Science.gov

Sample records for advanced digital controls

  1. NASA's advanced control law program for the F-8 digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1977-01-01

    This paper briefly describes the NASA F-8 Digital Fly-By-Wire (DFBW) and Langley Research Center's role in investigating and promoting advanced control laws for possible flight experimentation and also provides a brief description of the Phase II DFBW F-8 aircraft and its control system. Some of the advanced control law study objectives and guidelines are discussed, and some mathematical models which are useful in the control analysis problem are provided.

  2. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  3. Field Programmable Gate Array for Implementation of Redundant Advanced Digital Feedback Control

    NASA Technical Reports Server (NTRS)

    King, K. D.

    2003-01-01

    The goal of this effort was to develop a digital motor controller using field programmable gate arrays (FPGAs). This is a more rugged approach than a conventional microprocessor digital controller. FPGAs typically have higher radiation (rad) tolerance than both the microprocessor and memory required for a conventional digital controller. Furthermore, FPGAs can typically operate at higher speeds. (While speed is usually not an issue for motor controllers, it can be for other system controllers.) Other than motor power, only a 3.3-V digital power supply was used in the controller; no analog bias supplies were used. Since most of the circuit was implemented in the FPGA, no additional parts were needed other than the power transistors to drive the motor. The benefits that FPGAs provide over conventional designs-lower power and fewer parts-allow for smaller packaging and reduced weight and cost.

  4. A real-time simulation facility for advanced digital guidance and control system research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Downing, D. R.; Ostroff, A. J.

    1979-01-01

    A real-time simulation facility built at NASA's Langley Research Center to support digital guidance and control research and development activities is examined. The unit has recently been used to develop autoland systems for VTOL. The paper describes the autoland experiment and the flight environment, the simulation facility hardware and software, and presents typical simulation data to illustrate the type of data analysis carried out during software development. Finally, flight data for a later version of the autoland system are presented to demonstrate the simulation's capability to predict overall system behavior.

  5. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  6. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  7. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  8. Design of Advanced Digital Flight Control Systems via Command Generator Tracker (CGT) Synthesis Methods. Volume I.

    DTIC Science & Technology

    1981-12-01

    of the CGT controllers. For the aircraft longitudinal dynamics system, three different design models are used. All three design jmodels employ simple... longitudinal dynamics are given below. Reference 30 details * Ithe derivation of the linear perturbation model of aircraft longitudinal dynamics while the...decoupled pitch-pointing control for an aircraft system model representative of modern aircraft longitudinal dynamics. The CGT/PI/KF controller is found

  9. Digital automatic gain control

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  10. Advanced Digital Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Hoh, R. H.; Teper, G. L.

    1977-01-01

    Objectives and functions of the Advanced Digital Avionics System (ADAS) for general aviation are outlined with particular reference to navigation, flight control, engine management, ATC surveillance, flight management, communications, and the pilot controls and displays. The resulting ADAS design comprises the selection of off-the-shelf avionics to be integrated with ADAS-unique elements including new pilot displays and controls along with a microcomputer control complex (MCC). Reasons for which the ADAS achieves increased avionics capability are mentioned, including overall system integration through the MCC and pilot orientation from navigation map display.

  11. Qualification of the flight-critical AFTI/F-16 digital flight control system. [Advanced Fighter Technology Integration

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Ishmael, S. D.; Regenie, V. A.

    1983-01-01

    Qualification considerations for assuring the safety of a life-critical digital flight control system include four major areas: systems interactions, verification, validation, and configuration control. The AFTI/F-16 design, development, and qualification illustrate these considerations. In this paper, qualification concepts, procedures, and methodologies are discussed and illustrated through specific examples.

  12. Programmable Digital Controller

    NASA Technical Reports Server (NTRS)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  13. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  14. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  15. Digital numerically controlled oscillator

    NASA Technical Reports Server (NTRS)

    Cellier, A.; Huey, D. C.; Ma, L. N. (Inventor)

    1980-01-01

    The frequency and phase of an output signal from an oscillator circuit are controlled with accuracy by a digital input word. Positive and negative alterations in output frequency are both provided for by translating all values of input words so that they are positive. The oscillator reference frequency is corrected only in one direction, by adding phase to the output frequency of the oscillator. The input control word is translated to a single algebraic sign and the digital 1 is added thereto. The translated input control word is then accumulated. A reference clock signal having a frequency at an integer multiple of the desired frequency of the output signal is generated. The accumulated control word is then compared with a threshold level. The output signal is adjusted in a single direction by dividing the frequency of the reference clock signal by a first integer or by an integer different from the first integer.

  16. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  17. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-09-30

    Advanced Digital Signal Processing for Hybrid Lidar William D. Jemison Clarkson University [Technical Section Technical Objectives The technical...objective of this project is the development and evaluation of various digital signal processing (DSP) algorithms that will enhance hybrid lidar ...algorithm as shown in Figure 1. Hardware Platform for Algorithm Implementation + Underwater Channel Characteristics ^ Lidar DSP Algorithm Figure

  18. Digital Demodulator For Advanced Receiver

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Hurd, William J.

    1990-01-01

    Complexity and cost reduced by new design for half-band filters. Digital demodulator designed for use in reception of phase- and amplitude-modulated digital signals of bandwidths up to 15 MHz on microwave carriers. System performs coherent demodulation in phase and in quadrature with carrier locked in phase to intermediate frequency of 10 MHz. Design suitable for fabrication in very-large-scale integrated circuitry. Principal innovative feature of demodulator is design of half-band digital low-pass filters that remove sum-frequency components.

  19. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  20. Technology research for digital flight control

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.

    1983-01-01

    The use of advanced digital systems for flight control and guidance for a specific mission is investigated. The research areas include advanced electronic system architectures, tests with the global positioning system (GPS) in a helicopter, and advanced integrated systems concept for rotorcraft. Emphasis is on a search and rescue mission, differential global positioning systems to provide a data base of performance information for navigation, and a study to determine the present usage and trends of microcomputers and microcomputer components in the avionics industries.

  1. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  2. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  3. Digital Fire Control Systems Support

    DTIC Science & Technology

    2012-09-27

    Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully integrated digital fire control system that has weapon platform application to the...Lightweight 155 mm (LW155) Towed Howitzer and the M119A2 Lightweight 105mm Towed Howitzer. 15. SUBJECT TERMS Digital Fire Control Systems ( DFCS ) 16...Joint Lightweight 155, has been tasked to develop and maintain the Digital Fire Control Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully

  4. United States digital advanced television broadcasting standard

    NASA Astrophysics Data System (ADS)

    Hopkins, Robert

    1996-01-01

    A demonstration of high definition television (HDTV) was given in the United States in the early 1980s. It inspired the imagination as to what might be seen, someday, in the homes of television viewers. Now, some fifteen years later, we are on the verge of adopting a new television broadcasting standard. In the near future, the Federal Communications Commission is expected to make its final ruling on the new technology. The new standard will be 100% digital, something nobody would have guessed watching those early demonstrations. This paper briefly reviews some key technical debates. The debates were related to HDTV production standards and analog HDTV broadcasting during the 1980s. They began to shift focus in 1990 as the first digital HDTV broadcasting proposals were made public. More recently, the debates have centered on the tremendous flexibility that can be obtained with a digital broadcasting system. The Digital HDTV Grand Alliance system, that has been under study in the FCC's Advisory Committee on Advanced Television Service and documented by the Advanced Television Systems Committee, is highlighted. Current status of the technical standard is explained. To conclude, comments on the future potential of this new television broadcasting technology are offered.

  5. Digital control of HVDC converters

    SciTech Connect

    Pilotto, L.A.S.; Roitman, M.; Alves, J.E.R.

    1989-05-01

    This paper presents the project of a completely digital HVDC converter controller based on a 16-bit microcomputer. It was decided to achieve as much as possible by software in order to minimize functions performed by external hardware. The presented design comprises software programmed functions such as a PID current control amplifier, voltage dependent current order limiters and an alpha-minimum symmetrization unit, among others. HVDC control principles are briefly reviewed and a detailed description of both the hardware and software structure of the controller is presented. The digital controller was implemented in an HVDC simulator and several dynamic performance tests demonstrated the efficiency of the proposed methodology.

  6. Digitally controlled distributed phase shifter

    SciTech Connect

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1992-12-31

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one of two discrete bias voltages. The application of the discrete bias voltages change the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  7. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  8. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  9. Space Digital Controller for Improved Motor Control

    NASA Astrophysics Data System (ADS)

    Alves-Nunes, Samuel; Daras, Gaetan; Dehez, Bruno; Maillard, Christophe; Bekemans, Marc; Michel, Raymond

    2014-08-01

    Performing digital motor control into space equipment is a new challenge. The new DPC (Digital Programmable Controller) is the first chip that we can use as a micro-controller, allowing us to drive motors with digital control schemes. In this paper, the digital control of hybrid stepper motors is considered. This kind of motor is used for solar array rotation and antenna actuation. New digital control technology brings a lot of advantages, allowing an important reduction of thermal losses inside the motor, and a reduction of thermal constraints on power drive electronic components. The opportunity to drive motors with a digital controller also brings many new functionalities like post-failure torque analysis, micro- vibrations and cogging torque reduction, or electro- mechanical damping of solar array oscillations. To evaluate the performance of the system, Field-Oriented Control (FOC) is implemented on a hybrid stepper motor. A test-bench, made of an active load, has been made to emulate the mechanical behaviour of the solar array, by the use of a torsionally-compliant model. The experimental results show that we can drastically reduce electrical power consumption, compared with the currently used open-loop control scheme.

  10. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  11. All digital pulsewidth control loop

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  12. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  13. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-03-31

    project "Advanced Digital Signal Processing for Hybrid Lidar " covering the period of 1/1/2013-3/31/2013. 9LO\\SO^O’IH^’?’ William D. Jemison...Chaotic LIDAR for Naval Applications This document contains a Progress Summary for FY13 Q2 and a Short Work Statement for FY13 Progress Summary for...This technique has the potential to increase the unambiguous range of hybrid lidar -radar while maintaining reasonable range resolution. Proof-of

  14. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  15. Digital Control For Remote Manipulators

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Dotson, Ronald S.

    1987-01-01

    Multiple microprocessors enable large separations between controllers and manipulators. Controller for remote manipulator requires no direct mechanical connection between slave arm and master arm moved by human operator. Employs two-way digital data transmission rather than mechanical linkage between master and slave. Manipulator a considerable distance from operator. Software for controller distributed between master and slave locations. Organized into modules. Hardware and software for system demonstrated in laboratory model.

  16. Digital control of highly augmented combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.

  17. Direct Digital Control Study.

    DTIC Science & Technology

    1985-02-01

    please attach additional pages to answer this question. 6. What is the "rule of thumb" used to calculate the number of DDC control loops and 1/0 points...I ’ : ’ ~ 2’, . Vkt ; .nw]i.<[[I’ S, ,ten,m Service Company would like to receive a copy of i I ication. Should additional information be required

  18. Digital electronic engine control history

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1984-01-01

    Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.

  19. Army/NASA small turboshaft engine digital controls research program

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.; Baez, A. N.

    1981-01-01

    The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.

  20. Application development environment for advanced digital workstations

    NASA Astrophysics Data System (ADS)

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.

    1998-06-01

    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  1. Digital Controller For Emergency Beacon

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1990-01-01

    Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.

  2. Digital adaptive flight controller development

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.

    1974-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.

  3. Centralized digital control of accelerators

    SciTech Connect

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  4. Digital electrospray for controlled deposition.

    PubMed

    Deng, Weiwei; Waits, C Mike; Gomez, Alessandro

    2010-03-01

    Many novel functional structures are now fabricated by controlled deposition as a maskless, bottom-up fabrication technique. These applications require rapid and precise deposition of minute amounts of solutions/suspensions or their ultimate particle products in predefined patterns. The electrospray is a promising alternative to the commonly used inkjet printing because it can easily handle highly viscous liquid, avoid high shear rates, and has low risk of clogging. We demonstrate a proof-of-concept digital electrospray. This system consists of a 61-nozzle array microfabricated in silicon and a 61-element digital extractor fabricated using flexible polyimide substrates. "Digital" refers to the state of each electrospray source that can be tuned either on or off independently and responsively. We showed a resolution of 675 mum and a response frequency up to 100 Hz. With similar design and industry standard fabrication procedures, it is feasible to scale up the system to O(1000) sources with spatial resolution better than 250 mum and a O(kHz) response frequency. The latter is controlled by the viscous damping time.

  5. Digital Advances in Contemporary Audio Production.

    ERIC Educational Resources Information Center

    Shields, Steven O.

    Noting that a revolution in sonic high fidelity occurred during the 1980s as digital-based audio production methods began to replace traditional analog modes, this paper offers both an overview of digital audio theory and descriptions of some of the related digital production technologies that have begun to emerge from the mating of the computer…

  6. Optimal digital redesign of cascaded analogue controllers

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Decrocq, B. B.; Zhang, J. L.

    1991-01-01

    This paper presents a new, optimal digital redesign technique for finding an optimal cascaded digital controller from the given continuous-time counterpart by minimizing a quadratic performance index. The control gains can be obtained by solving a set of Liapunov equations. The developed optimal cascaded digital controller enables the state and/or outputs of the digitally controlled closed-loop sampled-data system to optimally match those of the original continuous-time closed-loop system at any instant between sampling periods. The developed control law can be implemented using inexpensive and reliable digital electronics with a relatively long sampling period.

  7. Digital Control System For Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Hoadley, Sherwood T.; Mcgraw, Sandra

    1995-01-01

    Multiple functions performed by multiple coordinated processors for real-time control. Multiple input, multiple-output, multiple-function digital control system developed for wind-tunnel model of advanced fighter airplane with actively controlled flexible wings. Digital control system provides flexibility in selection of control laws, sensors, and actuators, plus some redundancy to accommodate failures in some of its subsystems. Implements feedback control scheme providing simultaneously for suppression of flutter, control of roll angle, roll-rate tracking during maximized roll maneuvers, and alleviation of loads during roll maneuvers.

  8. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  9. Advanced Wavefront Control Techniques

    SciTech Connect

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  10. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  11. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  12. Regulatory Review of the Digital Plant Protection System for Advanced Power Reactor 1400

    SciTech Connect

    Kim, DAI. I.; Ji, S.H.; Park, H.S.; Kim, B.R.; Kang, Y.D.; Oh, S.H.

    2002-07-01

    This paper presents the evaluation result and the regulatory approach of digital plant protection system (DPPS) for Advanced Power Reactor (APR-1400). Firstly, we discuss the issue associated with the integration of bistable processor (BP) and local coincidence logic processor (LCLP) as one of design changes over digital plant protection system. Secondly, regulatory approach is presented on the safety classification and the independence of the soft controller to be installed in digital engineered safety features actuation system (DESFAS). Finally, hardwired back up systems against common mode failure of a digital system and the safety classification of Remote Shutdown Panel (RSP) are described. (authors)

  13. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  14. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  15. Design of Digital Phase-Locked Loops For Advanced Digital Transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    For advanced digital space transponders, the Digital Phased-Locked Loops (DPLLs) can be designed using the available analog loops. DPLLs considered in this paper are derived from the Analog Phase-Locked Loop (APLL) using S-domain mapping techniques.

  16. Advance Control Measures & Programs

    EPA Pesticide Factsheets

    As areas develop their path forward or action plan, they should consider a variety of voluntary and mandatory measures and programs. The resources on this page can help, and participants are also encouraged to talk with their EPA Advance contact

  17. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2014-03-31

    on a multimeter to ensure that the PMT remained within its linear operating regime. The AC-coupTed signal was demodulated and digitized in the SDR ...receiver. The I and Q samples obtained by"" the SDR are transferred over an Ethernet cable to a PC, where the data are processed in a custom LabVIEW...Q samples are generated by the SDR receiver and used to compute range on a PC. Ranging results from the FDR experiments and RangeFinder simulations

  18. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2014-10-30

    was moved in 10 cm increments from a range of 1.35 m to 3.05 m. The photomultiplier tube ( PMT ) collected light scattered from the submerged target...through the window. A bias-tee at the output of the PMT separated the DC and AC components of the photocurrent. The DC-coupled signal was monitored on a...multimeter to ensure that the PMT remained within its linear operating region. The AC-coupled signal was demodulated and digitized in the software

  19. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2014-09-30

    The target was moved in 10 cm increments from a range of 1.35 m to 3.05 m. The photomultiplier tube ( PMT ) collected light scattered from the...submerged target through the window. A bias-tee at the output of the PMT separated the DC and AC components of the photocurrent. The DC-coupled signal was...monitored on a multimeter to ensure that the PMT remained within its linear operating region. The AC-coupled signal was demodulated and digitized in

  20. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  1. Digital adaptive control laws for the F-8

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Harvey, C. A.

    1976-01-01

    NASA is conducting a flight control research program in digital fly-by-wire technology using a modified F-8C aircraft. The first phase of this program used Apollo hardware to demonstrate the practicality of digital fly-by-wire in an actual test vehicle. For the second phase, conventional aircraft sensors and a large floating point digital computer are being utilized to test advanced control laws and redundancy concepts. As part of NASA's research in digital fly-by-wire technology, Honeywell developed digital adaptive flight control laws for flight test in the F-8C. Adaptation of the control laws was to be based on information sensed from conventional aircraft sensors excluding air data. The control laws were constrained to use only existing elevator, rudder, and ailerons as control effectors, each powered by existing actuators. Three adaptive control laws were successfully designed using maximum likelihood estimation, a Liapunov stable model tracker and a self-excited limit cycle concept. The maximum likelihood estimation design was selected as the most promising because of its capability to identify more than surface effectiveness parameters. The adaptive concepts, the control laws and comparisons of predicted performance are described.

  2. How behavioral science can advance digital health.

    PubMed

    Pagoto, Sherry; Bennett, Gary G

    2013-09-01

    The field of behavioral science has produced myriad data on health behavior change strategies and leveraged such data into effective human-delivered interventions to improve health. Unfortunately, the impact of traditional health behavior change interventions has been heavily constrained by patient and provider burden, limited ability to measure and intervene upon behavior in real time, variable adherence, low rates of implementation, and poor third-party coverage. Digital health technologies, including mobile phones, sensors, and online social networks, by being available in real time, are being explored as tools to increase our understanding of health behavior and to enhance the impact of behavioral interventions. The recent explosion of industry attention to the development of novel health technologies is exciting but has far outpaced research. This Special Section of Translational Behavioral Medicine, Smartphones, Sensors, and Social Networks: A New Age of Health Behavior Change features a collection of studies that leverage health technologies to measure, change, and/or understand health behavior. We propose five key areas in which behavioral science can improve the impact of digital health technologies on public health. First, research is needed to identify which health technologies actually impact behavior and health outcomes. Second, we need to understand how online social networks can be leveraged to impact health behavior on a large scale. Third, a team science approach is needed in the developmental process of health technologies. Fourth, behavioral scientists should identify how a balance can be struck between the fast pace of innovation and the much slower pace of research. Fifth, behavioral scientists have an integral role in informing the development of health technologies and facilitating the movement of health technologies into the healthcare system.

  3. Digital Camera Control for Faster Inspection

    NASA Technical Reports Server (NTRS)

    Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel

    2009-01-01

    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.

  4. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  5. Advanced Formation Flight Control.

    DTIC Science & Technology

    1994-12-01

    stabilizes the time dependent linearized plant (7.9) than it is to synthesize a control law which stabilizes the LTI plant (7.5). However, if a stabilizing ... control law is available, Lyapunov’s stabilizability result can also be applied to non LTI scenarios which arise from the application of linearization to

  6. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  7. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    Digital control systems for space structural dampers, also referred to as inertia or proof-mass dampers are investigated. A damper concept is improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Another damper using a three inch stroke rather than the standard one inch stroke is described. Provisions are made for a relative velocity feedback. In one approach, the digital controller is modified to accept the signal from a linear velocity transducer. In the other, the velocity feedback is included in the digital program. An overall system concept for the use of the dampers is presented.

  8. Inherent Error in Asynchronous Digital Flight Controls.

    DTIC Science & Technology

    1980-02-01

    the algorithm for estimating T, * will wait until the state observers (x*) equal the state variables (xp) and this system is in steady state. From...Appendix A (this system is in steady state at the time 200T) and Appendix C (the state observers equal the state variables at time approximate equals 40T...system, the DIGITAL CONTROLLER #1 in the monitor will wait until the state observers (x*) equal the state variables (xp). Then p the DIGITAL CONTROLLER

  9. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  10. Advances in infection control

    PubMed Central

    Marra, Alexandre Rodrigues

    2016-01-01

    ABSTRACT Several initiatives took place in recent years in relation to nosocomial infection control in order to increase patient safety. Some of these initiatives will be commented in this brief review. PMID:27074240

  11. Evaluating Multi-Input/Multi-Output Digital Control Systems

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  12. Advanced sulfur control concepts

    SciTech Connect

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  13. Digital Control Of A Telescope In An Airplane

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann C.; Snyder, Philip K.

    1991-01-01

    Options for design of aim-stabilizing system analyzed. Report discusses feasibility of digital control system stabilizing aim of 30-in. telescope aboard NASA C141 airplane known as Kuiper Atmospheric Observatory. Proposed digital compensator consists of input analog-to-digital converter, digital controller processor, and output digital-to-analog converter.

  14. Advanced program weight control system

    NASA Technical Reports Server (NTRS)

    Derwa, G. T.

    1978-01-01

    The design and implementation of the Advanced Program Weight Control System (APWCS) are reported. The APWCS system allows the coordination of vehicle weight reduction programs well in advance so as to meet mandated requirements of fuel economy imposed by government and to achieve corporate targets of vehicle weights. The system is being used by multiple engineering offices to track weight reduction from inception to eventual production. The projected annualized savings due to the APWCS system is over $2.5 million.

  15. Digital control system for space structure dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1985-01-01

    A digital controller was developed using an SKD-51 System Design Kit, which incorporates an 8031 microcontroller. The necessary interfaces were installed in the wire wrap area of the SKD-51 and a pulse width modulator was developed to drive the coil of the actuator. Also, control equations were developed, using floating-point arithmetic. The design of the digital control system is emphasized, and it is shown that, provided certain rules are followed, an adequate design can be achieved. It is recommended that the so-called w-plane design method be used, and that the time elapsed before output of the up-dated coil-force signal be kept as small as possible. However, the cycle time for the controller should be watched carefully, because very small values for this time can lead to digital noise.

