I(RB) and I(auto) represent the fluorescence peak intensity of the RB in the tissue and the autofluorescence intensity of tissue at 580 nm, respectively. The average K values of the four groups were calculated and statistically analyzed by analysis of variance (ANOVA), which revealed statistically significant differences within each group as well as between groups (p < 0.001). After analysis by Clementine 11.1 C&R Tree modeling (CART), the following diagnostic criteria were set: normal, K ≤ 8.91; simple hyperplasia, 8.91 < K ≤ 41.92; mild dysplasia, 41.92 < K ≤ 70.79; moderate and severe dysplasia, K >70.79. The sensitivity and specificity to detect precancerous lesions compared with scalpel biopsy were calculated. The results of this study showed that the spectrofluorometric method mediated by RB could accurately discriminate different precancer stages.

  14. BREAST: a novel method to improve the diagnostic efficacy of mammography

    NASA Astrophysics Data System (ADS)

    Brennan, P. C.; Tapia, K.; Ryan, J.; Lee, W.

    2013-03-01

    High quality breast imaging and accurate image assessment are critical to the early diagnoses, treatment and management of women with breast cancer. Breast Screen Reader Assessment Strategy (BREAST) provides a platform, accessible by researchers and clinicians world-wide, which will contain image data bases, algorithms to assess reader performance and on-line systems for image evaluation. The platform will contribute to the diagnostic efficacy of breast imaging in Australia and beyond on two fronts: reducing errors in mammography, and transforming our assessment of novel technologies and techniques. Mammography is the primary diagnostic tool for detecting breast cancer with over 800,000 women X-rayed each year in Australia, however, it fails to detect 30% of breast cancers with a number of missed cancers being visible on the image [1-6]. BREAST will monitor the mistakes, identify reasons for mammographic errors, and facilitate innovative solutions to reduce error rates. The BREAST platform has the potential to enable expert assessment of breast imaging innovations, anywhere in the world where experts or innovations are located. Currently, innovations are often being assessed by limited numbers of individuals who happen to be geographically located close to the innovation, resulting in equivocal studies with low statistical power. BREAST will transform this current paradigm by enabling large numbers of experts to assess any new method or technology using our embedded evaluation methods. We are confident that this world-first system will play an important part in the future efficacy of breast imaging.

  15. [Clinical usefulness of diagnostic methods for human papilloma virus dependent lesions].

    PubMed

    Suwalska, Anna; Owczarek, Witold; Fiedor, Piotr

    2014-02-01

    Persistent infection of Human Papilloma Virus (HPV) is confirmed necessary factor for development of cervical cancer and anogenital neoplasia. DNA HPV is detected in 96% of cervical cancer, 40% of vulvar and vaginal cancer, 90% of anal cancer and 26% of oral cavity cancer cases in general population. The most common high-risk HPV types observed in anogenital intraepithelial neoplasia or anogenital cancer are HPV 16, 18 and 45. Numerous diagnostic methods of detection of HPV infection and lesions causes by persistent HPV infection are widely used. Epidemiological data reveals correlation of incidence and mortality reduction due to cervical cancer and consequent prosecution and improvement of screening programmes based on morphological assessment of exfoliative smears. In last decade some limitations of conventional smear method were pointed out and a new diagnostic techniques were introduced: liquid-based cytology and HPV DNA testing. Combination of cytological examination and HPV DNA testing seems to be optimal solution to be introduced in large population because of combining high sensitivity of molecular test with high specificity of cytological smear. PMID:24720112

  16. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  17. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  18. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  19. Advance in methods studying the pharmacokinetics of polyphenols.

    PubMed

    Santos, Ana C; Costa, G; Veiga, F; Figueiredo, I V; Batista, M T; Ribeiro, António J

    2014-01-01

    Significant advances have been achieved during the past decade concerning the metabolism of polyphenol compounds in vitro, but scarce data has been presented about what really happens in vivo. Many studies on polyphenols to date have focused on the bioactivity of one specific molecule in aglycone form, often at supraphysiological doses, whereas foods contain complex, often poorly characterized mixtures with multiple additive or interfering activities. Whereas most studies up to the middle-late 1990s measured total aglycones in plasma and urine, after chemical or enzymatic deconjugation, or both, several recent works now report the polyphenol conjugate composition of plasma, urine, feces and/or tissues, after the administration of pure polyphenols or polyphenol-rich matrices. HPLC methods with electrochemical, mass spectrometric and fluorescence detection have adequate sensitivity. LC/UV-Vis methods have also been widely reported, but they are much less sensitive. Compared with electro-chemical and fluorescence detection, MS can quantify analytes without chromatographic separation, which leads to high throughput, presenting itself as the best choice to date. Regarding the experimental model to monitor the bioavailability of phenolic compounds, most published studies are based on human and animal models, with the majority using rodents, primates and recently the nematode Caenorhabditis elegans. This review focuses on the fundamentals of pharmacokinetic methods from the last 15 years and how the results are evaluated and validated. The types of analytical methods, animal models and biological matrices were used to better elucidate pharmacokinetics of polyphenols.

  20. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  1. Diagnostic methods of a bladed disc mode shape evaluation used for shrouded blades in steam turbines

    NASA Astrophysics Data System (ADS)

    Strnad, Jaromir; Liska, Jindrich

    2015-11-01

    This paper deals with advanced methods for the evaluation of a bladed disc behavior in terms of the wheel vibration and blade service time consumption. These methods are developed as parts of the noncontact vibration monitoring system of the steam turbine shrouded blades. The proposed methods utilize the time-frequency processing (cross spectra) and the method using least squares to analyse the data from the optical and magnetoresistive sensors, which are mounted in the stator radially above the rotor blades. Fundamentally, the blade vibrations are detected during the blade passages under the sensors and the following signal processing, which covers also the proposed methods, leads to the estimation of the blade residual service life. The prototype system implementing above mentioned techniques was installed into the last stage of the new steam turbine (LP part). The methods for bladed disc mode shape evaluation were successfully verified on the signals, which were obtained during the commission operation of the turbine.

  2. Advanced Motion Compensation Methods for Intravital Optical Microscopy.

    PubMed

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2014-03-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions.

  3. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  4. Digital Breast Tomosynthesis: A New Diagnostic Method for Mass-Like Lesions in Dense Breasts.

    PubMed

    Bian, Tiantian; Lin, Qing; Cui, Chunxiao; Li, Lili; Qi, Chunhua; Fei, Jie; Su, Xiaohui

    2016-09-01

    To compare the rates and accuracy of digital breast tomosynthesis (DBT) and 2D digital mammography (DM) for detecting and diagnosing mass-like lesions in dense breasts. Mediolateral and craniocaudal images taken with DBT (affected breast) and DM (both breasts) of the dense breasts of 631 women were assessed independently using Breast Imaging Reporting and Data System (BI-RADS) scores. Images were compared for detection and diagnostic accuracy for masses; sensitivity and specificity of diagnosis; false-negative and recall rates; and clarity of display, particularly of margins and spicules. Histopathology was conducted via surgical biopsies of all patients. The detection and diagnostic accuracy rates of DBT images (84.3% and 82.3%, respectively) were significantly higher than that of DM (77.3% and 73.4%; p < 0.01, both). The sensitivity and specificity of DBT (68.1% and 95.2%) were higher than that of DM (58.8% and 86.7%), whereas the recall rate of DBT was lower (3.6% cf. 9.8%). The number of cases of benign circumscribed masses and malignant spiculated masses detected by DBT (172 and 182) was significantly higher than the number detected through DM (75 and 115; p < 0.01, both). Radiologists assigned higher BI-RADS scores for probability of malignancy to DBT images than DM, to lesions proved malignant (p = 0.025); for benign cases, the methods were comparable (p = 0.065). Compared with DM, DBT yielded significantly higher rates of detection and diagnostic accuracy for benign and malignant masses, with greater sensitivity and specificity and lower recall rates. In addition, DBT images facilitated analysis of margins, and the rate of accuracy for judgments of malignancy probability was higher, as proved on biopsy. PMID:27296324

  5. Differentiating between analytical and diagnostic performance evaluation with a focus on the method comparison study and identification of bias.

    PubMed

    Flatland, Bente; Friedrichs, Kristen R; Klenner, Stefanie

    2014-12-01

    Prior to introduction of a new method to the diagnostic laboratory, analytical performance must be validated to ensure operation within the manufacturer's specifications and/or within predetermined quality requirements. In addition, the new method may require diagnostic performance assessment to ensure it differentiates between diseased and nondiseased individuals as intended. These 2 phases of assessment, while complementary, are not equivalent and require a different set of experiments, statistical analyses, and interpretation. Studies of analytical performance typically include a method comparison experiment, the purpose of which is to identify bias (inaccuracy) of the "test" (or "index") method (new method) relative to a "comparative method" (established method). Analysis of method comparison data is facilitated by commercial software programs that present the statistical significance of identified bias; however, the clinical relevance of any bias also should be considered. Studies of diagnostic performance should not be pursued until analytical performance is fully characterized and may not be required for well-established tests or for those for which results are nonspecific (ie, not referable to a specific disease or condition). Diagnostic performance assessment may include assessment of sensitivity, specificity, predictive values, odds ratios, and/or likelihood ratios. The purpose of this review is to clarify differences between the assessment of analytical and diagnostic performance, and to explore the method comparison study and bias assessment from a perspective not addressed in prior veterinary articles.

  6. Crystallo-optic diagnostics method of the soft laser-induced effects in biological fluids

    NASA Astrophysics Data System (ADS)

    Skopinov, S. A.; Yakovleva, S. V.

    1991-05-01

    Presently, it is well known that individual cells"2 and higher organisms3'4 exhibit a marked response to soft laser irradiation in certain parts of the visible and near infrared spectral ranges. Broad clinical applications of laser therapy and slow progress in understanding of the physical, chemical and biological mechanisms of this phenomenon make the task to search new methods of objectivisation of laser-induces bioeffects very insistent. In this paper we give a short review of the methods of structural-optical diagnostics of the soft laser-induced effects in biofluids (blood and its fractions, saliva, juices, mucuses, exudations, etc.) and suggest their applications in experimental and clinical studies of the soft laser bioeffects.

  7. Advanced electrochemical methods for characterizing the performance of organic coatings

    NASA Astrophysics Data System (ADS)

    Upadhyay, Vinod

    Advanced electrochemical techniques such as electrochemical impedance spectroscopy (EIS), electrochemical noise method (ENM) and coulometry as tools to study and extract information about the coating system is the focus of this thesis. This thesis explored three areas of research. In all the three research areas, advanced electrochemical techniques were used to extract information and understand the coating system. The first area was to use EIS and coulometric technique for extracting information using AC-DC-AC method. It was examined whether the total charge passing through the coating during the DC polarization step of AC-DC-AC determines coating failure. An almost constant total amount of charge transfer was required by the coating before it failed and was independent of the applied DC polarization. The second area focused in this thesis was to investigate if embedded sensors in coatings are sensitive enough to monitor changes in environmental conditions and to locate defects in coatings by electrochemical means. Influence of topcoat on embedded sensor performance was also studied. It was observed that the embedded sensors can distinguish varying environmental conditions and locate defects in coatings. Topcoat could influence measurements made using embedded sensors and the choice of topcoat could be very important in the successful use of embedded sensors. The third area of research of this thesis work was to examine systematically polymer-structure coating property relationships using electrochemical impedance spectroscopy. It was observed that the polymer modifications could alter the electrochemical properties of the coating films. Moreover, it was also observed that by cyclic wet-dry capacitance measurement using aqueous electrolyte and ionic liquid, ranking of the stability of organic polymer films could be performed.

  8. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  9. Early dental caries detection by method of PNC-diagnostics: comparison with visual and x-ray methods

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Sokolovsky, Alexander A.; Kesler, Gaby; Alexandrov, Michail T.

    2000-03-01

    In this research results of approbation of the optical PNC- method in dental clinic are presented. The PNC-method was used for diagnostics stages of caries (initial, moderate and deep). The variant of the PNC-method adapted for dental diagnosis is based on simultaneous analyses the following parameters by special algorithms: backscattering and probing radiation, stimulated (endogenous) autofluorescence of caries induced batteries. Analyze of informational signals show good correlation with tooth morphological structure and concentration of anaerobic microflora in hearth of caries lesion. Investigation was performed in vivo on 101 tooth in conditions of typical dental clinic. Comparison of the PNC- method with visual and X-ray ones, which are widely used in clinical practice was made. Preliminary results showed high potential of usage the PNC-method in clinical practice and more high probability of initial caries detection (up to 100%) in comparison with X-ray method (approximately 75%). In cases when X-ray diagnosed absence of initial caries, more sensitive the PNC-method detected initial caries in stage 'white lesion.'

