Science.gov

Sample records for advanced dose calculation

  1. Monte Carlo calculation of skyshine'' neutron dose from ALS (Advanced Light Source)

    SciTech Connect

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations.

  2. Dosimetric validation of the Acuros XB Advanced Dose Calculation algorithm: fundamental characterization in water

    NASA Astrophysics Data System (ADS)

    Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Mancosu, Pietro; Cozzi, Luca

    2011-05-01

    This corrigendum intends to clarify some important points that were not clearly or properly addressed in the original paper, and for which the authors apologize. The original description of the first Acuros algorithm is from the developers, published in Physics in Medicine and Biology by Vassiliev et al (2010) in the paper entitled 'Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams'. The main equations describing the algorithm reported in our paper, implemented as the 'Acuros XB Advanced Dose Calculation Algorithm' in the Varian Eclipse treatment planning system, were originally described (for the original Acuros algorithm) in the above mentioned paper by Vassiliev et al. The intention of our description in our paper was to give readers an overview of the algorithm, not pretending to have authorship of the algorithm itself (used as implemented in the planning system). Unfortunately our paper was not clear, particularly in not allocating full credit to the work published by Vassiliev et al on the original Acuros algorithm. Moreover, it is important to clarify that we have not adapted any existing algorithm, but have used the Acuros XB implementation in the Eclipse planning system from Varian. In particular, the original text of our paper should have been as follows: On page 1880 the sentence 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008, 2010). Acuros XB builds upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were adapted especially for external photon beam dose calculations' should be corrected to 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008). A new algorithm called Acuros, developed by the Transpire Inc. group, was

  3. SU-E-T-313: The Accuracy of the Acuros XB Advanced Dose Calculation Algorithm for IMRT Dose Distributions in Head and Neck

    SciTech Connect

    Araki, F; Onizuka, R; Ohno, T; Tomiyama, Y; Hioki, K

    2014-06-01

    Purpose: To investigate the accuracy of the Acuros XB version 11 (AXB11) advanced dose calculation algorithm by comparing with Monte Caro (MC) calculations. The comparisons were performed with dose distributions for a virtual inhomogeneity phantom and intensity-modulated radiotherapy (IMRT) in head and neck. Methods: Recently, AXB based on Linear Boltzmann Transport Equation has been installed in the Eclipse treatment planning system (Varian Medical Oncology System, USA). The dose calculation accuracy of AXB11 was tested by the EGSnrc-MC calculations. In additions, AXB version 10 (AXB10) and Analytical Anisotropic Algorithm (AAA) were also used. First the accuracy of an inhomogeneity correction for AXB and AAA algorithms was evaluated by comparing with MC-calculated dose distributions for a virtual inhomogeneity phantom that includes water, bone, air, adipose, muscle, and aluminum. Next the IMRT dose distributions for head and neck were compared with the AXB and AAA algorithms and MC by means of dose volume histograms and three dimensional gamma analysis for each structure (CTV, OAR, etc.). Results: For dose distributions with the virtual inhomogeneity phantom, AXB was in good agreement with those of MC, except the dose in air region. The dose in air region decreased in order of MCdose kernel of water, the doses in regions for air, bone, and aluminum considerably became higher than those of AXB and MC. The pass rates of the gamma analysis for IMRT dose distributions in head and neck were similar to those of MC in order of AXB11dose calculation accuracy of AXB11 was almost equivalent to the MC dose calculation.

  4. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  5. Dose Calculation Spreadsheet

    1997-06-10

    VENTSAR XL is an EXCEL Spreadsheet that can be used to calculate downwind doses as a result of a hypothetical atmospheric release. Both building effects and plume rise may be considered. VENTSAR XL will run using any version of Microsoft EXCEL version 4.0 or later. Macros (the programming language of EXCEL) was used to automate the calculations. The user enters a minimal amount of input and the code calculates the resulting concentrations and doses atmore » various downwind distances as specified by the user.« less

  6. Dose calculation for electron therapy

    NASA Astrophysics Data System (ADS)

    Gebreamlak, Wondesen T.

    The dose delivered by electron beams has a complex dependence on the shape of the field; any field shaping shields, design of collimator systems, and energy of the beam. This complicated dependence is due to multiple scattering of the electron beam as the beam travels from the accelerator head to the patient. The dosimetry of only regular field shapes (circular, square, or rectangular) is well developed. However, most tumors have irregular shapes and their dosimetry is calculated by direct measurement. This is laborious and time consuming. In addition, error can be introduced during measurements. The lateral build up ratio method (LBR), which is based on the Fermi-Eyges multiple scattering theory, calculates the dosimetry of irregular electron beam shapes. The accuracy of this method depends on the function sigma r(r,E) (the mean square radial displacement of the electron beam in the medium) used in the calculation. This research focuses on improving the accuracy of electron dose calculations using lateral build up ratio method by investigating the properties of sigmar(r,E). The percentage depth dose curves of different circular cutouts were measured using four electron beam energies (6, 9, 12, and 15 MeV), four electron applicator sizes (6x6, 10x10, 14x14, and 20x20 cm), three source-surface distance values (100, 105, 110 cm). The measured percentage depth dose curves were normalized at a depth of 0.05 cm. Using the normalized depth dose, the lateral build up ratio curves were determined. Using the cutout radius and the lateral build up ratio values, sigmar(z,E) were determined. It is shown that the sigma value increases linearly with cutout size until the cutout radius reaches the equilibrium range of the electron beam. The sigma value of an arbitrary circular cutout was determined from the interpolation of sigma versus cutout curve. The corresponding LBR value of the circular cutout was determined using its radius and sigma values. The depth dose distribution of

  7. How to calculate the dose of chemotherapy

    PubMed Central

    Gurney, H

    2002-01-01

    Body surface area-dosing does not account for the complex processes of cytotoxic drug elimination. This leads to an unpredictable variation in effect. Overdosing is easily recognised but it is possible that unrecognised underdosing is more common and may occur in 30% or more of patients receiving standard regimen. Those patients who are inadvertently underdosed are at risk of a significantly reduced anticancer effect. Using published data, it can be calculated that there is an almost 20% relative reduction in survival for women receiving adjuvant chemotherapy for breast cancer as a result of unrecognised underdosing. Similarly, the cure rate of cisplatin-based chemotherapy for advanced testicular cancer may be reduced by as much as 10%. The inaccuracy of body surface area-dosing is more than an inconvenience and it is important that methods for more accurate dose calculation are determined, based on the known drug elimination processes for cytotoxic chemotherapy. Twelve rules for dose calculation of chemotherapy are given that can be used as a guideline until better dose-calculation methods become available. Consideration should be given to using fixed dose guidelines independent of body surface area and based on drug elimination capability, both as a starting dose and for dose adjustment, which may have accuracy, safety and financial advantages. British Journal of Cancer (2002) 86, 1297–1302. DOI: 10.1038/sj/bjc/6600139 www.bjcancer.com © 2002 Cancer Research UK PMID:11953888

  8. Verification of Internal Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Aissi, Abdelmadjid

    The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous

  9. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  10. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  11. A Program for Calculating Radiation Dose Rates.

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  12. Radioactive Dose Assessment and NRC Verification of Licensee Dose Calculation.

    1994-09-16

    Version 00 PCDOSE was developed for the NRC to perform calculations to determine radioactive dose due to the annual averaged offsite release of liquid and gaseous effluent by U.S commercial nuclear power facilities. Using NRC approved dose assessment methodologies, it acts as an inspector's tool for verifying the compliance of the facility's dose assessment software. PCDOSE duplicates the calculations of the GASPAR II mainframe code as well as calculations using the methodologices of Reg. Guidemore » 1.109 Rev. 1 and NUREG-0133 by optional choice.« less

  13. Georgia fishery study: implications for dose calculations

    SciTech Connect

    Turcotte, M.D.S.

    1983-03-28

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr.

  14. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  15. Multigroup neutron dose calculations for proton therapy

    SciTech Connect

    Kelsey Iv, Charles T; Prinja, Anil K

    2009-01-01

    We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

  16. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  17. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  18. Phage therapy pharmacology: calculating phage dosing.

    PubMed

    Abedon, Stephen

    2011-01-01

    Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter. PMID:22050820

  19. Calculation of dose conversion factors for thoron decay products.

    PubMed

    Ishikawa, Tetsuo; Tokonami, Shinji; Nemeth, Csaba

    2007-12-01

    The dose conversion factors for short-lived thoron decay products were calculated using a dosimetric approach. The calculations were based on a computer program LUDEP, which implements the ICRP 66 respiratory tract model. The dose per equilibrium equivalent concentration for thoron (EETC) was calculated with respect to (1) equivalent dose to each region of the lung tissues (bronchial, bronchiolar and alveolar), (2) weighted equivalent dose to organs other than lung, and (3) effective dose. The calculations indicated that (1) the most exposed region of the lung tissues was the bronchial for the unattached fraction and the bronchiolar for the attached fraction, (2) the effective dose is dominated by the contribution of lung dose, and (3) the effective dose per EETC was about four times larger than the effective dose per equilibrium equivalent concentration for radon (EERC). The calculated dose conversion factors were applied to the comparative dosimetry for some thoron-enhanced areas where the EERC and EETC have been measured. In the case of a spa in Japan, the dose from thoron decay products was larger than the dose from radon decay products.

  20. Total Monte Carlo evaluation for dose calculations.

    PubMed

    Sjöstrand, H; Alhassan, E; Conroy, S; Duan, J; Hellesen, C; Pomp, S; Österlund, M; Koning, A; Rochman, D

    2014-10-01

    Total Monte Carlo (TMC) is a method to propagate nuclear data (ND) uncertainties in transport codes, by using a large set of ND files, which covers the ND uncertainty. The transport code is run multiple times, each time with a unique ND file, and the result is a distribution of the investigated parameter, e.g. dose, where the width of the distribution is interpreted as the uncertainty due to ND. Until recently, this was computer intensive, but with a new development, fast TMC, more applications are accessible. The aim of this work is to test the fast TMC methodology on a dosimetry application and to propagate the (56)Fe uncertainties on the predictions of the dose outside a proposed 14-MeV neutron facility. The uncertainty was found to be 4.2 %. This can be considered small; however, this cannot be generalised to all dosimetry applications and so ND uncertainties should routinely be included in most dosimetry modelling.

  1. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  2. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  3. Proton dose calculation based on in-air fluence measurements.

    PubMed

    Schaffner, Barbara

    2008-03-21

    Proton dose calculation algorithms--as well as photon and electron algorithms--are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and-to a lesser extent-design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques. PMID:18367787

  4. Fast dose calculation in magnetic fields with GPUMCD.

    PubMed

    Hissoiny, S; Raaijmakers, A J E; Ozell, B; Després, P; Raaymakers, B W

    2011-08-21

    A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.