  16. Advanced digital methods for solid propellant burning rate determination

    NASA Astrophysics Data System (ADS)

    Jones, Daniel A.

    The work presented here is a study of a digital method for determining the combustion bomb burning rate of a fuel-rich gas generator propellant sample using the ultrasonic pulse-echo technique. The advanced digital method, which places user defined limits on the search for the ultrasonic echo from the burning surface, is computationally faster than the previous cross correlation method, and is able to analyze data for this class of propellant that the previous cross correlation data reduction method could not. For the conditions investigated, the best fit burning rate law at 800 psi from the ultrasonic technique and advanced cross correlation method is within 3 percent of an independent analysis of the same data, and is within 5 percent of the best fit burning rate law found from parallel research of the same propellant in a motor configuration.

  17. Advanced Digital Signal Processing for Hybrid Lidar FY 2013

    DTIC Science & Technology

    2013-01-01

    Report 4. TITLE AND SUBTITLE Advance Digital Signal Processing for Hybrid Lidar 6. AUTHOR(S) William D. Jemison 7. PERFORMING ORGANIZATION NAME(S...development of signed processing algorithms for hybrid lidar - radar designed to improve detection performance. i , 15. SUBJECT TERMS Hybrid... Lidar - Radar 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  18. Designing Digital Control Systems With Averaged Measurements

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Beale, Guy O.

    1990-01-01

    Rational criteria represent improvement over "cut-and-try" approach. Recent development in theory of control systems yields improvements in mathematical modeling and design of digital feedback controllers using time-averaged measurements. By using one of new formulations for systems with time-averaged measurements, designer takes averaging effect into account when modeling plant, eliminating need to iterate design and simulation phases.

  19. GMA200 ATEGG Digital Controls Demonstration.

    DTIC Science & Technology

    1979-10-01

    Technologyi Demonstrator Variable Cycle Engines Digital Controls Control Modes Turbine Engine Controls Signal Synthesis 20 A 8STRACI ’CantInue -n r.ct...Turbine Outlet Temperature TX Temperature at Station Location X UTC Universal Test Console VCE Variable Cycle Engine VG Variable Geometry W Flow WA...Definition of engine control variables - ATEGG is a variaole cycle engine with a multi-input, multi-output structure. The multi-input part of tna

  20. Delayed coker fractionator advanced control

    SciTech Connect

    Jaisinghani, R.; Minter, B. ); Tica, A.; Puglesi, A.; Ojeda, R. )

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  1. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  2. Advanced Motor-Controller Development.

    DTIC Science & Technology

    1983-06-22

    which document the three stages of develop- _ - fment. "U Volume Summary A. Phase I Report Flux Synthesis and PWM Synthesis Techniques Theory and...Three Phase Power Bridge and Evaluation of Motor Controller Volume Summary The three reports assembled in this votume represent work performed...1963-A * I ADVANCED MOTOR-CONTROLLER * DEVELOPMENT Final Report for Period October 1979 - June 1983 June 22, 1983 Report DTNSRDC-PASD-CR-1-83

  3. Digital system identification and its application to digital flight control

    NASA Technical Reports Server (NTRS)

    Kotob, S.; Kaufman, H.

    1974-01-01

    On-line system identification of linear discrete systems for implementation in a digital adaptive flight controller is considered by the conventional extended Kalman filter and a decoupling process in which the linear state estimation problem and the linear parameter identification problem are each treated separately and alternately. Input requirements for parameter identifiability are established using the standard conditions of observability for a time variant system. Experimental results for simulated linearized lateral aircraft motion are included along with the effect of different initialization and updating procedures for the priming trajectory used by the filter.

  4. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  5. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  6. Developments in Digital Addressable Lighting Control

    NASA Astrophysics Data System (ADS)

    Moeck, Martin

    In DALI control, a small built-in chip acts as the de-central controller in the ballast. DALI complies with an open source protocol based on standard IEC60929. One small controller controls up to 64 ballasts. Today, manufacturers are adding more devices, such as sensors, blind motor controllers, and switches. Recently, web browser based remote control was developed for the DALI Lighting Laboratory at Pennsylvania State University. This paper reports on first experiences with advanced DALI features.

  7. Aircraft digital flight control technical review

    NASA Technical Reports Server (NTRS)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  8. Digital electronic engine control F-15 overview

    NASA Technical Reports Server (NTRS)

    Kock, B.

    1984-01-01

    A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.

  9. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2004-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  10. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2001-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...34 regions of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  11. Quadruplex digital flight control system assessment

    NASA Technical Reports Server (NTRS)

    Mulcare, D. B.; Downing, L. E.; Smith, M. K.

    1988-01-01

    Described are the development and validation of a double fail-operational digital flight control system architecture for critical pitch axis functions. Architectural tradeoffs are assessed, system simulator modifications are described, and demonstration testing results are critiqued. Assessment tools and their application are also illustrated. Ultimately, the vital role of system simulation, tailored to digital mechanization attributes, is shown to be essential to validating the airworthiness of full-time critical functions such as augmented fly-by-wire systems for relaxed static stability airplanes.

  12. Digital gate pulse generator for cycloconverter control

    DOEpatents

    Klein, Frederick F.; Mutone, Gioacchino A.

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  13. Advanced Concepts for Sea Control,

    DTIC Science & Technology

    1977-11-01

    technology sea control missions, 1,000 tonnes to advances occur, and the threat needs 25,000 tonnes would be representative change, a proper balance can be...sea loiter aircraft, conventional subcavitating fully-sub- utilizing the stopped rotor concept; merged foils, thus providing a very a small sea...augmentation engines have been platform characteristics at conventional moved from their overhung location to a displacement ship speeds but at a re- . place

  14. Advancing digital methods in the fight against communicable diseases.

    PubMed

    Chabot-Couture, Guillaume; Seaman, Vincent Y; Wenger, Jay; Moonen, Bruno; Magill, Alan

    2015-03-01

    Important advances are being made in the fight against communicable diseases by using new digital tools. While they can be a challenge to deploy at-scale, GPS-enabled smartphones, electronic dashboards and computer models have multiple benefits. They can facilitate program operations, lead to new insights about the disease transmission and support strategic planning. Today, tools such as these are used to vaccinate more children against polio in Nigeria, reduce the malaria burden in Zambia and help predict the spread of the Ebola epidemic in West Africa.

  15. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    SciTech Connect

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  16. Control Software for Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.

    2006-01-01

    Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.

  17. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  18. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration.

  19. Digital control algorithms for microgravity isolation systems

    NASA Technical Reports Server (NTRS)

    Sinha, Alok; Wang, Yung-Peng

    1992-01-01

    New digital control algorithms were developed to achieve the desired acceleration transmissibility function. The attractive electromagnets have been taken as actuators. The relative displacement and the acceleration of the mass were used as feedback signals. Two approaches were developed to find that controller transfer function in Z-domain, which yields the desired transmissibility at each frequency. In the first approach, the controller transfer function is obtained by assuming that the desired transmissibility is known in Z-domain. Since the desired transmissibility H sub d(S) = 1/(tauS+1)(exp 2) is given in S-domain, the first task is to obtain the desired transmissibility in Z-domain. There are three methods to perform this task: bilinear transformation, and backward and forward rectangular rules. The bilinear transformation and backward rectangular rule lead to improper controller transfer functions, which are physically not realizable. The forward rectangular rule does lead to a physically realizable controller. However, this controller is found to be marginally stable because of a pole at Z=1. In order to eliminate this pole, a hybrid control structure is proposed. Here the control input is composed of two parts: analog and digital. The analog input simply represents the velocity (or the integral of acceleration) feedback; and the digital controller which uses only relative displacement signal, is then obtained to achieve the desired closed-loop transfer function. The stability analysis indicates that the controller transfer function is stable for typical values of sampling period. In the second approach, the aforementioned hybrid control structure is again used. First, an analog controller transfer function corresponding to relative displacement feedback is obtained to achieve the transmissibility as 1/(tauS+1)(exp 2). Then the transfer function for the digital control input is obtained by discretizing this analog controller transfer function via bilinear

  20. Advanced gray rod control assembly

    DOEpatents

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  1. Distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.

  2. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  3. Advanced controls for light sources

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  4. Digital adaptive control laws for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1979-01-01

    Honeywell has designed a digital self-adaptive flight control system for flight test in the VALT Research Aircraft (a modified CH-47). The final design resulted from a comparison of two different adaptive concepts: one based on explicit parameter estimates from a real-time maximum likelihood estimation algorithm and the other based on an implicit model reference adaptive system. The two designs are compared on the basis of performance and complexity.

  5. Digital LLRF controller for NICA booster

    NASA Astrophysics Data System (ADS)

    Fatkin, G. A.; Batrakov, A. M.; Ilyin, I. V.; Vasilyev, M. Yu.

    2016-10-01

    The digital LLRF controller based on embedded microcontroller for the booster of the Dubna superconducting accelerator complex NICA is presented. It allows setting the frequency in accordance with the magnetic field value in the 0.5-5 MHz range with an inaccuracy ± 110 Hz. A novel method of frequency calculation based on the derivative is proposed. The specialized tester module allows tuning up and checking the RF system during comissioning and operation.

  6. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  7. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  8. Flight Test of Advanced Digital Control Concepts.

    DTIC Science & Technology

    1982-03-01

    the model (Equation 51). 34 OPTIONII .>-COFY, GMATr, MMArtCOPY, IMATvAMAT, COP’Y, JMAT, BmA, 87, >COPY , FMArNMAT, COPYY GMAT , GMAT Next, EKEY...YCMA;TFFMAT ,COPY, FMAT, AMATY,COPY, MMA-T, EMAr ,74, COPY, CMAT r (ThAT, ’:.COFY LMAT, AMAT YCOPYP NMAT, EMAT,73, COPY, GMAT , BmAr, *::COFY, pmA, AMAT...74, COPY, GMAT , UMA’TLMAT, MMAT, NMA T, MA-T, PFMAT, ’UMATPUMAT Next use CKEY to check the results. C B and CF are substituted into the "simulator

  9. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  11. Digital control system for space structural dampers

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.

    1984-01-01

    A recently developed concept for a damper was improved by adding a small taper to the proof-mass, and using a proximeter to determine position. Also, an experimental damper was built using a three-inch stroke in place of the standard one-inch stroke. The analog controller initially used was replaced by an independent digital controller slaved to a TRS-80 Model I computer, which also serves as a highly effective, low-cost development system. An overall system concept for the use of proof-mass dampers is presented.

  12. Digitally controlled twelve-pulse firing generator

    SciTech Connect

    Berde, D.; Ferrara, A.A.

    1981-01-01

    Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control, which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface.

  13. Error-control techniques for digital communication

    NASA Astrophysics Data System (ADS)

    Michelson, A. M.; Levesque, A. H.

    The reliable transmission of digital information is discussed, taking into account the communication system design problem, the elements of a digital communication system, important channel models, information theory and channel capacity, modulation performance on the AWGN channel, and combined modulation and coding for efficient signal design. Other topics studied are related to fundamental and simple block codes, the algebra of linear block codes, binary cyclic codes and BCH codes, decoding techniques for binary BCH codes, nonbinary BCH codes and Reed-Solomon codes, the performance of linear block codes with bounded-distance decoding an introduction to convolutional codes, maximum likelihood decoding of convolutional codes, sequential decoding, and applications of error-control coding. Attention is given to groups, fields, vector spaces, binary linear block codes, the parity-check matrix revisited, dual codes, Hamming distance and the weight distribution, code geometry and error-correction capability, and the representations of finite fields.

  14. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-07-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  15. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1999-01-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  16. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-10-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  17. IDSAC-IUCAA digital sampler array controller

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sabyasachi; Chordia, Pravin; Ramaprakash, A. N.; Burse, Mahesh P.; Joshi, Bhushan; Chillal, Kalpesh

    2016-07-01

    In order to run the large format detector arrays and mosaics that are required by most astronomical instruments, readout electronic controllers are required which can process multiple CCD outputs simultaneously at high speeds and low noise levels. These CCD controllers need to be modular and configurable, should be able to run multiple detector types to cater to a wide variety of requirements. IUCAA Digital Sampler Array Controller (IDSAC), is a generic CCD Controller based on a fully scalable architecture which is adequately flexible and powerful enough to control a wide variety of detectors used in ground based astronomy. The controller has a modular backplane architecture that consists of Single Board Controller Cards (SBCs) and can control up to 5 CCDs (mosaic or independent). Each Single Board Controller (SBC) has all the resources to a run Single large format CCD having up to four outputs. All SBCs are identical and are easily interchangeable without needing any reconfiguration. A four channel video processor on each SBC can process up to four output CCDs with or without dummy outputs at 0.5 Megapixels/Sec/Channel with 16 bit resolution. Each SBC has a USB 2.0 interface which can be connected to a host computer via optional USB to Fibre converters. The SBC uses a reconfigurable hardware (FPGA) as a Master Controller. IDSAC offers Digital Correlated Double Sampling (DCDS) to eliminate thermal kTC noise. CDS performed in Digital domain (DCDS) has several advantages over its analog counterpart, such as - less electronics, faster readout and easier post processing. It is also flexible with sampling rate and pixel throughput while maintaining the core circuit topology intact. Noise characterization of the IDSAC CDS signal chain has been performed by analytical modelling and practical measurements. Various types of noise such as white, pink, power supply, bias etc. has been considered while creating an analytical noise model tool to predict noise of a controller

  18. Droplet position control in digital microfluidic systems.

    PubMed

    Bhattacharjee, Biddut; Najjaran, Homayoun

    2010-02-01

    Research on so called digital microfluidic systems (DMS) capable of manipulating individual microdroplets on a cell-based structure has enormously increased in the past few years, mainly due to the demand of the technology-dependent biomedical applications. Significant research in this area has been related to the simulation and modeling of droplet motion, demonstration of different drop actuation techniques on laboratory-scale prototypes, and droplet routing and scheduling for more efficient assay procedures. This paper introduces the basics of the control analysis and design of a DMS, which is a relatively unexplored area in digital microfluidics. This paper starts with a discussion on a simplified dynamic model of droplet motion in a planar array of cells, and continues with more complicated dynamic models that are necessary to realize the structure of an appropriate closed-loop control system for the DMS. The control analysis and design includes both the transient and steady-state responses of the DMS under external driving forces. The proposed control analysis and design approach is implemented into SIMULINK models to demonstrate the performance of the DMS through simulation using the system parameters previously reported in the literature.

  19. Efficient control structures for digital programmable retinas

    NASA Astrophysics Data System (ADS)

    Bernard, Thierry M.

    2001-05-01

    A digital programmable artificial retina (PAR) is a functional extension of a CMOS imager, in which every pixel is fitted with a local ADC and a tiny digital programmable processor. From an architectural viewpoint, a PAR is an SIMD array processor with local optical input. A PAR is aimed at processing images on-site until they can be output from the array under concentrated form. The overall goal is to get compact, fast and inexpensive vision systems, in particular for robotics applications. A 256 by 256 PAR with up to a few tens bits of local memory per pixel is now within reach at reasonable cost. However, whereas the local memory size benefits quadratically from the feature size decrease, wiring density improvement can only be linear, at best. So control should become more complex with the danger of a growing proportion of the digital pixel area being devoted to instruction or address decoding. We propose efficient scalable solutions to this problem at the architectural, circuit and topological levels, which attempt to minimize both silicon area and power consumption.

  20. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  1. Digital system accurately controls velocity of electromechanical drive

    NASA Technical Reports Server (NTRS)

    Nichols, G. B.

    1965-01-01

    Digital circuit accurately regulates electromechanical drive mechanism velocity. The gain and phase characteristics of digital circuits are relatively unimportant. Control accuracy depends only on the stability of the input signal frequency.

  2. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  3. Advances in digital radiography: physical principles and system overview.

    PubMed

    Körner, Markus; Weber, Christof H; Wirth, Stefan; Pfeifer, Klaus-Jürgen; Reiser, Maximilian F; Treitl, Marcus

    2007-01-01

    During the past two decades, digital radiography has supplanted screen-film radiography in many radiology departments. Today, manufacturers provide a variety of digital imaging solutions based on various detector and readout technologies. Digital detectors allow implementation of a fully digital picture archiving and communication system, in which images are stored digitally and are available anytime. Image distribution in hospitals can now be achieved electronically by means of web-based technology with no risk of losing images. Other advantages of digital radiography include higher patient throughput, increased dose efficiency, and the greater dynamic range of digital detectors with possible reduction of radiation exposure to the patient. The future of radiography will be digital, and it behooves radiologists to be familiar with the technical principles, image quality criteria, and radiation exposure issues associated with the various digital radiography systems that are currently available.

  4. Formulation of a strategy for monitoring control integrity in critical digital control systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  5. Space shuttle digital flight control system

    NASA Technical Reports Server (NTRS)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  6. Optimal digital redesign of continuous-time controllers

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Zhang, Jian L.; Coleman, Norman P.

    1991-01-01

    This paper proposes a new optimal digital redesign technique for finding a dynamic digital control law from the available analog counterpart and simultaneously minimizing a quadratic performance index. The proposed technique can be applied to a system with a more general class of reference inputs, and the developed digital regulator can be implemented using low cost microcomputers.

  7. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  8. Advances in digital printing and quality considerations of digitally printed images

    NASA Astrophysics Data System (ADS)

    Waes, Walter C.

    1997-02-01

    The traditional 'graphic arts' market has changed very rapidly. It has been only ten years now since Aldus introduced its 'PageMaker' software for text and layout. The platform used was Apple-Mac, which became also the standard for many other graphic applications. The so-called high-end workstations disappeared. This was the start for what later was called: the desk top publishing revolution. At the same time, image scanning became also user-friendly and heavy duty scanners were reduced to desktop-size. Color- reproduction became a commodity product. Since then, the pre-press industry has been going through a technical nightmare, trying to keep up with the digital explosion. One after another, tasks and crafts of pre-press were being transformed by digital technologies. New technologies in this field came almost too fast for many people to adapt. The next digital revolution will be for the commercial printers. All the reasons are explained later in this document. There is now a definite need for a different business-strategy and a new positioning in the electronic media-world. Niches have to be located for new graphic arts- applications. Electronic services to-and-from originators' and executors environments became a requirement. Data can now flow on-line between the printer and the originator of the job. It is no longer the pre-press shop who is controlling this. In many cases, electronic data goes between the print-buyer or agency and the printer. High power communication-systems with accepted standard color- management are transforming the printer, and more particularly, the pre-press shop fatally. The new digital printing market, now in the beginning of its expected full expansion, has to do with growing requests coming from agencies and other print-buyers for: (1) short-run printing; (2) print-on-demand approximately in-time; (3) personalization or other forms of customization; (4) quick turnaround.

  9. Digitally Controlled Slot Coupled Patch Array

    NASA Technical Reports Server (NTRS)

    D'Arista, Thomas; Pauly, Jerry

    2010-01-01

    A four-element array conformed to a singly curved conducting surface has been demonstrated to provide 2 dB axial ratio of 14 percent, while maintaining VSWR (voltage standing wave ratio) of 2:1 and gain of 13 dBiC. The array is digitally controlled and can be scanned with the LMS Adaptive Algorithm using the power spectrum as the objective, as well as the Direction of Arrival (DoA) of the beam to set the amplitude of the power spectrum. The total height of the array above the conducting surface is 1.5 inches (3.8 cm). A uniquely configured microstrip-coupled aperture over a conducting surface produced supergain characteristics, achieving 12.5 dBiC across the 2-to-2.13- GHz and 2.2-to-2.3-GHz frequency bands. This design is optimized to retain VSWR and axial ratio across the band as well. The four elements are uniquely configured with respect to one another for performance enhancement, and the appropriate phase excitation to each element for scan can be found either by analytical beam synthesis using the genetic algorithm with the measured or simulated far field radiation pattern, or an adaptive algorithm implemented with the digitized signal. The commercially available tuners and field-programmable gate array (FPGA) boards utilized required precise phase coherent configuration control, and with custom code developed by Nokomis, Inc., were shown to be fully functional in a two-channel configuration controlled by FPGA boards. A four-channel tuner configuration and oscilloscope configuration were also demonstrated although algorithm post-processing was required.

  10. Digital polarization holography advancing 4G optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Roberts, David E.; Tabiryan, Nelson V.; Steeves, Diane M.; Kimball, Brian R.

    2016-09-01

    The fourth generation optics (4G optics) enables the realization of novel optical components (lenses, gratings, vector vortices, etc.) by patterning the optical axis orientation in the plane of an anisotropic film. Such components exhibit near 100% diffraction efficiency for wavelengths meeting half-wave retardation condition. In this framework, we have advanced a step-forward by realizing different diffractive waveplates (DWs) with arbitrary spatial patterns of the optical axis orientation by exploiting the capability of a Digital Spatial Light Polarization Converter (DSLPC). The DSLPC is based on a reflective, high resolution Spatial Light Modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment is that the orientation of the alignment layer, and therefore of the fabricated liquid crystal (LC) or liquid crystal polymer (LCP) DWs, can be specified on a pixel-by-pixel basis. By varying the optical magnification or de-magnification between the SLM and the alignment layer, the spatial resolution of the photoaligned layer can be adjusted to be optimal for each application. We show that with a simple "click" it is possible to record different high resolution optical components as well as arbitrary patterns ranging from lenses to invisible and even dual labels.

  11. Digital carrier demodulation for the DSN Advanced Receiver

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Hurd, W. J.

    1988-01-01

    The digital in-phase and quadrature (I and Q) carrier demodulation for the Deep Space Network's (DSN) Advanced Receiver is described and analyzed. The system provides coherent demodulation for a variety of modulation formats including Binary Phase Shift Keying (BPSK), BPSK with a carrier residual, Quadrature Phase Shift Keying (QPSK), Offset-QPSK (OQPSK), and Minimum Shift Keying (MSK). The focus is on the theory and hardware design of the halfband filters which are the integral part of the demodulator. The underlying theory of the filters is summarized, a breadboard hardware design is described, and a VLSI implementation is proposed which significantly decreases the hardware. A second important problem analyzed is DC-offset in the demodulator. This is a serious problem which translates into bias error in the residual carrier phase detector. The dynamic range of the complex mixer is analyzed using a probabilistic approach. It is deduced that the resulting static phase error is less than 0.2 deg when the ratio of carrier power to noise power in the demodulator input bandwidth is -72 dB or higher. Thus, the static phase error is negligible at a carrier power to noise spectral density of 0 dB-Hz for a 15 MHz bandwidth demodulator.