  10. Advanced Diagnostics and Life Estimation of Extruded Dielectric Cable: Nonproprietary Results Related to Cross-Linked Polyethylene and Ethylene Propylene Rubber Insulated Shielded Cables

    SciTech Connect

    G. Toman

    2006-03-31

    This report describes research on accelerated aging and diagnostic testing of cross-linked polyethylene (XLPE) insulation and an earlier test program on ethylene propylene rubber (EPR) cables. The XLPE research subjected cable specimens to accelerated cable life tests (ACLTs) and assessed the specimens with six nondestructive electrical tests and two destructive tests. The EPR program subjected EPR insulation to a similar accelerated aging protocol but focused on breakdown voltage to assess aging. Objectives ? To correlate advanced diagnostic test data with time-to-failure data as a means of determining the value of each diagnostic test for cable condition assessment and future life predictions (XLPE program) ? To perform accelerated aging tests of EPR insulated cables under various controlled conditions of temperature and voltage stress in a wet environment (EPR program) ? To ascertain the relative influence of temperature and voltage stress on aging (EPR program)

  11. Diagnostic methods to cutaneous leishmaniasis detection in domestic dogs and cats*

    PubMed Central

    Trevisan, Daliah Alves Coelho; Lonardoni, Maria Valdrinez Campana; Demarchi, Izabel Galhardo

    2015-01-01

    Cutaneous leishmaniasis is caused by different species of Leishmania. In domestic animals such as dogs and cats, the diagnostic consists of clinical, epidemiological and serological tests, which changes among countries all around the world. Because of this diversity in the methods selected, we propose this systematic literature review to identify the methods of laboratory diagnosis used to detect cutaneous leishmaniasis in domestic dogs and cats in the Americas. Articles published in the last 5 years were searched in PubMed, ISI Web of Science, LILACS and Scielo, and we selected 10 papers about cutaneous leishmaniasis in dogs and cats in the Americas. In Brazil, often the indirect immunofluorescence and enzyme immunoassay (ELISA) have been applied. Other countries like United States and Mexico have been using antigenic fractions for antibodies detections by Western blot. ELISA and Western blot showed a higher sensitivity and efficacy in the detection of leishmaniasis. Analysis of sensibility and specificity of the methods was rarely used. Although confirmatory to leishmaniasis, direct methods for parasites detection and polymerase chain reaction showed low positivity in disease detection. We suggested that more than one method should be used for the detection of feline and canine leishmaniasis. Serological methods such as Western blot and enzyme immunoassay have a high efficacy in the diagnosis of this disease. PMID:26734869

  12. Economic Evaluation of Companion Diagnostic Testing for EGFR Mutations and First-Line Targeted Therapy in Advanced Non-Small Cell Lung Cancer Patients in South Korea

    PubMed Central

    Lim, Eun-A; Bae, Eunmi; Lim, Jaeok; Shin, Young Kee; Choi, Sang-Eun

    2016-01-01

    Background As targeted therapy becomes increasingly important, diagnostic techniques for identifying targeted biomarkers have also become an emerging issue. The study aims to evaluate the cost-effectiveness of treating patients as guided by epidermal growth factor receptor (EGFR) mutation status compared with a no-testing strategy that is the current clinical practice in South Korea. Methods A cost-utility analysis was conducted to compare an EGFR mutation testing strategy with a no-testing strategy from the Korean healthcare payer’s perspective. The study population consisted of patients with stage 3b and 4 lung adenocarcinoma. A decision tree model was employed to select the appropriate treatment regimen according to the results of EGFR mutation testing and a Markov model was constructed to simulate disease progression of advanced non-small cell lung cancer. The length of a Markov cycle was one month, and the time horizon was five years (60 cycles). Results In the base case analysis, the testing strategy was a dominant option. Quality-adjusted life-years gained (QALYs) were 0.556 and 0.635, and total costs were $23,952 USD and $23,334 USD in the no-testing and testing strategy respectively. The sensitivity analyses showed overall robust results. The incremental cost-effectiveness ratios (ICERs) increased when the number of patients to be treated with erlotinib increased, due to the high cost of erlotinib. Conclusion Treating advanced adenocarcinoma based on EGFR mutation status has beneficial effects and saves the cost compared to no testing strategy in South Korea. However, the cost-effectiveness of EGFR mutation testing was heavily affected by the cost-effectiveness of the targeted therapy. PMID:27483001

  13. Improving Cognitive Diagnostic Computerized Adaptive Testing by Balancing Attribute Coverage: The Modified Maximum Global Discrimination Index Method

    ERIC Educational Resources Information Center

    Cheng, Ying

    2010-01-01

    This article proposes a new item selection method, namely, the modified maximum global discrimination index (MMGDI) method, for cognitive diagnostic computerized adaptive testing (CD-CAT). The new method captures two aspects of the appeal of an item: (a) the amount of contribution it can make toward adequate coverage of every attribute and (b) the…

  14. Advanced statistical methods for the definition of new staging models.

    PubMed

    Kates, Ronald; Schmitt, Manfred; Harbeck, Nadia

    2003-01-01

    Adequate staging procedures are the prerequisite for individualized therapy concepts in cancer, particularly in the adjuvant setting. Molecular staging markers tend to characterize specific, fundamental disease processes to a greater extent than conventional staging markers. At the biological level, the course of the disease will almost certainly involve interactions between multiple underlying processes. Since new therapeutic strategies tend to target specific processes as well, their impact will also involve interactions. Hence, assessment of the prognostic impact of new markers and their utilization for prediction of response to therapy will require increasingly sophisticated statistical tools that are capable of detecting and modeling complicated interactions. Because they are designed to model arbitrary interactions, neural networks offer a promising approach to improved staging. However, the typical clinical data environment poses severe challenges to high-performance survival modeling using neural nets, particularly the key problem of maintaining good generalization. Nonetheless, it turns out that by using newly developed methods to minimize unnecessary complexity in the neural network representation of disease course, it is possible to obtain models with high predictive performance. This performance has been validated on both simulated and real patient data sets. There are important applications for design of studies involving targeted therapy concepts and for identification of the improvement in decision support resulting from new staging markers. In this article, advantages of advanced statistical methods such as neural networks for definition of new staging models will be illustrated using breast cancer as an example.

  15. [Successful surgical management of aortico-left ventricular tunnel using modern noninvasive diagnostic imaging methods].

    PubMed

    Hartyánszky, István; Katona, Márta; Kádár, Krisztina; Apor, Asztrid; Varga, Sándor; Simon, Judit; Tóth, Attila; Karácsony, Tünde; Bogáts, Gábor

    2015-07-12

    Aortico-left ventricular tunnel is a rare congenital cardiac defect, which bypasses the aortic valve via the paravalvar connection from the aorta to the left ventricle. The authors present the case of a 14-year-old boy with aortico-left ventricular tunnel in whom the aortic orifice arose from the right aortic sinus and was closed by a pericardial patch. The diagnosis was confirmed by combined two-dimensional and real time three-dimensional echocardiogram and magnetic resonance imaging. This is the first case, in which these complex diagnostic imaging methods have been used in the pre- and postoperative management of this defect. Optimally the new transthoratic three-dimensional echocardiography would be needed to define the anatomy and functional consequences of the aortico-left ventricular tunnel and in the postoperative follow-up.

  16. Embedded diagnostic, prognostic, and health management system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Barajas, Leandro G. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor); Strawser, Philip A (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.

  17. Microvascular resistance in essential hypertension and flowmetry as a diagnostic method

    NASA Astrophysics Data System (ADS)

    Lukjanov, Valdimir F.

    2001-08-01

    New Doppler-Laser flowmetry diagnostic test of functional condition of microcirculation was worked out of find precapillar and postcapillar resistance. Flowmetry was used to measure vasomotion and blood flow after arterial compression, decompression and venous hyperemia were held. Patients of essential hypertension were examined with the help of Doppler-Laser Flowmetry, optical photometry (540 nm). Precapillar resistance included next basis parameters: vasomotion with high frequency (10-16 per/min) and low amplitude, latent time after decompression, large postocclusive reactive hyperemia, absent venous hyperemia. Postcapillar resistance included next basis parameters: vasomotion with low frequency (4-8 per/min) and high amplitude, paradoxical hyperemia in arterial compression, little or absent postocclusive reactive hyperemia, large venous hyperemia. This test-method was applied to select patogenetic treatment of essential hypertension.

  18. [On the method of express-diagnostics of thyroid gland dysfunctions].

    PubMed

    Abazova, Z Kh; Baĭsiev, A Kh; Kumykov, V K; Efendieva, M K

    2005-01-01

    The method of express-diagnostics of thyroid diseases on a degree of moisture of the skin integument which is one of clinical attributes of hypothyroidism (a skin is dry, shelled, with sites of keratinization) and hyperthyroidism at which the return picture is observed, i.e. the (increased humidity of a skin is offered. At the same time as a parameter describing a degree of moisture of skin is a relative humidity of the air environment which are taking place above the skin integument in conditions of thermodynamic equilibrium. The instrument is a hermetic glass in which the sensor of humidity is mounted. Studies on the definition of threshold levels of parameter for several groups of patients with clinically confirmed diagnoses of diseases of a thyroid are carried out. PMID:16106951

  19. The Scientific Method, Diagnostic Bayes, and How to Detect Epistemic Errors

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2015-12-01

    In the past decades, Bayesian methods have found widespread application and use in environmental systems modeling. Bayes theorem states that the posterior probability, P(H|D) of a hypothesis, H is proportional to the product of the prior probability, P(H) of this hypothesis and the likelihood, L(H|hat{D}) of the same hypothesis given the new/incoming observations, \\hat {D}. In science and engineering, H often constitutes some numerical simulation model, D = F(x,.) which summarizes using algebraic, empirical, and differential equations, state variables and fluxes, all our theoretical and/or practical knowledge of the system of interest, and x are the d unknown parameters which are subject to inference using some data, \\hat {D} of the observed system response. The Bayesian approach is intimately related to the scientific method and uses an iterative cycle of hypothesis formulation (model), experimentation and data collection, and theory/hypothesis refinement to elucidate the rules that govern the natural world. Unfortunately, model refinement has proven to be very difficult in large part because of the poor diagnostic power of residual based likelihood functions tep{gupta2008}. This has inspired te{vrugt2013} to advocate the use of 'likelihood-free' inference using approximate Bayesian computation (ABC). This approach uses one or more summary statistics, S(\\hat {D}) of the original data, \\hat {D} designed ideally to be sensitive only to one particular process in the model. Any mismatch between the observed and simulated summary metrics is then easily linked to a specific model component. A recurrent issue with the application of ABC is self-sufficiency of the summary statistics. In theory, S(.) should contain as much information as the original data itself, yet complex systems rarely admit sufficient statistics. In this article, we propose to combine the ideas of ABC and regular Bayesian inference to guarantee that no information is lost in diagnostic model

  20. A new method for tracking organ motion on diagnostic ultrasound images

    SciTech Connect

    Kubota, Yoshiki Matsumura, Akihiko; Fukahori, Mai; Minohara, Shin-ichi; Yasuda, Shigeo; Nagahashi, Hiroshi

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather than organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and

  1. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    SciTech Connect

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.

  2. Diagnostic Methods of Helicobacter pylori Infection for Epidemiological Studies: Critical Importance of Indirect Test Validation

    PubMed Central

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2016-01-01

    Among the methods developed to detect H. pylori infection, determining the gold standard remains debatable, especially for epidemiological studies. Due to the decreasing sensitivity of direct diagnostic tests (histopathology and/or immunohistochemistry [IHC], rapid urease test [RUT], and culture), several indirect tests, including antibody-based tests (serology and urine test), urea breath test (UBT), and stool antigen test (SAT) have been developed to diagnose H. pylori infection. Among the indirect tests, UBT and SAT became the best methods to determine active infection. While antibody-based tests, especially serology, are widely available and relatively sensitive, their specificity is low. Guidelines indicated that no single test can be considered as the gold standard for the diagnosis of H. pylori infection and that one should consider the method's advantages and disadvantages. Based on four epidemiological studies, culture and RUT present a sensitivity of 74.2–90.8% and 83.3–86.9% and a specificity of 97.7–98.8% and 95.1–97.2%, respectively, when using IHC as a gold standard. The sensitivity of serology is quite high, but that of the urine test was lower compared with that of the other methods. Thus, indirect test validation is important although some commercial kits propose universal cut-off values. PMID:26904678

  3. [Mass spectrometry analysis of blood plasma lipidome as method of disease diagnostics, evuation of effectiveness and optimization of drug therapy].

    PubMed

    Lokhov, P G; Maslov, D L; Balashova, E E; Trifonova, O P; Medvedeva, N V; Torkhovskaya, T I; Ipatova, O M; Archakov, A I; Malyshev, P P; Kukharchuk, V V; Shestakova, E A; Shestakova, M V; Dedov, I I

    2015-01-01

    A new method for the analysis of blood lipid based on direct mass spectrometry of lipophilic low molecular weight fraction of blood plasma has been considered. Such technique allows quantification of hundreds of various types of lipids and this changes existing concepts on diagnostics of lipid disorders and related diseases. The versatility and quickness of the method significantly simplify its wide use. This method is applicable for diagnostics of atherosclerosis, diabetes, cancer and other diseases. Detalization of plasma lipid composition at the molecular level by means of mass spectrometry allows to assess the effectiveness of therapy and to optimize the drug treatment of cardiovascular diseases by phospholipid preparations.