  5. Weighting of secondary radiations in organ dose calculations.

    PubMed

    Siiskonen, T; Tapiovaara, M

    2010-09-01

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks.

  6. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    SciTech Connect

    FOUST, D.J.

    2000-10-26

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  7. Fast convolution-superposition dose calculation on graphics hardware.

    PubMed

    Hissoiny, Sami; Ozell, Benoît; Després, Philippe

    2009-06-01

    The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.

  8. Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

    SciTech Connect

    Ito, Shima; Parker, Brent C.; Levine, Renee; Sanders, Mary Ella; Fontenot, Jonas; Gibbons, John; Hogstrom, Kenneth

    2011-10-01

    Purpose: To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). Methods and Materials: In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi.Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. Results: The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% {+-} 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% {+-} 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% {+-} 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. Conclusions: The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.

  9. Monte Carlo calculation of patient organ doses from computed tomography.

    PubMed

    Oono, Takeshi; Araki, Fujio; Tsuduki, Shoya; Kawasaki, Keiichi

    2014-01-01

    In this study, we aimed to evaluate quantitatively the patient organ dose from computed tomography (CT) using Monte Carlo calculations. A multidetector CT unit (Aquilion 16, TOSHIBA Medical Systems) was modeled with the GMctdospp (IMPS, Germany) software based on the EGSnrc Monte Carlo code. The X-ray spectrum and the configuration of the bowtie filter for the Monte Carlo modeling were determined from the chamber measurements for the half-value layer (HVL) of aluminum and the dose profile (off-center ratio, OCR) in air. The calculated HVL and OCR were compared with measured values for body irradiation with 120 kVp. The Monte Carlo-calculated patient dose distribution was converted to the absorbed dose measured by a Farmer chamber with a (60)Co calibration factor at the center of a CT water phantom. The patient dose was evaluated from dose-volume histograms for the internal organs in the pelvis. The calculated Al HVL was in agreement within 0.3% with the measured value of 5.2 mm. The calculated dose profile in air matched the measured value within 5% in a range of 15 cm from the central axis. The mean doses for soft tissues were 23.5, 23.8, and 27.9 mGy for the prostate, rectum, and bladder, respectively, under exposure conditions of 120 kVp, 200 mA, a beam pitch of 0.938, and beam collimation of 32 mm. For bones of the femur and pelvis, the mean doses were 56.1 and 63.6 mGy, respectively. The doses for bone increased by up to 2-3 times that of soft tissue, corresponding to the ratio of their mass-energy absorption coefficients.

  10. Dose-Response Calculator for ArcGIS

    USGS Publications Warehouse

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  11. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  12. Hanford Dose Overview Program: standardized methods and data for Hanford environmental dose calculations. Rev. 1

    SciTech Connect

    McCormack, W.D.; Ramsdell, J.V.; Napier, B.A.

    1984-05-01

    This document serves as a guide to Hanford contractors for obtaining or performing Hanford-related environmental dose calculations. Because environmental dose estimation techniques are state-of-the-art and are continually evolving, the data and standard methods presented herein will require periodic revision. This document is scheduled to be updated annually, but actual changes to the program will be made more frequently if required. For this reason, PNL's Occupational and Environmental Protection Department should be contacted before any Hanford-related environmental dose calculation is performed. This revision of the Hanford Dose Overview Program Report primarily reflects changes made to the data and models used in calculating atmospheric dispersion of airborne effluents at Hanford. The modified data and models are described in detail. In addition, discussions of dose calculation methods and the review of calculation results have been expanded to provide more explicit guidance to the Hanford contractors. 19 references, 30 tables.

  13. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  14. [An empirical model for calculating electron dose distributions].

    PubMed

    Leistner, H; Schüler, W

    1990-01-01

    Dose-distributions in radiation fields are calculated for purpose of irradiation planning from measured depth dose and cross-distributions predominantly. Especially in electron fields the measuring effort is high to this, because these distributions have to be measured for all occurring irradiation parameters and in many different tissue depths. At the very least it can be shown for the 6...10 MeV electron radiation of the linear accelerator Neptun 10p that all required distributions can be calculated from each separately measured depth dose and cross-distribution. For this depth dose distribution and the measured border decrease of cross-distribution are tabulated and the abscissas are submitted to a linear transformation x' = k.x. In case of depth dose distribution the transformation factor k is dependent on electron energy only and in cross-distribution on tissue depth and source-surface-distance additionally. PMID:2356295

  15. Georgia fishery study: implications for dose calculations. Revision 1

    SciTech Connect

    Turcotte, M.D.S.

    1983-08-05

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.

  16. Neutron absorbed dose determination by calculations of recoil energy.

    PubMed

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  17. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  18. Quantification of Proton Dose Calculation Accuracy in the Lung

    SciTech Connect

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  19. Automatic computed tomography patient dose calculation using DICOM header metadata.

    PubMed

    Jahnen, A; Kohler, S; Hermen, J; Tack, D; Back, C

    2011-09-01

    The present work describes a method that calculates the patient dose values in computed tomography (CT) based on metadata contained in DICOM images in support of patient dose studies. The DICOM metadata is preprocessed to extract necessary calculation parameters. Vendor-specific DICOM header information is harmonized using vendor translation tables and unavailable DICOM tags can be completed with a graphical user interface. CT-Expo, an MS Excel application for calculating the radiation dose, is used to calculate the patient doses. All relevant data and calculation results are stored for further analysis in a relational database. Final results are compiled by utilizing data mining tools. This solution was successfully used for the 2009 CT dose study in Luxembourg. National diagnostic reference levels for standard examinations were calculated based on each of the countries' hospitals. The benefits using this new automatic system saved time as well as resources during the data acquisition and the evaluation when compared with earlier questionnaire-based surveys. PMID:21831868

  20. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions.

    PubMed

    Oinam, Arun S; Singh, Lakhwant

    2010-08-26

    The purpose of this comparative study was to test the accuracy of anisotropic analytical algorithm (AAA) and pencil beam convolution (PBC) algorithms of Eclipse treatment planning system (TPS) for dose calculations in the low- and high-dose buildup regions. AAA and PBC algorithms were used to create two intensity-modulated radiotherapy (IMRT) plans of the same optimal fluence generated from a clinically simulated oropharynx case in an in-house fabricated head and neck phantom. The TPS computed buildup doses were compared with the corresponding measured doses in the phantom using thermoluminescence dosimeters (TLD 100). Analysis of dose distribution calculated using PBC and AAA shows an increase in gamma value in the dose buildup region indicating large dose deviation. For the surface areas of 1, 50 and 100 cm2, PBC overestimates doses as compared to AAA calculated value in the range of 1.34%-3.62% at 0.6 cm depth, 1.74%-2.96% at 0.4 cm depth, and 1.96%-4.06% at 0.2 cm depth, respectively. In high-dose buildup region, AAA calculated doses were lower by an average of -7.56% (SD = 4.73%), while PBC was overestimated by 3.75% (SD = 5.70%) as compared to TLD measured doses at 0.2 cm depth. However, at 0.4 and 0.6 cm depth, PBC overestimated TLD measured doses by 5.84% (SD = 4.38%) and 2.40% (SD = 4.63%), respectively, while AAA underestimated the TLD measured doses by -0.82% (SD = 4.24%) and -1.10% (SD = 4.14%) at the same respective depth. In low-dose buildup region, both AAA and PBC overestimated the TLD measured doses at all depths except -2.05% (SD = 10.21%) by AAA at 0.2 cm depth. The differences between AAA and PBC at all depths were statistically significant (p < 0.05) in high-dose buildup region, whereas it is not statistically significant in low-dose buildup region. In conclusion, AAA calculated the dose more accurately than PBC in clinically important high-dose buildup region at 0.4 cm and 0.6 cm depths. The use of an orfit cast increases the dose buildup

  1. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  2. Macro Monte Carlo for dose calculation of proton beams

    NASA Astrophysics Data System (ADS)

    Fix, Michael K.; Frei, Daniel; Volken, Werner; Born, Ernst J.; Aebersold, Daniel M.; Manser, Peter

    2013-04-01

    Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons

  3. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  4. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  5. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy

    NASA Astrophysics Data System (ADS)

    Meier, G.; Besson, R.; Nanz, A.; Safai, S.; Lomax, A. J.

    2015-04-01

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.

  6. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy.

    PubMed

    Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J

    2015-04-01

    Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow. PMID:25779992

  7. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  8. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation

    SciTech Connect

    Russell, Kellie R.; Carlsson Tedgren, Aasa K.; Ahnesjoe, Anders

    2005-09-15

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical {sup 192}Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the

  9. Monte Carlo dose calculation in dental amalgam phantom.

    PubMed

    Aziz, Mohd Zahri Abdul; Yusoff, A L; Osman, N D; Abdullah, R; Rabaie, N A; Salikin, M S

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation.

  10. Benchmarking analytical calculations of proton doses in heterogeneous matter

    SciTech Connect

    Ciangaru, George; Polf, Jerimy C.; Bues, Martin; Smith, Alfred R.

    2005-12-15

    A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall

  11. Benchmarking analytical calculations of proton doses in heterogeneous matter.

    PubMed

    Ciangaru, George; Polf, Jerimy C; Bues, Martin; Smith, Alfred R

    2005-12-01

    A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall

  12. Analytical probabilistic proton dose calculation and range uncertainties

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  13. Tissue heterogeneity in IMRT dose calculation for lung cancer.

    PubMed

    Pasciuti, Katia; Iaccarino, Giuseppe; Strigari, Lidia; Malatesta, Tiziana; Benassi, Marcello; Di Nallo, Anna Maria; Mirri, Alessandra; Pinzi, Valentina; Landoni, Valeria

    2011-01-01

    The aim of this study was to evaluate the differences in accuracy of dose calculation between 3 commonly used algorithms, the Pencil Beam algorithm (PB), the Anisotropic Analytical Algorithm (AAA), and the Collapsed Cone Convolution Superposition (CCCS) for intensity-modulated radiation therapy (IMRT). The 2D dose distributions obtained with the 3 algorithms were compared on each CT slice pixel by pixel, using the MATLAB code (The MathWorks, Natick, MA) and the agreement was assessed with the γ function. The effect of the differences on dose-volume histograms (DVHs), tumor control, and normal tissue complication probability (TCP and NTCP) were also evaluated, and its significance was quantified by using a nonparametric test. In general PB generates regions of over-dosage both in the lung and in the tumor area. These differences are not always in DVH of the lung, although the Wilcoxon test indicated significant differences in 2 of 4 patients. Disagreement in the lung region was also found when the Γ analysis was performed. The effect on TCP is less important than for NTCP because of the slope of the curve at the level of the dose of interest. The effect of dose calculation inaccuracy is patient-dependent and strongly related to beam geometry and to the localization of the tumor. When multiple intensity-modulated beams are used, the effect of the presence of the heterogeneity on dose distribution may not always be easily predictable. PMID:20970989

  14. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    PubMed Central

    Khailov, A.M.; Ivannikov, A. I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. PMID:26347593

  15. An Efficient Method for Heavy Ion Dose Calculations

    SciTech Connect

    Dandini, Vincent J.; Prinja, Anil K.