  12. Digital carrier demodulation for the DSN Advanced Receiver

    NASA Astrophysics Data System (ADS)

    Sadr, R.; Hurd, W. J.

    1988-05-01

    The digital in-phase and quadrature (I and Q) carrier demodulation for the Deep Space Network's (DSN) Advanced Receiver is described and analyzed. The system provides coherent demodulation for a variety of modulation formats including Binary Phase Shift Keying (BPSK), BPSK with a carrier residual, Quadrature Phase Shift Keying (QPSK), Offset-QPSK (OQPSK), and Minimum Shift Keying (MSK). The focus is on the theory and hardware design of the halfband filters which are the integral part of the demodulator. The underlying theory of the filters is summarized, a breadboard hardware design is described, and a VLSI implementation is proposed which significantly decreases the hardware. A second important problem analyzed is DC-offset in the demodulator. This is a serious problem which translates into bias error in the residual carrier phase detector. The dynamic range of the complex mixer is analyzed using a probabilistic approach. It is deduced that the resulting static phase error is less than 0.2 deg when the ratio of carrier power to noise power in the demodulator input bandwidth is -72 dB or higher. Thus, the static phase error is negligible at a carrier power to noise spectral density of 0 dB-Hz for a 15 MHz bandwidth demodulator.

  13. Digital Control of Flight Simulator Motion Base Actuator.

    DTIC Science & Technology

    1984-01-01

    SYNTHESIS 3.1 Basic Considerations As a starting point for digital controller design a proportional plus integral ( PI ) control law of the form - V(s...on closed loop stability arising from digital realization of the PI control law, computational time delay and sampling have to be taken into

  14. Description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory test model

    NASA Technical Reports Server (NTRS)

    Woolley, C. T.; Groom, N. J.

    1981-01-01

    A description of a digital computer simulation of an Annular Momentum Control Device (AMCD) laboratory model is presented. The AMCD is a momentum exchange device which is under development as an advanced control effector for spacecraft attitude control systems. The digital computer simulation of this device incorporates the following models: six degree of freedom rigid body dynamics; rim warp; controller dynamics; nonlinear distributed element axial bearings; as well as power driver and power supply current limits. An annotated FORTRAN IV source code listing of the computer program is included.

  15. Advanced High-Speed 16-Bit Digitizer System

    SciTech Connect

    2012-05-01

    The fastest commercially available 16-bit ADC can only perform around 200 mega-samples per second (200 MS/s). Connecting ADC chips together in eight different time domains increases the quantity of samples taken by a factor of eight. This method of interleaving requires that the input signal being sampled is split into eight identical signals and arrives at each ADC chip at the same point in time. The splitting of the input signal is performed in the analog front end containing a wideband filter that impedance matches the input signal to the ADC chips. Each ADC uses a clock to tell it when to perform a conversion. Using eight unique clocks spaced in 45-degree increments is the method used to time shift when each ADC chip performs its conversion. Given that this control clock is a fixed frequency, the clock phase shifting is accomplished by tightly controlling the distance that the clock must travel, resulting in a time delay. The interleaved ADC chips will now generate digital data in eight different time domains. These data are processed inside a field-programmable gate array (FPGA) to move the data back into a single time domain and store it into memory. The FPGA also contains a Nios II processor that provides system control and data retrieval via Ethernet.

  16. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  17. Digital control of magnetic bearings supporting a multimass flexible rotor

    NASA Technical Reports Server (NTRS)

    Keith, F. J.; Williams, R. D.; Allaire, P. E.; Schafer, R. M.

    1993-01-01

    The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control.

  18. COSPAS/SARSAT 406-MHz emergency beacon digital controller

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1988-01-01

    The digital control portion of a low-cost 406-MHz COSPAS/SARSAT emergency beacon has been designed and breadboarded at the NASA Lewis Research Center. This report discusses the requirements and design tradeoffs of the digital controller and describes the hardware and software design, which is available only to United States citizens and companies.

  19. 77 FR 23630 - Lifeline and Link Up Reform and Modernization; Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS.... 2948] Lifeline and Link Up Reform and Modernization; Advancing Broadband Availability Through Digital Literacy Training, et al. AGENCY: Federal Communications Commission. ACTION: Final rule; petition...

  20. 77 FR 25609 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital Literacy Training AGENCY: Federal Communications Commission. ACTION: Final rule; announcement of effective date... Up Reform and Modernization Report and Order (Order). The Commission submitted revisions to...

  1. 77 FR 71712 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital Literacy Training AGENCY: Federal Communications Commission. ACTION: Final rule; announcement of effective date... Lifeline and Link Up Reform and Modernization Report and Order (Order). The Commission submitted...

  2. Digital Flight Control System for Tactical Fighter. Volume 1. Digital Flight Control System Analysis

    DTIC Science & Technology

    1974-06-01

    30 34 34 37 38 41 45 47 47 53 55 5fi 5 « (il R4 G7 * ..it hv^irWMiM MraiMtMiaiiMiflMaiMifliarii^^MMiyiiJ ■.pi.miwwuiwi.iiii.iii, mm...the Digital Control Software System 5 (DIGIKON) 3 Control and Computational Requirements 7 4 Interactive Analysis, Design, and Performance...Evaluation 7 in the s-Plane 5 Interactive Analysis, Design, and Performance Evaluation 8 in the s-z Plane 6 Interactive Analysis, Design, and Performance

  3. Technological Implications for Assessment Ecosystems: Opportunities for Digital Technology to Advance Assessment

    ERIC Educational Resources Information Center

    Behrens, John T.; DiCerbo, Kristen E.

    2014-01-01

    Background: It would be easy to think the technological shifts in the digital revolution are simple incremental progressions in societal advancement. However, the nature of digital technology is resulting in qualitative differences in nearly all parts of daily life. Purpose: This paper investigates how the new possibilities for understanding,…

  4. Digital control of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann C.; Snyder, Philip K.

    1989-01-01

    The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance.

  5. Advanced digital I&C systems in nuclear power plants: Risk- sensitivities to environmental stressors

    SciTech Connect

    Hassan, M.; Vesely, W.E.

    1996-06-01

    Microprocessor-based advanced digital systems are being used for upgrading analog instrumentation and control (I&C) systems in nuclear power plants (NPPs) in the United States. A concern with using such advanced systems for safety-related applications in NPPs is the limited experience with this equipment in these environments. In this study, we investigate the risk effects of environmental stressors by quantifying the plant`s risk-sensitivities to them. The risk- sensitivities are changes in plant risk caused by the stressors, and are quantified by estimating their effects on I&C failure occurrences and the consequent increase in risk in terms of core damage frequency (CDF). We used available data, including military and NPP operating experience, on the effects of environmental stressors on the reliability of digital I&C equipment. The methods developed are applied to determine and compare risk-sensitivities to temperature, humidity, vibration, EMI (electromagnetic interference) from lightning and smoke as stressors in an example plant using a PRA (Probabilistic Risk Assessment). Uncertainties in the estimates of the stressor effects on the equipment`s reliability are expressed in terms of ranges for risk-sensitivities. The results show that environmental stressors potentially can cause a significant increase in I&C contributions to the CDF. Further, considerable variations can be expected in some stressor effects, depending on where the equipment is located.

  6. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  7. REVIEW OF NRC APPROVED DIGITAL CONTROL SYSTEMS ANALYSIS

    SciTech Connect

    D.W. Markman

    1999-09-17

    Preliminary design concepts for the proposed Subsurface Repository at Yucca Mountain indicate extensive reliance on modern, computer-based, digital control technologies. The purpose of this analysis is to investigate the degree to which the U. S. Nuclear Regulatory Commission (NRC) has accepted and approved the use of digital control technology for safety-related applications within the nuclear power industry. This analysis reviews cases of existing digitally-based control systems that have been approved by the NRC. These cases can serve as precedence for using similar types of digitally-based control technologies within the Subsurface Repository. While it is anticipated that the Yucca Mountain Project (YMP) will not contain control systems as complex as those required for a nuclear power plant, the review of these existing NRC approved applications will provide the YMP with valuable insight into the NRCs review process and design expectations for safety-related digital control systems. According to the YMP Compliance Program Guidance, portions of various NUREGS, Regulatory Guidelines, and nuclear IEEE standards the nuclear power plant safety related concept would be applied to some of the designs on a case-by-case basis. This analysis will consider key design methods, capabilities, successes, and important limitations or problems of selected control systems that have been approved for use in the Nuclear Power industry. An additional purpose of this analysis is to provide background information in support of further development of design criteria for the YMP. The scope and primary objectives of this analysis are to: (1) Identify and research the extent and precedence of digital control and remotely operated systems approved by the NRC for the nuclear power industry. Help provide a basis for using and relying on digital technologies for nuclear related safety critical applications. (2) Identify the basic control architecture and methods of key digital control

  8. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  9. A high-accuracy digital star tracker for advanced planetary missions

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Crawford, W. E.

    1973-01-01

    The digital star tracker represents a novel departure from previous analog designs in terms of circuit implementation and operational capabilities. As an element of an all-digital spacecraft control system, it combines proven low-level analog signal processing with digital error control and command functions. Additional capabilities that are obtainable with the digital circuitry include programmable intensity threshold gates, commanded electronic pointing control, and an acquisition/control algorithm which minimizes the effects of straylight disturbances. The capabilities inherent in the implementation have been successfully demonstrated in a laboratory model of the instrument.

  10. A high-accuracy digital star tracker for advanced planetary missions.

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Crawford, W. E.

    1972-01-01

    The digital star tracker represents a novel departure from previous analog designs in terms of circuit implementation and operational capabilities. As an element of an all-digital spacecraft control system, it combines proven low-level analog signal processing with digital error control and command functions. Additional capabilities that are obtainable with the digital circuitry include programmable intensity threshold gates, commanded electronic pointing control, and an acquisition/control algorithm which minimizes the effects of straylight disturbances. The capabilities inherent in the implementation have been successfully demonstrated in a laboratory model of the instrument.

  11. Test and control computer user's guide for a digital beam former test system

    NASA Technical Reports Server (NTRS)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  12. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  13. Overview of the US program of controls for advanced reactors

    SciTech Connect

    White, J.D.; Sackett, J.I.; Monson, R.; Lindsay, R.W.; Carroll, D.G.

    1989-01-01

    An automated control system can incorporate control goals and strategies, assessment of present and future plant status, diagnostic evaluation and maintenance planning, and signal and command validation. It has not been feasible to employ these capabilities in conventional hard-wired, analog, control systems. Recent advances in computer-based digital data acquisition systems, process controllers, fiber-optic signal transmission artificial intelligence tools and methods, and small inexpensive, fast, large-capacity computers---with both numeric and symbolic capabilities---have provided many of the necessary ingredients for developing large, practical automated control systems. Furthermore, recent reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. This paper presents an overall US national perspective for advanced controls research and development. The goals of high reliability, low operating cost and simple operation are described. The staged approach from conceptualization through implementation is discussed. Then the paper describes the work being done by ORNL, ANL and GE. The relationship of this work to the US commercial industry is also discussed.

  14. Advanced Adaptive Optics Control Techniques

    DTIC Science & Technology

    1979-01-01

    Optimal estimation and control methods for high energy laser adaptive optics systems are described. Three system types are examined: Active...the adaptive optics approaches and potential system implementations are recommended.

  15. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).

    DTIC Science & Technology

    1985-01-01

    many feet downstream from the damper. For most HVAC applications, PI control is an adequate control technique. A more detailed description of PID control...consumption of two HVAC Systems with PI Control . (Ref 2) 26 Conventional Built-up Control D lirect Digital System complexity F igure 14. Relationships between

  16. Advanced motor-controller development

    NASA Astrophysics Data System (ADS)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  17. Advancing Control in Polymer Chemistry

    NASA Astrophysics Data System (ADS)

    Mattson, Kaila Marie

    Controlling molecular weight, architecture, and comonomer incorporation in polymers is of paramount importance for the preparation of functional materials. This dissertation will highlight the development of three strategies that improve control in macromolecular synthesis, ranging from initial polymerization to macromolecular post-modification. Controlled radical polymerization is a well-established platform for macromolecular engineering. However, many techniques require metal or sulfur additives and yield macromolecules with chain ends that are chemically reactive and thermally unstable. This dissertation presents a light-mediated method for the removal of such end groups, which is effective for a variety of chain ends as well as polymer families, both in solution and with spatial control on surfaces. Polymers with improved thermal and chemical stability can now be obtained under mild, metal-free conditions and with external regulation. To circumvent the presence of such reactive chain ends altogether, triazine-based unimolecular initiators were developed. These metal- and sulfur-free mediators are shown to control the radical polymerization of several monomer classes. Generally, the distribution of functional groups throughout the macromolecular backbone is important for numerous applications. An efficient and high-yielding strategy for the functionalization of well-defined polyethers is described herein. By controlling both the number and location of underwater adhesive catechol groups, these biomimetic macromolecules may facilitate future insights into the mechanics of mussel and underwater adhesion, and related antifouling materials.

  18. Digital Controller For Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon

    1995-01-01

    Report presents additional information about proposed apparatus described in "Beam-Steering Subsystem for Laser Communication" (NPO-19069). Discusses design of digital beam-steering control subsystem and, in particular, that part of design pertaining to digital compensation for frequency response of steering mirror.

  19. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  20. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  1. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    To eliminate previous system instabilities and control high-intensity acoustic tests, a digital control vibration test system is modified by a software change. Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change to allow acoustic testing. It is shown that the hybrid system and the modified vibration system exhibit almost equal performance, although the hybrid system performs testing twice as fast. The development of a specialized acoustic test control system is justified since it costs far less than the general-purpose vibration control system. However, the latter is much easier to set up for a test, which is important in preventing overtesting of valuable spacecraft components.

  2. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  3. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  4. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  5. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  6. Advanced Thermal HPT Clearance Control

    NASA Technical Reports Server (NTRS)

    WojciechVoytek, Sak

    2006-01-01

    OBJECTIVE: Develop a fast acting HPT Active Clearance Control System to improve engine efficiency and reduce emissions CHALLENGE: Reduction of HPT blade clearance throughout engine operation System complexity, reliability and cost must remain comparable or surpass today s engines Reduced clearance may increase possibility of rubs

  7. Trends in the use of digital technology for control and regulation of power supplies.

    SciTech Connect

    Carwardine, J.; Lenkszus, F.

    1999-10-22

    Since the availability of computers, accelerator power supplies have relied on digital technology in some way, from such simple tasks as turning the supplies on and off to the supplying of computer-controlled references. However, advances in digital technology, both in performance and cost, allow considerably more than simple control and monitoring. This, coupled with increasing demand for higher performance and monitoring capabilities, has made it appealing to integrate such technology into power supply designs. This paper will review current trends in the use of such advanced technology as embedded DSP controllers, and the application of real-time algorithms to the regulation and control of power supplies for accelerators and other large-scale physics applications.

  8. Telecommunications: Additional Federal Efforts Could Help Advance Digital Television Transition

    NASA Astrophysics Data System (ADS)

    2002-11-01

    The transition to broadcast digital television(DTV) will provide new television services and the improved picture quality of 'high definition television'. It will also allow some portions of the radiofrequency spectrum used for broadcasting to be returned for public safety and commercial uses. The Congress set December 2006 as the target date for completing the DTV transition and turning the analog broadcast signals. However, this date can be extended if fewer than 85 percent of households in a market are able to receive the digital signals. GAO (General Accounting Office) was asked to assess issues related to the DTV transition.

  9. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  10. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  11. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  12. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  13. 76 FR 62642 - Digital Broadcast Television Redistribution Control; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... From the Federal Register Online via the Government Publishing Office ] FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Digital Broadcast Television Redistribution Control; Corrections AGENCY: Federal Communications Commission. ACTION: Technical amendment. SUMMARY: The Federal Communications Commission (FCC)...

  14. Trends in software reliability for digital flight control

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Hecht, M.

    1983-01-01

    Software error data of major recent Digital Flight Control Systems Development Programs. The report summarizes the data, compare these data with similar data from previous surveys and identifies trends and disciplines to improve software reliability.

  15. Information management advanced development. Volume 3: Digital data bus breadboard

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The design, development, and evaluation of the digital data bus breadboard for the modular space station are discussed. Subjects presented are: (1) requirements summary, (2) parametric data for bus design, (3) redundancy concepts, and (4) data bus breadboard performance and interface requirements.

  16. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  17. The DPC-2000 advanced control system for the Dynamitron accelerator

    NASA Astrophysics Data System (ADS)

    Kestler, Bernard A.; Lisanti, Thomas F.

    1993-07-01

    The DPC-2000 is an advanced control system utilizing the latest technology in computer control circuitry and components. Its overall design is modular and technologically advanced to keep up with customer and engineering demands. The full control system is presented as four units. They are the Remote I/O (Input / Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The central processing unit, the heart of the system, executes a high level language program that communicates to the different sub-assemblies through advanced serial and parallel communication lines. All operational parameters of the accelerator are monitored, controlled and corrected at close to 20 times per second. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not have to communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the machine. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. This allows the operator to set up the process parameters by selecting the product identification code from a menu presented on the display screen. All process parameters are printed to report at regular intervals during a process run for later analysis and record keeping.

  18. Advanced framework for digital forensic technologies and procedures.

    PubMed

    Trček, Denis; Abie, Habtamu; Skomedal, Asmund; Starc, Iztok

    2010-11-01

    Recent trends in global networks are leading toward service-oriented architectures and sensor networks. On one hand of the spectrum, this means deployment of services from numerous providers to form new service composites, and on the other hand this means emergence of Internet of things. Both these kinds belong to a plethora of realms and can be deployed in many ways, which will pose serious problems in cases of abuse. Consequently, both trends increase the need for new approaches to digital forensics that would furnish admissible evidence for litigation. Because technology alone is clearly not sufficient, it has to be adequately supported by appropriate investigative procedures, which have yet become a subject of an international consensus. This paper therefore provides appropriate a holistic framework to foster an internationally agreed upon approach in digital forensics along with necessary improvements. It is based on a top-down approach, starting with legal, continuing with organizational, and ending with technical issues. More precisely, the paper presents a new architectural technological solution that addresses the core forensic principles at its roots. It deploys so-called leveled message authentication codes and digital signatures to provide data integrity in a way that significantly eases forensic investigations into attacked systems in their operational state. Further, using a top-down approach a conceptual framework for forensics readiness is given, which provides levels of abstraction and procedural guides embellished with a process model that allow investigators perform routine investigations, without becoming overwhelmed by low-level details. As low-level details should not be left out, the framework is further evaluated to include these details to allow organizations to configure their systems for proactive collection and preservation of potential digital evidence in a structured manner. The main reason behind this approach is to stimulate efforts

  19. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  20. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm

  1. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  2. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  3. Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1998-01-01

    Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.

  4. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  5. Advanced Topics in Control Systems Theory

    NASA Astrophysics Data System (ADS)

    Lorsa, Antonio; Lamnabhi-Lagarrigue, Françoise; Panteley, Elena

    Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the third (annual) Formation d'Automatique de Paris (FAP) (Graduate Control School in Paris). Following on from the lecture notes from the second FAP (Volume 311 in the same series) it is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as nonlinear optimal control, observer design, stability analysis and structural properties of linear systems.

  6. Prophylactic digitalization fails to control dysrhythmia in thoracic esophageal operations.

    PubMed

    Ritchie, A J; Tolan, M; Whiteside, M; McGuigan, J A; Gibbons, J R

    1993-01-01

    A prospective, controlled, randomized study of 80 patients undergoing esophageal operations was undertaken, in which one group of patients was given digoxin and the other was not. The incidence of cardiac dysrhythmia was compared in each group. Twenty-six patients underwent operation for benign disease. Equal numbers were digitalized or not and no dysrhythmias occurred. Fifty-four patients underwent operation for malignant disease. Of 26 in the group digitalized, 12 suffered dysrhythmia (46%). Of 28 not digitalized, 9 suffered dysrhythmia (32%). Overall, 39% of patients with malignant disease suffered a dysrhythmia compared with none with benign disease (p < 0.002 by chi 2).

  7. Advanced Digital Signal Processing for Hybrid Lidar FY 2014

    DTIC Science & Technology

    2014-10-30

    was moved in 10 cm increments from a range of 1.35 m to 3.05 m. The photomuhiplier tube ( PMT ) collected light scattered from the submerged target...through the window. A bias-tee at the output of the PMT separated the DC and AC components of the photocurrent. The DC-coupled signal was monitored on...a multimeter to ensure that the PMT remained within its linear operating region. The AC-coupled signal was demodulated and digitized in the software

  8. Integrated low power digital gyro control electronics

    NASA Technical Reports Server (NTRS)

    M'Closkey, Robert (Inventor); Challoner, A. Dorian (Inventor); Grayver, Eugene (Inventor); Hayworth, Ken J. (Inventor)

    2005-01-01

    Embodiments of the invention generally encompass a digital, application specific integrated circuit (ASIC) has been designed to perform excitation of a selected mode within a vibratory rate gyroscope, damping, or force-rebalance, of other modes within the sensor, and signal demodulation of the in-phase and quadrature components of the signal containing the angular rate information. The ASIC filters dedicated to each channel may be individually programmed to accommodate different rate sensor designs/technology or variations within the same class of sensors. The ASIC architecture employs a low-power design, making the ASIC, particularly suitable for use in power-sensitive applications.

  9. Fault tolerant programmable digital attitude control electronics study

    NASA Technical Reports Server (NTRS)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  10. Digital set point control of nonlinear stochastic systems

    NASA Technical Reports Server (NTRS)

    Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.

    1978-01-01

    A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.