  4. A preface on advances in diagnostics for infectious and parasitic diseases: detecting parasites of medical and veterinary importance.

    PubMed

    Stothard, J Russell; Adams, Emily

    2014-12-01

    There are many reasons why detection of parasites of medical and veterinary importance is vital and where novel diagnostic and surveillance tools are required. From a medical perspective alone, these originate from a desire for better clinical management and rational use of medications. Diagnosis can be at the individual-level, at close to patient settings in testing a clinical suspicion or at the community-level, perhaps in front of a computer screen, in classification of endemic areas and devising appropriate control interventions. Thus diagnostics for parasitic diseases has a broad remit as parasites are not only tied with their definitive hosts but also in some cases with their vectors/intermediate hosts. Application of current diagnostic tools and decision algorithms in sustaining control programmes, or in elimination settings, can be problematic and even ill-fitting. For example in resource-limited settings, are current diagnostic tools sufficiently robust for operational use at scale or are they confounded by on-the-ground realities; are the diagnostic algorithms underlying public health interventions always understood and well-received within communities which are targeted for control? Within this Special Issue (SI) covering a variety of diseases and diagnostic settings some answers are forthcoming. An important theme, however, throughout the SI is to acknowledge that cross-talk and continuous feedback between development and application of diagnostic tests is crucial if they are to be used effectively and appropriately.

  5. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  6. Quantifying hydrate solidification front advancing using method of characteristics

    NASA Astrophysics Data System (ADS)

    You, Kehua; DiCarlo, David; Flemings, Peter B.

    2015-10-01

    We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation from gas injection into brine-saturated sediments within the hydrate stability zone. Our solution includes fully coupled multiphase and multicomponent flow and the associated advective transport in a homogeneous system. Our solution shows that hydrate saturation is controlled by the initial thermodynamic state of the system and changed by the gas fractional flow. Hydrate saturation in gas-rich systems can be estimated by 1-cl0/cle when Darcy flow dominates, where cl0 is the initial mass fraction of salt in brine, and cle is the mass fraction of salt in brine at three-phase (gas, liquid, and hydrate) equilibrium. Hydrate saturation is constant, gas saturation and gas flux decrease, and liquid saturation and liquid flux increase with the distance from the gas inlet to the hydrate solidification front. The total gas and liquid flux is constant from the gas inlet to the hydrate solidification front and decreases abruptly at the hydrate solidification front due to gas inclusion into the hydrate phase. The advancing velocity of the hydrate solidification front decreases with hydrate saturation at a fixed gas inflow rate. This analytical solution illuminates how hydrate is formed by gas injection (methane, CO2, ethane, propane) at both the laboratory and field scales.

  7. Regenerative medicine: advances in new methods and technologies.

    PubMed

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology.

  8. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  9. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  10. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  11. Comparison of diagnostic methods in cutaneous Leishmaniasis (histopathology compared to skin smears).

    PubMed

    Gazozai, Sanaullah; Iqbal, Javeid; Bukhari, Ishrat; Bashir, Sajid

    2010-10-01

    Present study is carried out to compare laboratory diagnostic methods of Cutaneous leishmaniasis (CL) for the outdoor patients of Bolan Medical College Complex Hospital, Quetta, Balochistan. From November 2005 to December 2007, three hundred cases of CL patients were selected without restriction of age and sex. The lesions were divided into two groups. Early with duration less than 2 months and late duration between 2 to 4 months and were noted as nodules, plaques, ulcers and scarring (in case of relapses). Skin smears were taken on first visit of the patients, followed by skin biopsy for histopathological examination. Result showed that out of 300 cases 163 (54.33%) were positive smears for Leishmania donovani (LD) bodies and 137 (45.67%) were negative smears for LD bodies.. While histological examination of all 300 cases showed that only 83 (27.66%) cases were negative for (LD) bodies and no granuloma seen, except with evidence of acute and chronic inflammation. Further analysis of histological observations of positive cases (72.34%) revealed that 91(30.33%) cases had LD bodies,, 78 (26%) cases had only necrotic sloughs showing polymorph neutrophilic infiltration, and 48(16%) cases were having granulomas composed of, epithelioid cells Langhan's type of giant cells and lymphocytes. It is therefore concluded that histopathological examination as compared to skin smears method is more sensitive method for diagnosis of CL.

  12. Multicenter Evaluation of Clinical Diagnostic Methods for Detection and Isolation of Campylobacter spp. from Stool.

    PubMed

    Fitzgerald, Collette; Patrick, Mary; Gonzalez, Anthony; Akin, Joshua; Polage, Christopher R; Wymore, Kate; Gillim-Ross, Laura; Xavier, Karen; Sadlowski, Jennifer; Monahan, Jan; Hurd, Sharon; Dahlberg, Suzanne; Jerris, Robert; Watson, Renee; Santovenia, Monica; Mitchell, David; Harrison, Cassandra; Tobin-D'Angelo, Melissa; DeMartino, Mary; Pentella, Michael; Razeq, Jafar; Leonard, Celere; Jung, Carrianne; Achong-Bowe, Ria; Evans, Yaaqobah; Jain, Damini; Juni, Billie; Leano, Fe; Robinson, Trisha; Smith, Kirk; Gittelman, Rachel M; Garrigan, Charles; Nachamkin, Irving

    2016-05-01

    The use of culture-independent diagnostic tests (CIDTs), such as stool antigen tests, as standalone tests for the detection of Campylobacter in stool is increasing. We conducted a prospective, multicenter study to evaluate the performance of stool antigen CIDTs compared to culture and PCR for Campylobacter detection. Between July and October 2010, we tested 2,767 stool specimens from patients with gastrointestinal illness with the following methods: four types of Campylobacter selective media, four commercial stool antigen assays, and a commercial PCR assay. Illnesses from which specimens were positive by one or more culture media or at least one CIDT and PCR were designated "cases." A total of 95 specimens (3.4%) met the case definition. The stool antigen CIDTs ranged from 79.6% to 87.6% in sensitivity, 95.9 to 99.5% in specificity, and 41.3 to 84.3% in positive predictive value. Culture alone detected 80/89 (89.9% sensitivity) Campylobacter jejuni/Campylobacter coli-positive cases. Of the 209 noncases that were positive by at least one CIDT, only one (0.48%) was positive by all four stool antigen tests, and 73% were positive by just one stool antigen test. The questionable relevance of unconfirmed positive stool antigen CIDT results was supported by the finding that noncases were less likely than cases to have gastrointestinal symptoms. Thus, while the tests were convenient to use, the sensitivity, specificity, and positive predictive value of Campylobacter stool antigen tests were highly variable. Given the relatively low incidence of Campylobacter disease and the generally poor diagnostic test characteristics, this study calls into question the use of commercially available stool antigen CIDTs as standalone tests for direct detection of Campylobacter in stool.

  13. HEART Pathway Accelerated Diagnostic Protocol Implementation: Prospective Pre-Post Interrupted Time Series Design and Methods

    PubMed Central

    Wells, Brian J

    2016-01-01

    Background Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. Objective The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. Methods This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. Results In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. Conclusions We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. ClinicalTrial Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu) PMID:26800789

  14. Multicenter Evaluation of Clinical Diagnostic Methods for Detection and Isolation of Campylobacter spp. from Stool.

    PubMed

    Fitzgerald, Collette; Patrick, Mary; Gonzalez, Anthony; Akin, Joshua; Polage, Christopher R; Wymore, Kate; Gillim-Ross, Laura; Xavier, Karen; Sadlowski, Jennifer; Monahan, Jan; Hurd, Sharon; Dahlberg, Suzanne; Jerris, Robert; Watson, Renee; Santovenia, Monica; Mitchell, David; Harrison, Cassandra; Tobin-D'Angelo, Melissa; DeMartino, Mary; Pentella, Michael; Razeq, Jafar; Leonard, Celere; Jung, Carrianne; Achong-Bowe, Ria; Evans, Yaaqobah; Jain, Damini; Juni, Billie; Leano, Fe; Robinson, Trisha; Smith, Kirk; Gittelman, Rachel M; Garrigan, Charles; Nachamkin, Irving

    2016-05-01

    The use of culture-independent diagnostic tests (CIDTs), such as stool antigen tests, as standalone tests for the detection of Campylobacter in stool is increasing. We conducted a prospective, multicenter study to evaluate the performance of stool antigen CIDTs compared to culture and PCR for Campylobacter detection. Between July and October 2010, we tested 2,767 stool specimens from patients with gastrointestinal illness with the following methods: four types of Campylobacter selective media, four commercial stool antigen assays, and a commercial PCR assay. Illnesses from which specimens were positive by one or more culture media or at least one CIDT and PCR were designated "cases." A total of 95 specimens (3.4%) met the case definition. The stool antigen CIDTs ranged from 79.6% to 87.6% in sensitivity, 95.9 to 99.5% in specificity, and 41.3 to 84.3% in positive predictive value. Culture alone detected 80/89 (89.9% sensitivity) Campylobacter jejuni/Campylobacter coli-positive cases. Of the 209 noncases that were positive by at least one CIDT, only one (0.48%) was positive by all four stool antigen tests, and 73% were positive by just one stool antigen test. The questionable relevance of unconfirmed positive stool antigen CIDT results was supported by the finding that noncases were less likely than cases to have gastrointestinal symptoms. Thus, while the tests were convenient to use, the sensitivity, specificity, and positive predictive value of Campylobacter stool antigen tests were highly variable. Given the relatively low incidence of Campylobacter disease and the generally poor diagnostic test characteristics, this study calls into question the use of commercially available stool antigen CIDTs as standalone tests for direct detection of Campylobacter in stool. PMID:26962088

  15. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  16. Diagnostic imaging methods applied in long-term surveillance after EVAR. Will computed tomography angiography be replaced by other methods?

    PubMed Central

    Stefaniak, Karolina; Gabriel, Marcin; Oszkinis, Grzegorz

    2016-01-01

    Endovascular implantation of a stent graft in the abdominal aorta (endovascular aneurysm repair – EVAR) is a widely accepted alternative to open surgery in treatment of abdominal aortic aneurysms. Although EVAR is connected with a significant reduction in the risk of peri- and post-operative complications, it does not eliminate them totally. Long-term surveillance of post-EVAR patients is aimed at early detection of and fast reaction to a group of complications called endovascular leaks. Currently, the gold standard in leak diagnostics is computed tomography angiography (CTA). The other methods are ultrasonography, magnetic resonance (MR) angiography, intra-aneurysm sac pressure measurement, X-ray, and digital subtraction angiography (DSA). Despite many analyses based on long-term research, emphasising the high value and competitiveness of less invasive tests such as US or X-ray compared to CTA, it is still difficult for them to win the trust and acceptance of clinicians. The persisting view is that computed tomography is the test that finally resolves any inaccuracies. Consequently, a patient with a number of concurrent diseases is subject to absurdly high radiation exposure and effects of a radiocontrast agent within a short time. It is therefore logical to acknowledge that the EVAR-related risk is catching up with the open surgery risk, while the endovascular procedure is much more costly. Nevertheless, the status of CTA as the gold standard ultimately seems to be unthreatened. This paper presents a description of the diagnostic imaging tests that make it possible to detect any vascular leaks and to develop strategies for therapeutic processes. PMID:26966443

  17. A Novel Method for Determining the Phase of T-Wave Alternans: Diagnostic and Therapeutic Implications

    PubMed Central

    Sayadi, Omid; Merchant, Faisal M.; Puppala, Dheeraj; Mela, Theofanie; Singh, Jagmeet P.; Heist, E. Kevin; Owen, Chris; Armoundas, Antonis A.

    2013-01-01

    Background T-wave alternans (TWA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death (SCD). However, in order to effectively estimate and suppress TWA, the phase of TWA must be accurately determined. Methods and Results We developed a method that computes the beat-by-beat integral of the T-wave morphology, over time points within the T-wave with positive alternans. Then, we estimated the signed derivative of the T-wave integral sequence which allows the classification of each beat to a binary phase index. In animal studies, we found that this method was able to accurately identify the T-wave phase in artificially induced alternans (p<0.0001). The coherence of the phase increased consistently after acute ischemia induction in all body-surface and intracardiac leads (p<0.0001). Also, we developed a phase resetting detection algorithm that enhances the diagnostic utility of TWA. We further established an algorithm that employs the phase of TWA in order to deliver appropriate polarity pacing pulses (all interventions compared to baseline, p<0.0001 for alternans voltage; p<0.0001 for Kscore), to suppress TWA. Finally, we demonstrated that using the phase of TWA we can suppress spontaneous TWA during acute ischemia; 77.6% for alternans voltage (p<0.0001) and 92.5% for Kscore (p<0.0001). Conclusions We developed a method to quantify the temporal variability of the TWA phase. This method is expected to enhance the utility of TWA in predicting ventricular arrhythmias and SCD and raises the possibility of using upstream therapies to abort a ventricular tachyarrhythmia prior to its onset. PMID:23884196

  18. Simplified Symptom Pattern Method for verbal autopsy analysis: multisite validation study using clinical diagnostic gold standards

    PubMed Central

    2011-01-01

    Background Verbal autopsy can be a useful tool for generating cause of death data in data-sparse regions around the world. The Symptom Pattern (SP) Method is one promising approach to analyzing verbal autopsy data, but it has not been tested rigorously with gold standard diagnostic criteria. We propose a simplified version of SP and evaluate its performance using verbal autopsy data with accompanying true cause of death. Methods We investigated specific parameters in SP's Bayesian framework that allow for its optimal performance in both assigning individual cause of death and in determining cause-specific mortality fractions. We evaluated these outcomes of the method separately for adult, child, and neonatal verbal autopsies in 500 different population constructs of verbal autopsy data to analyze its ability in various settings. Results We determined that a modified, simpler version of Symptom Pattern (termed Simplified Symptom Pattern, or SSP) performs better than the previously-developed approach. Across 500 samples of verbal autopsy testing data, SSP achieves a median cause-specific mortality fraction accuracy of 0.710 for adults, 0.739 for children, and 0.751 for neonates. In individual cause of death assignment in the same testing environment, SSP achieves 45.8% chance-corrected concordance for adults, 51.5% for children, and 32.5% for neonates. Conclusions The Simplified Symptom Pattern Method for verbal autopsy can yield reliable and reasonably accurate results for both individual cause of death assignment and for determining cause-specific mortality fractions. The method demonstrates that verbal autopsies coupled with SSP can be a useful tool for analyzing mortality patterns and determining individual cause of death from verbal autopsy data. PMID:21816099

  19. Bioinformatics Methods and Tools to Advance Clinical Care

    PubMed Central

    Lecroq, T.