    1997-06-01

    Heavy charged particles deposit much of their kinetic energy at very high rates in small volumes near the end of their range. This characteristic, coupled with the availability of modern particle accelerators, has sparked a revival of interest in the use of ions as a possible treatment tool for certain types of cancers. Collisions between projectile ions and atoms in the target medium can result in ion fragments that are different from the original projectile species. The energy deposition characteristics of these fragments differ from those of the projectile in a manner that allows them to travel beyond the range of the original particle. This can result in deposition of doses in healthy tissue beyond the tumor. The loss of projectiles due to the fragmentation process will also affect the dose deposited in the target tumor. An accurate dose calculation requires that these effects be taken into account. Monte Carlo calculations are expensive, time consuming, and can be limited in the number of ion species considered. Linear methods can yield high-order accuracy but can sometimes exhibit the undesirable characteristic of calculating negative fluxes. In order to bypass these difficulties, we have applied the recently developed exponential discontinuous (ED) finite- element method to a calculation of dose deposition by relativistic heavy ion projectiles and fragments. The ED method has been shown to yield strictly -- positive solutions for positive sources of neutral particles.

  16. Touch screen man machine interfere for emergency dose calculations

    SciTech Connect

    Woodard, K.; Abrams, M.

    1987-01-01

    Emergency dose calculation systems generally use a keyboard to provide the interface between the user and the computer. This interface is preferred by users who work daily with computers; however, for many plant personnel who are not continuously involved with computer operations, the use of a keyboard can be cumbersome and time consuming. This is particularly true when the user is under pressure during a drill or an actual emergency. Experience in many applications of Pickard, Lowe and Garrick's PLG's Meteorological Information and Dose Assessment System (MIDAS) has shown that user friendliness is a key ingredient toward achieving acceptance of computerized systems. Hardware to support to touch screen interface is now available and has been implemented in MIDAS. Recent experience has demonstrated that selection times for dose calculations are reduced, data entry errors have been minimized, and confusion over appropriate entries has been avoided due to the built-in logic. A 10-yr search for an acceptable keyboard replacement has ended.

  17. A simplified analytical random walk model for proton dose calculation

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.

  18. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  19. Dose Calculation Evolution for Internal Organ Irradiation in Humans

    SciTech Connect

    Jimenez V, Reina A.

    2007-10-26

    The International Commission of Radiation Units (ICRU) has established through the years, a discrimination system regarding the security levels on the prescription and administration of doses in radiation treatments (Radiotherapy, Brach therapy, Nuclear Medicine). The first level is concerned with the prescription and posterior assurance of dose administration to a point of interest (POI), commonly located at the geometrical center of the region to be treated. In this, the effects of radiation around that POI, is not a priority. The second level refers to the dose specifications in a particular plane inside the patient, mostly the middle plane of the lesion. The dose is calculated to all the structures in that plane regardless if they are tumor or healthy tissue. In this case, the dose is not represented by a point value, but by level curves called 'isodoses' as in a topographic map, so you can assure the level of doses to this particular plane, but it also leave with no information about how this values go thru adjacent planes. This is why the third level is referred to the volumetrical description of doses so these isodoses construct now a volume (named 'cloud') that give us better assurance about tissue irradiation around the volume of the lesion and its margin (sub clinical spread or microscopic illness). This work shows how this evolution has resulted, not only in healthy tissue protection improvement but in a rise of tumor control, quality of life, better treatment tolerance and minimum permanent secuelae.

  20. Internal dose conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities.

  1. PLUTONIUM/HIGH LEVEL VITRIFIED WASTE - DBE OFFSITE DOSE CALCULATION

    SciTech Connect

    S. O. Bader

    1999-09-20

    The purpose of this calculation is to provide a bounding dose consequence analysis of the immobilized plutonium (can-in-canister) waste form to be handled at the Monitored Geologic Repository (MGR) at Yucca Mountain. The current concept for the Plutonium Can-in-Canister waste form is provided in Attachment III. A typical design basis event (DBE) defines a scenario that generally includes an initiating event and the sequences of events that follow. This analysis will provide (1) radiological releases and dose consequences for a postulated, bounding DBE and (2) design-related assumptions on which the calculated dose consequences are based. This analysis is part of the safety design basis for the repository. Results will be used in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components (SSCs). The Quality Assurance (QA) program applies to this calculation. The work reported in this document is part of the analysis of MGR DBEs and is performed using AP-3.12Q, Calculations. The work done for this analysis was evaluated according to QAP-2-0, Control of Activities. This evaluation determined that such activities are subject to DOE/RW/0333PY Quality Assurance Requirements and Description (DOE 1998), requirements. This calculation is quality affecting because the results may be used to support analyses of repository SSCs per QAP-2-3, Classification of Permanent Items.

  2. Assessing the clinical impact of approximations in analytical dose calculations for proton therapy

    PubMed Central

    Schuemann, J.; Giantsoudi, D.; Grassberger, C.; Moteabbed, M.; Min, C.H.; Paganetti, H.

    2015-01-01

    Purpose To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods Dose distributions planned with ADC were compared to delivered dose distributions (as determined by Monte Carlo simulations). A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume-histogram analysis, a γ-index analysis and estimations of TCP. Results We find that ADC overestimates the target doses on average by 1–2% for all patients considered. The mean dose, D95, D50 and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3mm criteria. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior-rectum of prostate patients were less than 3%. Conclusion Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. In order to ensure full target coverage, advanced dose-calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required in order to avoid biases due to systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy to conventional radiotherapy. PMID:26025779

  3. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    SciTech Connect

    Schuemann, Jan Giantsoudi, Drosoula; Grassberger, Clemens; Moteabbed, Maryam; Min, Chul Hee; Paganetti, Harald

    2015-08-01

    Purpose: To assess the impact of approximations in current analytical dose calculation methods (ADCs) on tumor control probability (TCP) in proton therapy. Methods: Dose distributions planned with ADC were compared with delivered dose distributions as determined by Monte Carlo simulations. A total of 50 patients were investigated in this analysis with 10 patients per site for 5 treatment sites (head and neck, lung, breast, prostate, liver). Differences were evaluated using dosimetric indices based on a dose-volume histogram analysis, a γ-index analysis, and estimations of TCP. Results: We found that ADC overestimated the target doses on average by 1% to 2% for all patients considered. The mean dose, D95, D50, and D02 (the dose value covering 95%, 50% and 2% of the target volume, respectively) were predicted within 5% of the delivered dose. The γ-index passing rate for target volumes was above 96% for a 3%/3 mm criterion. Differences in TCP were up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head and neck, and lung patients, respectively. Differences in normal tissue complication probabilities for bladder and anterior rectum of prostate patients were less than 3%. Conclusion: Our results indicate that current dose calculation algorithms lead to underdosage of the target by as much as 5%, resulting in differences in TCP of up to 11%. To ensure full target coverage, advanced dose calculation methods like Monte Carlo simulations may be necessary in proton therapy. Monte Carlo simulations may also be required to avoid biases resulting from systematic discrepancies in calculated dose distributions for clinical trials comparing proton therapy with conventional radiation therapy.

  4. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  5. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  6. A convolution-superposition dose calculation engine for GPUs

    SciTech Connect

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  7. Monte Carlo dose calculations for phantoms with hip prostheses

    NASA Astrophysics Data System (ADS)

    Bazalova, M.; Coolens, C.; Cury, F.; Childs, P.; Beaulieu, L.; Verhaegen, F.

    2008-02-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses.

  8. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  9. Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.

    SciTech Connect

    CHIBANI, OMAR

    1999-05-12

    Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twice the source particle range.

  10. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    SciTech Connect

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade.

  11. Off-center ratios for three-dimensional dose calculations

    SciTech Connect

    Chui, C.S.; Mohan, R.

    1986-05-01

    A new method is proposed for computing the off-center ratios (OCR's) in three-dimensional dose calculations. For an open field, the OCR at a point is computed as the product of the primary OCR (POCR) and the boundary factors (BF's). The POCR describes the beam profile for an infinite field, that is, without the effect of the collimators. It is defined as the ratio of the dose at a point off the central ray to the dose at the point on the central ray at the same depth for an infinite field. The POCR is a function of radial distance from the beam central ray and depth. The BF describes the shape of the beam in the neighborhood of the field boundary defined by the collimators. It is defined as the ratio of the OCR at a point for a finite field to the OCR at the same point for an infinite field. The BF is a function of distance from the field boundary, depth, and field size. For a wedged field, we assume that the boundary factors remain the same as for open fields but the POCR's are altered. The changes in beam profiles are described by a factor called the wedge profile factor (WPF), defined as the ratio of the dose at a point for the largest wedged field to the dose at the same point for an open field of the same field size. The WPF is a function of lateral distance from the beam central plane and depth. Calculated OCR's using this new method are in agreement with the measured data along both the transverse and the diagonal directions of the field.