  11. Improving Hypertension Control and Patient Engagement Using Digital Tools.

    PubMed

    Milani, Richard V; Lavie, Carl J; Bober, Robert M; Milani, Alexander R; Ventura, Hector O

    2017-01-01

    Hypertension is present in 30% of the adult US population and is a major contributor to cardiovascular disease. The established office-based approach yields only 50% blood pressure control rates and low levels of patient engagement. Available home technology now provides accurate, reliable data that can be transmitted directly to the electronic medical record. We evaluated blood pressure control in 156 patients with uncontrolled hypertension enrolled into a home-based digital-medicine blood pressure program and compared them with 400 patients (matched to age, sex, body mass index, and blood pressure) in a usual-care group after 90 days. Digital-medicine patients completed questionnaires online, were asked to submit at least one blood pressure reading/week, and received medication management and lifestyle recommendations via a clinical pharmacist and a health coach. Blood pressure units were commercially available that transmitted data directly to the electronic medical record. Digital-medicine patients averaged 4.2 blood pressure readings per week. At 90 days, 71% of digital-medicine vs 31% of usual-care patients had achieved target blood pressure control. Mean decrease in systolic/diastolic blood pressure was 14/5 mm Hg in digital medicine, vs 4/2 mm Hg in usual care (P < .001). Excess sodium consumption decreased from 32% to 8% in the digital-medicine group (P = .004). Mean patient activation increased from 41.9 to 44.1 (P = .008), and the percentage of patients with low patient activation decreased from 15% to 6% (P = .03) in the digital-medicine group. A digital hypertension program is feasible and associated with significant improvement in blood pressure control rates and lifestyle change. Utilization of a virtual health intervention using connected devices improves patient activation and is well accepted by patients.

  12. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  13. Yield advances in peanut - weed control effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements in weed management are a contributing factor to advancements in peanut yield. Widespread use of vacuum planters and increased acceptance of narrow row patterns enhance weed control by lessening bareground caused by skips and promoting quick canopy closure. Cultivation was traditionall...

  14. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  15. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  16. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  17. Using a digital signal processor as a data stream controller for digital subtraction angiography

    SciTech Connect

    Meng, J.D.; Katz, J.E.

    1991-10-01

    High speed, flexibility, and good arithmetic abilities make digital signal processors (DSP) a good choice as input/output controllers for real time applications. The DSP can be made to pre-process data in real time to reduce data volume, to open early windows on what is being acquired and to implement local servo loops. We present an example of a DSP as an input/output controller for a digital subtraction angiographic imaging system. The DSP pre-processes the raw data, reducing data volume by a factor of two, and is potentially capable of producing real-time subtracted images for immediate display.

  18. MAS2-8 radar and digital control unit

    NASA Technical Reports Server (NTRS)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  19. Digital control in LLRF system for CYCIAE-100 cyclotron

    NASA Astrophysics Data System (ADS)

    Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-01

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog-digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  20. Architectures & requirements for advanced weapon controllers.

    SciTech Connect

    McMurtrey, Brian J.; Klarer, Paul Richard; Bryan, Jon R.

    2004-02-01

    This report describes work done in FY2003 under Advanced and Exploratory Studies funding for Advanced Weapons Controllers. The contemporary requirements and envisioned missions for nuclear weapons are changing from the class of missions originally envisioned during development of the current stockpile. Technology available today in electronics, computing, and software provides capabilities not practical or even possible 20 years ago. This exploratory work looks at how Weapon Electrical Systems can be improved to accommodate new missions and new technologies while maintaining or improving existing standards in nuclear safety and reliability.

  1. Wavelength-Division Multiplexing Of Avionic Digital Control Signals

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Palumbo, Daniel L.

    1993-01-01

    Proposed wavelength-division multiplexing optoelectronic system aboard aircraft transmits digital control signals from central flight-control computer via optical fibers to multiple distributed processors, actuators, and sensors. In comparison with serial TDM communication systems, this system offers potentially higher data throughput, greater tolerance to transient induced faults, and lower bit-error rates. Also immune to electromagnetic interference at suboptical frequencies.

  2. Digital robust control law synthesis using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1989-01-01

    Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

  3. Relationships between digital signal processing and control and estimation theory

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1978-01-01

    Research directions in the fields of digital signal processing and modern control and estimation theory are discussed. Stability theory, linear prediction and parameter identification, system synthesis and implementation, two-dimensional filtering, decentralized control and estimation, and image processing are considered in order to uncover some of the basic similarities and differences in the goals, techniques, and philosophy of the disciplines.

  4. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  5. Digital map and spatial database requirements for advanced traffic management systems

    SciTech Connect

    Lerner-Lam, E.; Smith, W.T.; Francisca, J.R.; Rathi, A.

    1993-12-31

    Advanced Traffic Management Systems (ATMS) depend on good-quality digital maps and spatial databases. Concerns over the availability of digital maps and spatial databases for ATMS`s in the United States were initially raised in early meetings of IVHS America ATMS committee. While there has been little argument regarding the important role of the private sector in providing ``value-added`` data for sale to public and private parties, the IVHS community has since been engaged in a lively debate over the appropriates roles of the public and private sectors in providing ``base data`` for the nation`s Intelligent Vehicle and Highway Systems. This paper summarizes the activities of the ATMS Committee over the past 1 1/2 years and offers recommendations for next steps to be taken toward laying the foundations for efficient and effective deployment of digital map and spatial database resources for use in advanced traffic management systems.

  6. Digital Story Analysis Utilizing the Advancing Care Excellence for Seniors Framework

    ERIC Educational Resources Information Center

    Bassell, Kellie

    2013-01-01

    The purpose of this study was to explore the effectiveness of using digital storytelling as an end of rotation assignment, in a long-term care setting, for pre-licensure nursing students as a means to demonstrate an understanding of the Advancing Care Excellence for Seniors (ACES) framework. The research sought to explore the relationship between…

  7. 77 FR 19125 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket Nos. 11-42, 03-109, 12-23 and CC Docket No. 96-45; FCC 12- 11] Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

  8. 77 FR 38533 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket Nos. 11-42, 03-109, 12-23 and CC Docket No. 96-45; FCC 12- 11] Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

  9. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  10. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  11. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  12. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  13. Digital control of high-intensity acoustic testing. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change. The hybrid system was constructed to control the 1/3-octaves from 50 to 1000 Hz. The vibration system was equipped with programs for sine and random vibration tests, shock analysis and synthesis, and signal analysis. For the modified vibration system, the random-vibration control program of the unmodified unit was changed so that acoustic tests could be performed. The performance of the three systems is compared by conducting probability-density and time-history analyses of the proposed test spectrum for the Mariner Jupiter/Saturn 1977 program. The results of the analyses show that the hybrid and modified vibration systems perform almost equally, but the modified vibration system is easier to use and produces better test documentation.

  14. Evaluation of a high response electrohydraulic digital control valve

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1973-01-01

    The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.

  15. Real Time Digital Control of a Magnetostrictive Actuator

    NASA Technical Reports Server (NTRS)

    Zrostlik, Rick L.; Hall, David L.; Flatau, Alison B.

    1996-01-01

    The use of the magnetostrictive material Terfenol-D as a motion source in active vibration control (AVC) systems are being studied. Currently it is of limited use due to the nonlinear nature of the strain versus magnetization curve and the magnetic hysteresis in the Terfenol-D. One manifestation of these nonlinearities is waveform distortion in the output velocity of the transducer. For Terfenol-D to be used in ever greater numbers of AVC systems, these nonlinearities must be addressed. In this study the nonlinearities are treated as disturbances to a linear system. The acceleration output is used in simple analog and digital feedback control schemes to improve linearity of the transducer. In addition, the use of a Terfenol-D actuator in an AVC system is verified. Both analog and digital controllers are implemented and results compared. A cantilever beam system is considered for AVC applications. The second thrust of this presentation is the reduction of harmonic distortions. Two conclusions can be reached from this work. One, the linearization of Terfenol-D transducers is possible with the use of feedback controllers, both digital and analog. Second, Terfenol-D is a viable motion source in active vibration control systems utilizing either analog or digital controllers.

  16. Digital control of diode laser for atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  17. Rapid prototyping of an advanced motion controller

    NASA Astrophysics Data System (ADS)

    Cooper, R. S.

    This paper illustrates how, using existing research material, an advanced motion control system was developed both rapidly and economically. The paper emphasizes the approach used to put the system together, rather than the results of the evaluation (which is still under way). The system consists of a field-oriented controlled (FOC) induction motor, along with a pulse-population modulated current motor drive. Specific areas addressed in this paper include: a thorough overview of the technologies involved in the project (with emphasis on FOC theory); use of advanced simulation tools and models to aid in system design and debug; use of existing systems wherever possible to help speed up development; and developing the system in an environment suited to true development work.

  18. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  19. Digital Control and Identification of Distributed Systems.

    DTIC Science & Technology

    1990-08-14

    for example, problems in which a Schrodinger equation is coupled with a diffusion equation . In this paper, we are particularly interested in second...control of systems represented by partial differential equations , and adaptive control and tracking problems for flexible structures and manipulators...and functional differential equations . The primary class of applications is large flexible space structures. Papers dealing mainly with approximation

  20. Digital regulation of a phase controlled power converter

    SciTech Connect

    Schultheiss, C.; Haque, T.

    1995-12-01

    The Relativistic Heavy Ion Collider, now in construction at Brookhaven National Laboratory, will use phase controlled power converters for the main dipole and quadrupole magnet strings. The rectifiers in these power supplies will be controlled by a digital regulator based on the TI 320C30 Digital Signal Processor (DSP). The DSP implements the current loop, the voltage loop, and a system to actively reduce the sub-harmonic ripple components. Digital firing circuits consisting of a phase locked lop and counters are used to fire the SCRs. Corrections for the sub-harmonic reduction are calculated by the DSP and stored in registers in the firing circuit. These corrections are added in hardware, to the over-all firing count provided by the DSP. the resultant count is compared to a reference counter to fire the SCRs. This combination of a digital control system and the digital firing circuits allows the correction of the sub-harmonics in a real-time sense. A prototype of the regulator has been constructed, and the preliminary testing indicates a sub-harmonic reduction of 60 dB.

  1. The Advanced Photon Source control system

    SciTech Connect

    Knott, M.J.; McDowell, W.P.; Lenkszus, F.R.; Kraimer, M.R.; Arnold, N.D.; Daly, R.T.; Gunderson, G.R.; Cha, Ben-Chin K.; Anderson, M.D.

    1991-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7-GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible and expandable control system. The control system must be capable of operating the APS storage ring alone, and in conjunction with its injector synchrotron for filling, as well as operating both storage ring and injection facilities as machines with separate missions. The control system design is based on the (now classic) precepts of high-performance workstations as operators consoles, distributed microprocessors to control equipment interfacing and preprocess data, and an interconnecting network. The current design includes about 45 distributed microprocessors and five console systems, which may consist of one or more workstations. 6 refs., 2 figs.

  2. The Advanced Noise Control Fan Baseline Measurements

    NASA Technical Reports Server (NTRS)

    McAllister, Joseph; Loew, Raymond A.; Lauer, Joel T.; Stuliff, Daniel L.

    2009-01-01

    The NASA Glenn Research Center s (NASA Glenn) Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. As part of a complete upgrade, current baseline and acoustic measurements were documented. Extensive in-duct, farfield acoustic, and flow field measurements are reported. This is a follow-on paper to documenting the operating description of the ANCF.

  3. HVDC control system based on parallel digital signal processors

    SciTech Connect

    Maharsi, Y.; Do, V.Q.; Sood, V.K.; Casoria, S.; Belanger, J.

    1995-05-01

    A numerical HVDC control system operating in real time has been developed for a simulator to be used for operator training. The control system, implemented with digital signal processors (DSPs), consists of typical HVDC control functions such as the synchronizing unit, the regulation unit, the protection unit, the firing unit, the tap changer and the reactive power regulation unit. Results from the steady-state and the transient performance validation tests carried out on the IREQ power system simulator are provided.

  4. The design of multirate digital control systems

    NASA Technical Reports Server (NTRS)

    Berg, M. C.

    1986-01-01

    The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.

  5. Advanced illumination control algorithm for medical endoscopy applications

    NASA Astrophysics Data System (ADS)

    Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.

    2015-05-01

    CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.

  6. Digital computer control of a 30-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Low, C. A., Jr.

    1975-01-01

    The major objective was to define the exact role of an onboard spacecraft computer in the control of ion thrusters. An initial computer control system with accurate high speed capability was designed, programmed, and tested with the computer as the sole control element for an operating ion thruster. The command functions and a code format for a spacecraft digital control system were established. A second computer control system was constructed to operate with these functions and format. A throttle program sequence was established and tested. A two thruster array was tested with these computer control systems and the results reported.

  7. Digital control circuitry of cancer cell and its apoptosis.

    PubMed

    Ardito Marretta, R M; Barbaraci, G

    2009-09-01

    This study, through a typical aerospace systems architecture, suggests an engineering design of a human cancer cell circuitry in which a digital optimal control matrix is assigned to repair the DNA damage level and/or to trigger its apoptosis. Here, the conceived machinery is proposed taking into account the state of the art in cancer investigation. However, it could be further generalized. The most recent studies on cancer pathologies give a predominant role to the oncosuppressor protein p53 and its antagonist, the oncogene Mdm2. Experimental and theoretical approaches are in agreement in deducing a "digital" response of the p53 when genomic integrity is damaged. Once DNA damage is present, the mutual influence of p53 and its antagonist, the Mdm2 oncogene, is closed in a feedback loop. In this work, starting from these current results, a novel molecular mechanism is proposed, based on a digital optimal control law, whereby p53 and Mdm2 proteins activities can be represented by appropriate circuitry and governed by the optimal control law of digital systems. This procedure obtains a real-time sequence evaluation of protein oscillations and an unexpected and relevant acceleration in the DNA repairing when suitable digital control matrix is implemented. Those effects suggest interesting perspectives for future scientific investigations. First of all, the proposed digital circuitry, receiving the p53 signal from a damaged cell, is able to repair the current level of genomic alteration. Moreover, the cell fate is newly conceived and bound by the modified pulsing mechanism of p53.

  8. Digital controller design for absolute value function constrained nonlinear systems via scalar sign function approach.

    PubMed

    Wu, Jian; Singla, Mithun; Olmi, Claudio; Shieh, Leang S; Song, Gangbing

    2010-07-01

    In this paper, a scalar sign function-based digital design methodology is developed for modeling and control of a class of analog nonlinear systems that are restricted by the absolute value function constraints. As is found to be not uncommon, many real systems are subject to the constraints which are described by the non-smooth functions such as absolute value function. The non-smooth and nonlinear nature poses significant challenges to the modeling and control work. To overcome these difficulties, a novel idea proposed in this work is to use a scalar sign function approach to effectively transform the original nonlinear and non-smooth model into a smooth nonlinear rational function model. Upon the resulting smooth model, a systematic digital controller design procedure is established, in which an optimal linearization method, LQR design and digital implementation through an advanced digital redesign technique are sequentially applied. The example of tracking control of a piezoelectric actuator system is utilized throughout the paper for illustrating the proposed methodology.

  9. Digital radiography for the equine practitioner: basic principles and recent advances.

    PubMed

    Nelson, Nathan C; Zekas, Lisa J; Reese, David J

    2012-12-01

    As availability increases and cost decreases, digital radiograph systems become more common in equine practice. Technological advances provide an array of choices for the equine practitioner considering purchase. Two classes of systems are available: computed radiography and flat-panel systems (direct radiography). Image processing encompasses all manipulations performed on an image at acquisition and can have a profound effect on the final digital radiograph. Consideration should be given to the type of display monitor because many options are now available. The type of display monitor and the viewing environment have an effect on interpretation performance.

  10. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  11. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  12. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Automatically controlled digital station....

  13. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Automatically controlled digital station....

  14. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Automatically controlled digital station....

  15. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Automatically controlled digital station....

  16. 47 CFR 97.221 - Automatically controlled digital station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station. (a) This rule section does not apply to an auxiliary station, a beacon station, a repeater station, an earth station, a space station, or a space telecommand station. (b) A station may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Automatically controlled digital station....

  17. Digital Controller For Laser-Beam-Steering Subsystem: Part 2

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Voisinet, Leeann

    1995-01-01

    A report presents additional information about laser-beam-steering apparatus described in "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193) and "More About Beam-Steering Subsystem for Laser Communication" (NPO-19381). Reiterates basic principles of operation of beam-steering subsystem, with emphasis on modes of operation, basic design concepts, and initial experiments on partial prototype of apparatus.

  18. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The annular suspension and pointing system (ASPS) a payload auxiliary pointing device of the space shuttle is briefly described along with the function of the digital controller. The equations of motion of a simplified plan planar model of the ASPS are derived. Results of computer simulations are discussed.

  19. Integrated assurance assessment of a reconfigurable digital flight control system

    NASA Technical Reports Server (NTRS)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  20. Digital Flight Control System Redundancy Study

    DTIC Science & Technology

    1974-07-01

    microseconds to transfer the data to a memory location on DMA, 2 274 4P4 275 or to an accumulator if under program control. While it is possible, in principle ...March, 1973, to May, 1974, by the Flight Systems Division of The Bendix Corporation, Teterboro, New Jersey under Air Force Contract No. 333615-73-C...3035 AFFDL. The work was administered under the direction of the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 45433, by

  1. F-8C digital CCV flight control laws

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  2. Advanced control design for hybrid turboelectric vehicle

    NASA Astrophysics Data System (ADS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-08-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  3. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  4. Advancing tuberculosis control within reforming health systems.

    PubMed

    Weil, D E

    2000-07-01

    In developing nations, diverse health reform programs are affecting the design, financing and delivery of health care services as well as public health practice. This paper summarizes the characteristics of major reform strategies seeking to improve efficiency, equity and quality. Opportunities and risks for tuberculosis control are identified, as are responses in managing the reform transition. Recommendations are provided to advance tuberculosis control in this dynamic environment. These include participation in the planning process; demonstration of synergy between reform objectives and tuberculosis control; articulation of core functions to be protected; technical, managerial and leadership capacity-building; documentation of effects and best practices; and collaboration with those pursuing other public health priorities and reform analysis.

  5. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  6. Design of a digital adaptive control system for reentry vehicles.

    NASA Technical Reports Server (NTRS)

    Picon-Jimenez, J. L.; Montgomery, R. C.; Grigsby, L. L.

    1972-01-01

    The flying qualities of atmospheric reentry vehicles experience considerable variations due to the wide changes in flight conditions characteristic of reentry trajectories. A digital adaptive control system has been designed to modify the vehicle's dynamic characteristics and to provide desired flying qualities for all flight conditions. This adaptive control system consists of a finite-memory identifier which determines the vehicle's unknown parameters, and a gain computer which calculates feedback gains to satisfy flying quality requirements.

  7. Modelling and designing digital control systems with averaged measurements

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Beale, Guy O.

    1988-01-01

    An account is given of the control systems engineering methods applicable to the design of digital feedback controllers for aerospace deterministic systems in which the output, rather than being an instantaneous measure of the system at the sampling instants, instead represents an average measure of the system over the time interval between samples. The averaging effect can be included during the modeling of the plant, thereby obviating the iteration of design/simulation phases.

  8. Digitally Controlled High Availability Power Supply

    SciTech Connect

    MacNair, David; /SLAC

    2009-05-07

    This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

  9. Advanced filter banks and time interleaving for analog and digital conversion

    NASA Astrophysics Data System (ADS)

    Velazquez, Scott R.

    1999-10-01

    This paper presents a comparison of Advanced Filter Banks (AFB) and Time-Interleaving for high-speed, high-resolution conversion between analog and digital signals using a parallel array of converters. The AFB is an unconventional class of filter bank that employs both analog and digital signal processing. The AFB improves the speed and resolution of the conversion compared to the standard Time-Interleaved array conversion technique. Gain and phase mismatch errors are analyzed for both the AFB and Time-Interleaving architectures. The filters in the AFB isolate the converters in the array from each other and attenuate the effects of mismatches. In four-channel example systems analyzed in this paper, gain and phase errors are attenuated by 21 dB more in the AFB (with 30 dB stopband attenuation) than in the Time- Interleaved system. The AFB is capable of analog-to-digital conversion with 14-bit resolution and 400 MHz sample rate.

  10. Digital active control law synthesis for aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1988-01-01

    This paper presents a formulation for synthesis of digital active control laws for aeroservoelastic systems, which are typically modeled by large order equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics, and gust spectra. The control law is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented by an onboard digital microprocessor. The synthesis procedure minimizes a linear quadratic Gaussian type cost function, by updating selected free parameters of the control law, while satisfying a set of inequality constraints on the design loads, responses and stability margins. A stable classical control law or an estimator based full or reduced order control law can be used as an initial design starting point. The gradients of the cost function and the constraints, with respect to the digital control law design variables are derived analytically, to facilitate rapid convergence. Selected design responses can be treated as constraints instead of lumping them into the cost function, in order to satisfy individual root-mean-square load and response limitations. Constraints are also imposed on the minimum singular value requirements for stability robustness improvement.

  11. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  12. Advanced Control Considerations for Turbofan Engine Design

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  13. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  14. ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks

    SciTech Connect

    Batista, A. J. N.; Sousa, J.; Varandas, C. A. F.

    2006-10-15

    The efficient vertical stabilization (VS) of plasmas in tokamaks requires a fast reaction of the VS controller, for example, after detection of edge localized modes (ELM). For controlling the effects of very large ELMs a new digital control hardware, based on the Advanced Telecommunications Computing Architecture trade mark sign (ATCA), is being developed aiming to reduce the VS digital control loop cycle (down to an optimal value of 10 {mu}s) and improve the algorithm performance. The system has 1 ATCA trade mark sign processor module and up to 12 ATCA trade mark sign control modules, each one with 32 analog input channels (12 bit resolution), 4 analog output channels (12 bit resolution), and 8 digital input/output channels. The Aurora trade mark sign and PCI Express trade mark sign communication protocols will be used for data transport, between modules, with expected latencies below 2 {mu}s. Control algorithms are implemented on a ix86 based processor with 6 Gflops and on field programmable gate arrays with 80 GMACS, interconnected by serial gigabit links in a full mesh topology.

  15. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications. Revision 1

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  17. Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications

    SciTech Connect

    Galyean, W.J.

    1993-06-23

    This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

  18. Digital tracking and control of retinal images

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Jerath, Maya R.; Rylander, Henry G., III; Welch, Ashley J.