    2015-01-01

    Summary Objectives To summarize excellent current research in the field of Bioinformatics and Translational Informatics with application in the health domain and clinical care. Method We provide a synopsis of the articles selected for the IMIA Yearbook 2015, from which we attempt to derive a synthetic overview of current and future activities in the field. As last year, a first step of selection was performed by querying MEDLINE with a list of MeSH descriptors completed by a list of terms adapted to the section. Each section editor has evaluated separately the set of 1,594 articles and the evaluation results were merged for retaining 15 articles for peer-review. Results The selection and evaluation process of this Yearbook’s section on Bioinformatics and Translational Informatics yielded four excellent articles regarding data management and genome medicine that are mainly tool-based papers. In the first article, the authors present PPISURV a tool for uncovering the role of specific genes in cancer survival outcome. The second article describes the classifier PredictSNP which combines six performing tools for predicting disease-related mutations. In the third article, by presenting a high-coverage map of the human proteome using high resolution mass spectrometry, the authors highlight the need for using mass spectrometry to complement genome annotation. The fourth article is also related to patient survival and decision support. The authors present datamining methods of large-scale datasets of past transplants. The objective is to identify chances of survival. Conclusions The current research activities still attest the continuous convergence of Bioinformatics and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care. Indeed, there is a need for powerful tools for managing and interpreting complex, large-scale genomic and biological datasets, but also a need for user-friendly tools developed for the clinicians in their

  20. Diagnostic accuracy of 18F-FDG PET/CT for detecting synchronous advanced colorectal neoplasia in patients with gastric cancer

    PubMed Central

    Choi, Byung Wook; Kim, Hae Won; Won, Kyoung Sook; Song, Bong-Il; Cho, Kwang Bum; Bae, Sung Uk

    2016-01-01

    Abstract Preoperative screening for synchronous colorectal neoplasia (CRN) has been recommended in patients with gastric cancer because patients with gastric cancer are at increased risk for synchronous CRN. The aim of this study was to investigate the diagnostic accuracy of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for detecting synchronous advanced CRN in patients with gastric cancer. A total of 256 patients who underwent colonoscopy and 18F-FDG PET/CT for preoperative staging were enrolled in this study. The diagnosis of focal colonic 18F-FDG uptake on 18F-FDG PET/CT image was made based on histopathologic results from the colonoscopic biopsy. The 18F-FDG PET/CT result was considered as true positive for advanced CRN when focal 18F-FDG uptake matched colorectal carcinoma or adenoma with high-grade dysplasia in the same location on colonoscopy. Synchronous advanced CRN was detected in 21 of the 256 patients (4.7%). Sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 76.2%, 96.2%, and 94.5%. The size of CRN with a true positive result was significantly larger than that with a false negative result. 18F-FDG PET/CT demonstrated high diagnostic accuracy for detecting synchronous advanced CRN in patients with gastric cancer. Colonoscopy is recommended as the next diagnostic step for further evaluation of a positive 18F-FDG PET/CT result in patients with gastric cancer. PMID:27603371

  1. Diagnostic accuracy of 18F-FDG PET/CT for detecting synchronous advanced colorectal neoplasia in patients with gastric cancer.

    PubMed

    Choi, Byung Wook; Kim, Hae Won; Won, Kyoung Sook; Song, Bong-Il; Cho, Kwang Bum; Bae, Sung Uk

    2016-09-01

    Preoperative screening for synchronous colorectal neoplasia (CRN) has been recommended in patients with gastric cancer because patients with gastric cancer are at increased risk for synchronous CRN. The aim of this study was to investigate the diagnostic accuracy of F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET/CT) for detecting synchronous advanced CRN in patients with gastric cancer.A total of 256 patients who underwent colonoscopy and F-FDG PET/CT for preoperative staging were enrolled in this study. The diagnosis of focal colonic F-FDG uptake on F-FDG PET/CT image was made based on histopathologic results from the colonoscopic biopsy. The F-FDG PET/CT result was considered as true positive for advanced CRN when focal F-FDG uptake matched colorectal carcinoma or adenoma with high-grade dysplasia in the same location on colonoscopy.Synchronous advanced CRN was detected in 21 of the 256 patients (4.7%). Sensitivity, specificity, and accuracy of F-FDG PET/CT were 76.2%, 96.2%, and 94.5%. The size of CRN with a true positive result was significantly larger than that with a false negative result.F-FDG PET/CT demonstrated high diagnostic accuracy for detecting synchronous advanced CRN in patients with gastric cancer. Colonoscopy is recommended as the next diagnostic step for further evaluation of a positive F-FDG PET/CT result in patients with gastric cancer. PMID:27603371

  2. Rapid diagnostic methods for influenza virus in clinical specimens - A comparative study

    NASA Technical Reports Server (NTRS)

    Evans, A. S.; Olson, B.

    1982-01-01

    A comparison of five rapid viral diagnostic techniques for identifying influenza virus in nasopharyngeal aspirates has been made on patients with influenza-like illnesses. Initial results with immune electron microscopy were positive in only one of 11 specimens from which virus was isolated and further work abandoned. Four other rapid tests were carried out on 39 specimens from which influenza virus had been isolated in tissue culture in 28. Of these 28 specimens yielding virus, 24 (85.7 percent) were positive by an indirect fluorescent antibody test (IFAT) on nasopharyngeal cells, 18 (64.3 percent) by enzyme-linked immunosorbent assay (ELISA), 19 (67.8 percent) by enzyme-linked fluorescent assay (ELFA), and 26 (92.8 percent) by a rapid tissue culture amplification method (TCA) in a continuous Rhesus monkey kidney line (LLC-MK2) with identification of virus by fluorescent antibody. In terms of sensitivity, simplicity, and rapidity, a combination of the IFAT and TCA methods seems to be very useful.

  3. Accuracy of diagnostic methods and surveillance sensitivity for human enterovirus, South Korea, 1999-2011.

    PubMed

    Hyeon, Ji-Yeon; Hwang, Seoyeon; Kim, Hyejin; Song, Jaehyoung; Ahn, Jeongbae; Kang, Byunghak; Kim, Kisoon; Choi, Wooyoung; Chung, Jae Keun; Kim, Cheon-Hyun; Cho, Kyungsoon; Jee, Youngmee; Kim, Jonghyun; Kim, Kisang; Kim, Sun-Hee; Kim, Min-Ji; Cheon, Doo-Sung

    2013-08-01

    The epidemiology of enteroviral infection in South Korea during 1999-2011 chronicles nationwide outbreaks and changing detection and subtyping methods used over the 13-year period. Of 14,657 patients whose samples were tested, 4,762 (32.5%) samples were positive for human enterovirus (human EV); as diagnostic methods improved, the rate of positive results increased. A seasonal trend of outbreaks was documented. Genotypes enterovirus 71, echovirus 30, coxsackievirus B5, enterovirus 6, and coxsackievirus B2 were the most common genotypes identified. Accurate test results correlated clinical syndromes to enterovirus genotypes: aseptic meningitis to echovirus 30, enterovirus 6, and coxsackievirus B5; hand, foot and mouth disease to coxsackievirus A16; and hand, foot and mouth disease with neurologic complications to enterovirus 71. There are currently no treatments specific to human EV infections; surveillance of enterovirus infections such as this study provides may assist with evaluating the need to research and develop treatments for infections caused by virulent human EV genotypes.

  4. Perspective ground-based method for diagnostics of the lower ionosphere and the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Grigoriev, G. I.; Tolmacheva, A. V.

    We present a new perspective ground-based method for diagnostics of the ionosphere and atmosphere parameters. The method uses one of the numerous physical phenomena observed in the ionosphere illuminated by high-power radio waves. It is a generation of the artificial periodic irregularities (APIs) in the ionospheric plasma. The APIs were found while studying the effects of ionospheric high-power HF modification. It was established that the APIs are formed by a standing wave that occurs due to interference between the upwardly radiated radio wave and its reflection off the ionosphere. The API studies are based upon observation of the Bragg backscatter of the pulsed probe radio wave from the artificial periodic structure. Bragg backscatter occurs if the spatial period of the irregularities is equal to half a wavelength of the probe signal. The API techniques makes it possible to obtain the following information: the profiles of electron density from the lower D-region up to the maximum of the F-layer; the irregular structure of the ionosphere including split of the regular E-layer, the sporadic layers; the vertical velocities in the D- and E-regions of the ionosphere; the turbulent velocities, turbulent diffusion coefficients and the turbopause altitude; the neutral temperatures and densities at the E-region altitudes; the parameters of the internal gravity waves and their spectral characteristics; the relative concentration of negative oxygen ions in the D-region. Some new results obtained by the API technique are discussed .

  5. Diagnostic electrocardiography in epidemiological studies of Chagas' disease: multicenter evaluation of a standardized method.

    PubMed

    Lázzari, J O; Pereira, M; Antunes, C M; Guimarães, A; Moncayo, A; Chávez Domínguez, R; Hernández Pieretti, O; Macedo, V; Rassi, A; Maguire, J; Romero, A

    1998-11-01

    An electrocardiographic recording method with an associated reading guide, designed for epidemiological studies on Chagas' disease, was tested to assess its diagnostic reproducibility. Six cardiologists from five countries each read 100 electrocardiographic (ECG) tracings, including 30 from chronic chagasic patients, then reread them after an interval of 6 months. The readings were blind, with the tracings numbered randomly for the first reading and renumbered randomly for the second reading. The physicians, all experienced in interpreting ECGs from chagasic patients, followed printed instructions for reading the tracings. Reproducibility of the readings was evaluated using the kappa (kappa) index for concordance. The results showed a high degree of interobserver concordance with respect to the diagnosis of normal vs. abnormal tracings (kappa = 0.66; SE 0.02). While the interpretations of some categories of ECG abnormalities were highly reproducible, others, especially those having a low prevalence, showed lower levels of concordance. Intraobserver concordance was uniformly higher than interobserver concordance. The findings of this study justify the use by specialists of the recording of readings method proposed for epidemiological studies on Chagas' disease, but warrant caution in the interpretation of some categories of electrocardiographic alterations.

  6. Modified method to enhanced recovery of Toxocara cati larvae for the purposes of diagnostic and therapeutic.

    PubMed

    Zibaei, Mohammad; Uga, Shoji

    2016-10-01

    Human toxocariasis, extraintestinal-migration of Toxocara species, is a worldwide helminthic zoonosis in many places of the undeveloped countries. Toxocara cati is one of the common helminths in cats and it is a potentially preventable disease. Its diagnosis and treatment depend on the demonstration of specific excretory-secretory Toxocara antibodies from Toxocara larvae by immunological assays. This study provides a simple manual technique which can be performed in any laboratory for recovering a large number of Toxocara cati larvae from the thick-shelled eggs. The devices that are required contain a manual homogenizer and a filter membrane of 40 μm mesh; the rest of materials and solutions is standard laboratory ware. In the modified method the larval yields were 2.7 times higher (3000 larval/ml) and the time spent in performing the modified method was shorter (75 min). Further benefits over already techniques are the easy and repeatable, inexpensive and convenient materials, simplicity to perform and require less time for recovery of Toxocara cati larvae for subsequent cultivation and harvest of the larval excretory-secretory antigens for diagnostic or treatment purposes. PMID:27502936

  7. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities.