  12. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    SciTech Connect

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-05-15

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm{sup 2} field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using {gamma} and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning

  13. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    PubMed Central

    Hsu, Shu-Hui; Moran, Jean M.; Chen, Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5×5, 10×10, 20×20, and 30×30 cm2 field sizes at 0°, 45°, and 70° incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution∕superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%∕1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning

  14. Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms

    SciTech Connect

    Vinogradskiy, Yevgeniy Y.; Balter, Peter; Followill, David S.; Alvarez, Paola E.; White, R. Allen; Starkschall, George

    2009-11-15

    Purpose: Four-dimensional (4D) dose calculation algorithms, which explicitly incorporate respiratory motion in the calculation of doses, have the potential to improve the accuracy of dose calculations in thoracic treatment planning; however, they generally require greater computing power and resources than currently used for three-dimensional (3D) dose calculations. The purpose of this work was to quantify the increase in accuracy of 4D dose calculations versus 3D dose calculations. Methods: The accuracy of each dose calculation algorithm was assessed using measurements made with two phantoms. Specifically, the authors used a rigid moving anthropomorphic thoracic phantom and an anthropomorphic thoracic phantom with a deformable lung insert. To incorporate a clinically relevant range of scenarios, they programed the phantoms to move and deform with two motion patterns: A sinusoidal motion pattern and an irregular motion pattern that was extracted from an actual patient's breathing profile. For each combination of phantom and motion pattern, three plans were created: A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan. Doses were calculated using 4D dose calculation methods as well as conventional 3D dose calculation methods. The rigid moving and deforming phantoms were irradiated according to the three treatment plans and doses were measured using thermoluminescent dosimeters (TLDs) and radiochromic film. The accuracy of each dose calculation algorithm was assessed using measured-to-calculated TLD doses and a {gamma} analysis. Results: No significant differences were observed between the measured-to-calculated TLD ratios among 4D and 3D dose calculations. The {gamma} results revealed that 4D dose calculations had significantly greater percentage of pixels passing the 5%/3 mm criteria than 3D dose calculations. Conclusions: These results indicate no significant differences in the accuracy between the 4D and the 3D dose

  15. Calculating lens dose and surface dose rates from 90Sr ophthalmic applicators using Monte Carlo modeling.

    PubMed

    Gleckler, M; Valentine, J D; Silberstein, E B

    1998-01-01

    Using a 90Sr applicator for brachytherapy for the reduction of recurrence rates after pterygium excisions has been an effective therapeutic procedure. Accurate knowledge of the dose being applied to the affected area on the sclera has been lacking, and for decades inaccurate estimates for lens dose have thus been made. Small errors in the assumptions which are required to make these estimates lead to dose rates changing exponentially because of the attenuation of beta particles. Monte Carlo simulations have been used to evaluate the assumptions that are now being used for the calculation of the surface dose rate and the corresponding determination of lens dose. For an ideal 90Sr applicator, results from this study indicate dose rates to the most radiosensitive areas of the lens ranging from 8.8 to 15.5 cGy/s. This range is based on different eye dimensions that ultimately corresponds to a range in distance between the applicator surface and the germinative epithelium of the lens of 2-3 mm. Furthermore, the conventional 200 cGy threshold for whole lens cataractogenesis is questioned for predicting complications from scleral brachytherapy. The dose to the germinative epithelium should be used for studying radiocataractogenesis.

  16. Source term calculations for assessing radiation dose to equipment

    SciTech Connect

    Denning, R.S.; Freeman-Kelly, R.; Cybulskis, P.; Curtis, L.A.

    1989-07-01

    This study examines results of analyses performed with the Source Term Code Package to develop updated source terms using NUREG-0956 methods. The updated source terms are to be used to assess the adequacy of current regulatory source terms used as the basis for equipment qualification. Time-dependent locational distributions of radionuclides within a containment following a severe accident have been developed. The Surry reactor has been selected in this study as representative of PWR containment designs. Similarly, the Peach Bottom reactor has been used to examine radionuclide distributions in boiling water reactors. The time-dependent inventory of each key radionuclide is provided in terms of its activity in curies. The data are to be used by Sandia National Laboratories to perform shielding analyses to estimate radiation dose to equipment in each containment design. See NUREG/CR-5175, Beta and Gamma Dose Calculations for PWR and BWR Containments.'' 6 refs., 11 tabs.

  17. New calculations of neutron kerma coefficients and dose equivalent.

    PubMed

    Liu, Zhenzhou; Chen, Jinxiang

    2008-06-01

    For neutron energies ranging from 1 keV to 20 MeV, the kerma coefficients for elements H, C, N, O, light water, and ICRU tissue were deduced respectively from microscopic cross sections and Monte Carlo simulation (MCNP code). The results are consistent within admitted uncertainties with values evaluated by an international group (Chadwick et al 1999 Med. Phys. 26 974-91). The ambient dose equivalent generated in the ISO-recommended neutron field for an Am-Be neutron source (ISO 8529-1: 2001(E)) was obtained from the kerma coefficients and Monte Carlo calculation. In addition, it was calculated directly by multiplying the neutron fluence by the fluence-to-ambient dose conversion coefficients recommended by ICRP (ICRP 1996 ICRP Publication 74 (Oxford: Pergamon)). The two results agree well with each other. The main feature of this work is our Monte Carlo simulation design and the treatments differing from the work of others in the calculation of neutron energy transfer in non-elastic processes. PMID:18495982

  18. Monte Carlo Code System for Electron (Positron) Dose Kernel Calculations.

    1999-05-12

    Version 00 KERNEL performs dose kernel calculations for an electron (positron) isotropic point source in an infinite homogeneous medium. First, the auxiliary code PRELIM is used to prepare cross section data for the considered medium. Then the KERNEL code simulates the transport of electrons and bremsstrahlung photons through the medium until all particles reach their cutoff energies. The deposited energy is scored in concentric spherical shells at a radial distance ranging from zero to twicemore » the source particle range.« less

  19. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Calculation of Annual Committed Effective Dose I. Equivalent Dose The calculation of the committed effective dose (CED) begins with the determination of the equivalent dose, HT, to a tissue or organ, T, listed in... is the radiation weighting factor which is given in Table B.1 below. The unit of equivalent dose...

  20. PFP vertical calciner shield wall dose rate calculations using MCNP

    SciTech Connect

    Wittekind, W.D.

    1997-08-21

    This report yields a neutron shield wall design for a full time occupancy dose rate of 0.25 mrem/h. ORIGEN2 generated gamma ray spectrum and neutron intensity for plutonium. MCNP modeled the calciner glovebox and room for reflection of neutrons off concrete walls and ceiling. Neutron calculations used MCNP in mode n, p to include neutron capture gammas. Photon calculations used MCNP in mode p for gamma rays. Neutron shield with lower 137.16 cm (4.5 feet) of 12.7 cm (5 inch) thick Lucite{reg_sign} and 0.3175 cm (0.125 inch) stainless steel on both sides, and upper 76.2 cm (2.5 feet) of 10.16 cm (4 inch) thick Lucite{reg_sign} and 1.905 cm (0.75 inch) thick glass on each side gave a total weighted dose rate of 0.23 mrem/h, fulfilling the design goal. Lucite{reg_sign} is considered to be equivalent to Plexiglas{reg_sign} since both are methylmethacrylate polymers.

  1. Assessing the effect of electron density in photon dose calculations

    SciTech Connect

    Seco, J.; Evans, P. M.

    2006-02-15

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  2. Investigation of Nonuniform Dose Voxel Geometry in Monte Carlo Calculations.

    PubMed

    Yuan, Jiankui; Chen, Quan; Brindle, James; Zheng, Yiran; Lo, Simon; Sohn, Jason; Wessels, Barry

    2015-08-01

    The purpose of this work is to investigate the efficacy of using multi-resolution nonuniform dose voxel geometry in Monte Carlo (MC) simulations. An in-house MC code based on the dose planning method MC code was developed in C++ to accommodate the nonuniform dose voxel geometry package since general purpose MC codes use their own coupled geometry packages. We devised the package in a manner that the entire calculation volume was first divided into a coarse mesh and then the coarse mesh was subdivided into nonuniform voxels with variable voxel sizes based on density difference. We name this approach as multi-resolution subdivision (MRS). It generates larger voxels in small density gradient regions and smaller voxels in large density gradient regions. To take into account the large dose gradients due to the beam penumbra, the nonuniform voxels can be further split using ray tracing starting from the beam edges. The accuracy of the implementation of the algorithm was verified by comparing with the data published by Rogers and Mohan. The discrepancy was found to be 1% to 2%, with a maximum of 3% at the interfaces. Two clinical cases were used to investigate the efficacy of nonuniform voxel geometry in the MC code. Applying our MRS approach, we started with the initial voxel size of 5 × 5 × 3 mm(3), which was further divided into smaller voxels. The smallest voxel size was 1.25 × 1.25 × 3 mm(3). We found that the simulation time per history for the nonuniform voxels is about 30% to 40% faster than the uniform fine voxels (1.25 × 1.25 × 3 mm(3)) while maintaining similar accuracy.

  3. Calculation of the absorbed dose and dose equivalent induced by medium energy neutrons and protons and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Bishop, B. L.

    1972-01-01

    Monte Carlo calculations have been carried out to determine the absorbed dose and dose equivalent for 592-MeV protons incident on a cylindrical phantom and for neutrons from 580-MeV proton-Be collisions incident on a semi-infinite phantom. For both configurations, the calculated depth dependence of the absorbed dose is in good agreement with experimental data.

  4. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    SciTech Connect

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested.

  5. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine

    SciTech Connect

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6 MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, − 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3 mm criteria. The mean and standard deviation of pixels passing

  6. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  7. Monte Carlo calculation of helical tomotherapy dose delivery

    SciTech Connect

    Zhao Yingli; Mackenzie, M.; Kirkby, C.; Fallone, B. G.

    2008-08-15

    Helical tomotherapy delivers intensity modulated radiation therapy using a binary multileaf collimator (MLC) to modulate a fan beam of radiation. This delivery occurs while the linac gantry and treatment couch are both in constant motion, so the beam describes, from a patient/phantom perspective, a spiral or helix of dose. The planning system models this continuous delivery as a large number (51) of discrete gantry positions per rotation, and given the small jaw/fan width setting typically used (1 or 2.5 cm) and the number of overlapping rotations used to cover the target (pitch often <0.5), the treatment planning system (TPS) potentially employs a very large number of static beam directions and leaf opening configurations to model the modulated fields. All dose calculations performed by the system employ a convolution/superposition model. In this work the authors perform a full Monte Carlo (MC) dose calculation of tomotherapy deliveries to phantom computed tomography (CT) data sets to verify the TPS calculations. All MC calculations are performed with the EGSnrc-based MC simulation codes, BEAMnrc and DOSXYZnrc. Simulations are performed by taking the sinogram (leaf opening versus time) of the treatment plan and decomposing it into 51 different projections per rotation, as does the TPS, each of which is segmented further into multiple MLC opening configurations, each with different weights that correspond to leaf opening times. Then the projection is simulated by the summing of all of the opening configurations, and the overall rotational treatment is simulated by the summing of all of the projection simulations. Commissioning of the source model was verified by comparing measured and simulated values for the percent depth dose and beam profiles shapes for various jaw settings. The accuracy of the MLC leaf width and tongue and groove spacing were verified by comparing measured and simulated values for the MLC leakage and a picket fence pattern. The validated source

  8. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    SciTech Connect

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs.

  9. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  10. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr. . Dept. of Nuclear Engineering)

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each use, preliminary results are very encouraging and plans for further research are detailed within this document. 22 refs., 13 figs., 1 tab.

  11. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  12. The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki; Yonai, Shunsuke; Ishizaki, Azusa

    2008-02-15

    A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single 150-MeV proton pencil beam of 30 deg. incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.