    1993-06-01

    Laser induced retinal lesions are used to treat a variety of eye diseases such as diabetic retinopathy and retinal detachment. An instrumentation system has been developed to track a specific lesion coordinate on the retinal surface and provide corrective signals to maintain laser position on the coordinate. High resolution retinal images are acquired via a CCD camera coupled to a fundus camera and video frame grabber. Optical filtering and histogram modification are used to enhance the retinal vessel network against the lighter retinal background. Six distinct retinal landmarks are tracked on the high contrast image obtained from the frame grabber using two-dimensional blood vessel templates. The frame grabber is hosted on a 486 PC. The PC performs correction signal calculations using an exhaustive search on selected image portions. An X and Y laser correction signal is derived from the landmark tracking information and provided to a pair of galvanometer steered mirrors via a data acquisition and control subsystem. This subsystem also responds to patient inputs and the system monitoring lesion growth. This paper begins with an overview of the robotic laser system design followed by implementation and testing of a development system for proof of concept. The paper concludes with specifications for a real time system.

  19. Three on a Match: Gary A. Olson on Rigor, Reliability, and Quality Control in Digital Scholarship

    ERIC Educational Resources Information Center

    Jensen, Kyle

    2009-01-01

    This interview examines the relationship between digital scholarship and the politics of higher education. In doing so, it advances a series of recommendations that aim to help digital scholars and digital scholarship achieve an increased level of stature in the academic community.

  20. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  1. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  2. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  3. Review of innovations in digital health technology to promote weight control.

    PubMed

    Thomas, J Graham; Bond, Dale S

    2014-01-01

    Advances in technology have contributed to the obesity epidemic and worsened health by reducing opportunities for physical activity and by the proliferation of inexpensive calorie-dense foods. However, much of the same technology can be used to counter these troublesome trends by fostering the development and maintenance of healthy eating and physical activity habits. In contrast to intensive face-to-face treatments, technology-based interventions also have the potential to reach large numbers of individuals at low cost. The purpose of this review is to discuss studies in which digital technology has been used for behavioral weight control, report on advances in consumer technology that are widely adopted but insufficiently tested, and explore potential future directions for both. Web-based, mobile (eg, smartphone), virtual reality, and gaming technologies are the focus of discussion. The best evidence exists to support the use of digital technology for self-monitoring of weight-related behaviors and outcomes. However, studies are underway that will provide additional, important information regarding how best to apply digital technology for behavioral weight control.

  4. The Role of Controlled Vocabularies in Digital Archiving

    NASA Astrophysics Data System (ADS)

    Miller, S.; Clark, P. D.; Neiswender, C.

    2006-12-01

    Over the years, and across projects and disciplines, there is an unfortunate tendency for descriptive terminology to wander. Some of the variation is due to evolution in sensor technology, but some may be due to odd abbreviations, typographical errors on rolling decks, institutional practices, or a momentary inspiration to use a new term. As a consequence, we now face challenges in searching digital collections, and in designing re-usable tools that can be applied to multiple institutions. Practical experience with the SIOExplorer Digital Library of 700 SIO cruises has allowed us to develop techniques to assess variations in metadata values across collections of more than 100,000 digital objects, including datasets, documents and images spanning more than 50 years. The assessment helps to guide the development of controlled vocabularies, which in turn can be used to enable automatic detection of metadata errors, and in some cases automatic correction. Controlled vocabularies are playing an essential role in extending the technology to the collections of the Woods Hole Oceanographic Institution, including cruises, Alvin dives and ROV operations. Examples include the names of chief scientists, port names, operational areas, science themes, image types, sample types, data types, and processing steps. Controlled vocabularies underlie an emerging set of tools that support web user interfaces, large-scale automatic harvesting of metadata and data, project status assessment, workflow management and overall quality control. They are a key resource for user upload code in the IODP Site Survey Data Bank, prompting and enforcing appropriate metadata values for ocean drilling proposal support data. Compared to previous generations of hard-wired code, the access to controlled vocabularies allows a project to evolve with flexibility, and the code to be ported from one project to another. These efforts are supported by a Digital Archiving award from the Library of Congress and

  5. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  6. Digital control of magnetic bearings in a cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  7. Environment and health: Probes and sensors for environment digital control

    NASA Astrophysics Data System (ADS)

    Schettini, Chiara

    2014-05-01

    The idea of studying the environment using New Technologies (NT) came from a MIUR (Ministry of Education of the Italian Government) notice that allocated funds for the realization of innovative school science projects. The "Environment and Health" project uses probes and sensors for digital control of environment (water, air and soil). The working group was composed of 4 Science teachers from 'Liceo Statale G. Mazzini ', under the coordination of teacher Chiara Schettini. The Didactic Section of Naples City of Sciences helped the teachers in developing the project and it organized a refresher course for them on the utilization of digital control sensors. The project connects Environment and Technology because the study of the natural aspects and the analysis of the chemical-physical parameters give students and teachers skills for studying the environment based on the utilization of NT in computing data elaboration. During the practical project, samples of air, water and soil are gathered in different contexts. Sample analysis was done in the school's scientific laboratory with digitally controlled sensors. The data are elaborated with specific software and the results have been written in a booklet and in a computing database. During the first year, the project involved 6 school classes (age of the students 14—15 years), under the coordination of Science teachers. The project aims are: 1) making students more aware about environmental matters 2) achieving basic skills for evaluating air, water and soil quality. 3) achieving strong skills for the utilization of digitally controlled sensors. 4) achieving computing skills for elaborating and presenting data. The project aims to develop a large environmental conscience and the need of a ' good ' environment for defending our health. Moreover it would increase the importance of NT as an instrument of knowledge.

  8. A Flight Investigation of Digital Control Using Microprocessor Technology.

    DTIC Science & Technology

    1979-06-01

    DISPLAYS COTOSE IRF MOTIONS I I T EALATIONl PILOT FEPERIANTAL. Figure 3-2. Overview of the VRA/Micro- DFCS System. mechanical linkage connecting to the...April 1979 CELEC T E D 1 .... 3 OCT 23 1980 DISTRIBUTIOD Sor . D : - U Approved for public . Distribution Uniirnitcd - UNC LASS SECURITY CLASSIFICATION...CLASSIFICATION OF Ywl PAGE(IWhen Data Enterod) ABSTRACT A microprocessor-based digital flight control system (Micro- DFCS ) is implemented in Princeton’s

  9. The Advanced Controls Program at Oak Ridge National Laboratory

    SciTech Connect

    Knee, H.E.; White, J.D.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor (ALWR) and high temperature gas-cooled reactor (HTGR) designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs.

  10. Real time digital control and controlled structures experiments

    NASA Technical Reports Server (NTRS)

    Rossi, Michael J.; Knowles, Gareth J.; Rauch, Frank

    1991-01-01

    Viewgraphs covering the following topics are given: controlled structures technology at Grumman Corporate Research Center, active and passive control technology, experiment plans, and vacuum chamber test experiment objectives and setup.

  11. Advanced Noise Control Fan Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F., Jr.

    2009-01-01

    The Advanced Noise Control Fan at the NASA Glenn Research Center is used to experimentally analyze fan generated acoustics. In order to determine how a proposed noise reduction concept affects fan performance, flow measurements can be used to compute mass flow. Since tedious flow mapping is required to obtain an accurate mass flow, an equation was developed to correlate the mass flow to inlet lip wall static pressure measurements. Once this correlation is obtained, the mass flow for future configurations can be obtained from the nonintrusive wall static pressures. Once the mass flow is known, the thrust and fan performance can be evaluated. This correlation enables fan acoustics and performance to be obtained simultaneously without disturbing the flow.

  12. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  13. A digital computer propulsion control facility: Description of capabilities and summary of experimental program results

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Arpasi, D. J.; Lehtinen, B.

    1976-01-01

    Flight weight digital computers are being used today to carry out many of the propulsion system control functions previously delegated exclusively to hydromechanical controllers. An operational digital computer facility for propulsion control mode studies has been used successfully in several experimental programs. This paper describes the system and some of the results concerned with engine control, inlet control, and inlet engine integrated control. Analytical designs for the digital propulsion control modes include both classical and modern/optimal techniques.

  14. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    PubMed Central

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  15. Flight Testing a Digital Flight Control System. Issues and Results

    DTIC Science & Technology

    1984-07-01

    Program is primarily oriented to the development, integration, and I - evaluation of new flight control technologies . The testbed used in this program is...will be tested for safe operations to give confidence in case of non-rUettable automatic IBU engagement. ISSUE: CONTROL LAW AND REDUNDANCY MAGEMENT CO...were available. Being an advanced development program evaluating new aspects of integrated flight control technology , the latter approach was chosen

  16. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  17. Direct drive digital servo press with high parallel control

    NASA Astrophysics Data System (ADS)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  18. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  19. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  20. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  1. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  2. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  3. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  4. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    SciTech Connect

    Burjorjee, D. ); Gan, B. )

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops.

  5. A comparison of digital flight control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Many variations in design methods for aircraft digital flight control have been proposed in the literature. In general, the methods fall into two categories: those where the design is done in the continuous domain (or s-plane), and those where the design is done in the discrete domain (or z-plane). This paper evaluates several variations of each category and compares them for various flight control modes of the Langley TCV Boeing 737 aircraft. Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the 'uncompensated s-plane design' method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  6. Direct digital control of air washer cooling system

    SciTech Connect

    Elben, T.; Roseblock, R.; Lawler, R.; McCord, J.

    1990-01-01

    The purpose of this project was to make a practical evaluation of using new technology to extend the life of obsolete HVAC mechanical equipment. The specific exercises in this project involved the application of software driven control algorithms to operate and manage open loop air washer cooling systems in the air handling units located in the Municipal Auditorium in Kansas City, Missouri. The specific opportunity evaluated in this project involved eight air handling units at the Municipal Auditorium. The air handling systems utilize outdated air washer cooling systems that provide air conditioning and dehumidification to the areas they serve. We utilized direct digital control to assume total control of the operation of the air handling units. We also found it necessary to upgrade some components of the air handling units in order to allow the new control applications to execute their functions. This report describes the plan used to execute the project and the results. 20 tabs.

  7. Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.

  8. Nonlinear and Digital Man-machine Control Systems Modeling

    NASA Technical Reports Server (NTRS)

    Mekel, R.

    1972-01-01

    An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.

  9. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  10. A task-based quality control metric for digital mammography

    NASA Astrophysics Data System (ADS)

    Maki Bloomquist, A. K.; Mainprize, J. G.; Mawdsley, G. E.; Yaffe, M. J.

    2014-11-01

    A reader study was conducted to tune the parameters of an observer model used to predict the detectability index (dʹ ) of test objects as a task-based quality control (QC) metric for digital mammography. A simple test phantom was imaged to measure the model parameters, namely, noise power spectrum, modulation transfer function and test-object contrast. These are then used in a non-prewhitening observer model, incorporating an eye-filter and internal noise, to predict dʹ. The model was tuned by measuring dʹ of discs in a four-alternative forced choice reader study. For each disc diameter, dʹ was used to estimate the threshold thicknesses for detectability. Data were obtained for six types of digital mammography systems using varying detector technologies and x-ray spectra. A strong correlation was found between measured and modeled values of dʹ, with Pearson correlation coefficient of 0.96. Repeated measurements from separate images of the test phantom show an average coefficient of variation in dʹ for different systems between 0.07 and 0.10. Standard deviations in the threshold thickness ranged between 0.001 and 0.017 mm. The model is robust and the results are relatively system independent, suggesting that observer model dʹ shows promise as a cross platform QC metric for digital mammography.

  11. Digital redesign of anti-wind-up controller for cascaded analog system.

    PubMed

    Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M

    2003-01-01

    The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.

  12. Advanced Control and Power System (ACAPS) technology program

    SciTech Connect

    Keckler, C.R.; Groom, N.J.

    1983-12-01

    The Advanced Control and Power System (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  13. Advanced Control and Power System (ACAPS) Technology Program

    NASA Technical Reports Server (NTRS)

    Keckler, C. R.; Groom, N. J.

    1983-01-01

    The advanced control and power system (ACAPS) program is to establish the technology necessary to satisfy space station and related large space structures requirements for efficient, reliable, and cost effective energy storage and attitude control. Technology advances in the area of integrated flywheel systems capable of performing the dual functions of energy storage and attitude control are outlined.

  14. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  15. Advanced development of the digital tuberculosis tester for MDR-TB screening

    NASA Astrophysics Data System (ADS)

    Smith, Jason E.; Simkulet, Michelle D.; Gutin, Alexander; Gutin, Alexy; Bardarov, Savco; Jacobs, William R., Jr.; Castracane, James; Tang, Oliver; Riska, Paul

    2001-05-01

    Tuberculosis (TB) remains the leading cause of death in the world from a single infectious disease, and the threat is becoming more critical with the spread of multi-drug resistant Tuberculosis (MDR-TB). TB detection, and susceptibility testing for drug resistant strain identification, is advancing with the development of Luciferase Reporter Mycobacteriophages (LRM). LRM will emit visible light at very low intensity when in the presence of live mycobacteria cells such as Tuberculosis strains. InterScience, Inc., together with its collaboration, is developing a highly sensitive, real-time digital detection system for the analysis of luminescent assays. Recent advances in system sensitivity, design, and implementation, as well as preliminary results of the development of individual test cartridges, will be presented. The ultimate goal of this work is to provide a versatile luminescence detection tool for widespread research and clinical applications.

  16. Flight-test results using nonlinear control with the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.; Smith, R. E.; Krambeer, K. D.

    1983-01-01

    The design and operation of the cooperative advanced digital research experiment (CADRE) to develop nonlinear pitch flight control algorithms is described, and the results of an in-flight evaluation using the F-8C digital fly-by-wire (DFBW) research aircraft are presented. The CADRE controller is described, including the initial filter, linear command prefilter, nonlinear command prefilter, and gain scheduling. The variable-integral control-to-optimize response of the controller is considered, and CADRE parameter combinations are addressed. The remotely-augmented-vehicle interface used in the DFBW aircraft experiment is discussed. The distanct-tracking and close-formation tracking evaluation tasks for the aircraft are described along with evaluation configurations, and the test results are presented and discussed. The latter indicate that a nonlinear adaptive controller is a feasible control system technique for the fighter tracking task.

  17. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation.

    PubMed

    Fu, Qiushi; Zhang, Wei; Santello, Marco

    2010-07-07

    Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the CNS could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate digit placement for optimal force distribution and digit forces as a function of variable digit positions. All subjects learned to minimize object roll within the first three trials, and the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics.

  18. Selection of sampling rate for digital control of aircrafts

    NASA Technical Reports Server (NTRS)

    Katz, P.; Powell, J. D.

    1974-01-01

    The considerations in selecting the sample rates for digital control of aircrafts are identified and evaluated using the optimal discrete method. A high performance aircraft model which includes a bending mode and wind gusts was studied. The following factors which influence the selection of the sampling rates were identified: (1) the time and roughness response to control inputs; (2) the response to external disturbances; and (3) the sensitivity to variations of parameters. It was found that the time response to a control input and the response to external disturbances limit the selection of the sampling rate. The optimal discrete regulator, the steady state Kalman filter, and the mean response to external disturbances are calculated.

  19. Holographic digital microscopy in on-line process control

    NASA Astrophysics Data System (ADS)

    Osanlou, Ardeshir

    2011-09-01

    This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.

  20. A self-reorganizing digital flight control system for aircraft

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  1. Gimballing magnetic bearing reaction wheel with digital controller

    NASA Astrophysics Data System (ADS)

    Gerlach, Bernd; Ehinger, Markus; Raue, Hans Knut; Seiler, René

    2005-07-01

    Magnetic bearing reaction wheels provide a number of interesting advantages over ball bearing wheels. They allow high-speed operation with minimum loss torque and generate substantially less micro-vibrations. However, they require dedicated, demanding control electronics. A conroller based on a Digital Signal Processor has been developed. The controller was tested with an 87 Nms wheel prototype equipped with a magnetic bearing allowing active control in five axes. The wheel provides low-noise operation from 0 to 8000 rpm with a rotor gimballing capability of up to ±1.7°. The paper reviews the design principles and presents relevant test results, e.g. regarding the active suppression of micro-vibrations.

  2. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.; Sandoval, C.E.; Connors, M.P.; Sheridan, T.J.; Sexton, F.W.; Slayton, E.M.; Heise, J.A.; Foster, C.

    1994-09-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].

  3. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    SciTech Connect

    OHara, J.M.; Gunther, B.; Martinez-Guridi, G.; Xing, J.; Barnes, V.

    2010-11-07

    Integrated digital instrumentation and control (I&C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I&C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I&C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I&C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I&C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  4. Integrated Digital Flight Control System for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.

  5. Digital flight control software design requirements. [for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  6. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  7. Advanced Digitization Techniques in Retrieval of Mechanism and Machine Science Resources

    NASA Astrophysics Data System (ADS)

    Lovasz, E.-Ch.; Gruescu, C. M.; Ciupe, V.; Carabas, I.; Margineanu, D.; Maniu, I.; Dehelean, N.

    The European project thinkMOTION works on the purpose of retrieving all-times content regarding mechanisms and machine science by means of creating a digital library, accessible to a broad public through the portal Europeana. DMG-Lib is intended to display the development in the field, from its very beginning up to now days. There is a large range of significant objects available, physically very heterogeneous and needing all to be digitized. The paper presents the workflow, the equipments and specific techniques used in digitization of documents featuring very different characteristics (size, texture, color, degree of preservation, resolution and so on). Once the workflow established on very detailed steps, the development of the workstation is treated. Special equipments designed and assembled at Universitatea "Politehnica" Timisoara are presented. A large series of software applications, including original programs, work for digitization itself, processing of images, management of files, automatic optoelectronic control of capture, storage of information in different stages of processing. An illustrating example is explained, showing the steps followed in order to obtain a clear, high-resolution image from an old original document (very valuable as a historical proof but very poor in quality regarding clarity, contrast and resolution).

  8. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  9. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  10. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  11. Impact of Smoke Exposure on Digital Instrumentation and Control

    SciTech Connect

    Tanaka, Tina J.; Nowlen, Steven P.; Korsah, Kofi; Wood, Richard T.; Antonescu, Christina E.

    2003-08-15

    Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The results of previous smoke exposure studies have been reported in various publications. The major immediate effect of smoke has been to increase leakage currents and to cause momentary upsets and failures in digital systems. This paper presents new results from conformal coatings, memory chips, and hard drive tests.The best conformal coatings were found to be polyurethane, parylene, and acrylic (when applied by dipping). Conformal coatings can reduce smoke-induced leakage currents and protect against metal loss through corrosion. However conformal coatings are typically flammable, so they do increase material flammability. Some of the low-voltage biased memory chips failed during a combination of high smoke and high humidity. Typically, smoke along with heat and humidity is expected during fire, rather than smoke alone. Thus, due to high sensitivity of digital circuits to heat and humidity, it is hypothesized that the impact of smoke may be secondary.Low-voltage (3.3-V) static random-access memory (SRAMs) were found to be the most vulnerable to smoke. Higher bias voltages decrease the likelihood of failure. Erasable programmable read-only memory (EPROMs) and nonvolatile SRAMs were very smoke tolerant. Failures of the SRAMs occurred when two conditions were present: high density of smoke and high humidity. As the high humidity was present for only part of the test, the failures were intermittent. All

  12. Space Shuttle Main Engine control system. [hydraulic actuator with digital control

    NASA Technical Reports Server (NTRS)

    Seitz, P. F.; Searle, R. F.

    1973-01-01

    The Space Shuttle Main Engine is a reusable, high-performance rocket engine being developed by the Rocketdyne Div. of Rockwell International to satisfy the operational requirements of the Space Shuttle Orbiter Vehicle. The design incorporates a hydraulically actuated, closed-loop servosystem controlled and monitored by a programmable electronic digital controller. The controller accepts vehicle commands for the various engine operational phases, positions the appropriate valves, monitors the engine for the required performance precisions and conditions, and provides redundancy management.

  13. 7 CFR 1755.522 - RUS general specification for digital, stored program controlled central office equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements for a digital telephone central office switching system, which is fully electronic and controlled by stored program processors. A digital switching system transfers information which is digitally encoded from any input port to a temporarily addressed exit port. The information may enter the system...

  14. 7 CFR 1755.522 - RUS general specification for digital, stored program controlled central office equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for a digital telephone central office switching system, which is fully electronic and controlled by stored program processors. A digital switching system transfers information which is digitally encoded from any input port to a temporarily addressed exit port. The information may enter the system...

  15. 7 CFR 1755.522 - RUS general specification for digital, stored program controlled central office equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for a digital telephone central office switching system, which is fully electronic and controlled by stored program processors. A digital switching system transfers information which is digitally encoded from any input port to a temporarily addressed exit port. The information may enter the system...

  16. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  17. Quality control measurements for digital x-ray detectors.

    PubMed

    Marshall, N W; Mackenzie, A; Honey, I D

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and

  18. Quality control measurements for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Mackenzie, A.; Honey, I. D.

    2011-02-01

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm-1 ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10-5 mm2 (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm-1, with a maximum cov of 10% at 2.9 mm-1, while the average DQE was 0.56 at 0.5 mm-1 for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in

  19. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  20. Advanced Control System Increases Helicopter Safety

    NASA Technical Reports Server (NTRS)

    2008-01-01

    With support and funding from a Phase II NASA SBIR project from Ames Research Center, Hoh Aeronautics Inc. (HAI), of Lomita, California, produced HeliSAS, a low-cost, lightweight, attitude-command-attitude-hold stability augmentation system (SAS) for civil helicopters and unmanned aerial vehicles. HeliSAS proved itself in over 160 hours of flight testing and demonstrations in a Robinson R44 Raven helicopter, a commercial helicopter popular with news broadcasting and police operations. Chelton Flight Systems, of Boise, Idaho, negotiated with HAI to develop, market, and manufacture HeliSAS, now available as the Chelton HeliSAS Digital Helicopter Autopilot.