    PubMed

    Gouas, L; Goumy, C; Véronèse, L; Tchirkov, A; Vago, P

    2008-09-01

    Cytogenetics is the part of genetics that deals with chromosomes, particularly with numerical and structural chromosome abnormalities, and their implications in congenital or acquired genetic disorders. Standard karyotyping, successfully used for the last 50 years in investigating the chromosome etiology in patients with infertility, fetal abnormalities and congenital disorders, is constrained by the limits of microscopic resolution and is not suited for the detection of subtle chromosome abnormalities. The ability to detect submicroscopic chromosomal rearrangements that lead to copy-number changes has escalated progressively in recent years with the advent of molecular cytogenetic techniques. Here, we review various gene dosage methods such as FISH, PCR-based approaches (MLPA, QF-PCR, QMPSF and real time PCR), CGH and array-CGH, that can be used for the identification and delineation of copy-number changes for diagnostic purposes. Besides comparing their relative strength and weakness, we will discuss the impact that these detection methods have on our understanding of copy number variations in the human genome and their implications in genetic counseling. PMID:18513889

  8. [The use of multivariate mathematical methods in medical diagnostic systems--a model for the evaluation of cytological smears].

    PubMed

    Molnár, B; Szentirmay, Z; Bodó, M; Sugár, J; Fehér, J

    1992-10-18

    The methods of the multivariate mathematics have been applied in several studies to increase the diagnostic reliability of medical decision support system. In the recent years some new algorithms for decision support (fuzzy logic) and for pattern recognition (neural nets), both specified by nonlinearity, were developed. This paper provides results for the application of this methods in the area of quantitative cytology and the comparison with the traditional classifiers. 21 normal, 15 dysplastic, 23 malignant, Feulgen stained gastric imprint smears were analysed on a Leitz Miamed DNA equipment. The determination of mean DNA content, the 2c deviation index (2cDI), 5c Exceeding rate (RcER), G1,S,G2 phase fraction ratios, cell nucleus area, form factor was performed. The discriminant analysis classified correctly the 95.6% of malignant cases, 86.7% of dysplasias, and 80.7% normal cases. Our diagnostic system using fuzzy logic made the diagnostic borders fine tuneable, and reliable. The back propagation neural net could classify all three diagnostic groups above 95% correctly. The application of nonlinear computational methods made the diagnostic system more reliable. The application of these algorithms are encouraged.

  9. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  10. The diagnostic utility and tendency of the soluble receptor for advanced glycation end products (sRAGE) in exudative pleural effusion

    PubMed Central

    Sim, Yun Su; Kim, Dong Gyu

    2016-01-01

    Background The soluble receptor for advanced glycation end products (sRAGE) may have an inflammatory or homeostatic function in lung tissue. The aim of this study was to assess the usefulness of sRAGE as a diagnostic marker for exudative pleural effusions, which are common manifestations of a variety of diseases. Methods Patients with an undiagnosed pleural effusion were prospectively enrolled between January 2013 and January 2015. Samples of blood and pleural fluid were centrifuged and the supernatant stored at −70 °C. The levels of sRAGE in serum and pleural fluid were determined using a commercially available enzyme-linked immunosorbent assay (ELISA) kit. Results In total 47 patients, 21 patients were diagnosed with a tuberculous effusion, and the groups diagnosed with parapneumonic or malignant effusions comprised 13 patients each. The serum sRAGE levels for tuberculosis were significantly elevated [median, 1,291 pg/mL; interquartile range (IQR), 948–1,711 pg/mL] when compared with those for both pneumonia (median, 794 pg/mL; IQR, 700–1,255 pg/mL) and lung cancer (median, 886 pg/mL; IQR, 722–1,285 pg/mL) (P=0.029). The pleural sRAGE levels for pneumonia (median, 1,763 pg/mL; IQR, 1,262–4,431 pg/mL) were lower than those for both tuberculosis (median, 5,081 pg/mL; IQR, 3,300–6,004 pg/mL) and lung cancer (median, 4,936 pg/mL; IQR, 3,282–7,018 pg/mL) (P=0.009) The receiver operating characteristic (ROC) curve analysis selected 896 pg/mL as the best cutoff value in the sRAGE serum level for tuberculosis [sensitivity, 86%; specificity 58%; area under the curve (AUC) =0.727, P=0.008]. For the pleural effusion sRAGE level, the ROC curve analysis selected 2,231 pg/mL as the best cutoff value for pneumonia (sensitivity, 91%; specificity, 62%, AUC =0.792, P=0.002). Conclusions Among patients with exudative effusion, pleural and serum sRAGE measurements may be useful supportive diagnostic tools in the evaluation of ambiguous pleural effusion. Furthermore

  11. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGES

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  12. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  13. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    NASA Astrophysics Data System (ADS)

    Landoas, Olivier; Yu Glebov, Vladimir; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C.; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  14. An in vitro comparison of different diagnostic methods in detection of residual dentinal caries.

    PubMed

    Unlu, Nimet; Ermis, Rabia Banu; Sener, Sevgi; Kucukyilmaz, Ebru; Cetin, Ali Riza

    2010-01-01

    The aim of this study was to investigate the efficiency of different diagnostic methods in detection of residual dentinal caries in excavated cavities. Fifty extracted molar with deep dentinal carious lesions were excavated using a slow-speed handpiece. All cavities were assessed by laser fluorescence(LF) device, electronic caries monitor(ECM), and caries detector dye(CDD) by three independent observers blindly. The measurements were repeated after two weeks. Specimens containing dentin slices 150 mum in thickness were prepared for histological analyses. The existence and absence of carious dentin was determined using a lightmicroscope. The average intraobserver accuracy was 1.00 (perfect agreement) for CDD, 0.86 (excellent agreement) for ECM, and 0.50 (good agreement) for LF. The average interobserver accuracy values were 0.92 (excellent agreement), (0.36 marginal agreement) and 0.48 (good agreement), for CDD, ECM, and LF, respectively. The average specificity was 0.60 for CDD, 73% for ECM, and 0.50 for LF. The average sensitivity was 0.55 for CDD, 0.85 for LF, and 0.47 for ECM. The average accuracy values were 0.53, 0.51, and 0.81 for CDD, ECM, and LF, respectively. LF had the greatest sensitivity and accuracy values of any of the methods tested. As a conclusion, LF device is appeared to most reliable method in detection of remain caries in cavity. However, because of its technical sensitivity it may susceptible to variations in measurements. To pay attention to the rule of usage and repeated measurements can minimize such variations in clinical practice. It was concluded that LF is an improvement on the currently available aids for residual caries detection.

  15. An In Vitro Comparison of Different Diagnostic Methods in Detection of Residual Dentinal Caries

    PubMed Central

    Unlu, Nimet; Ermis, Rabia Banu; Sener, Sevgi; Kucukyilmaz, Ebru; Cetin, Ali Riza

    2010-01-01

    The aim of this study was to investigate the efficiency of different diagnostic methods in detection of residual dentinal caries in excavated cavities. Fifty extracted molar with deep dentinal carious lesions were excavated using a slow-speed handpiece. All cavities were assessed by laser fluorescence(LF) device, electronic caries monitor(ECM), and caries detector dye(CDD) by three independent observers blindly. The measurements were repeated after two weeks. Specimens containing dentin slices 150 μm in thickness were prepared for histological analyses. The existence and absence of carious dentin was determined using a lightmicroscope. The average intraobserver accuracy was 1.00 (perfect agreement) for CDD, 0.86 (excellent agreement) for ECM, and 0.50 (good agreement) for LF. The average interobserver accuracy values were 0.92 (excellent agreement), (0.36 marginal agreement) and 0.48 (good agreement), for CDD, ECM, and LF, respectively. The average specificity was 0.60 for CDD, 73% for ECM, and 0.50 for LF. The average sensitivity was 0.55 for CDD, 0.85 for LF, and 0.47 for ECM. The average accuracy values were 0.53, 0.51, and 0.81 for CDD, ECM, and LF, respectively. LF had the greatest sensitivity and accuracy values of any of the methods tested. As a conclusion, LF device is appeared to most reliable method in detection of remain caries in cavity. However, because of its technical sensitivity it may susceptible to variations in measurements. To pay attention to the rule of usage and repeated measurements can minimize such variations in clinical practice. It was concluded that LF is an improvement on the currently available aids for residual caries detection. PMID:20613961

  16. Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.

    2016-05-01

    Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.

  17. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System.

    PubMed

    Janku, Filip; Huang, Helen J; Claes, Bart; Falchook, Gerald S; Fu, Siqing; Hong, David; Ramzanali, Nishma M; Nitti, Giovanni; Cabrilo, Goran; Tsimberidou, Apostolia M; Naing, Aung; Piha-Paul, Sarina A; Wheler, Jennifer J; Karp, Daniel D; Holley, Veronica R; Zinner, Ralph G; Subbiah, Vivek; Luthra, Rajyalakshmi; Kopetz, Scott; Overman, Michael J; Kee, Bryan K; Patel, Sapna; Devogelaere, Benoit; Sablon, Erwin; Maertens, Geert; Mills, Gordon B; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-06-01

    Cell-free (cf) DNA from plasma offers an easily obtainable material for BRAF mutation analysis for diagnostics and response monitoring. In this study, plasma-derived cfDNA samples from patients with progressing advanced cancers or malignant histiocytosis with known BRAF(V600) status from formalin-fixed paraffin-embedded (FFPE) tumors were tested using a prototype version of the Idylla BRAF Mutation Test, a fully integrated real-time PCR-based test with turnaround time about 90 minutes. Of 160 patients, BRAF(V600) mutations were detected in 62 (39%) archival FFPE tumor samples and 47 (29%) plasma cfDNA samples. The two methods had overall agreement in 141 patients [88%; κ, 0.74; SE, 0.06; 95% confidence interval (CI), 0.63-0.85]. Idylla had a sensitivity of 73% (95% CI, 0.60-0.83) and specificity of 98% (95% CI, 0.93-1.00). A higher percentage, but not concentration, of BRAF(V600) cfDNA in the wild-type background (>2% vs. ≤ 2%) was associated with shorter overall survival (OS; P = 0.005) and in patients with BRAF mutations in the tissue, who were receiving BRAF/MEK inhibitors, shorter time to treatment failure (TTF; P = 0.001). Longitudinal monitoring demonstrated that decreasing levels of BRAF(V600) cfDNA were associated with longer TTF (P = 0.045). In conclusion, testing for BRAF(V600) mutations in plasma cfDNA using the Idylla BRAF Mutation Test has acceptable concordance with standard testing of tumor tissue. A higher percentage of mutant BRAF(V600) in cfDNA corresponded with shorter OS and in patients receiving BRAF/MEK inhibitors also with shorter TTF. Mol Cancer Ther; 15(6); 1397-404. ©2016 AACR.

  18. Pattern classification approach to rocket engine diagnostics

    SciTech Connect

    Tulpule, S.

    1989-01-01

    This paper presents a systems level approach to integrate state-of-the-art rocket engine technology with advanced computational techniques to develop an integrated diagnostic system (IDS) for future rocket propulsion systems. The key feature of this IDS is the use of advanced diagnostic algorithms for failure detection as opposed to the current practice of redline-based failure detection methods. The paper presents a top-down analysis of rocket engine diagnostic requirements, rocket engine operation, applicable diagnostic algorithms, and algorithm design techniques, which serve as a basis for the IDS. The concepts of hierarchical, model-based information processing are described, together with the use uf signal processing, pattern recognition, and artificial intelligence techniques which are an integral part of this diagnostic system. 27 refs.

  19. Development of Monitoring and Diagnostic Methods for Robots Used In Remediation of Waste Sites - Final Report

    SciTech Connect

    Martin, M.

    2000-04-01

    This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.

  20. Development of a benchtop baking method for chemically leavened crackers. I. Identification of a diagnostic formula and procedure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A benchtop baking method has been developed to predict the contribution of gluten functionality to overall flour performance for chemically leavened crackers. In order to identify a diagnostic cracker formula, the effects of leavening system (sodium bicarbonate, monocalcium phosphate, and ammonium b...

  1. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to understand Burkholderia glumae, the major causal agent for bacterial panicle blight disease of rice; to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. Burkholderia glumae was frequently isolated from infected p...

  2. Development of practical diagnostic methods for monitoring rice bacterial panicle blight disease and evaluation of rice germplasm for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was initiated to understand Burkholderia glumae (major causal agent for bacterial panicle blight disease of rice) to develop practical diagnostic methods for monitoring the disease; and to evaluate rice germplasm for resistance. B. glumae was frequently isolated from symptomatic panicles on...