  13. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear... monitoring and calculating occupational radiation doses. On December 4, 2007 (72 FR 68043), the NRC...

  14. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    SciTech Connect

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-02-15

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI {<=} 0.4), EVAL (0.4 < GI > 0.6), and FAIL (GI {>=} 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm{sup 3}). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 {+-} 0.08. Linac stability was high with an average GI of 0.28 {+-} 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  15. Monte Carlo dose calculations in the treatment of a pelvis with implant and comparison with pencil-beam calculations

    SciTech Connect

    Laub, Wolfram U.; Nuesslin, Fridtjof

    2003-12-31

    In the present paper, dose distribution calculated with the Monte Carlo code EGS4 and with a pencil-beam algorithm are compared for the treatment of a pelvis with an implant. Overestimations of dose values inside the target volume by the pencil-beam algorithm of up to 10% were found, which are attributed to the underestimation of the absorption of photons by the implant. The differences in dose distributions are also expressed by comparing the tumor control probability (TCP) of the Monte Carlo dose calculations with the TCP of the pencil-beam calculations. A TCP reduction of order of 30% was found.

  16. Clinical implementation of the Peregrine Monte Carlo dose calculations system for photon beam therapy

    SciTech Connect

    Albright, N; Bergstrom, P M; Daly, T P; Descalle, M; Garrett, D; House, R K; Knapp, D K; May, S; Patterson, R W; Siantar, C L; Verhey, L; Walling, R S; Welczorek, D

    1999-07-01

    PEREGRINE is a 3D Monte Carlo dose calculation system designed to serve as a dose calculation engine for clinical radiation therapy treatment planning systems. Taking advantage of recent advances in low-cost computer hardware, modern multiprocessor architectures and optimized Monte Carlo transport algorithms, PEREGRINE performs mm-resolution Monte Carlo calculations in times that are reasonable for clinical use. PEREGRINE has been developed to simulate radiation therapy for several source types, including photons, electrons, neutrons and protons, for both teletherapy and brachytherapy. However the work described in this paper is limited to linear accelerator-based megavoltage photon therapy. Here we assess the accuracy, reliability, and added value of 3D Monte Carlo transport for photon therapy treatment planning. Comparisons with clinical measurements in homogeneous and heterogeneous phantoms demonstrate PEREGRINE's accuracy. Studies with variable tissue composition demonstrate the importance of material assignment on the overall dose distribution. Detailed analysis of Monte Carlo results provides new information for radiation research by expanding the set of observables.

  17. Considerations for applying VARSKIN mod 2 to skin dose calculations averaged over 10 cm2.

    PubMed

    Durham, James S

    2004-02-01

    VARSKIN Mod 2 is a DOS-based computer program that calculates the dose to skin from beta and gamma contamination either directly on skin or on material in contact with skin. The default area for calculating the dose is 1 cm2. Recently, the U.S. Nuclear Regulatory Commission issued new guidelines for calculating shallow dose equivalent from skin contamination that requires the dose be averaged over 10 cm2. VARSKIN Mod 2 was not filly designed to calculate beta or gamma dose estimates averaged over 10 cm2, even though the program allows the user to calculate doses averaged over 10 cm2. This article explains why VARSKIN Mod 2 overestimates the beta dose when applied to 10 cm2 areas, describes a manual method for correcting the overestimate, and explains how to perform reasonable gamma dose calculations averaged over 10 cm2. The article also describes upgrades underway in Varskin 3. PMID:14744063

  18. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    SciTech Connect

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  19. TH-A-19A-03: Impact of Proton Dose Calculation Method On Delivered Dose to Lung Tumors: Experiments in Thorax Phantom and Planning Study in Patient Cohort

    SciTech Connect

    Grassberger, C; Daartz, J; Dowdell, S; Ruggieri, T; Sharp, G; Paganetti, H

    2014-06-15

    Purpose: Evaluate Monte Carlo (MC) dose calculation and the prediction of the treatment planning system (TPS) in a lung phantom and compare them in a cohort of 20 lung patients treated with protons. Methods: A 2-dimensional array of ionization chambers was used to evaluate the dose across the target in a lung phantom. 20 lung cancer patients on clinical trials were re-simulated using a validated Monte Carlo toolkit (TOPAS) and compared to the TPS. Results: MC increases dose calculation accuracy in lung compared to the clinical TPS significantly and predicts the dose to the target in the phantom within ±2%: the average difference between measured and predicted dose in a plane through the center of the target is 5.6% for the TPS and 1.6% for MC. MC recalculations in patients show a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. The lower dose correlates significantly with aperture size and the distance of the tumor to the chest wall (Spearman's p=0.0002/0.004). For large tumors MC also predicts consistently higher V{sub 5} and V{sub 10} to the normal lung, due to a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target can show large deviations, though this effect is very patient-specific. Conclusion: Advanced dose calculation techniques, such as MC, would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. This would increase the accuracy of the relationships between dose and effect, concerning tumor control as well as normal tissue toxicity. As the role of proton therapy in the treatment of lung cancer continues to be evaluated in clinical trials, this is of ever-increasing importance. This work was supported by National Cancer Institute Grant R01CA111590.

  20. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  1. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  2. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  3. Hanford Site Annual Report Radiological Dose Calculation Upgrade Evaluation

    SciTech Connect

    Snyder, Sandra F.

    2010-02-28

    Operations at the Hanford Site, Richland, Washington, result in the release of radioactive materials to offsite residents. Site authorities are required to estimate the dose to the maximally exposed offsite resident. Due to the very low levels of exposure at the residence, computer models, rather than environmental samples, are used to estimate exposure, intake, and dose. A DOS-based model has been used in the past (GENII version 1.485). GENII v1.485 has been updated to a Windows®-based software (GENII version 2.08). Use of the updated software will facilitate future dose evaluations, but must be demonstrated to provide results comparable to those of GENII v1.485. This report describes the GENII v1.485 and GENII v2.08 dose exposure, intake, and dose estimates for the maximally exposed offsite resident reported for calendar year 2008. The GENII v2.08 results reflect updates to implemented algorithms. No two environmental models produce the same results, as was again demonstrated in this report. The aggregated dose results from 2008 Hanford Site airborne and surface water exposure scenarios provide comparable dose results. Therefore, the GENII v2.08 software is recommended for future offsite resident dose evaluations.

  4. Analysis of offsite dose calculation methodology for a nuclear power reactor

    SciTech Connect

    Moser, D.M.

    1995-12-31

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected.

  5. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    SciTech Connect

    Cowley, W.L.

    1996-04-25

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

  6. Three-Dimensional Dose Calculation for Total Body Irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Akira

    Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .

  7. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    SciTech Connect

    Zacarias, Albert S.; Brown, Mellonie F. Mills, Michael D.

    2010-04-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  8. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.

    PubMed

    Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

    2006-01-01

    In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack.

  9. Radiation doses to insertion devices at the advanced photon source

    SciTech Connect

    Moog, E. R.; Den Hartog, P. K.; Semones, E. J.; Job, P. K.

    1997-07-01

    Dose measurements made on and around the insertion devices (IDs) at the Advanced Photon Source are reported. Attempts are made to compare these dose rates to dose rates that have been reported to cause radiation-induced demagnetization, but comparisons are complicated by such factors as the particular magnet material and the techniques used in its manufacture, the spectrum and type of radiation, and the demagnetizing field seen by the magnet. The spectrum of radiation at the IDs has been measured and found to include a large high-energy (7 GeV) component, at least during some runs. Lead shielding installed immediately upstream of the IDs has been found to decrease the dose to the upstream ends of the IDs. It has almost no effect on the dose to the downstream ends of the IDs, however, since much of the radiation travels through the ID vacuum chamber and cannot be readily shielded. Opening the gaps of the IDs during injection and at other times also helps decrease the radiation exposure.

  10. Radiation doses to insertion devices at the advanced photon source

    SciTech Connect

    Moog, E.R.; Den Hartog, P.K.; Semones, E.J.; Job, P.K.

    1997-07-01

    Dose measurements made on and around the insertion devices (IDs) at the Advanced Photon Source are reported. Attempts are made to compare these dose rates to dose rates that have been reported to cause radiation-induced demagnetization, but comparisons are complicated by such factors as the particular magnet material and the techniques used in its manufacture, the spectrum and type of radiation, and the demagnetizing field seen by the magnet. The spectrum of radiation at the IDs has been measured and found to include a large high-energy (7 GeV) component, at least during some runs. Lead shielding installed immediately upstream of the IDs has been found to decrease the dose to the upstream ends of the IDs. It has almost no effect on the dose to the downstream ends of the IDs, however, since much of the radiation travels through the ID vacuum chamber and cannot be readily shielded. Opening the gaps of the IDs during injection and at other times also helps decrease the radiation exposure. {copyright} {ital 1997 American Institute of Physics.}

  11. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    SciTech Connect

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  12. Determination of the spatial resolution required for the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 007

    SciTech Connect

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 007) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping calculation, of iodine in cow`s milk; the third scoping calculation, which added additional pathways; the fifth calculation, which addressed the uncertainty of the dose estimates at a point; and the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain. A projection of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from-Feeding Regime 1 as described in scoping calculation 001.

  13. Determination of radionuclides and pathways contributing to dose in 1945. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 003

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 003) examined the contributions of numerous radionuclides to dose via environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk (calculation 001). Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in Calculation 001.

  14. GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation

    PubMed Central

    Zhou, Bo; Yu, Cedric X.; Chen, Danny Z.; Hu, X. Sharon

    2010-01-01

    Purpose: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution∕superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution∕superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Methods: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors’ GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. Results: A speedup in the range of 6.7–11.4× is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors’ GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. Conclusions: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article. PMID:21158271

  15. Calculates External and Inhalation Doses from Acute Radionuclide Releases on the Hanford Site.

    1984-03-02

    HADOC (Hanford Acute Dose Calculations) calculates external and inhalation doses resulting from postulated accidental radionuclide releases on the Hanford site. It generates doses to an individual at a specified location and to the population in the region near the Hanford site for specified organs. Doses reported include the maximally exposed individual's dose (by organ and exposure mode) and the total population dose (by organ and exposure mode) in the sector having the highest population exposuremore » factor. The first year and fifty-year dose commitments are reported. Optional reports giving the fractional contribution to total dose by radionuclide for each organ and dose commitment period for a maximally exposed individual and the population may be printed.« less

  16. Calculation of Radiation Doses from Uranium Recovery Operations.

    1980-12-08

    Version: 00 MILDOS estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This is a multi-purpose code system, within the range of its proper application, and can be used to evaluate population doses formore » NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. The MILDOS package includes models for both point sources (stacks, vents) and area sources (ore pads, tailings areas). Gaseous releases are limited to consideration of 222Rn plus ingrowth of daughters. Exposure pathways of concern are assumed to be inhalation of airborne radioactive material, ingestion of vegetables, meat, and milk contaminated via deposition, and external exposure to radiation emitted by airborne activity and activity deposited on ground surfaces. Liquid exposure pathways are not treated by MILDOS.« less

  17. Recommended environmental dose calculation methods and Hanford-specific parameters

    SciTech Connect

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. ); Davis, J.S. )

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  18. Estimation of Nuclear Reaction Effects in Proton-Tissue-Dose Calculations.