  1. Design and Evaluation of a Digital Flight Control System for the FROG Unmanned Aerial Vehicle

    DTIC Science & Technology

    2001-09-01

    DIGITAL FLIGHT CONTROL SYSTEM FOR THE FROG UNMANNED AERIAL VEHICLE by Christopher H. Flood September 2001 Thesis Advisor: Isaac I. Kaminer...Subtitle Design and Evaluation of a Digital Flight Control System for the FROG Unmanned Aerial Vehicle Contract Number Grant Number Program Element...REPORT TYPE AND DATES COVERED Aeronautical Engineers Thesis 4. TITLE AND SUBTITLE: Design and Evaluation of a Digital Flight Control System for

  2. Usability evaluation of remote controllers for digital television receivers

    NASA Astrophysics Data System (ADS)

    Komine, Kazuteru; Hiruma, Nobuyuki; Ishihara, Tatsuya; Makino, Eiji; Tsuda, Takao; Ito, Takayuki; Isono, Haruo

    2000-06-01

    In order to develop a useful and ergonomically attractive remote controller for ISDB (Integrated Services Digital Broadcasting), which will begin very soon in Japan, we performed experiments with elderly and young subjects to evaluate the usability and the training effects of four types of remote controller: a button type, a trackball, a touch panel and a voice recognition system. We set the subjects the task of selecting an icon on a HDTV monitor as quickly and as accurately as possible using each remote controller. Semantic differential and ranked order questionnaire surveys were also conducted, and these results were analyzed statistically. The results showed that the trackball type was the most preferred, with no major differences in preference among the other three types especially for elderly subjects. From the analyses of the questionnaire surveys and operation time, we conclude that the reasons for the rankings obtained are as follows: Users preferred devices which they could operate without having to look down; Users preferred devices with which there was a significant learning effect in a relatively short period. It is considered that these are necessary conditions for an ergonomically attractive remote controller which users will want to use.

  3. Markov reliability models for digital flight control systems

    NASA Technical Reports Server (NTRS)

    Mcgough, John; Reibman, Andrew; Trivedi, Kishor

    1989-01-01

    The reliability of digital flight control systems can often be accurately predicted using Markov chain models. The cost of numerical solution depends on a model's size and stiffness. Acyclic Markov models, a useful special case, are particularly amenable to efficient numerical solution. Even in the general case, instantaneous coverage approximation allows the reduction of some cyclic models to more readily solvable acyclic models. After considering the solution of single-phase models, the discussion is extended to phased-mission models. Phased-mission reliability models are classified based on the state restoration behavior that occurs between mission phases. As an economical approach for the solution of such models, the mean failure rate solution method is introduced. A numerical example is used to show the influence of fault-model parameters and interphase behavior on system unreliability.

  4. More on exact state reconstruction in deterministic digital control systems

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1988-01-01

    Presented is a special form of the Ideal State Reconstructor for deterministic digital control systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so named because, if the plant parameters are known exactly, its output will exactly equal, not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects the measurement equation only. It is characterized by the fact that discrete measurements are generated every T/N seconds and input into a multi-input/multi-output moving-average (MA) process. The output of this process is sampled every T seconds and utilized in reconstructing the state of the system.

  5. High-side Digitally Current Controlled Biphasic Bipolar Microstimulator

    PubMed Central

    Hanson, Timothy L.; Ómarsson, Björn; O'Doherty, Joseph E.; Peikon, Ian D.; Lebedev, Mikhail; Nicolelis, Miguel AL.

    2012-01-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware - without active artifact rejection - we are able to observe stimulus artifacts of less than 2 ms in duration. PMID:22328184

  6. Selecting a software development methodology. [of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1981-01-01

    The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.

  7. High-side digitally current controlled biphasic bipolar microstimulator.

    PubMed

    Hanson, Timothy L; Ómarsson, Björn; O'Doherty, Joseph E; Peikon, Ian D; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2012-05-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware-without active artifact rejection-we are able to observe stimulus artifacts of less than 2 ms in duration.

  8. The Digital Motion Control System for the Submillimeter Array Antennas

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  9. A Digital Motion Control System for Large Telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  10. Development of an advanced digital detection system for multidrug resistant tuberculosis screening

    NASA Astrophysics Data System (ADS)

    Simkulet, Michelle D.; Beckstead, Jeffrey A.; Gilman, Brian C.; Bardarov, Savco; Castracane, James; Jacobs, William R., Jr.

    2000-04-01

    Tuberculosis (TB) remains the leading cause of death in the world from a single infectious disease and the threat is becoming more critical with the emergence and spread of multi-drug resistant tuberculosis (MDR-TB). Existing methods for detection of various strains of mycobacterium tuberculosis are complex, time consuming and expensive, and therefore, not suitable for use in developing countries where the spread of the disease is most rampant. Currently, a digital detection system based on advanced digital imaging technology, including CMOS and image intensification technology, is being developed by InterScience, Inc. for use with the luciferase reporter mycobacteriophages technique as developed at the Albert Einstein College of Medicine. This compact, low cost and high sensitivity system for rapid diagnosis and drug susceptibility testing for TB will have an immediate impact for both research and clinical applications. It is envisioned that the instrument will be suitable for use as a portable tool for rapid screening of MDR-TB in both developed and developing countries. The development of the system, recent results and a comparison to competing technologies will be presented.

  11. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  12. Early experience with digital advance care planning and directives, a novel consumer-driven program

    PubMed Central

    Yang, Zhiyong; Spivey, Christy; Boardman, Bonnie; Courtney, Maureen

    2016-01-01

    Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Our objectives were to determine the results of a digital ACP/AD through which consumers create, store, locate, and retrieve their ACP/AD at no charge and with minimal physician involvement, and the ACP/AD can be integrated into the electronic health record. The authors chose 900 users of MyDirectives, a digital ACP/AD tool, to achieve proportional representation of all 50 states by population size and then reviewed their responses. The 900 participants had an average age of 50.8 years (SD = 16.6); 84% of the men and 91% of the women were in self-reported good health when signing their ADs. Among the respondents, 94% wanted their physicians to consult a supportive and palliative care team if they were seriously ill; nearly 85% preferred cessation of life-sustaining treatments during their final days; 76% preferred to spend their final days at home or in a hospice; and 70% would accept attempted cardiopulmonary resuscitation in limited circumstances. Most respondents wanted an autopsy under certain conditions, and 62% wished to donate their organs. In conclusion, analysis of early experience with this ACP/AD platform demonstrates that individuals of different ages and conditions can engage in an interrogatory process about values, develop ADs that are more nuanced than traditional paper-based ADs in reflecting those values, and easily make changes to their ADs. Online ADs have the potential to remove barriers to ACP/AD and thus further improve patient-centered end-of-life care. PMID:27365867

  13. Advanced controls pay out in 6 weeks at Texas refinery

    SciTech Connect

    Bullerdiek, E.A.; Hobbs, J.W.

    1995-06-19

    Marathon Oil Co. installed advanced controls on two crude units and a fluid catalytic cracking unit main fractionator at its 70,000 b/d Texas City, Tex., refinery. The advanced controls were based on inferred properties supplied by an outside vendor, who also provided consulting and assistance during the implementation phases. (Inferred properties are on-line computations for estimating laboratory test properties, such as ASTM boiling point and flash point, that are used for product quality control.) The paper discusses inferred properties, bias updating, control strategies, control implementation, and post-project work, including fuzzy logic, the statistical quality control program, benefits, and availability.

  14. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  15. Digital control of working fluid flow rate for an OTEC plant

    SciTech Connect

    Nakamura, M.; Egashira, N.; Uehara, H.

    1986-05-01

    The role of control in operating an OTEC plant efficiently is of great importance. This paper describes digital control of working fluid rate based on an adaptive control theory for the ''Imari2'' OTEC plant at Saga University. Provisions have been made for linkage between the software of the adaptive control theory and the hardware of the OTEC plant. The authors can obtain satisfactory control performance using this digital control system.

  16. Advanced control technology for LSST platform

    NASA Astrophysics Data System (ADS)

    Edmunds, R. S.

    1981-02-01

    Basic technology in the design, mechanization, and analysis of control systems for large flexible space structures was examined. The focus of the platform control effort was on pointing control. The reason for this emphasis was because of the unique problems in this area posed by multiple independent experiment packages operating simultaneously on a single platform. Attitude control and stationkeeping were also addressed for future consideration.

  17. Smart Engines Via Advanced Model Based Controls

    SciTech Connect

    Allain, Marc

    2000-08-20

    A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.

  18. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  19. Challenges and implementation aspects of switched-mode power supplies with digital control for automotive applications

    NASA Astrophysics Data System (ADS)

    Quenzer-Hohmuth, Samuel; Rosahl, Thoralf; Ritzmann, Steffen; Wicht, Bernhard

    2016-09-01

    Switched-mode power supplies (SMPS) convert an input DC-voltage into a higher or lower output voltage. In automotive, analog control is mostly used in order to keep the required output voltages constant and resistant to disturbances. The design of robust analog control for SMPS faces parameter variations of integrated and external passive components. Using digital control, parameter variations can be eliminated and the required area for the integrated circuit can be reduced at the same time. Digital control design bears challenges like the prevention of limit cycle oscillations and controller-wind-up. This paper reviews how to prevent these effects. Digital control loops introduce new sources for dead times in the control loop, for example the latency of the analog-to-digital-converter (ADC). Dead times have negative influence on the stability of the control loop, because they lead to phase delays. Consequently, low latency is one of the key requirements for analog-to-digital-converters in digitally controlled SMPS. Exploiting the example of a 500 kHz-buck converter with a crossover frequency of 70 kHz, this paper shows that the 5 µs-latency of a ΔΣ-analog-to-digital-converter leads to a reduction in phase margin of 126°. The latency is less critical for boost converters because of their inherent lower crossover frequencies. Finally, the paper shows a comparison between analog and digital control of SMPS with regard to chip area and test costs.

  20. Advanced control evaluation for structures (ACES) programs

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome; Waites, Henry

    1988-01-01

    The ACES programs are a series of past, present, and future activities at the Marshall Space Flight Center (MSFC) Ground facility for Large Space Structure Control Verification (GF/LSSCV). The main objectives of the ACES programs are to implement control techniques on a series of complex dynamical systems, to determine the control/structure interaction for the control techniques, and to provide a national facility in which dynamics and control verification can be effected. The focus is on these objectives and how they are implemented under various engineering and economic constraints. Future plans that will be effected in upcoming ACES programs are considered.

  1. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  2. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  3. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  4. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  5. Digitally controlled feedback for DC offset cancellation in a wearable multichannel EMG platform.

    PubMed

    Tomasini, M; Benatti, S; Casamassima, F; Milosevic, B; Fateh, S; Farella, E; Benini, L

    2015-01-01

    Wearable systems capable to capture vital signs allow the development of advanced medical applications. One notable example is the use of surface electromyography (EMG) to gather muscle activation potentials, in principle an easy input for prosthesis control. However, the acquisition of such signals is affected by high variability and ground loop problems. Moreover, the input impedance influenced in time by motion and perspiration determines an offset, which can be orders of magnitude higher than the signal of interest. We propose a wearable device equipped with a digitally controlled Analog Front End (AFE) for biopotentials acquisition with zero-offset. The proposed AFE solution has an internal Digital to Analog Converter (DAC) used to adjust independently the reference of each channel removing any DC offset. The analog integrated circuit is coupled with a microcontroller, which periodically estimates the offset and implements a closed loop feedback on the analog part. The proposed approach was tested on EMG signals acquired from 4 subjects while performing different activities and shows that the system correctly acquires signals with no DC offset.

  6. Evaluation of automatic exposure control options in digital mammography.

    PubMed

    Zhou, Yifang; Scott, Alexander; Allahverdian, Janet; Frankel, Steve

    2014-01-01

    To quantify the trade-offs of dose and image quality among pre-loaded automatic exposure control (AEC) options in digital mammography, two AEC tables from the Hologic Selenia digital mammography system were compared: the default AEC "table 0" and AEC "table 1". Realistically-shaped phantoms consisting of tissue-equivalent material of various thicknesses (4.5 cm-7 cm) were imaged to obtain a figure of merit (FOM), the squared contrast-to-noise ratio per mean glandular dose. To relate the results to pathological findings and to evaluate the overall performance, the measured contrast-to-noise ratios were applied to simulated lesions on the anthropomorphic breast phantom images, producing various lesion configurations which were blindly scored. It was found that the AEC table 1 improves the low contrast FOM by 11% to 20% for the breast thicknesses of 4.5-6 cm. However, for the 7 cm thick breast, the AEC table 1 decreases the low contrast FOM by 17%. For microcalcifications, the AEC table 1 improves the FOM slightly for the breast thicknesses of 4.5--6 cm and decreases it by 18% at a thickness of 7 cm. The lesion simulation showed enhanced contrast due to the AEC table 1 for the breast thicknesses of 5 cm, 6 cm, and 7 cm, but the enhancement gradually reduces as the thickness increases. The lesion reading showed that the microcalcification detection was scored significantly higher from the AEC table 1 for the thicknesses 5 cm, 6 cm, and 7 cm. The corresponding improvement of mass detection scores was also observed but not consistently significant over the thickness range.

  7. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  8. Preservice Teachers' Experiences with Advanced Digital Technologies: The Interplay between Technology in a Preservice Classroom and in Field Placements

    ERIC Educational Resources Information Center

    Meagher, Michael; Ozgun-Koca, Asli; Edwards, Michael Todd

    2011-01-01

    This paper reports on a study of 22 preservice teachers enrolled in a first-semester mathematics teaching methods course. Course activities included participation in two separate field experiences in neighboring school districts. The methods class placed considerable emphasis on the use of advanced digital technologies in the teaching and learning…

  9. Back Translation: An Emerging Sophisticated Cyber Strategy to Subvert Advances in "Digital Age" Plagiarism Detection and Prevention

    ERIC Educational Resources Information Center

    Jones, Michael; Sheridan, Lynnaire

    2015-01-01

    Advances have been made in detecting and deterring the student plagiarism that has accompanied the uptake and development of the internet. Many authors from the late 1990s onwards grappled with plagiarism in the digital age, presenting articles that were provoking and established the foundation for strategies to address cyber plagiarism, including…

  10. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  11. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  12. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  13. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  14. Advanced Topics in Wet-Weather Discharge Control

    EPA Science Inventory

    This report discusses four related but generally independent wet-weather flow (WWF) topic areas, namely: i) opportunities for advanced practices in WWF control technology, particularly as it applies to sewered systems; ii) tradeoffs between storage facilities (tanks) and enlarged...

  15. Status report on the Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

    1991-11-11

    This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

  16. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  17. Anticipatory Planning and Control of Grasp Positions and Forces for Dexterous Two-Digit Manipulation

    PubMed Central

    Fu, Qiushi; Zhang, Wei; Santello, Marco

    2010-01-01

    Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the Central Nervous System could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate (1) digit placement for optimal force distribution and (2) digit forces as a function of variable digit positions. While all subjects learned to minimize object roll within the first three trials, the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics. PMID:20610745

  18. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  19. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  20. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Redistribution control of digital television broadcasts. 73.9001 Section 73.9001 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control §...

  1. Cyber secure systems approach for NPP digital control systems

    SciTech Connect

    McCreary, T. J.; Hsu, A.

    2006-07-01

    Whether fossil or nuclear power, the chief operations goal is to generate electricity. The heart of most plant operations is the I and C system. With the march towards open architecture, the I and C system is more vulnerable than ever to system security attacks (denial of service, virus attacks and others), thus jeopardizing plant operations. Plant staff must spend large amounts of time and money setting up and monitoring a variety of security strategies to counter the threats and actual attacks to the system. This time and money is a drain on the financial performance of a plant and distracts valuable operations resources from their real goals: product. The pendulum towards complete open architecture may have swung too far. Not all aspects of proprietary hardware and software are necessarily 'bad'. As the aging U.S. fleet of nuclear power plants starts to engage in replacing legacy control systems, and given the on-going (and legitimate) concern about the security of present digital control systems, decisions about how best to approach cyber security are vital to the specification and selection of control system vendors for these upgrades. The authors maintain that utilizing certain resources available in today's digital technology, plant control systems can be configured from the onset to be inherently safe, so that plant staff can concentrate on the operational issues of the plant. The authors postulate the concept of the plant I and C being bounded in a 'Cyber Security Zone' and present a design approach that can alleviate the concern and cost at the plant level of dealing with system security strategies. Present approaches through various IT cyber strategies, commercial software, and even postulated standards from various industry/trade organizations are almost entirely reactive and simply add to cost and complexity. This Cyber Security Zone design demonstrates protection from the four classes of cyber security attacks: 1)Threat from an intruder attempting to

  2. Advances in the IGNITOR Plasma Control^*

    NASA Astrophysics Data System (ADS)

    Villone, F.; Albanese, R.; Ambrosino, G.; Pironti, A.; Rubinacci, F.; Ramogida, G.; Bombarda, F.; Coletti, A.; Cucchiaro, A.; Coppi, B.

    2007-11-01

    The IGNITOR vertical position and shape controller has been designed on the basis of the CREATE-L linearized plasma response model, taking into account the engineering constraints of the machine and the features of the burning plasma regimes to be obtained. Special care has been devoted to the design of a robust control system, that can operate even when a degradation of the performance of the electro-magnetic diagnostics may occur. The coupling between the vertical position control and the plasma shape control has been analyzed, in order to allow the plasma vertical position to be stabilized also in the case where a shape disturbance is provoked by a change of the main plasma parameters. Simulations of the control system response have been carried out using realistic models of the electrical power supply system. The non-linear computation of equilibrium flux maps before and after the perturbation shows that the system is able to recover from all the assumed disturbances with this control scheme. In addition, the control of the plasma current and of the separatrix of the double-null plasma configuration is being studied.^*Sponsored in part by ENEA and the US D.O.E.

  3. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  4. Advanced control concepts. [for shuttle ascent vehicles

    NASA Technical Reports Server (NTRS)

    Sharp, J. B.; Coppey, J. M.

    1973-01-01

    The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.

  5. Advanced gel propulsion controls for kill vehicles

    NASA Astrophysics Data System (ADS)

    Yasuhara, W. K.; Olson, A.; Finato, S.

    1993-06-01

    A gel propulsion control concept for tactical applications is reviewed, and the status of the individual component technologies currently under development at the Aerojet Propulsion Division is discussed. It is concluded that a gel propellant Divert and Attitude Control Subsystem (DACS) provides a safe, insensitive munitions compliant alternative to current liquid Theater Missile Defense (TMD) DACS approaches. The gel kill vehicle (KV) control system packages a total impulse typical of a tactical weapon interceptor for the ground- or sea-based TMD systems. High density packaging makes it possible to increase firepower and to eliminate long-term high pressure gas storage associated with bipropellant systems. The integrated control subsystem technologies encompass solid propellant gas generators, insulated composite overwrapped propellant tanks, lightweight endoatmospheric thrusters, and insensitive munition gel propellants, which meet the requirements of a deployable, operationally safe KV.

  6. Learning in the Digital Age: Control or Connection?

    ERIC Educational Resources Information Center

    Van Galen, Jane

    2013-01-01

    In October 2011, 200 state school officers and legislators gathered at a hotel in San Francisco to learn how to "revolutionize" learning by "personalizing" instruction. The occasion was former Florida Gov. Jeb Bush's second annual National Summit on Education Reform. The topic was digital learning. The vision of digitally managed curriculum and…

  7. Automated Deployment of Advanced Controls and Analytics in Buildings

    NASA Astrophysics Data System (ADS)

    Pritoni, Marco

    Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.

  8. Advanced traffic control strategies for intelligent vehicle highway systems

    NASA Astrophysics Data System (ADS)

    Gartner, Nathan H.; Stamatiadis, C.; Tarnoff, P. J.

    1995-01-01

    This paper discusses traffic signal control strategies that are suitable for advanced traffic management within IVHS (Intelligent Vehicle Highway Systems). The strategies consist of a multi-level design for the real-time, traffic-adaptive control of the urban signal network system. Each control level has different response characteristics, with the more advanced levels incorporating in a nested fashion the capabilities of the lower levels. A principal goal of the new multi-level design is to invoke a selected control strategy when it can provide the greatest benefit.

  9. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The digital IPS with wire cable and flex pivot nonlinearity is simulated on the digital computer to determine the effects of varying the sampling period T on the system stability, and to determine a range of optimal values of the parameters of the digital controller. The listing of the computer program is shown as well as the Dahl model for the flex pivot nonlinearity. For the wire cable nonlinearity, two ranges of values were used and the nominal values of the digital controller parameters are included.

  10. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  11. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  12. Control of Smart Building Using Advanced SCADA

    NASA Astrophysics Data System (ADS)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  13. An advanced plasma control system for the DIII-D tokamak

    SciTech Connect

    Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. ); Lazarus, E. )

    1991-11-01

    An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.

  14. Human factors survey of advanced instrumentation and controls

    SciTech Connect

    Carter, R.J.

    1989-01-01

    A survey oriented towards identifying the human factors issues in regard to the use of advanced instrumentation and controls (I C) in the nuclear industry was conducted. A number of United States (US) and Canadian nuclear vendors and utilities were participants in the survey. Human factors items, subsumed under the categories of computer-generated displays (CGD), controls, organizational support, training, and related topics, were discussed. The survey found the industry to be concerned about the human factors issues related to the implementation of advanced I C. Fifteen potential human factors problems were identified. They include: the need for an advanced I C guideline equivalent to NUREG-0700; a role change in the control room from operator to supervisor; information overload; adequacy of existing training technology for advanced I C; and operator acceptance and trust. 11 refs., 1 tab.

  15. Advanced thermal control technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1991-01-01

    A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.

  16. Advanced Motor and Motor Control Development

    DTIC Science & Technology

    1988-08-01

    dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for

  17. Design developments for advanced general aviation aircraft. [using Fly By Light Control

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Gomer, Charles

    1991-01-01

    Design study results are presented for two advanced general-aviation aircraft incorporating fly-by-light/fly-by-wire controls and digital avionics and cockpit displays. The design exercise proceeded from a database of information derived from a market survey for the 4-10 passenger aircraft range. Pusher and tractor propeller configurations were treated, and attention was given to the maximization of passenger comfort. 'Outside-in' tooling methods were assumed for the primary structures of both configurations, in order to achieve surface tolerances which maximize the rearward extent of laminar flow.

  18. Mars Digital Image Model 2.1 Control Network

    NASA Technical Reports Server (NTRS)

    Archinal, B. A.; Kirk, R. L.; Duxbury, T. C.; Lee, E. M.; Sucharski, R.; Cook, D.

    2003-01-01

    USGS is currently preparing a new version of its global Mars digital image mosaic, which will be known as MDIM 2.1. As part of this process we are completing a new photogrammetric solution of the global Mars control network. This is an improved version of the network established earlier by RAND and USGS personnel, as partially described previously. MDIM 2.1 will have many improvements over earlier Viking Orbiter (VO) global mosaics. Geometrically, it will be an orthoimage product, draped on Mars Orbiter Laser Altimeter (MOLA) derived topography, thus accounting properly for the commonly oblique VO imagery. Through the network being described here it will be tied to the newly defined IAU/IAG 2000 Mars coordinate system via ties to MOLA data. Thus, MDIM 2.1 will provide complete global orthorectified imagery coverage of Mars at the resolution of 1/256 deg of MDIM 2.0, and be compatible with MOLA and other products produced in the current coordinate system.