  3. A Method for Increasing Elders' Use of Advance Directives.

    ERIC Educational Resources Information Center

    Luptak, Marilyn K.; Boult, Chad

    1994-01-01

    Studied effectiveness of intervention to help frail elders to record advance directives (ADs). In collaboration with physicians and lay volunteer, social worker provided information/counseling to elderly subjects, families, and proxies in series of visits to geriatric evaluation and management clinic. Seventy-one percent of subjects recorded ADs.…

  4. Dental flossing as a diagnostic method for proximal gingivitis: a validation study.

    PubMed

    Grellmann, Alessandra Pascotini; Kantorski, Karla Zanini; Ardenghi, Thiago Machado; Moreira, Carlos Heitor Cunha; Danesi, Cristiane Cademartori; Zanatta, Fabricio Batistin

    2016-05-20

    This study evaluated the clinical diagnosis of proximal gingivitis by comparing two methods: dental flossing and the gingival bleeding index (GBI). One hundred subjects (aged at least 18 years, with 15% of positive proximal sites for GBI, without proximal attachment loss) were randomized into five evaluation protocols. Each protocol consisted of two assessments with a 10-minute interval between them: first GBI/second floss, first floss/second GBI, first GBI/second GBI, first tooth floss/second floss, and first gum floss-second floss. The dental floss was slid against the tooth surface (TF) and the gingival tissue (GF). The evaluated proximal sites should present teeth with established point of contact and probing depth ≤ 3mm. One trained and calibrated examiner performed all the assessments. The mean percentages of agreement and disagreement were calculated for the sites with gingival bleeding in both evaluation methods (GBI and flossing). The primary outcome was the percentage of disagreement between the assessments in the different protocols. The data were analyzed by one-way ANOVA, McNemar, chi-square and Tukey's post hoc tests, with a 5% significance level. When gingivitis was absent in the first assessment (negative GBI), bleeding was detected in the second assessment by TF and GF in 41.7% (p < 0.001) and 50.7% (p < 0.001) of the sites, respectively. In the absence of gingivitis in the second assessment (negative GBI), TF and GF detected bleeding in the first assessment in 38.9% (p = 0.004) and 58.3% (p < 0.001) of the sites, respectively. TF and GF appears to be a better diagnostic indicator of proximal gingivitis than GBI. PMID:27223134

  5. Dental flossing as a diagnostic method for proximal gingivitis: a validation study.

    PubMed

    Grellmann, Alessandra Pascotini; Kantorski, Karla Zanini; Ardenghi, Thiago Machado; Moreira, Carlos Heitor Cunha; Danesi, Cristiane Cademartori; Zanatta, Fabricio Batistin

    2016-05-20

    This study evaluated the clinical diagnosis of proximal gingivitis by comparing two methods: dental flossing and the gingival bleeding index (GBI). One hundred subjects (aged at least 18 years, with 15% of positive proximal sites for GBI, without proximal attachment loss) were randomized into five evaluation protocols. Each protocol consisted of two assessments with a 10-minute interval between them: first GBI/second floss, first floss/second GBI, first GBI/second GBI, first tooth floss/second floss, and first gum floss-second floss. The dental floss was slid against the tooth surface (TF) and the gingival tissue (GF). The evaluated proximal sites should present teeth with established point of contact and probing depth ≤ 3mm. One trained and calibrated examiner performed all the assessments. The mean percentages of agreement and disagreement were calculated for the sites with gingival bleeding in both evaluation methods (GBI and flossing). The primary outcome was the percentage of disagreement between the assessments in the different protocols. The data were analyzed by one-way ANOVA, McNemar, chi-square and Tukey's post hoc tests, with a 5% significance level. When gingivitis was absent in the first assessment (negative GBI), bleeding was detected in the second assessment by TF and GF in 41.7% (p < 0.001) and 50.7% (p < 0.001) of the sites, respectively. In the absence of gingivitis in the second assessment (negative GBI), TF and GF detected bleeding in the first assessment in 38.9% (p = 0.004) and 58.3% (p < 0.001) of the sites, respectively. TF and GF appears to be a better diagnostic indicator of proximal gingivitis than GBI.

  6. Molecular diagnostics of neurodegenerative disorders

    PubMed Central

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders. PMID:26442283

  7. Evaluation of different diagnostic methods of American Cutaneous Leishmaniasis in the Brazilian Amazon.

    PubMed

    Espir, Thais Tibery; Guerreiro, Thayanne Sá; Naiff, Maricleide de Farias; Figueira, Luanda de Paula; Soares, Fabiane Veloso; da Silva, Susi Simas; Franco, Antonia Maria Ramos

    2016-08-01

    Epidemiological studies have been conducted to better understand the dynamics of American Cutaneous Leishmaniasis (ACL) in the Amazon region where distinct species of Leishmania circulate. In endemic areas, the optimal diagnosis must be made in the earlier clinical presentation to avoid the complications of chronic disease. The scarcity of financial support, laboratory infrastructure and trained persons are the major obstacles in this reality. This paper describes the result of performing different diagnostic methods for ACL in Amazonas State between the years 2010 and 2011. The tests used were the intradermal skin test (Montenegro's skin test), ELISA (Enzyme-Linked Immunosorbent Assay), direct examination, culture isolation and identification of Leishmania species. A total of 38 suspected human cases of ACL were diagnosed by different methods, of which 71.0% (n = 27) were positive by direct examination, 75.6% (n = 28) had positivity in the culture isolates and, of these, 54.0% (n = 19) had infection with Leishmania (Viannia) guyanensis. The positivity of the intradermal skin test with the leishmanin solution was observed in 77.0% of cases analyzed and the serology with detection of IgG and IgM showed the presence of antibodies in 100% of exams realized results, showing variation in the titles of antibodies. The success of Leishmaniasis treatment depends on an effective and early diagnosis. Parasitological diagnosis is highly specific, but sensitivity is subject to variation because the tissue distribution of parasites generally is not homogeneous and depends on the specie of parasite. Moreover, parasitological tests require invasive procedures and depend on restrictive conditions for the collection of biological sample, which limit their use in large-scale for epidemiological studies. ELISA has been the most widely used serological method for the diagnosis of Visceral Leishmaniasis (VL) as it is easy to perform and has a low cost. However, flaws in

  8. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  9. Is there any superiority among diagnostic methods in organizing pneumonia in terms of clinical features of the patients?

    PubMed Central

    Kavakli, Kuthan; Ocal, Nesrin; Dogan, Deniz; Cicek, Ali Fuat; Isik, Hakan; Gurkok, Sedat

    2016-01-01

    Background Organizing pneumonia (OP) can be idiopathic or secondary to some clinical situations. If an etiological cause is not present, this phenomenon is called cryptogenic OP. Secondary OP is associated with various diseases that are known to induce the OP. Objectives The aim of this study was to evaluate the clinical features of the cases with OP and compare the patients diagnosed by bronchoscopic transbronchial biopsy with patients diagnosed by surgical lung biopsy. Patients and methods Medical records of 41 patients diagnosed with OP between 2004 and 2014 were reviewed retrospectively. Results Totally, 41 patients with OP were identified. In all, 39.02% of the cases were diagnosed by bronchoscopic methods, and 60.97% of the cases were diagnosed by surgical procedures. Although the frequency of ground glass opacities, consolidations, and micronodules was higher in the group diagnosed by bronchoscopy, mass-like lesions were more common in the cases diagnosed by surgery. Bronchoscopy, performed in 30 patients totally, had a diagnostic efficacy of 53.33%. Diagnostic value of bronchoscopy was significantly higher in cryptogenic OPs. Although diffuse radiological pattern was more common in “successful bronchoscopy” group, frequency of focal pattern was higher in “failed bronchoscopy” group. Ground glass opacity in successful bronchoscopy group and mass-like lesions in failed bronchoscopy group reached significant differences. Conclusion There were significant differences between the diagnostic procedures in terms of radiological patterns. This is the first study about the relationship between the diagnostic methods and the characteristics of OP. PMID:27713632

  10. Development of laser noninvasive on-line diagnostics of oncological diseases based on the absorption method in the 4860-4880 cm-1 spectral range

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.; Kondrashov, A. A.

    2016-07-01

    A novel method for noninvasive on-line diagnostics of gastrointestinal oncological diseases using a diode laser in the 4860-4880 cm-1 frequency range is proposed. The method is based on measuring the concentration of 13C during expiration. The accuracy of the method allows performing early diagnostics of diseases.

  11. Development of laser noninvasive on-line diagnostics of oncological diseases based on the absorption method in the 4860–4880 cm‑1 spectral range

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.; Kondrashov, A. A.

    2016-07-01

    A novel method for noninvasive on-line diagnostics of gastrointestinal oncological diseases using a diode laser in the 4860–4880 cm‑1 frequency range is proposed. The method is based on measuring the concentration of 13С during expiration. The accuracy of the method allows performing early diagnostics of diseases.

  12. Comparison of advanced distillation control methods. First annual report

    SciTech Connect

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C3) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and articial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  13. Comparison of advanced distillation control methods. First annual report

    SciTech Connect

    Riggs, J.B.

    1996-11-01

    A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

  14. Conceptual frameworks and methods for advancing invasion ecology.

    PubMed

    Heger, Tina; Pahl, Anna T; Botta-Dukát, Zoltan; Gherardi, Francesca; Hoppe, Christina; Hoste, Ivan; Jax, Kurt; Lindström, Leena; Boets, Pieter; Haider, Sylvia; Kollmann, Johannes; Wittmann, Meike J; Jeschke, Jonathan M

    2013-09-01

    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.

  15. Exploring biomolecular dynamics and interactions using advanced sampling methods

    NASA Astrophysics Data System (ADS)

    Luitz, Manuel; Bomblies, Rainer; Ostermeir, Katja; Zacharias, Martin

    2015-08-01

    Molecular dynamics (MD) and Monte Carlo (MC) simulations have emerged as a valuable tool to investigate statistical mechanics and kinetics of biomolecules and synthetic soft matter materials. However, major limitations for routine applications are due to the accuracy of the molecular mechanics force field and due to the maximum simulation time that can be achieved in current simulations studies. For improving the sampling a number of advanced sampling approaches have been designed in recent years. In particular, variants of the parallel tempering replica-exchange methodology are widely used in many simulation studies. Recent methodological advancements and a discussion of specific aims and advantages are given. This includes improved free energy simulation approaches and conformational search applications.

  16. Breast Microcalcifications: Diagnostic Outcomes According to Image-Guided Biopsy Method

    PubMed Central

    Bae, Sohi; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Min Jung

    2015-01-01

    Objective To evaluate the diagnostic outcomes of ultrasonography-guided core needle biopsy (US-CNB), US-guided vacuum-assisted biopsy (US-VAB), and stereotactic-guided vacuum-assisted biopsy (S-VAB) for diagnosing suspicious breast microcalcification. Materials and Methods We retrospectively reviewed 336 cases of suspicious breast microcalcification in patients who subsequently underwent image-guided biopsy. US-CNB was performed for US-visible microcalcifications associated with a mass (n = 28), US-VAB for US-visible microcalcifications without an associated mass (n = 59), and S-VAB for mammogram-only visible lesions (n = 249). Mammographic findings, biopsy failure rate, false-negative rate, and underestimation rate were analyzed. Histological diagnoses and the Breast Imaging Reporting and Data System (BI-RADS) categories were reported. Results Biopsy failure rates for US-CNB, US-VAB, and S-VAB were 7.1% (2/28), 0% (0/59), and 2.8% (7/249), respectively. Three false-negative cases were detected for US-CNB and two for S-VAB. The rates of biopsy-diagnosed ductal carcinoma in situ that were upgraded to invasive cancer at surgery were 41.7% (5/12), 12.9% (4/31), and 8.6% (3/35) for US-CNB, US-VAB, and S-VAB, respectively. Sonographically visible lesions were more likely to be malignant (66.2% [51/77] vs. 23.2% [46/198]; p < 0.001) or of higher BI-RADS category (61.0% [47/77] vs. 22.2% [44/198]; p < 0.001) than sonographically invisible lesions. Conclusion Ultrasonography-guided vacuum-assisted biopsy is more accurate than US-CNB when suspicious microcalcifications are detected on US. Calcifications with malignant pathology are significantly more visible on US than benign lesions. PMID:26357494

  17. Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions

    ERIC Educational Resources Information Center

    Syed, Mahbubur Rahman, Ed.

    2009-01-01

    The emerging field of advanced distance education delivers academic courses across time and distance, allowing educators and students to participate in a convenient learning method. "Methods and Applications for Advancing Distance Education Technologies: International Issues and Solutions" demonstrates communication technologies, intelligent…

  18. Atomic Resonance Radiation Energetics Investigation as a Diagnostic Method for Non-Equilibrium Hypervelocity Flows

    NASA Technical Reports Server (NTRS)

    Meyer, Scott A.; Bershader, Daniel; Sharma, Surendra P.; Deiwert, George S.

    1996-01-01

    Absorption measurements with a tunable vacuum ultraviolet light source have been proposed as a concentration diagnostic for atomic oxygen, and the viability of this technique is assessed in light of recent measurements. The instrumentation, as well as initial calibration measurements, have been reported previously. We report here additional calibration measurements performed to study the resonance broadening line shape for atomic oxygen. The application of this diagnostic is evaluated by considering the range of suitable test conditions and requirements, and by identifying issues that remain to be addressed.

  19. Advanced 3D inverse method for designing turbomachine blades

    SciTech Connect

    Dang, T.

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  20. A method for increasing elders' use of advance directives.

    PubMed

    Luptak, M K; Boult, C

    1994-06-01

    Most published studies report that few elderly people have recorded advance directives (AD). We studied the effectiveness of an interdisciplinary intervention designed to help ambulatory frail elders to record AD. In collaboration with physicians and a trained lay volunteer, a social worker provided information and counseling to the elderly subjects, to their families, and to their proxies in a series of visits to a geriatric evaluation and management (GEM) clinic. Seventy-one percent of the subjects recorded AD. Of these, 96% named a proxy, and 83% recorded specific treatment preferences.