    1983-01-14

    Version 00 REPC reviews calculational methods for the estimation of dose from external proton exposure of arbitrary convex bodies and presents the necessary information for the estimation of dose in soft tissue. The effects of nuclear reactions, especially in relation to the dose equivalent, are retained. REPC subroutines can be used to convert existing computer programs which neglect nuclear reaction effects to include them.

  19. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams

    SciTech Connect

    Vandervoort, Eric J. Cygler, Joanna E.; Tchistiakova, Ekaterina; La Russa, Daniel J.

    2014-02-15

    Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  20. RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT

    SciTech Connect

    D. Musat

    2005-03-07

    This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

  1. Calculating integral dose using data exported from a commercial record and verify system.

    PubMed

    Fox, C; Hardcastle, N; Lim, A; Khor, R

    2015-06-01

    Integral dose has been useful in investigations into the incidence of second primary malignancies in radiotherapy patients. This note outlines an approach to calculation of integral dose for a group of prostate patients using only data exported from a commercial record and verify system. Even though it was necessary to make some assumptions about patient anatomy, comparison with integral dose calculated from data exported from the planning system showed good agreement. PMID:25869674

  2. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    SciTech Connect

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-12-07

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  3. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    NASA Astrophysics Data System (ADS)

    De la Cruz, O. O. Galván; Lárraga-Gutiérrez, J. M.; Moreno-Jiménez, S.; Célis-López, M. A.

    2010-12-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  4. Determination of the temporal resolution required for the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 008

    SciTech Connect

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the radiation doses that may have-been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 008) examined the potential for changes in the uncertainty distributions of potential doses from releases in the year 1945 as a function of temporal resolution of the intermediate data storage. This study builds on the work initiated in the fifth scoping calculation, which addressed the uncertainty of the dose estimates at a point; the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain; and the seventh, which evaluated the spatial scales across the domain. A projection of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and ingestion of cow`s milk.

  5. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy.

    PubMed

    Whelan, Brendan; Kumar, Shivani; Dowling, Jason; Begg, Jarrad; Lambert, Jonathan; Lim, Karen; Vinod, Shalini K; Greer, Peter B; Holloway, Lois

    2015-12-01

    To quantify the dose calculation error and resulting optimization uncertainty caused by performing inverse treatment planning on inaccurate electron density data (pseudo-CT) as needed for adaptive radiotherapy and Magnetic Resonance Imaging (MRI) based treatment planning. Planning Computer Tomography (CT) data from 10 cervix cancer patients was used to generate 4 pseudo-CT data sets. Each pseudo-CT was created based on an available method of assigning electron density to an anatomic image. An inversely modulated radiotherapy (IMRT) plan was developed on each planning CT. The dose calculation error caused by each pseudo-CT data set was quantified by comparing the dose calculated each pseudo-CT data set with that calculated on the original planning CT for the same IMRT plan. The optimization uncertainty introduced by the dose calculation error was quantified by re-optimizing the same optimization parameters on each pseudo-CT data set and comparing against the original planning CT. Dose differences were quantified by assessing the Equivalent Uniform Dose (EUD) for targets and relevant organs at risk. Across all pseudo-CT data sets and all organs, the absolute mean dose calculation error was 0.2 Gy, and was within 2 % of the prescription dose in 98.5 % of cases. Then absolute mean optimisation error was 0.3 Gy EUD, indicating that that inverse optimisation is impacted by the dose calculation error. However, the additional uncertainty introduced to plan optimisation is small compared the sources of variation which already exist. Use of inaccurate electron density data for inverse treatment planning results in a dose calculation error, which in turn introduces additional uncertainty into the plan optimization process. In this study, we showed that both of these effects are clinically acceptable for cervix cancer patients using four different pseudo-CT data sets. Dose calculation and inverse optimization on pseudo-CT is feasible for this patient cohort.

  6. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran

    PubMed Central

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  7. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    PubMed

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. PMID:20045343

  8. Calculation of Dose Deposition in Nanovolumes and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2010-01-01

    Monte-Carlo track structure simulations can accurately simulate experimental data: a) Frequency of target hits. b) Dose per event. c) Dose per ion. d) Radial dose. The dose is uniform in micrometers sized voxels; at the nanometer scale, the difference in energy deposition between high and low-LET radiations appears. The calculated 3D distribution of dose voxels, combined with chromosomes simulated by random walk is very similar to the distribution of DSB observed with gamma-H2AX experiments. This is further evidenced by applying a visualization threshold on dose.

  9. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    effective dose rate measurements and a thermal neutron monitor to characterize Single Event Effects (SEEs) in avionics. In this presentation we describe recent ARMAS and USEWX advances that will ultimately provide operational users with real-time dose and dose rate data for human tissue and avionics exposure risk mitigation.

  10. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  11. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  12. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    PubMed

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT. PMID:23782779

  13. [Amikacin pharmacokinetics in adults: a variability that question the dose calculation based on weight].

    PubMed

    Bourguignon, Laurent; Goutelle, Sylvain; Gérard, Cécile; Guillermet, Anne; Burdin de Saint Martin, Julie; Maire, Pascal; Ducher, Michel

    2009-01-01

    The use of amikacin is difficult because of its toxicity and its pharmacokinetic variability. This variability is almost ignored in adult standard dosage regimens since only the weight is used in the dose calculation. Our objective is to test if the pharmacokinetic of amikacin can be regarded as homogenous, and if the method for calculating the dose according to patients' weight is appropriate. From a cohort of 580 patients, five groups of patients were created by statistical data partitioning. A population pharmacokinetic analysis was performed in each group. The adult population is not homogeneous in term of pharmacokinetics. The doses required to achieve a maximum concentration of 60 mg/L are strongly different (585 to 1507 mg) between groups. The exclusive use of the weight to calculate the dose of amikacine appears inappropriate for 80% of the patients, showing the limits of the formulae for calculating doses of aminoglycosides.

  14. CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.

    PubMed

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong

    2016-09-01

    Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. PMID:27127208

  15. Numerical calculation of relative dose rates from spherical 106Ru beta sources used in ophthalmic brachytherapy

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.

  16. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations dose enhancement was small in comparison to the (252)Cf fast neutron dose.

  17. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  18. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions.

    PubMed

    Ojala, Jarkko J; Kapanen, Mika K; Hyödynmaa, Simo J; Wigren, Tuija K; Pitkänen, Maunu A

    2014-01-01

    The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms--pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB)--implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC-calculated dose distributions were compared to corresponding AXB-calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose-volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3mm and 2%/2 mm were applied. The AXB-calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm

  19. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131

    SciTech Connect

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows.

  20. (Considerations of beta and electron transport in internal dose calculations): (Progress report)

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This task involved use of the code INDOSE-EGS for calculation of S-values for radionuclides of importance in nuclear medicine. This task was proposed to proceed in a logical fashion as outlined below: identification of radionuclides for which more refined dose estimates are required; identification of the target and source combinations for which the previous assumption is clearly invalid; production of a base of data for monoenergetic radiations with sufficient accuracy to be used in dose calculations; calculation of revised dose estimates, i.e., S-values. The extension of this code to include head and neck models, gall bladder models, and kidney models are discussed. 2 refs.

  1. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  2. Independent calculation of dose from a helical TomoTherapy unit.

    PubMed

    Gibbons, John P; Smith, Koren; Cheek, Dennis; Rosen, Isaac

    2009-02-05

    A new calculation algorithm has been developed for independently verifying doses calculated by the TomoTherapy Hi.Art treatment planning system (TPS). The algorithm is designed to confirm the dose to a point in a high dose, low dose-gradient region. Patient data used by the algorithm include the radiological depth to the point for each projection angle and the treatment sinogram file controlling the leaf opening time for each projection. The algorithm uses common dosimetric functions [tissue phantom ratio (TPR) and output factor (Scp)] for the central axis combined with lateral and longitudinal beam profile data to quantify the off-axis dose dependence. Machine data for the dosimetric functions were measured on the Hi.Art machine and simulated using the TPS. Point dose calculations were made for several test phantoms and for 97 patient treatment plans using the simulated machine data. Comparisons with TPS-predicted point doses for the phantom treatment plans demonstrated agreement within 2% for both on-axis and off-axis planning target volumes (PTVs). Comparisons with TPS-predicted point doses for the patient treatment plans also showed good agreement. For calculations at sites other than lung and superficial PTVs, agreement between the calculations was within 2% for 94% of the patient calculations (64 of 68). Calculations within lung and superficial PTVs overestimated the dose by an average of 3.1% (sigma=2.4%) and 3.2% (sigma=2.2%), respectively. Systematic errors within lung are probably due to the weakness of the algorithm in correcting for missing tissue and/or tissue density heterogeneities. Errors encountered within superficial PTVs probably result from the algorithm overestimating the scatter dose within the patient. Our results demonstrate that for the majority of cases, the algorithm could be used without further refinement to independently verify patient treatment plans.

  3. A centralized dose calculation system for radiation therapy.

    PubMed

    Xiao, Y; Galvin, J

    2000-05-01

    Centralization of treatment planning in a radiation therapy department is a realistic strategy to achieve an integrated and quality-controlled planning system, especially for institutions with numerous affiliations. The rapid evolution of computer hardware and software technology makes this a distinct possibility. However, the procedure of three-dimensional treatment planning involves a number of steps, such as: (1) input of patient computed tomography (CT) images and contour information; (2) interactions with local devices such as a film digitizer; and (3) output of beam information to be integrated with the record and verify the system. A full-fledged realization of the web-based centralized three-dimensional treatment planning system will require an extensive commercial development effort. We have developed and incorporated a web-based Timer/Monitor Unit (MU) program as a first step towards the full implementation of a centralized treatment planning system. The software application was developed in JAVA language. It uses the internet server and client technology. With one server that can handle multiple threads, it is a simple process to access the application anywhere on the network with an internet browser. Both the essential data needed for the calculation and the results are stored on the server, which centralizes the maintenance of the software and the storage of patient information.