  19. Digital chest radiography: an update on modern technology, dose containment and control of image quality

    PubMed Central

    Neitzel, Ulrich; Venema, Henk W.; Uffmann, Martin; Prokop, Mathias

    2008-01-01

    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems. PMID:18431577

  20. Modern advances in sustainable tick control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks are the vector of the many different organisms responsible for both animal and human diseases. Understanding the progress we have made and new directions in tick control is critical to the sustainability of human and animal health. The integration of vaccines, acaricides, and new acaricide ap...

  1. Advances in temperature derivative control and calorimetry

    SciTech Connect

    Hemmerich, J.L.; Loos, J.; Miller, A.; Milverton, P.

    1996-11-01

    Temperature stabilization by inertial feedback control has proven a powerful tool to create the ultrastable environment essential for high resolution calorimetry. A thermally insulated mass, connected to a base through Seebeck effect sensors (thermopiles) is used as a reference to control the base temperature. The thermopile signal is proportional to both the heat capacity of the reference mass and the derivative {dot {Theta}} of the base temperature {Theta}. Using vacuum insulation and bismuth telluride thermopiles, we designed and tested temperature derivative sensors (TDSs) with sensitivities up to 3300 VsK{sup {minus}1}. Standard industrial controllers with approximately {plus_minus}1 {mu}V input noise and stability, permit control of temperature derivatives to {plus_minus}3{times}10{sup {minus}10} Ks{sup {minus}1}. Single-cup thermoelectric calorimeters coupled to the TDS-controlled base permitted measurement of heat flow from samples in a power range from 3 {mu}W to 10 W with high accuracy ({plus_minus}100 ppm), resolution ({plus_minus}0.2 {mu}W), and reproducibility ({plus_minus}1 {mu}W). The design of two instruments is described in detail. Their performance is demonstrated on a variety of measurements, e.g., the determination of sample heat capacities with temperature ramp rates {dot {Theta}}={plus_minus}5{times}10{sup {minus}6} Ks{sup {minus}1}, the half-life of a 3 g tritium sample in a uranium getter bed, the decay heat of depleted uranium, and the heat evolution of epoxy resin. {copyright} {ital 1996 American Institute of Physics.}

  2. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface

    PubMed Central

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-01-01

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements “00”, “01”, “10”, and “11”, respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source. PMID:28176870

  3. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-02-01

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements “00”, “01”, “10”, and “11”, respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source.

  4. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface.

    PubMed

    Huang, Cheng; Sun, Bo; Pan, Wenbo; Cui, Jianhua; Wu, Xiaoyu; Luo, Xiangang

    2017-02-08

    Recently, a concept of digital metamaterials has been proposed to manipulate field distribution through proper spatial mixtures of digital metamaterial bits. Here, we present a design of 2-bit digitally-controlled coding metasurface that can effectively modulate the scattered electromagnetic wave and realize different far-field beams. Each meta-atom of this metasurface integrates two pin diodes, and by tuning their operating states, the metasurface has four phase responses of 0, π/2, π, and 3π/2, corresponding to four basic digital elements "00", "01", "10", and "11", respectively. By designing the coding sequence of the above digital element array, the reflected beam can be arbitrarily controlled. The proposed 2-bit digital metasurface has been demonstrated to possess capability of achieving beam deflection, multi-beam and beam diffusion, and the dynamical switching of these different scattering patterns is completed by a programmable electric source.

  5. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  6. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  7. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation.

    PubMed

    Marneweck, Michelle; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M

    2016-01-01

    Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object's mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation.

  8. Digit forces bias sensorimotor transformations underlying control of fingertip position.

    PubMed

    Shibata, Daisuke; Kappers, Astrid M L; Santello, Marco

    2014-01-01

    Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy ) of the right hand ("reference" hand) using the same hand ("test" hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan , respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5-1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

  9. Digit forces bias sensorimotor transformations underlying control of fingertip position

    PubMed Central

    Shibata, Daisuke; Kappers, Astrid M. L.; Santello, Marco

    2014-01-01

    Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback. PMID:25136304

  10. Digitally Controlled Four Harmonic Buncher for FSU LINAC

    NASA Astrophysics Data System (ADS)

    Moerland, Daniel S.; Wiedenhoever, Ingo; Baby, Lagy T.; Caussyn, David; Spingler, David

    2012-03-01

    Florida State University's John D. Fox Superconducting Accelerator Laboratory is operating a Tandem-Linac system for heavy ion beams at energies of 5-10 MeV/u. Recently, the accelerator has been used as the driver for the radioactive beam facility RESOLUT, which poses new demands on its high-intensity performance and time-resolution. These demands motivated us to optimize the RF bunching system and to switch the bunch frequency from 48.5 to 12.125 MHz. We installed a four-harmonic resonant transformer to create 3-4 kV potential oscillations across a pair of wire-mesh grids. This setup is modulating the energy of the beam injected into the tandem accelerator, with the aim to create short bunches of beam particles. Asawtooth-like wave-form is created using the Fourier series method, by combining the basis sinusoidal wave of 12.125MHz and its 3 higher order harmonics, in a manner similar to the systems used at ATLAS [1] and other RF-accelerators. A new aspect of our setup is the use of a digital 1GHz function generator, which allows us to optimize and stabilize the synthesized waveform. The control system was realized using labview and integrated into the recently updated controls of the accelerator. We characterize the bunching quality achievedand discuss the optimization of the bunching wave-form. The bunching system has been successfully used in a number of Linac-experiments performed during 2011.[4pt][1] S. Sharamentov, J. Bogaty, B.E. Clifft, R. Pardo, UPGRADE OF THE ATLAS POSITIVE ION INJECTOR BUNCHING SYSTEM, Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

  11. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  12. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  13. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  14. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  15. Digital controller design: Analysis of the annular suspension pointing system. [analog controllers with feedback

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1978-01-01

    The analog controllers of the annular suspension pointing system are designed for control of the chi, phi sub 1, and phi sub 2 bandwidth dynamics through decoupling and pole placement. Since it is virtually impossible to find an equivalent bandwidth of the overall system and establish a general eigenvalue requirement for the system, the subsystem dynamics are decoupled through state feedback and the poles are placed simultaneously to realize the desired bandwidths for the three system components. Decoupling and pole placement are also used to design the closed-loop digital system through approximation.

  16. Advanced Technology Direction and Control Communications Systems

    DTIC Science & Technology

    1979-07-16

    WORK UN4IT NUMBERS The MITRE Corporation ’ 1820 flolley Madison Blvd. Work Unit 2214G McLean, VJ rginia 22102 Ii. CONTROLLING OFFICE NAME AND ADDRESS...Satellite communications using low power technique. A spread spectrum system being developed by The MITRE Corporation for the Maritime Commission. vI I,: I...300-3000 MHz; SHF (super high frequency), 3-30 GHz; EHF (extra high frequency), 30-300 GHz. 3-3 The MITRE Corporation prepared a survey of

  17. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  18. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  19. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  20. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  1. Advanced Controller for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  2. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  3. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  4. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  5. Imaging performance of a clinical selenium flat-panel detector for advanced applications in full-field digital mammography

    NASA Astrophysics Data System (ADS)

    Loustauneau, Vincent; Bissonnette, Michel; Cadieux, Sebastien; Hansroul, Marc; Masson, E.; Savard, Serge; Polischuk, Brad T.; Lehtimauki, Mari J.

    2003-06-01

    The advent of digital detectors will enable several advanced imaging applications to be used in the fight against breast cancer. For example, dynamic imaging applications such as tomosynthesis, contrast enhanced and dual energy mammography have demonstrated promising results. In this paper, we will assess the suitability of this detector for these advanced applications. MTF and DQE measurements were performed on a selenium FFDM detector to assess image quality. Ghosting properties of a digital detector are also an important factor, since it can strongly degrade image quality. In this paper, we will also report on the ghosting characteristics of the selenium detector, using typical exposures envisioned to be used in tomosynthesis exams. The physical mechanisms that create ghost images will be discussed and will be quantified.

  6. Advanced HVDC control, Volume 1: Summary report. Final report

    SciTech Connect

    Bridenbaugh, C.J.; Clark, K.; Cutler, J.M.; D`Aquila, R.; Larsen, E.V.; Lorden, D.J.; Nozari, F.; Piwko, R.J.; Walling, R.A.

    1994-09-01

    Enhancing HVDC system response to power transmission system disturbances will increase the overall security of power system operations. This five-volume report discusses the numerous performance aspects involved in the design process when applying digital control methods to HVDC systems. This study identified basic issues important in understanding the performance limits of HVDC systems regardless of control system implementation. Special attention has been given to enhancing performance for single-pole dc faults and, the most common ac network faults, namely, single-phase ac faults. In each case, investigators studied the underlying system behavior for a wide variety of network parameters, determining the type of information needed to select and apply a control philosophy. Also addressed is control of overvoltages at the connection point of the dc converter in weak ac systems by means of nonlinear filters. Based on the understanding developed during this project, this five-volume report recommends control functions that will achieve the greatest possible benefit from the system. Volume 1 contains the Summary Report, which provides brief synopses for each of the following four volumes. Volume 2 addresses the Characterization and Mitigation of AC Overvoltages and Distortion at HVDC Terminals. Volume 3 presents Concepts of Stability and Performance Enhancement with Digital Controls for HVDC Systems. Volume 4 describes the Characterization and Enhancement of HVDC System Performance During Unbalanced AC Faults. Volume 5 details the Characterization and Enhancement of HVDC System Performance During Single-Pole DC Faults.

  7. Discussion on software aging management of nuclear power plant safety digital control system.

    PubMed

    Liang, Huihui; Gu, Pengfei; Tang, Jianzhong; Chen, Weihua; Gao, Feng

    2016-01-01

    Managing the aging of digital control systems ensures that nuclear power plant systems are in adequate safety margins during their life cycles. Software is a core component in the execution of control logic and differs between digital and analog control systems. The hardware aging management for the digital control system is similar to that for the analog system, which has matured over decades of study. However, software aging management is still in the exploratory stage. Software aging evaluation is critical given the higher reliability and safety requirements of nuclear power plants. To ensure effective inputs for reliability assessment, this paper provides the required software aging information during the life cycle. Moreover, the software aging management scheme for safety digital control system is proposed on the basis of collected aging information.

  8. Digital controller for the Wave Propagation Laboratory's VHF and UHF wind-profiling radars

    NASA Astrophysics Data System (ADS)

    Moran, K.

    1984-09-01

    Principles are described for operation of a digital system that is used to control the operations of a multiple beam stratospheric-tropospheric (ST) radar system. The digital system, referred to as the radar controller, contains the digital logic for generating the necessary pulse sequences for modulation of the radar transmitter, gating the radar's receiver channels, and sequencing the antenna beams. The radar controller also performs digital-to-analog conversion and coherent averaging of the receiver necessary for signal detection in ST radars. The radar controller is controlled internally by a Z80 microprocessor, and the entire system functions as a peripheral device to a host minicomputer. Block diagrams and detailed circuit schematics for all the custom designed electronics are included.

  9. Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors

    SciTech Connect

    Korsah, K.; Clark, R.L.; Wood, R.T.

    1994-04-01

    Issues of obsolescence and lack of infrastructural support in (analog) spare parts, coupled with the potential benefits of digital systems, are driving the nuclear industry to retrofit analog instrumentation and control (I&C) systems with digital and microprocessor-based systems. While these technologies have several advantages, their application to safety-related systems in nuclear power plants raises key issues relating to the systems` environmental qualification and functional reliability. To bound the problem of new I&C system functionality and qualification, the authors focused this study on protection systems proposed for use in ALWRs. Specifically, both functional and environmental qualification issues for ALWR protection system I&C were addressed by developing an environmental, functional, and aging data template for a protection division of each proposed ALWR design. By using information provided by manufacturers, environmental conditions and stressors to which I&C equipment in reactor protection divisions may be subjected were identified. The resulting data were then compared to a similar template for an instrument string typically found in an analog protection division of a present-day nuclear power plant. The authors also identified fiber-optic transmission systems as technologies that are relatively new to the nuclear power plant environment and examined the failure modes and age-related degradation mechanisms of fiber-optic components and systems. One reason for the exercise of caution in the introduction of software into safety-critical systems is the potential for common-cause failure due to the software. This study, however, approaches the functionality problem from a systems point of view. System malfunction scenarios are postulated to illustrate the fact that, when dealing with the performance of the overall integrated system, the real issues are functionality and fault tolerance, not hardware vs. software.

  10. Coordination between digit forces and positions: interactions between anticipatory and feedback control.

    PubMed

    Fu, Qiushi; Santello, Marco

    2014-04-01

    Humans adjust digit forces to compensate for trial-to-trial variability in digit placement during object manipulation, but the underlying control mechanisms remain to be determined. We hypothesized that such digit position/force coordination was achieved by both visually guided feed-forward planning and haptic-based feedback control. The question arises about the time course of the interaction between these two mechanisms. This was tested with a task in which subjects generated torque (± 70 N·mm) on a virtual object to control a cursor moving to target positions to catch a falling ball, using a virtual reality environment and haptic devices. The width of the virtual object was varied between large (L) and small (S). These object widths result in significantly different horizontal digit relative positions and require different digit forces to exert the same task torque. After training, subjects were tested with random sequences of L and S widths with or without visual information about object width. We found that visual cues allowed subjects to plan manipulation forces before contact. In contrast, when visual cues were not available to predict digit positions, subjects implemented a "default" digit force plan that was corrected after digit contact to eventually accomplish the task. The time course of digit forces revealed that force development was delayed in the absence of visual cues. Specifically, the appropriate digit force adjustments were made 250-300 ms after initial object contact. This result supports our hypothesis and further reveals that haptic feedback alone is sufficient to implement digit force-position coordination.

  11. The use of minimum order state observers in digital flight-control systems.

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Hatch, H. G., Jr.

    1972-01-01

    This paper deals with the problem of selecting the 'arbitrary' design parameters of digital state observers when they are being used as a part of a digital flight-control system. A cost index is developed which indicates the output noise caused by input quantization due to analog-to-digital conversion. The cost index assumes that the input quantization error is uniformly distributed over the least-significant-bit of the conversion. Formulas relating the cost index to the observer design parameters are presented. The cost index is minimized with respect to the design parameters using a conjugate gradient algorithm. An example of the theory is presented in which a digital observer is designed so that a satisfactory digital flight-control system is obtained starting from an unacceptable one.

  12. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  13. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  14. Development of GUS for control applications at the Advanced Photon Source

    SciTech Connect

    Chung, Y.; Barr, D.; Borland, M.; Kirchman, J.; Decker, G.; Kim, K.

    1994-08-01

    A script-based interpretive shell GUS (General Purpose Data Acquisition for Unix Shell) has been developed for application to the Advanced Photon Source (APS) control. The primary design objective of GUS is to provide a mechanism for efficient data flow among modularized objects called Data Access Modules (DAMs). GUS consists of four major components: user interface, kernel, built-in command module, and DAMS. It also incorporates the Unix shell to make use of the existing utility programs for file manipulation and data analysis. At this time, DAMs have been written for device access through EPICS (Experimental Physics and Industrial Control System), data I/O for SDDS (Self-Describing Data Set) files, matrix manipulation, graphics display, digital signal processing, and beam position feedback system control. The modular and object-oriented construction of GUS will facilitate addition of more DAMs with other functions in the future.

  15. A Microcomputer-Based Control And Simulation Of An Advanced Ipm Synchronous Machine Drive System For Electric Vehicle Propulsion

    NASA Astrophysics Data System (ADS)

    Bose, B. K.; Szczesny, P. M.

    1987-10-01

    Advanced digital control and computer-aided control system design techniques are playing key roles in the complex drive system design and control implementation. The paper describes a high performance microcomputer-based control and digital simulation of an inverter-fed interior permanent magnet (IPM) synchronous machine which uses Neodymium-Iron-Boron magnet. The fully operational four-quadrant drive system includes constant-torque region with zero speed operation and high speed field-weakening constant-power region. The control uses vector or field-oriented technique in constant-torque region with the direct axis aligned to the stator flux, whereas the constant-power region control is based on torque angle orientation of the impressed square-wave voltage. All the key feedback signals for the control are estimated with precision. The drive system is basically designed with an outer torque control loop for electric vehicle application, but speed and position control loops can be added for other industrial applications. The distributed microcomputer-based control system is based on Intel-8096 microcontroller and Texas Instruments TMS32010 type digital signal processor. The complete drive system has been simulated using the VAX-based simulation language SIMNON* to verify the feasibility of the control laws and to study the performances of the drive system. The simulation results are found to have excellent correlation with the laboratory breadboard tests.

  16. Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System

    PubMed Central

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  17. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  18. Optimization of Control Processes of Digital Electrical Drive Systems

    NASA Astrophysics Data System (ADS)

    Dochviri, J.

    2010-01-01

    The aim of the work is solution of the problems associated with synthesis of the digital speed regulators both for DC and AC thyristor electrical drives. The investigation is realized based on the parameters of continuous technological equipment (e.g. paper-making machine) by taking into account elastic transmission links of the drive systems. Appropriate frequency characteristics and transient processes are described.

  19. Collaborative Corrections with Spelling Control: Digital Resources and Peer Assistance

    ERIC Educational Resources Information Center

    Cekaite, Asta

    2009-01-01

    The present study has explored how pairs of students deployed digital tools (spelling software) as resources in spontaneously occurring corrections of spelling errors. Drawing on the sociocultural theory of learning and ethnomethodological (Conversation Analytic) insights into social interaction, it has identified a range of consistent practices…

  20. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski

    1999-06-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The seventh reporting period in Phase II (April 1-June 30, 1999) included experimental activities and combined chemistry-mixing modeling on advanced gas reburning. The goal of combustion tests was to determine the efficiency of advanced reburning using coal as the reburning fuel. Tests were conducted in Boiler Simulator Facility (BSF). Several coals were tested. The modeling effort was focused on the description of N-agent injection along with overfire air. Modeling identified process parameters that can be used to optimize the AR-Lean process.

  1. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  2. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Pete M. Maly

    2000-03-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The tenth reporting period in Phase II (January 1-March 31, 2000) included proof-of concept tests in the 10 x 10{sup 6} Btu/hr Tower Furnace. Several variants of Second Generation Advanced Reburning (SGAR) were studied, including AR-Lean, AR-Rich, reburning + SNCR, and Multiple Injection Advanced Reburning (MIAR). Tests demonstrated that the SGAR performance was the most effective under MIAR conditions achieving maximum overall NO{sub x} reduction of 96%.

  3. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    SciTech Connect

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  4. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    NASA Technical Reports Server (NTRS)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  5. Modular system for data acquisition and control of experiments with digital output

    NASA Astrophysics Data System (ADS)

    Calabria, Mauro F.; Deza, Roberto R.

    2010-11-01

    In the present work, the design of an efficient, modular, and scalable data acquisition and control system is described. It consists of an array of microcontrollers and memories, which feed a single concentrating unit whose information can be accessed by means of a universal series bus (USB) interface to be processed later on. Signal levels can be controlled through a set of digital potentiometers. This system is ideal for experiments with a large number of digital outputs.

  6. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  7. Application of infinite model predictive control methodology to other advanced controllers.

    PubMed

    Abu-Ayyad, M; Dubay, R; Hernandez, J M

    2009-01-01

    This paper presents an application of most recent developed predictive control algorithm an infinite model predictive control (IMPC) to other advanced control schemes. The IMPC strategy was derived for systems with different degrees of nonlinearity on the process gain and time constant. Also, it was shown that IMPC structure uses nonlinear open-loop modeling which is conducted while closed-loop control is executed every sampling instant. The main objective of this work is to demonstrate that the methodology of IMPC can be applied to other advanced control strategies making the methodology generic. The IMPC strategy was implemented on several advanced controllers such as PI controller using Smith-Predictor, Dahlin controller, simplified predictive control (SPC), dynamic matrix control (DMC), and shifted dynamic matrix (m-DMC). Experimental work using these approaches combined with IMPC was conducted on both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems and compared with the original forms of these advanced controllers. Computer simulations were performed on nonlinear plants demonstrating that the IMPC strategy can be readily implemented on other advanced control schemes providing improved control performance. Practical work included real-time control applications on a DC motor, plastic injection molding machine and a MIMO three zone thermal system.

  8. Advanced control for airbreathing engines, volume 1: Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Ralph, J. A.

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.

  9. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  10. Advances in developing alternative treatments for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS made two significant advances in the last 10 years in the development of alternative treatments for postharvest pest control: oxygenated phosphine fumigation and nitric oxide fumigation. Oxygenated phosphine is phosphine fumigation in an oxygen enriched atmosphere. It is significantly more...

  11. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  12. Streaming the Archives: Repurposing Systems to Advance a Small Media Digitization and Dissemination Program

    ERIC Educational Resources Information Center

    Anderson, Talea

    2015-01-01

    In 2013-2014, Brooks Library at Central Washington University (CWU) launched library content in three systems: a digital asset-management system, an institutional repository (IR), and a web-based discovery layer. In early 2014, the archives at the library began to use these systems to disseminate media recently digitized from legacy formats. As…

  13. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  14. Development of a digital guidance and control law for steep approach automatic landings using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1979-01-01

    The development of a digital automatic control law for a small jet transport to perform a steep final approach in automatic landings is reported along with the development of a steady-state Kalman filter used to provide smooth estimates to the control law. The control law performs the functions of localizer and glides capture, localizer and glideslope track, decrab, and place. The control law uses the microwave landing system position data, and aircraft body-mounted accelerators, attitude and attitude rate information. The results obtained from a digital simulation of the aircraft dynamics, wind conditions, and sensor noises using the control law and filter developed are described.

  15. Optical metrology for advanced process control: full module metrology solutions

    NASA Astrophysics Data System (ADS)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  16. Status report on the Advanced Light Source control system, 1993

    SciTech Connect

    Young, J.; Brown, W. Jr.; Cork, C.