  1. Diagnostic analysis of turbulent boundary layer data by a trivariate Lagrangian partitioning method

    SciTech Connect

    Welsh, P.T.

    1994-12-31

    The rapid scientific and technological advances in meteorological theory and modeling predominantly have occurred on the large (or synoptic) scale flow characterized by the extratropical cyclone. Turbulent boundary layer flows, in contrast, have been slower in developing both theoretically and in accuracy for several reasons. There are many existing problems in boundary layer models, among them are limits to computational power available, the inability to handle countergradient fluxes, poor growth matching to real boundary layers, and inaccuracy in calculating the diffusion of scalar concentrations. Such transport errors exist within the boundary layer as well as into the free atmosphere above. This research uses a new method, which can provide insight into these problems, and ultimately improve boundary layer models. There are several potential applications of the insights provided by this approach, among them are estimation of cloud contamination of satellite remotely sensed surface parameters, improved flux and vertical transport calculations, and better understanding of the diurnal boundary layer growth process and its hysteresis cycle.

  2. Diagnostic methods for mastitis in cows are not appropriate for use in humans: commentary.

    PubMed

    Kvist, Linda J

    2016-01-01

    Healthcare workers are now being targeted for marketing of diagnostic tools for mastitis that were developed for the dairy industry and which aim to provide information regarding choice of antibiotic treatment. Meanwhile, scientists are striving to understand how the human microbiome affects health and wellbeing and the importance of maintenance of bacterial balance in the human body. Breast milk supplies a multitude of bacteria to populate the baby's intestinal tract and kick-start the immune system. Researchers propose a paradigm shift in the understanding of bacterial content in breast milk and an alternative paradigm for the understanding of lactational mastitis: there is the beginning of evidence that many cases of lactational mastitis will resolve spontaneously. An international group of researchers is attempting to answer how dietary habits, birth mode, genetics and environmental factors may impact the bacterial content of breast milk. Until we have more comprehensive knowledge about the human milk microbiome, diagnostic aids for identification of women in need of antibiotic therapy for mastitis remain unreliable. Diagnostic aids could lead to the injudicious use of antibiotic therapy, which in turn may rob the infant of bacteria valuable for development of its immune system. The marketing of diagnostic aids for use in human medicine, that were originally developed for use in cows, is neither evidence-based nor good ethical practice. PMID:26877759

  3. Mutual Information Item Selection Method in Cognitive Diagnostic Computerized Adaptive Testing with Short Test Length

    ERIC Educational Resources Information Center

    Wang, Chun

    2013-01-01

    Cognitive diagnostic computerized adaptive testing (CD-CAT) purports to combine the strengths of both CAT and cognitive diagnosis. Cognitive diagnosis models aim at classifying examinees into the correct mastery profile group so as to pinpoint the strengths and weakness of each examinee whereas CAT algorithms choose items to determine those…

  4. Personality Assessment in the Diagnostic Manuals: On Mindfulness, Multiple Methods, and Test Score Discontinuities.

    PubMed

    Bornstein, Robert F

    2015-01-01

    Recent controversies have illuminated the strengths and limitations of different frameworks for conceptualizing personality pathology (e.g., trait perspectives, categorical models), and stimulated debate regarding how best to diagnose personality disorders (PDs) in the Diagnostic and Statistical Manual of Mental Disorders (5th ed.), and in other diagnostic systems (i.e., the International Classification of Diseases, the Psychodynamic Diagnostic Manual). In this article I argue that regardless of how PDs are conceptualized and which diagnostic system is employed, multimethod assessment must play a central role in PD diagnosis. By complementing self-reports with evidence from other domains (e.g., performance-based tests), a broader range of psychological processes are engaged in the patient, and the impact of self-perception and self-presentation biases can be better understood. By providing the assessor with evidence drawn from multiple modalities, some of which provide converging patterns and some of which yield divergent results, a multimethod assessment compels the assessor to engage this evidence more deeply. The mindful processing that ensues can help minimize the deleterious impact of naturally occurring information processing bias and distortion on the part of the clinician (e.g., heuristics, attribution errors), bringing greater clarity to the synthesis and integration of assessment data.

  5. Towards a rapid molecular diagnostic for melioidosis: Comparison of DNA extraction methods from clinical specimens.

    PubMed

    Richardson, Leisha J; Kaestli, Mirjam; Mayo, Mark; Bowers, Jolene R; Tuanyok, Apichai; Schupp, Jim; Engelthaler, David; Wagner, David M; Keim, Paul S; Currie, Bart J

    2012-01-01

    Optimising DNA extraction from clinical samples for Burkholderia pseudomallei Type III secretion system real-time PCR in suspected melioidosis patients confirmed that urine and sputum are useful diagnostic samples. Direct testing on blood remains problematic; testing DNA extracted from plasma was superior to DNA from whole blood or buffy coat.

  6. An Informal Reading Readiness Inventory: A Diagnostic Method of Predicting First Grade Reading Achievement.

    ERIC Educational Resources Information Center

    Anderson, Carolyn C.; Koenke, Karl

    A study was undertaken to create and validate a diagnostic, task-based Informal Reading Readiness Inventory (IRRI). IRRI subtests were created to reflect four areas found to be important in reading readiness: awareness of self and media, language experience, reasoning, and phonics. Prereading curriculum components formed the basis for test item…

  7. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  8. The molecular basis of social behavior: models, methods and advances.

    PubMed

    LeBoeuf, Adria C; Benton, Richard; Keller, Laurent

    2013-02-01

    Elucidating the molecular and neural basis of complex social behaviors such as communal living, division of labor and warfare requires model organisms that exhibit these multi-faceted behavioral phenotypes. Social insects, such as ants, bees, wasps and termites, are attractive models to address this problem, with rich ecological and ethological foundations. However, their atypical systems of reproduction have hindered application of classical genetic approaches. In this review, we discuss how recent advances in social insect genomics, transcriptomics, and functional manipulations have enhanced our ability to observe and perturb gene expression, physiology and behavior in these species. Such developments begin to provide an integrated view of the molecular and cellular underpinnings of complex social behavior. PMID:22995551

  9. Recent advances in neutral particle transport methods and codes

    NASA Astrophysics Data System (ADS)

    Azmy, Yousry Y.

    1997-02-01

    An overview of Oak Ridge National Laboratory's (ORNL) 3D neural particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed in some detail. These include: multitasking on Cray platforms running the UNICOS operating system; adjacent-cell preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications will be discussed. Speculation on the next generation of neutral particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, will also be mentioned.

  10. Advances in microfluidics-based experimental methods for neuroscience research.

    PubMed

    Park, Jae Woo; Kim, Hyung Joon; Kang, Myeong Woo; Jeon, Noo Li

    2013-02-21

    The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.

  11. Recent advances in neutral particle transport methods and codes

    SciTech Connect

    Azmy, Y.Y.

    1996-06-01

    An overview of ORNL`s three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned.

  12. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  13. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  14. Tools for Evaluating Fault Detection and Diagnostic Methods for HVAC Secondary Systems

    NASA Astrophysics Data System (ADS)

    Pourarian, Shokouh

    Although modern buildings are using increasingly sophisticated energy management and control systems that have tremendous control and monitoring capabilities, building systems routinely fail to perform as designed. More advanced building control, operation, and automated fault detection and diagnosis (AFDD) technologies are needed to achieve the goal of net-zero energy commercial buildings. Much effort has been devoted to develop such technologies for primary heating ventilating and air conditioning (HVAC) systems, and some secondary systems. However, secondary systems, such as fan coil units and dual duct systems, although widely used in commercial, industrial, and multifamily residential buildings, have received very little attention. This research study aims at developing tools that could provide simulation capabilities to develop and evaluate advanced control, operation, and AFDD technologies for these less studied secondary systems. In this study, HVACSIM+ is selected as the simulation environment. Besides developing dynamic models for the above-mentioned secondary systems, two other issues related to the HVACSIM+ environment are also investigated. One issue is the nonlinear equation solver used in HVACSIM+ (Powell's Hybrid method in subroutine SNSQ). It has been found from several previous research projects (ASRHAE RP 825 and 1312) that SNSQ is especially unstable at the beginning of a simulation and sometimes unable to converge to a solution. Another issue is related to the zone model in the HVACSIM+ library of components. Dynamic simulation of secondary HVAC systems unavoidably requires an interacting zone model which is systematically and dynamically interacting with building surrounding. Therefore, the accuracy and reliability of the building zone model affects operational data generated by the developed dynamic tool to predict HVAC secondary systems function. The available model does not simulate the impact of direct solar radiation that enters a zone

  15. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Du, T. F.; Chen, Z. J.; Peng, X. Y.; Yuan, X.; Zhang, X.; Hu, Z. M.; Cui, Z. Q.; Xie, X. F.; Ge, L. J.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  16. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    NASA Astrophysics Data System (ADS)

    Wray, C. P.; Sherman, M. H.; Walker, I. S.; Dickerhoff, D. J.; Federspiel, C. C.

    2008-09-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  17. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak.

    PubMed

    Du, T F; Chen, Z J; Peng, X Y; Yuan, X; Zhang, X; Gorini, G; Nocente, M; Tardocchi, M; Hu, Z M; Cui, Z Q; Xie, X F; Ge, L J; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometer at EAST are studied for future data interpretation.

  18. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.

    PubMed

    Kasetsirikul, Surasak; Buranapong, Jirayut; Srituravanich, Werayut; Kaewthamasorn, Morakot; Pimpin, Alongkorn

    2016-01-01

    The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article. PMID:27405995

  19. Imaging Characteristics and Prevalence of Pancreatic Carcinoma in Kosovo During 2011-2015 - Diagnostic Method as Choice

    PubMed Central

    Dedushi, Kreshnike; Kabashi, Serbeze; Mucaj, Sefedin; Hasbahta, Gazmed; Ramadani, Naser; Hoxhaj, Astrit

    2016-01-01

    of the 362 patients diagnosed with pancreas cancer, 346 cases resulted > 2 cm and 16 cases resulted < 2 cm and with component cystic was 41.2 % (n = 149), solid with component cystic – necrotic 33% (n= 119), solid 25.7% (n= 93). The prevalence is 19.9: 100,000 inhabitants. Conclusions: Prevalence of carcinoma of the pancreas for 5 years in Kosovo has proved to be prevalence is 19.9: 100,000 inhabitants. Seventy-four percent (74 %, n= 268) of all cancers are found in Stage III and IV. From an imaging point of view, these cancers were presented in an advanced stage, mainly due to their late clinical symptoms and limited access to imaging methods in our country. PMID:27482128

  20. Adherence to Scientific Method while Advancing Exposure Science

    EPA Science Inventory

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  1. [Recent advances in sample preparation methods of plant hormones].

    PubMed

    Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng

    2014-04-01

    Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.

  2. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.; Hively, W. Dean; Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco

    2012-01-01

    The gold standard for soil C determination is combustion. However, this method requires expensive consumables, is limited to the determination of the total carbon and in the number of samples which can be processed (~100/d). With increased interest in soil C sequestration, faster methods are needed. Thus, interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared ranges using either proximal or remote sensing. These methods have the ability to analyze more samples (2 to 3X/d) or huge areas (imagery) and do multiple analytes simultaneously, but require calibrations relating spectral and reference data and have specific problems, i.e., remote sensing is capable of scanning entire watersheds, thus reducing the sampling needed, but is limiting to the surface layer of tilled soils and by difficulty in obtaining proper calibration reference values. The objective of this discussion is the present state of spectroscopic methods for soil C determination.

  3. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  4. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces

    SciTech Connect

    Michaelides, Angelos; Martinez, Todd J.; Alavi, Ali; Kresse, Georg

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  5. Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis

    ERIC Educational Resources Information Center

    Kennedy, Brian J.

    2008-01-01

    This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…

  6. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  7. Comparison of advanced distillation control methods. Fourth annual report

    SciTech Connect

    Riggs, J.B.

    1998-09-01

    Detailed dynamic simulations of three industrial columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selection for single-ended and dual-composition control as well as compare conventional and advanced control approaches. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that in order to identify the optimum configuration, detailed testing using dynamic simulation is required. The optimum configurations were used to evaluate the control performance of conventional PI controllers, DMC (Dynamic Matrix Control), PMBC (Process Model Based Control), and ANN (Artificial Neural Networks) control. It was determined that DMC works best when one product is much more important than the other while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and DMC.

  8. Review: Advances in delta-subsidence research using satellite methods

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie A.

    2016-05-01

    Most of the world's major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

  9. Investigation of advancing front method for generating unstructured grid

    NASA Astrophysics Data System (ADS)

    Thomas, A. M.; Tiwari, S. N.

    1992-06-01

    The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.