  4. Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator

    SciTech Connect

    Yan Xiangsheng; Poon, Emily; Reniers, Brigitte; Vuong, Te; Verhaegen, Frank

    2008-11-15

    Colorectal cancer patients are treated at our hospital with {sup 192}Ir high dose rate (HDR) brachytherapy using an applicator that allows the introduction of a lead or tungsten shielding rod to reduce the dose to healthy tissue. The clinical dose planning calculations are, however, currently performed without taking the shielding into account. To study the dose distributions in shielded cases, three techniques were employed. The first technique was to adapt a shielding algorithm which is part of the Nucletron PLATO HDR treatment planning system. The isodose pattern exhibited unexpected features but was found to be a reasonable approximation. The second technique employed a ray tracing algorithm that assigns a constant dose ratio with/without shielding behind the shielding along a radial line originating from the source. The dose calculation results were similar to the results from the first technique but with improved accuracy. The third and most accurate technique used a dose-matrix-superposition algorithm, based on Monte Carlo calculations. The results from the latter technique showed quantitatively that the dose to healthy tissue is reduced significantly in the presence of shielding. However, it was also found that the dose to the tumor may be affected by the presence of shielding; for about a quarter of the patients treated the volume covered by the 100% isodose lines was reduced by more than 5%, leading to potential tumor cold spots. Use of any of the three shielding algorithms results in improved dose estimates to healthy tissue and the tumor.

  5. Validation of Monte Carlo calculated surface doses for megavoltage photon beams.

    PubMed

    Abdel-Rahman, Wamied; Seuntjens, Jan P; Verhaegen, Frank; Deblois, François; Podgorsak, Ervin B

    2005-01-01

    Recent work has shown that there is significant uncertainty in measuring build-up doses in mega-voltage photon beams especially at high energies. In this present investigation we used a phantom-embedded extrapolation chamber (PEEC) made of Solid Water to validate Monte Carlo (MC)-calculated doses in the dose build-up region for 6 and 18 MV x-ray beams. The study showed that the percentage depth ionizations (PDIs) obtained from measurements are higher than the percentage depth doses (PDDs) obtained with Monte Carlo techniques. To validate the MC-calculated PDDs, the design of the PEEC was incorporated into the simulations. While the MC-calculated and measured PDIs in the dose build-up region agree with one another for the 6 MV beam, a non-negligible difference is observed for the 18 MV x-ray beam. A number of experiments and theoretical studies of various possible effects that could be the source of this discrepancy were performed. The contribution of contaminating neutrons and protons to the build-up dose region in the 18 MV x-ray beam is negligible. Moreover, the MC calculations using the XCOM photon cross-section database and the NIST bremsstrahlung differential cross section do not explain the discrepancy between the MC calculations and measurement in the dose build-up region for the 18 MV. A simple incorporation of triplet production events into the MC dose calculation increases the calculated doses in the build-up region but does not fully account for the discrepancy between measurement and calculations for the 18 MV x-ray beam. PMID:15719980

  6. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  7. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy

    NASA Astrophysics Data System (ADS)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-01

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  8. Influence of polarization and a source model for dose calculation in MRT

    SciTech Connect

    Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bräuer-Krisch, Elke

    2014-04-15

    Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartínez-Rovira et al. [“Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119–131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside

  9. Code System for Calculating Internal and External Doses Resulting from an Atmospheric Release of Radioactive Material.

    1982-06-15

    WRAITH calculates the atmospheric transport of radioactive material to each of a number of downwind receptor points and the external and internal doses to a reference man at each of the receptor points.

  10. Technical basis for beta skin dose calculations at the Y-12 Plant

    SciTech Connect

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations.

  11. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was

  12. Calculation of dose profiles in stereotactic synchrotron microplanar beam radiotherapy in a tissue-lung phantom.

    PubMed

    Company, F Z

    2007-03-01

    Synchrotron x-ray beams with high fluence rate and highly collimated may be used in stereotactic radiotherapy of lung tumours. A bundle of converging monochromatic x-ray beams having uniform microscopic thickness i.e. (microplanar beams) are directed to the center of the tumour, delivering lethal dose to the target volume while sparing normal cells. The proposed technique takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerate the lethally irradiated endothelial cells. The sharply dropping lateral dose of a microbeam provides low scattered dose to the off-target interbeam volume. In the target volume the converging bundle of beams are closely spaced, and relatively high primary and secondary electron doses overlap and produce a high dose region between the beams. This higher and lower dose margins in the target volume allows precise targeting. The advantages of stereotactic microbeam radiotherapy will be lost as the dose between microbeams exceeds the tolerance dose of the dose limiting tissues. Therefore, it is essential to optimize the interbeam doses in off-target volume. The lateral and depth doses of 100 keV microplanar beams are investigated for a single beam and an array of converging microplanar beams in a tissue, lung and tissue-lung phantoms. The EGS5 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams. The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different energies, depths, bundle sizes, heights, widths and beam spacings. The interbeam dose is calculated at different depths and an isodose map of the phantom is obtained. An acceptable energy region is found for tissue and lung microbeam radiotherapy and a stereotactic microbeam radiotherapy model is proposed for a 4 cm diameter and 1 cm thick tumour on the lung phantom.

  13. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  14. The work of the ICRP dose calculational task group: Issues in implementation of the ICRP dosimetric methodology

    SciTech Connect

    Eckerman, K.F.

    1999-01-01

    Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novel computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.

  15. On the Sensitivity of α/β Prediction to Dose Calculation Methodology in Prostate Brachytherapy

    SciTech Connect

    Afsharpour, Hossein; Walsh, Sean; Collins Fekete, Charles-Antoine; Vigneault, Eric; Verhaegen, Frank; Beaulieu, Luc

    2014-02-01

    Purpose: To study the relationship between the accuracy of the dose calculation in brachytherapy and the estimations of the radiosensitivity parameter, α/β, for prostate cancer. Methods and Materials: In this study, Monte Carlo methods and more specifically the code ALGEBRA was used to produce accurate dose calculations in the case of prostate brachytherapy. Equivalent uniform biologically effective dose was calculated for these dose distributions and was used in an iso-effectiveness relationship with external beam radiation therapy. Results: By considering different levels of detail in the calculations, the estimation for the α/β parameter varied from 1.9 to 6.3 Gy, compared with a value of 3.0 Gy suggested by the American Association of Physicists in Medicine Task Group 137. Conclusions: Large variations of the α/β show the sensitivity of this parameter to dose calculation modality. The use of accurate dose calculation engines is critical for better evaluating the biological outcomes of treatments.

  16. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-07-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations.

  17. Analysis of the dose calculation accuracy for IMRT in lung: a 2D approach.

    PubMed

    Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Dietmar

    2007-01-01

    The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement (deviations approximately 2%) was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (<50%) and high (>90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple

  18. Determination of the contribution of livestock water ingestion to dose from the cow-milk pathway. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 002

    SciTech Connect

    Ikenberry, T.A.

    1992-12-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, a series of calculations has been undertaken to evaluate the absolute and relative contribution of different exposure pathways to thyroid doses that may have been received by individuals living in the vicinity of the Hanford Site. These evaluations include some pathways that were included in the Phase I air-pathway dose evaluations (HEDR staff 1991, page xx), as well as other potential exposure pathways being evaluated for possible inclusion in the future HEDR modeling efforts. This calculation (002) examined the possible doses that may have been received by individuals who drank milk from cows that drank from sources of water (stock tanks and farm ponds) exposed to iodine-131 in the atmosphere during 1945.

  19. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    SciTech Connect

    Moore, Bria M.; Brady, Samuel L. Kaufman, Robert A.; Mirro, Amy E.

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  20. An experimental and calculated dose distribution in water around CDC K-type caesium-137 sources.

    PubMed

    Diffey, B L; Klevenhagen, S C

    1975-05-01

    The radiation distribution in water around caesium-137 K-type sources has been measured and the experimental results used to provide data for an expression for dose calculations which may be conveniently applied in computer programs. The calculated absorbed dose rate obtained in this manner is estimated to be within 3% of the actual dose rate for any point in water up to 8 cm from the source. It is also suggested that the strength of a brachytherapy source be expressed in terms of an experimental exposure rate at some well-defined distance since this quantity may be determined more precisely and with less ambiguity than source activity.

  1. Advanced numerics for multi-dimensional fluid flow calculations

    SciTech Connect

    Vanka, S.P.

    1984-04-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  2. Advanced numerics for multi-dimensional fluid flow calculations

    NASA Technical Reports Server (NTRS)

    Vanka, S. P.

    1984-01-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  3. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    SciTech Connect

    Silva, J da

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  4. Effects of the difference in tube voltage of the CT scanner on dose calculation

    NASA Astrophysics Data System (ADS)

    Rhee, Dong Joo; Kim, Sung-woo; Jeong, Dong Hyeok; Moon, Young Min; Kim, Jung Ki

    2015-07-01

    Computed tomography (CT) measures the attenuation coefficient of an object and converts the value assigned to each voxel into a CT number. In radiation therapy, the CT number, which is directly proportional to the linear attenuation coefficient, must be converted to an electron density for radiation dose calculations for cancer treatment. However, if various tube voltages are applied to take the patient's CT image without applying the specific CT number to the electron density conversion curve, the accuracy of the dose calculation is not assured. In this study, changes in CT numbers for different materials due to changes in the tube voltage were demonstrated, and the dose calculation errors in the percentage depth dose (PDD), along with a clinical case were analyzed. The maximum dose difference in the PDD from the treatment planning system (TPS) dose calculation and from the Monte Carlo simulation were 1.3% and 1.1%, respectively, when applying the same CT number to the electron density conversion curve for the 80-kVp and 140-kVp images. In the clinical case, different CT number to electron density conversion curves at tube voltage of 80 kVp and 140 kVp were applied to the same image and the maximum differences in the mean, maximum, and minimum doses were 1.1%, 1.2%, and 1.0%, respectively, at the central region of the phantom and 0.6%, 0.9%, and 0.8%, respectively, at the peripheral region of the phantom.