    1993-10-01

    The Advanced Light Source (ALS), under construction for the past seven years, has become operational. The accelerator has been successfully commissioned using a control system based on hundreds of controllers of our own design and high performance personal computers which are the operator interface. The first beamlines are being commissioned using a control system based on VME hardware and the Experimental Physics and Industrial Control System (EPICS) software. The two systems are being integrated, and this paper reports on the current work being done.

  17. Advanced image manipulation controller for cockpit LCD displays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Gopal

    1998-09-01

    Key features of a family of LSI integrated circuits will be explained. These DSP devices are capable of taking digital inputs of either NTSC/PAL/SECAM video in YCrCb 4:2:2 format, or computer graphics data from a PC in RGB 8:8:8 format, de- interlacing the data (if required), then re-sizing the resolution of the image independently in the horizontal and vertical axes to fit arbitrary display resolutions. The devices use patented digital filter techniques to perform zoom-only or both zoom as well as shrink. The devices also include registers that allow for cropping the active input image, and registers to completely control horizontal and vertical timing parameters for LCD displays. Current members of this family work at clock rates of up to 84 MHz, at resolutions of 1024 X 768, and upcoming members of the family will raise both the target resolution and pixel rates. All these parts generate all timing signals required by the display. Typically, no external memory is required for zooming and shrinking. Cockpit display applications that could benefit from this chip include processing and display of video, FLIR, EFIS/EICAS displays, radar, digital terrain maps, ultrasonic/sonar, computer graphics/symbol generators, etc. The devices are members of the gmZx family of scaling chips, first introduced in April '97.

  18. Access control and interlock system at the Advanced Photon Source

    SciTech Connect

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D.

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  19. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  20. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. . Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  1. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  2. Status of a digital integrated propulsion/flight control system for the YF-12 airplane

    NASA Technical Reports Server (NTRS)

    Reukauf, P. J.; Burcham, F. W., Jr.; Holzman, J. K.

    1975-01-01

    The NASA Flight Research Center is engaged in a program with the YF-12 airplane to study the control of interactions between the airplane and the propulsion system. The existing analog air data computer, autothrottle, autopilot, and inlet control system are to be converted to digital systems by using a general purpose airborne computer and interface unit. First, the existing control laws will be programmed in the digital computer and flight tested. Then new control laws are to be derived from a dynamic propulsion model and a total force and moment aerodynamic model to integrate the systems. These control laws are to be verified in a real time simulation and flight tested.

  3. Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)

    2015-01-01

    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.

  4. Controlling death: the false promise of advance directives.

    PubMed

    Perkins, Henry S

    2007-07-03

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  5. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  6. Digital TV-echelle spectrograph for simultaneous multielemental analysis using microcomputer control

    SciTech Connect

    Davidson, J.B.; Case, A.L.

    1980-12-01

    A digital TV-echelle spectrograph with microcomputer control was developed for simultaneous multielemental analysis. The optical system is a commercially available unit originally equipped for film and photomultiplier (single element) readout. The film port was adapted for the intensifier camera. The camera output is digitized and stored in a microcomputer-controlled, 512 x 512 x 12 bit memory and image processor. Multiple spectra over the range of 200 to 800 nm are recorded in a single exposure. Spectra lasting from nanoseconds to seconds are digitized and stored in 0.033 s and displayed on a TV monitor. An inexpensive microcomputer controls the exposure, reads and displays the intensity of predetermined spectral lines, and calculates wavelengths of unknown lines. The digital addresses of unknown lines are determined by superimposing a cursor on the TV display. The microcomputer also writes into memory wavelength fiducial marks for alignment of the TV camera.

  7. Tremor suppression using functional electrical stimulation: a comparison between digital and analog controllers.

    PubMed

    Gillard, D M; Cameron, T; Prochazka, A; Gauthier, M J

    1999-09-01

    In this study, we compared digital and analog versions of a functional electrical stimulator designed to suppress tremor. The device was based on a closed-loop control system designed to attenuate movements in the tremor frequency range, without significantly affecting slower, voluntary movements. Testing of the digital filter was done on three patients with Parkinsonian tremor and the results compared to those of a functional electrical stimulation device based on an analog filter evaluated in a previous study. Additional testing of both the analog and digital filters was done on three subjects with no neurological impairment performing tremor-like movements and slow voluntary movements. We found that the digital controller provided a mean attenuation of 84%, compared to 65% for the analog controller.

  8. Economic convergence of environmental control and advanced technology

    SciTech Connect

    Bolli, R.E.; Haslbeck, J.L.

    1995-12-31

    Emerging advanced technologies for environmental control have many advantages over conventional, single pollutant removal processes. Features include high efficiencies, multiple pollutant control and zero waste streams. In the past, the economics for state-of-the-art emission control processes could not compete with proven, low-efficiency scrubbers that create throw away by-products. With the implementation of the Clean Air Act Amendments (CAAA), the entire economic environment has changed. If a single process can provide a facility`s compliance requirements for Title I, Title III and Title IV of the CAAA, its net costs can be lower than conventional technology and actually provide economic incentives for overcontrol. The emission allowance program is maturing and the annual revenues from overcontrol of SO{sub 2} are easily quantified. The economics of NO{sub x} control and offsets are currently being realized as EPA identified Title IV requirements, and facilities begin to realize the impact from Title I NO{sub x} control. Air toxic control from Title III could require yet a third control process for a facility to maintain emission compliance. The costs associated with single control strategies vs. multiple pollutant control processes will be discussed and compared. This paper will also present a specific application of the NOXSO Process and identify the potential advantages that can transform advanced technologies, like NOXSO, into the prudent solution for overall environmental compliance.

  9. The digital implementation of control compensators: The coefficient wordlength issue

    NASA Technical Reports Server (NTRS)

    Moroney, P.; Willsky, A. S.; Houpt, P. K.

    1979-01-01

    There exists a number of mathematical procedures for designing discrete-time compensators. However, the digital implementation of these designs, with a microprocessor for example, has not received nearly as thorough an investigation. The finite-precision nature of the digital hardware makes it necessary to choose an algorithm (computational structure) that will perform 'well-enough' with regard to the initial objectives of the design. This paper describes a procedure for estimating the required fixed-point coefficient wordlength for any given computational structure for the implementation of a single-input single-output LOG design. The results are compared to the actual number of bits necessary to achieve a specified performance index.

  10. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  11. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  12. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Astrophysics Data System (ADS)

    Zhu, Minshao

    2002-02-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  13. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  14. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  15. Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation

    PubMed Central

    Marneweck, Michelle; Lee-Miller, Trevor; Santello, Marco; Gordon, Andrew M.

    2016-01-01

    Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object’s mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation. PMID:27695406

  16. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2014

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  17. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    SciTech Connect

    J. Napoleon

    1998-12-01

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  18. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.

  19. A quality control system for digital elevation data

    NASA Astrophysics Data System (ADS)

    Knudsen, Thomas; Kokkendorf, Simon; Flatman, Andrew; Nielsen, Thorbjørn; Rosenkranz, Brigitte; Keller, Kristian

    2015-04-01

    In connection with the introduction of a new version of the Danish national coverage Digital Elevation Model (DK-DEM), the Danish Geodata Agency has developed a comprehensive quality control (QC) and metadata production (MP) system for LiDAR point cloud data. The architecture of the system reflects its origin in a national mapping organization where raw data deliveries are typically outsourced to external suppliers. It also reflects a design decision of aiming at, whenever conceivable, doing full spatial coverage tests, rather than scattered sample checks. Hence, the QC procedure is split in two phases: A reception phase and an acceptance phase. The primary aim of the reception phase is to do a quick assessment of things that can typically go wrong, and which are relatively simple to check: Data coverage, data density, strip adjustment. If a data delivery passes the reception phase, the QC continues with the acceptance phase, which checks five different aspects of the point cloud data: Vertical accuracy Vertical precision Horizontal accuracy Horizontal precision Point classification correctness The vertical descriptors are comparatively simple to measure: The vertical accuracy is checked by direct comparison with previously surveyed patches. The vertical precision is derived from the observed variance on well defined flat surface patches. These patches are automatically derived from the road centerlines registered in FOT, the official Danish map data base. The horizontal descriptors are less straightforward to measure, since potential reference material for direct comparison is typically expected to be less accurate than the LiDAR data. The solution selected is to compare photogrammetrically derived roof centerlines from FOT with LiDAR derived roof centerlines. These are constructed by taking the 3D Hough transform of a point cloud patch defined by the photogrammetrical roof polygon. The LiDAR derived roof centerline is then the intersection line of the two primary

  20. Tailoring automatic exposure control toward constant detectability in digital mammography

    SciTech Connect

    Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W.

    2015-07-15

    Purpose: The automatic exposure control (AEC) modes of most full field digital mammography (FFDM) systems are set up to hold pixel value (PV) constant as breast thickness changes. This paper proposes an alternative AEC mode, set up to maintain some minimum detectability level, with the ultimate goal of improving object detectability at larger breast thicknesses. Methods: The default “OPDOSE” AEC mode of a Siemens MAMMOMAT Inspiration FFDM system was assessed using poly(methyl methacrylate) (PMMA) of thickness 20, 30, 40, 50, 60, and 70 mm to find the tube voltage and anode/filter combination programmed for each thickness; these beam quality settings were used for the modified AEC mode. Detectability index (d′), in terms of a non-prewhitened model observer with eye filter, was then calculated as a function of tube current-time product (mAs) for each thickness. A modified AEC could then be designed in which detectability never fell below some minimum setting for any thickness in the operating range. In this study, the value was chosen such that the system met the achievable threshold gold thickness (T{sub t}) in the European guidelines for the 0.1 mm diameter disc (i.e., T{sub t} ≤ 1.10 μm gold). The default and modified AEC modes were compared in terms of contrast-detail performance (T{sub t}), calculated detectability (d′), signal-difference-to-noise ratio (SDNR), and mean glandular dose (MGD). The influence of a structured background on object detectability for both AEC modes was examined using a CIRS BR3D phantom. Computer-based CDMAM reading was used for the homogeneous case, while the images with the BR3D background were scored by human observers. Results: The default OPDOSE AEC mode maintained PV constant as PMMA thickness increased, leading to a reduction in SDNR for the homogeneous background 39% and d′ 37% in going from 20 to 70 mm; introduction of the structured BR3D plate changed these figures to 22% (SDNR) and 6% (d′), respectively

  1. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  2. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    SciTech Connect

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis; Fallgren, Andrew James; Jarman, Ken; Li, Shelly; Meier, Dave; Miller, Mike; Osburn, Laura Ann; Pereira, Candido; Dasari, Venkateswara Rao; Ticknor, Lawrence O.; Yoo, Tae-Sic

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  3. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  4. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  5. An advanced teleoperator control system - Design and evaluation

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Lee, Hahk S.

    1992-01-01

    The design goal of an advanced teleoperator control system is twofold: 1) to allow the operator's manual control to be robust to system nonlinearities such as time delays and operator's control errors, and 2) to support the high performance of teleoperation while reducing the operator's control burden by providing the master and slave arms with desirable dynamic properties and by allowing the slave arm to automatically perform such control tasks as compliance and force control in the form of task sharing. The authors present a novel teleoperator control system achieving the above design goal by taking the following into consideration: the human dynamics involved in generating control command based on visual and forced feedback is modeled and incorporated into the controller design and evaluation; the dynamic characteristics of slave and master arms are actively modified in such a way as to implement the desirable dynamic characteristics; and the force feedback is redefined in terms of the combination of opposition and force discrepancies in order to establish the required man/machine dynamic coordination under shared control. The proposed control system with human dynamics in the control loop is simulated and compared with a number of conventional methods in the presence of human control errors and time delays.

  6. Development of the HIDEC inlet integration mode. [Highly Integrated Digital Electronic Control

    NASA Technical Reports Server (NTRS)

    Chisholm, J. D.; Nobbs, S. G.; Stewart, J. F.

    1990-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) development program conducted at NASA-Ames/Dryden will use an F-15 test aircraft for flight demonstration. An account is presently given of the HIDEC Inlet Integration mode's design concept, control law, and test aircraft implementation, with a view to its performance benefits. The enhancement of performance is a function of the use of Digital Electronic Engine Control corrected engine airflow computations to improve the scheduling of inlet ramp positions in real time; excess thrust can thereby be increased by 13 percent at Mach 2.3 and 40,000 ft. Aircraft supportability is also improved through the obviation of inlet controllers.

  7. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  8. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  9. Design and flight testing of a digital optimal control general aviation autopilot

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Downing, D. R.; Bryant, W. H.

    1982-01-01

    This paper presents the designs of Proportional-Integral-Filter (PIF) autopilots for a General Aviation (NAVION) aircraft. The PIF autopilots use modern control theory to determine heading select and altitude select and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback; command error integration for command tracking; digital complimentary filtering and analog prefiltering for sensor noise suppression; a control filter for computation delay accommodation; and the incremental form to eliminate trim values in implementation. Theoretical developments for the control law are described which combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and simulations. Successful flight test results for the PIF autopilots are presented for different turbulence conditions and quadratic weights.

  10. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  11. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  12. F-8 digital fly-by-wire flight test results viewed from an active controls perspective

    NASA Technical Reports Server (NTRS)

    Zalai, K. J.; Deets, D. A.

    1975-01-01

    The results of the NASA F-8 digital fly-by-wire flight test program are presented, along with the implications for active controls applications. The closed loop performance of the digital control system agreed well with the sampled-data system design predictions. The digital fly-by-wire mechanization also met pilot flying qualities requirements. The advantages of mechanizing the control laws in software became apparent during the flight program and were realized without sacrificing overall system reliability. This required strict software management. The F-8 flight test results are shown to be encouraging in light of the requirements that must be met by control systems for flight-critical active controls applications.

  13. A FEEDBACK INTERVENTION TO INCREASE DIGITAL AND PAPER CHECKLIST PERFORMANCE IN TECHNICALLY ADVANCED AIRCRAFT SIMULATION

    PubMed Central

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes. PMID:21541133

  14. Digital Mammography: Development of an Advanced Computer-Aided Diagnosis System for Breast Cancer Detection

    DTIC Science & Technology

    2006-05-01

    aided diagnosis of masses with full-field digital mammography,” Acad. Radiol. 9, 4–12 2002. 34D. Gur, J. S. Stalder, L. A. Hardesty , B. Zheng, J. H...Pickett RM , D’Orsi CJ. Stereo- scopic digital mammography: improving detection and diagnosis of breast cancer. Berlin, Germany: International Congress...other is the root-mean-square ( RMS ) distance between the computer and manually identified pectoral boundary. For 118 MLO view mammograms, 99.2% (117

  15. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  16. Validation of MTF measurement for digital mammography quality control

    SciTech Connect

    Carton, Ann-Katherine; Vandenbroucke, Dirk; Struye, Luc; Maidment, Andrew D.A.; Kao, Y.-H.; Albert, Michael; Bosmans, Hilde; Marchal, Guy

    2005-06-15

    The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method. These images simulated realistic data from clinical digital mammography systems, and contained intrinsic system factors that could affect the MTF accuracy, such as noise, scatter, and flat-field nonuniformities. Our algorithm is not influenced by detector dose variations for MTF accuracy up to 1/2 the sampling frequency. We investigated several methods for noise reduction, including truncating the supersampled line spread function (LSF), windowing the LSF, applying a local exponential fit to the LSF, and applying a monotonic constraint to the supersampled edge spread function. Only the monotonic constraint did not introduce a systematic error; the other methods could result in MTF underestimation. Overall, our edge method consistently computed MTFs which were in good agreement with the true MTF. The edge method was then applied to images from a commercial storage-phosphor based digital mammography system. The calculated MTF was affected by the size (sides of 2.5, 5, or 10 cm) and the composition (lead or tungsten) of the edge device. However, the effects on the MTF were observed only with regard to the low frequency drop (LFD). Scatter nonuniformity was dependent on edge size, and could lead to slight underestimation of LFD. Nevertheless, this negative effect could be minimized by using an edge of 5 cm or larger. An edge composed of lead is susceptible to L-fluorescence, which causes overestimation of the LFD. The results of this work are intended to underline the need for clear guidelines if the MTF is to be given a more crucial role in acceptance tests and routine assessment of digital mammography systems: the MTF algorithm and edge

  17. A digital control system for external magnetohydrodynamic modes in tokamak plasmas

    SciTech Connect

    Hanson, J. M.; Klein, A. J.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. Sunn

    2009-04-15

    A feedback system for controlling external, long-wavelength magnetohydrodynamic activity is described. The system is comprised of a network of localized magnetic pickup and control coils driven by four independent, low-latency field-programable gate array controllers. The control algorithm incorporates digital spatial filtering to resolve low mode number activity, temporal filtering to correct for frequency-dependent amplitude and phase transfer effects in the control hardware, and a Kalman filter to distinguish the unstable plasma mode from noise.

  18. A digital control system for external magnetohydrodynamic modes in tokamak plasmas.

    PubMed

    Hanson, J M; Klein, A J; Mauel, M E; Maurer, D A; Navratil, G A; Pedersen, T Sunn

    2009-04-01

    A feedback system for controlling external, long-wavelength magnetohydrodynamic activity is described. The system is comprised of a network of localized magnetic pickup and control coils driven by four independent, low-latency field-programable gate array controllers. The control algorithm incorporates digital spatial filtering to resolve low mode number activity, temporal filtering to correct for frequency-dependent amplitude and phase transfer effects in the control hardware, and a Kalman filter to distinguish the unstable plasma mode from noise.

  19. Guidance, Navigation and Control Digital Emulation Technology Laboratory

    NASA Astrophysics Data System (ADS)

    Alford, Cecil O.; Chamdani, J. I.; Huang, T. C.; Kubota, T.; Ghannadian, F.

    1994-09-01

    The contract began with seven tasks: (1) Digital Emulation Facility; (2) FPA Seeker Emulator Development; (3) Special Studies; (4) Software Development; (5) Automated Input; (6) PFP Technology; and (7) GN and C Processor Development. These tasks were developed through the first two years of the contract when virtually all funding was removed. Two additional tasks have been developed since the funding cut. The first was a speed test on the rad-hard FPU chip developed by Harris. A summary of this testing and the associated report is given in Section 2. The second task is the development of an FPA Test System.

  20. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  1. Digital Citizenship

    ERIC Educational Resources Information Center

    Isman, Aytekin; Canan Gungoren, Ozlem

    2014-01-01

    Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …

  2. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  3. Report on Disclosure Issues Related to the Use of Copy Control and Digital Rights Management Technologies. OECD Digital Economy Papers, No. 115

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2006

    2006-01-01

    This report analyses the disclosure issues raised by technically-imposed restrictions on the use of digital content. It focuses on the application of copy control and digital rights management technologies in three areas: copy-protected CDs; online music, and DVD regional coding. In each of these areas, the report examines the kinds of…

  4. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  5. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, Djula; Sharp, Jeffrey W.

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  6. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOEpatents

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  7. Definition study for temperature control in advanced protein crystal growth

    NASA Astrophysics Data System (ADS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-09-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  8. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  9. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  10. Digital controller for a Baum folding machine. [providing automatic counting and machine shutoff

    NASA Technical Reports Server (NTRS)

    Bryant, W. H. (Inventor)

    1974-01-01

    A digital controller for controlling the operation of a folding machine enables automatic folding of a desired number of sheets responsive to entry of that number into a selector. The controller includes three decade counter stages for corresponding rows of units, tens and hundreds push buttons. Each stage including a decimal-to-BCD encoder, a buffer register, and a digital or binary counter. The BCD representation of the selected count for each digit is loaded into the respective decade down counters. Pulses generated by a sensor and associated circuitry are used to decrease the count in the decade counters. When the content of the decade counter reaches either 0 or 1, a solenoid control valve is actuated which interrupts operation of the machine. A repeat switch, when actuated, prevents clearing of the buffer registers so that multiple groups of the same number of sheets can be folded without reentering the number into the selector.

  11. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  12. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  13. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  14. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  15. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  16. Direct current pulse train actuation to enhance droplet control in digital microfluidics

    NASA Astrophysics Data System (ADS)

    Murran, Miguel A.; Najjaran, Homayoun

    2012-10-01

    The effective operation of a digital microfluidic (DMF) device depends on its ability to actuate droplets. Pulse width modulation of actuating signals (DC pulse train actuation) is proposed as a practical digital implementation and enhanced droplet manipulation technique. Experimental and simulation results demonstrate the efficacy of droplet incremental displacement and velocity control by modulating the width of each actuation pulse. This will in turn enable the control of the non-linear droplet transport dynamics to minimize droplet position overshoot, deformation, and fragmentation. As a result, DCPT actuation offers unparalleled control over droplet position and speed in DMF devices.

  17. Application of digital control to a magnetic model suspension and balance model

    NASA Technical Reports Server (NTRS)

    Luh, P. B.; Covert, E. E.; Whitaker, H. P.; Haldeman, C. W.

    1978-01-01

    The feasibility of using a digital computer for performing the automatic control functions for a magnetic suspension and balance system (MSBS) for use with wind tunnel models was investigated. Modeling was done using both a prototype MSBS and a one dimensional magnetic balance. A microcomputer using the Intel 8080 microprocessor is described and results are given using this microprocessor to control the one dimensional balance. Hybrid simulations for one degree of freedom of the MSBS were also performed and are reported. It is concluded that use of a digital computer to control the MSBS is eminently feasible and should extend both the accuracy and utility of the system.

  18. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  19. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  20. Recent advances in the analysis, design and optimization of Digital Delta-Sigma Modulators

    NASA Astrophysics Data System (ADS)

    Kennedy, Michael Peter

    Digital Delta-Sigma Modulators (DDSMs) are almost univerally used in integrated circuits for wireless communications and digital audio, particularly in fractional-N frequency synthesizers and oversampled digital-to-analog converters (DACs). A DDSM is a nonlinear dynamical system which reduces the wordlength of an oversampled digital signal without significantly degrading the SNR in the signal band. DDSMs can exhibit a number of behaviors that are characteristic of nonlinear dynamical systems such as oscillation, coexisting steady-state solutions, sensitivity to initial conditions, and sensitivity to the input. This paper explains the root cause of deterministic spurious and idle tones in DDSMs—short periodic cycles—and describes strategies to eliminate them. The use of a DDSM simplifies the design of analog circuitry in a mixed-signal system. By reducing the bus width in a prescribed way, a DDSM can also permit more efficient downstream digital signal processing—in terms of power and speed—with negligible degradation in performance.