  10. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  11. A Refined QSO Selection Method Using Diagnostics Tests: 663 QSO Candidates in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won; Protopapas, Pavlos; Trichas, Markos; Rowan-Robinson, Michael; Khardon, Roni; Alcock, Charles; Byun, Yong-Ik

    2012-03-01

    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) selected using multiple diagnostics. We started with a set of 2566 QSO candidates selected using the methodology presented in our previous work based on time variability of the MACHO LMC light curves. We then obtained additional information for the candidates by crossmatching them with the Spitzer SAGE, the Two Micron All Sky Survey, the Chandra, the XMM, and an LMC UBVI catalog. Using this information, we specified six diagnostic features based on mid-IR colors, photometric redshifts using spectral energy distribution template fitting, and X-ray luminosities in order to further discriminate high-confidence QSO candidates in the absence of spectra information. We then trained a one-class Support Vector Machine model using the diagnostics features of the confirmed 58 MACHO QSOs. We applied the trained model to the original candidates and finally selected 663 high-confidence QSO candidates. Furthermore, we crossmatched these 663 QSO candidates with the newly confirmed 151 QSOs and 275 non-QSOs in the LMC fields. On the basis of the counterpart analysis, we found that the false positive rate is less than 1%.

  12. A REFINED QSO SELECTION METHOD USING DIAGNOSTICS TESTS: 663 QSO CANDIDATES IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Kim, Dae-Won; Protopapas, Pavlos; Trichas, Markos; Alcock, Charles; Rowan-Robinson, Michael; Khardon, Roni; Byun, Yong-Ik

    2012-03-10

    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) selected using multiple diagnostics. We started with a set of 2566 QSO candidates selected using the methodology presented in our previous work based on time variability of the MACHO LMC light curves. We then obtained additional information for the candidates by crossmatching them with the Spitzer SAGE, the Two Micron All Sky Survey, the Chandra, the XMM, and an LMC UBVI catalog. Using this information, we specified six diagnostic features based on mid-IR colors, photometric redshifts using spectral energy distribution template fitting, and X-ray luminosities in order to further discriminate high-confidence QSO candidates in the absence of spectra information. We then trained a one-class Support Vector Machine model using the diagnostics features of the confirmed 58 MACHO QSOs. We applied the trained model to the original candidates and finally selected 663 high-confidence QSO candidates. Furthermore, we crossmatched these 663 QSO candidates with the newly confirmed 151 QSOs and 275 non-QSOs in the LMC fields. On the basis of the counterpart analysis, we found that the false positive rate is less than 1%.

  13. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  14. Numerical approximation of a nonlinear delay-advance functional differential equation by a finite element method

    NASA Astrophysics Data System (ADS)

    Teodoro, M. F.

    2012-09-01

    We are particularly interested in the numerical solution of the functional differential equations with symmetric delay and advance. In this work, we consider a nonlinear forward-backward equation, the Fitz Hugh-Nagumo equation. It is presented a scheme which extends the algorithm introduced in [1]. A computational method using Newton's method, finite element method and method of steps is developped.

  15. Unenhanced CT in the evaluation of urinary calculi: application of advanced computer methods.

    PubMed

    Olcott, E W; Sommer, F G

    1999-04-01

    Recent advances in computer hardware and software technology enable radiologists to examine tissues and structures using three-dimensional figures constructed from the multiple planar images acquired during a spiral CT examination. Three-dimensional CT techniques permit the linear dimensions of renal calculi to be determined along all three coordinate axes with a high degree of accuracy and enable direct volumetric analysis of calculi, yielding information that is not available from any other diagnostic modality. Additionally, three-dimensional techniques can help to identify and localize calculi in patients with suspected urinary colic.

  16. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  17. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  18. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  19. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  20. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  1. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  2. Advanced Methods for the Solution of Differential Equations.

    ERIC Educational Resources Information Center

    Goldstein, Marvin E.; Braun, Willis H.

    This is a textbook, originally developed for scientists and engineers, which stresses the actual solutions of practical problems. Theorems are precisely stated, but the proofs are generally omitted. Sample contents include first-order equations, equations in the complex plane, irregular singular points, and numerical methods. A more recent idea,…

  3. Origins, Methods and Advances in Qualitative Meta-Synthesis

    ERIC Educational Resources Information Center

    Nye, Elizabeth; Melendez-Torres, G. J.; Bonell, Chris

    2016-01-01

    Qualitative research is a broad term encompassing many methods. Critiques of the field of qualitative research argue that while individual studies provide rich descriptions and insights, the absence of connections drawn between studies limits their usefulness. In response, qualitative meta-synthesis serves as a design to interpret and synthesise…

  4. New diagnostic method for monitoring plasma reactor walls: Multiple total internal reflection Fourier transform infrared surface probe

    NASA Astrophysics Data System (ADS)

    Godfrey, Anna R.; Ullal, Saurabh J.; Braly, Linda B.; Edelberg, Erik A.; Vahedi, Vahid; Aydil, Eray S.

    2001-08-01

    Films and adsorbates that deposit on reactor walls during plasma etching and deposition affect the discharge properties such as the charged particle and reactive radical concentrations. A systematic study of this plasma-wall interaction is made difficult by a lack of diagnostic methods that enable one to monitor the chemical nature of the reactor wall surface. A new diagnostic technique based on multiple total internal reflection Fourier transform infrared (MTIR-FTIR) spectroscopy was developed to monitor films and adsorbates on plasma etching and deposition reactor walls with monolayer sensitivity. Applications of this MTIR-FTIR probe are demonstrated. Specifically, we use this probe to (i) detect etch products and films that deposit on the reactor walls during Cl2 plasma etching of Si, (ii) determine the efficacy of a SF6 plasma to clean films deposited on reactor walls during Cl2/O2 etching of Si, and (iii) monitor wafer-to-wafer etching reproducibility.

  5. Diagnostic and therapeutic issues for patients with advanced non‑small cell lung cancer harboring anaplastic lymphoma kinase rearrangement: European vs. US perspective (review).

    PubMed

    Di Maio, Massimo; De Marinis, Filippo; Hirsch, Fred R; Gridelli, Cesare

    2014-08-01

    The recent availability of crizotinib in clinical practice, for the treatment of patients with advanced non-small cell lung cancer (NSCLC) selected by the presence of anaplastic lymphoma kinase (ALK) rearrangement, has relevant implications for both the diagnostic phase and the treatment choices. In the United States, crizotinib was approved by the Food and Drug Administration (FDA) in 2011 for patients with ALK positivity detected by FDA-approved companion diagnostic test. As of January, 2014, the only FDA-approved diagnostic test is Vysis ALK Break-Apart FISH Probe Kit. In Europe, European Medicines Agency (EMA) approved crizotinib for ALK-positive patients in 2012, without specifying the type of test used for determining the positivity. FISH remains the reference technique for ALK determination, but, if fully validated, immunohistochemistry could challenge the current ALK screening practice. Given the robust evidence of activity of crizotinib in ALK-positive patients both pretreated and chemotherapy-naïve, and the favourable tolerability profile of the drug, many oncologists would prefer to administer the drug as early as possible. This is technically feasible in the United States, where crizotinib was approved well before the availability of the results of the randomized phase III trial comparing the drug with standard second-line chemotherapy, and the use of crizotinib in ALK-positive patients is not restricted to a specific line of treatment. On the contrary, in Europe, differently from the FDA decision, crizotinib cannot be used in chemotherapy-naïve patients. In both realities, a deeper knowledge of mechanisms of resistance, the role of repeated biopsies, the treatment strategy for patients experiencing disease progression with crizotinib, the choice of the best chemotherapy regimen are challenging topics for the management of ALK-positive patients in clinical practice.

  6. [Rapid methods for the diagnostic of food-borne infections determined by bacteria pertaining to genus Salmonella].

    PubMed

    Năşcuţiu, Alexandra-Maria

    2011-01-01

    For a long period of time, microbiological analysis of samples gathered from individuals, food and environment was based on culture techniques which were considered "gold standard". These conventional methods are yet time-consuming (with respect to germ identification and characterization), cumulative costs are huge, which made research focus on obtaining methods with a rapidity / cost ratio higher than that of classical methods. Rapid diagnostic became as well a priority in the case of food-borne diseases determined by Salmonella spp. These methods of rapid diagnostic are based on phenotypic or molecular techniques for identification and typing, as well as on tests using biosensors and DNA chips, which are under development, and which use the capacity of real-time monitoring of the presence of multiple pathogens in food. With the continuous development of new molecular technologies allowing the rapid detection of food pathogens, the future of conventional microbiological methods looks rather insecure, the more so as there is continuous interest in improving the performances of genotypic methods regarding easy handling, reliability and low costs. The work reviews the panoply of Salmonella identification and typing tests available in the present.

  7. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation. PMID:27600343

  8. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  9. Advanced hybrid particulate collector and method of operation

    SciTech Connect

    Miller, Stanley J.

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  10. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    PubMed

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

  11. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGES

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  12. Advanced tensile testing methods for bulk superconductors at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kasaba, K.; Teshima, H.; Hokari, T.; Sato, T.; Katagiri, K.; Shoji, Y.; Murakami, A.; Hirano, H.

    2006-10-01

    Tensile tests of bulk high Tc superconductors at room temperature have been generally performed by gluing the bulk specimens to Al-alloy rods. Because of the difference in the coefficient of thermal expansion, thermal stresses were induced at cryogenic temperatures especially near the interface between the specimen and the rods. In this study, tensile testing methods with minimized effect of the thermal stress were tried by using specimens cut from Dy-Ba-Cu-O superconductors. These were: (1) The rod material of Al-alloy was replaced with Ti-alloy, which has the coefficient close to the bulk. (2) The interlayer made of the identical bulk superconductor was inserted between the specimen and the Ti-alloy rod. The nominal tensile strength at the liquid nitrogen temperature (LNT) of the specimen glued to the Ti-alloy rods was significantly higher than that glued to the Al-alloy rods. The application of the interlayers increased the strength significantly. The FEM analysis showed that the thermal tensile stress component in the direction of loading axis within the specimen at LNT is markedly reduced by the method (1) and substantially eliminated in the method (2).

  13. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  14. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  15. Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Graf, Adam; Krzak, Joseph J.; Reiners, Kathryn; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  16. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  17. The Brief Introduction of Different Laser Diagnostics Methods Used in Aero-Engine Combustion Research

    NASA Astrophysics Data System (ADS)

    Xing, Fei; Song, Ge; Ruan, Can; Zhao, Jian; Yang, Yongjun

    2016-06-01

    Combustion test diagnose has always been one of the most important technologies for the development of aerospace engineering. Laser diagnostics techniques developed quickly in the past several years. They are used to measure the parameters of the combustion flow field such as velocity, temperature, components concentration with high space and time resolution and brought no disturbance. Planar Laser-Induced Fluorescence, Coherent Anti-Stokes Raman Scattering, Tunable Diode Laser Absorption Spectroscopy and Raman Scattering were introduced systemically in this paper. After analysis their own advantages and disadvantages, it is believed that Raman Scattering system is more suitable for research activities on aero-engine combustion systems.

  18. Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto

    NASA Technical Reports Server (NTRS)

    Robertson, David (Inventor); Blakely, Randy D. (Inventor)

    2006-01-01

    Isolated polynucleotide molecules and peptides encoded by these molecules are used in the analysis of human norepinephrine (NE) transporter variants, as well as in diagnostic and therapeutic applications, relating to a human NE transporter polymorphism. By analyzing genomic DNA or amplified genomic DNA, or amplified cDNA derived from mRNA, it is possible to type a human NE transporter with regard to the human NE transporter polymorphism, for example, in the context of diagnosing and treating NE transport impairments, and disorders associated with NE transport impairments, such as orthostatic intolerance.

  19. ORF virus infection in children: clinical characteristics, transmission, diagnostic methods, and future therapeutics.

    PubMed

    Lederman, Edith R; Austin, Connie; Trevino, Ingrid; Reynolds, Mary G; Swanson, Holly; Cherry, Bryan; Ragsdale, Jennifer; Dunn, John; Meidl, Susan; Zhao, Hui; Li, Yu; Pue, Howard; Damon, Inger K

    2007-08-01

    Orf virus leads to self-limited, subacute cutaneous infections in children who have occupational or recreational contact with infected small ruminants. Breaches in the integument and contact with animals recently vaccinated for orf may be important risk factors in transmission. Common childhood behaviors are likely important factors in the provocation of significant contact (ie, bites) or in unusual lesion location (eg, facial lesions). Clinician recognition is important in distinguishing orf infection from life-threatening cutaneous zoonoses. Recently developed molecular techniques provide diagnostic precision and newer topical therapeutics may hasten healing.

  20. Application Research of Two Real-Time Fault Diagnostic Methods in the Nuclear Power Plants

    SciTech Connect

    Chun-Li Xie; Yong-Kuo Liu; Hong Xia

    2006-07-01

    In order to guarantee the safety of nuclear power plants (NPP), we built two real-time fault diagnosis systems adopting VISUAL BAS6.0 programming language, which apply neural network technology and data fusion technology respectively. The fault diagnosis systems interchange data with the simulator timely utilizing communication interface. We insert faults on simulator to test the two systems on line. The advantages and disadvantages are illuminated and contrasted through analyzing the faults diagnostic results off- line, which establish the foundation for the further research and application to the fault diagnosis system of the nuclear power plants. (authors)