  5. Evaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams

    SciTech Connect

    Olofsson, Joergen; Nyholm, Tufve; Georg, Dietmar; Ahnesjoe, Anders; Karlsson, Mikael

    2006-07-15

    In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance, etc. The growing complexity of modern treatment techniques does however make this approach increasingly difficult, both in terms of practical application and in terms of the reliability of the results. In the present work the performance of a model-based approach, describing the influence from different input parameters through actual modeling of the physical effects, has been investigated in detail. The investigated model is based on two components related to megavoltage photon beams; one describing the exiting energy fluence per delivered MU, and a second component describing the dose deposition through a pencil kernel algorithm solely based on a measured beam quality index. Together with the output calculations, the basis of a method aiming to predict the inherent calculation uncertainties in individual treatment setups has been developed. This has all emerged from the intention of creating a clinical dose/MU verification tool that requires an absolute minimum of commissioned input data. This evaluation was focused on irregular field shapes and performed through comparison with output factors measured at 5, 10, and 20 cm depth in ten multileaf collimated fields on four different linear accelerators with varying multileaf collimator designs. The measurements were performed both in air and in water and the results of the two components of the model were evaluated separately and combined. When compared with the corresponding measurements the resulting deviations in the calculated output factors were in most cases smaller than 1% and in all cases smaller than 1.7%. The

  6. Evaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams.

    PubMed

    Olofsson, Jörgen; Nyholm, Tufve; Georg, Dietmar; Ahnesjö, Anders; Karlsson, Mikael

    2006-07-01

    In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance, etc. The growing complexity of modern treatment techniques does however make this approach increasingly difficult, both in terms of practical application and in terms of the reliability of the results. In the present work the performance of a model-based approach, describing the influence from different input parameters through actual modeling of the physical effects, has been investigated in detail. The investigated model is based on two components related to megavoltage photon beams; one describing the exiting energy fluence per delivered MU, and a second component describing the dose deposition through a pencil kernel algorithm solely based on a measured beam quality index. Together with the output calculations, the basis of a method aiming to predict the inherent calculation uncertainties in individual treatment setups has been developed. This has all emerged from the intention of creating a clinical dose/MU verification tool that requires an absolute minimum of commissioned input data. This evaluation was focused on irregular field shapes and performed through comparison with output factors measured at 5, 10, and 20 cm depth in ten multileaf collimated fields on four different linear accelerators with varying multileaf collimator designs. The measurements were performed both in air and in water and the results of the two components of the model were evaluated separately and combined. When compared with the corresponding measurements the resulting deviations in the calculated output factors were in most cases smaller than 1% and in all cases smaller than 1.7%. The

  7. SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm

    SciTech Connect

    Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M

    2014-06-01

    Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans.

  8. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    SciTech Connect

    Klüter, Sebastian Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  9. Dose calculation accuracy of lung planning with a commercial IMRT treatment planning system.

    PubMed

    McDermott, Patrick N; He, Tongming; DeYoung, A

    2003-01-01

    The dose calculation accuracy of a commercial pencil beam IMRT planning system is evaluated by comparison with Monte Carlo calculations and measurements in an anthropomorphic phantom. The target volume is in the right lung and mediastinum and thus significant tissue inhomogeneities are present. The Monte Carlo code is an adaptation of the MCNP code and the measurements were made with TLD and film. Both the Monte Carlo code and the measurements show very good agreement with the treatment planning system except in regions where the dose is high and the electron density is low. In these regions the commercial system shows doses up to 10% higher than Monte Carlo and film. The average calculated dose for the CTV is 5% higher with the commercial system as compared to Monte Carlo. PMID:14604424

  10. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G. ); Poston, J.W. . Dept. of Nuclear Engineering)

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

  11. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    SciTech Connect

    Akabani, G.; Poston, J.W. Sr. )

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

  12. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  13. Benchmarking of Monte Carlo based shutdown dose rate calculations for applications to JET.

    PubMed

    Petrizzi, L; Batistoni, P; Fischer, U; Loughlin, M; Pereslavtsev, P; Villari, R

    2005-01-01

    The calculation of dose rates after shutdown is an important issue for operating nuclear reactors. A validated computational tool is needed for reliable dose rate calculations. In fusion reactors neutrons induce high levels of radioactivity and presumably high doses. The complex geometries of the devices require the use of sophisticated geometry modelling and computational tools for transport calculations. Simple rule of thumb laws do not always apply well. Two computational procedures have been developed recently and applied to fusion machines. Comparisons between the two methods showed some inherent discrepancies when applied to calculation for the ITER while good agreement was found for a 14 MeV point source neutron benchmark experiment. Further benchmarks were considered necessary to investigate in more detail the reasons for the different results in different cases. In this frame the application to the Joint European Torus JET machine has been considered as a useful benchmark exercise. In a first calculational benchmark with a representative D-T irradiation history of JET the two methods differed by no more than 25%. In another, more realistic benchmark exercise, which is the subject of this paper, the real irradiation history of D-T and D-D campaigns conducted at JET in 1997-98 were used to calculate the shut-down doses at different locations, irradiation and decay times. Experimental dose data recorded at JET for the same conditions offer the possibility to check the prediction capability of the calculations and thus show the applicability (and the constraints) of the procedures and data to the rather complex shutdown dose rate analysis of real fusion devices. Calculation results obtained by the two methods are reported below, comparison with experimental results give discrepancies ranging between 2 and 10. The reasons of that can be ascribed to the high uncertainty on the experimental data and the unsatisfactory JET model used in the calculation. A new

  14. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model

    PubMed Central

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy. PMID:26734567

  15. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  16. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    SciTech Connect

    Ono, T; Araki, F

    2014-06-01

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.

  17. Estimates of Columbia River radionuclide concentrations: Data for Phase 1 dose calculations

    SciTech Connect

    Richmond, M.C.; Walters, W.H.

    1991-05-01

    Pacific Northwest Laboratory is conducting the Hanford Environmental Dose Reconstruction Project to estimate the radiation doses people may have received from historical Hanford Site operations. Under the direction of an independent Technical Steering Panel, the project is being conducted in phases. The objective of the first phase is to assess the feasibility of the project-wide technical approach for acquiring data and developing models needed to calculate potential radiation doses. This report summarizes data that were generated for the Phase 1 dose calculations. These included monthly average concentrations of specific radionuclides in Columbia River water and sediments between Priest Rapids Dam and McNary Dam for the years 1964 to 1966. Nine key radionuclides were selected for analysis based on estimation of their contribution to dose. Concentrations of these radionuclides in the river were estimated using existing measurements and hydraulic calculations based on the simplifying assumption that dilution and decay were the primary processes controlling the fate of radionuclides released to the river. Five sub-reaches between Priest Rapids Dam and McNary Dam, corresponding to population centers and tributary confluences, were identified and monthly average radionuclide concentrations were calculated for each sub-reach. The hydraulic calculations were performed to provide radionuclide concentration estimates for time periods and geographic locations where measured data were not available. The validity of the calculation method will be evaluated in Phase 2. 12 refs., 13 figs., 49 tabs.

  18. Dose uncertainties in photon pencil kernel calculations at off-axis positions

    SciTech Connect

    Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2006-09-15

    The purpose of this study was to investigate the specific problems associated with photon dose calculations in points located at a distance from the central beam axis. These problems are related to laterally inhomogeneous energy fluence distributions and spectral variations causing a lateral shift in the beam quality, commonly referred to as off-axis softening (OAS). We have examined how the dose calculation accuracy is affected when enabling and disabling explicit modeling of these two effects. The calculations were performed using a pencil kernel dose calculation algorithm that facilitates modeling of OAS through laterally varying kernel properties. Together with a multisource model that provides the lateral energy fluence distribution this generates the total dose output, i.e., the dose per monitor unit, at an arbitrary point of interest. The dose calculation accuracy was evaluated through comparisons with 264 measured output factors acquired at 5, 10, and 20 cm depth in four different megavoltage photon beams. The measurements were performed up to 18 cm from the central beam axis, inside square fields of varying size and position. The results show that calculations including explicit modeling of OAS were considerably more accurate, up to 4%, than those ignoring the lateral beam quality shift. The deviations caused by simplified head scatter modeling were smaller, but near the field edges additional errors close to 1% occurred. When enabling full physics modeling in the dose calculations the deviations display a mean value of -0.1%, a standard deviation of 0.7%, and a maximum deviation of -2.2%. Finally, the results were analyzed in order to quantify and model the inherent uncertainties that are present when leaving the central beam axis. The off-axis uncertainty component showed to increase with both off-axis distance and depth, reaching 1% (1 standard deviation) at 20 cm depth.

  19. Impact of dose calculation accuracy during optimization on lung IMRT plan quality.

    PubMed

    Li, Ying; Rodrigues, Anna; Li, Taoran; Yuan, Lulin; Yin, Fang-Fang; Wu, Q Jackie

    2015-01-01

    The purpose of this study was to evaluate the effect of dose calculation accuracy and the use of an intermediate dose calculation step during the optimization of intensity-modulated radiation therapy (IMRT) planning on the final plan quality for lung cancer patients. This study included replanning for 11 randomly selected free-breathing lung IMRT plans. The original plans were optimized using a fast pencil beam convolution algorithm. After optimization, the final dose calculation was performed using the analytical anisotropic algorithm (AAA). The Varian Treatment Planning System (TPS) Eclipse v11, includes an option to perform intermediate dose calculation during optimization using the AAA. The new plans were created using this intermediate dose calculation during optimization with the same planning objectives and dose constraints as in the original plan. Differences in dosimetric parameters for the planning target volume (PTV) dose coverage, organs-at-risk (OARs) dose sparing, and the number of monitor units (MU) between the original and new plans were analyzed. Statistical significance was determined with a p-value of less than 0.05. All plans were normalized to cover 95% of the PTV with the prescription dose. Compared with the original plans, the PTV in the new plans had on average a lower maximum dose (69.45 vs. 71.96Gy, p = 0.005), a better homogeneity index (HI) (0.08 vs. 0.12, p = 0.002), and a better conformity index (CI) (0.69 vs. 0.59, p = 0.003). In the new plans, lung sparing was increased as the volumes receiving 5, 10, and 30 Gy were reduced when compared to the original plans (40.39% vs. 42.73%, p = 0.005; 28.93% vs. 30.40%, p = 0.001; 14.11%vs. 14.84%, p = 0.031). The volume receiving 20 Gy was not significantly lower (19.60% vs. 20.38%, p = 0.052). Further, the mean dose to the lung was reduced in the new plans (11.55 vs. 12.12 Gy, p = 0.024). For the esophagus, the mean dose, the maximum dose, and the volumes receiving 20 and 60 Gy were lower in

  20. Beta dose calculation in human arteries for various brachytherapy seed types

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    This dissertation explores beta dose profile of microspheres packed in arteries, various source geometries of 142Pr that can be used for therapeutic purpose, and dose backscatter factors for selected beta sources. A novel treatment method by injecting microspheres into feeding arteries of arteriovenous malformation (AVM) is under pre-clinical investigation. To optimize radiation dose to the clinically important area, i.e. arterial wall, preliminary dosimetric studies were needed. Monte Carlo calculations were performed for several geometries simulating arteries filled with microspheres packed by random packing methods. Arterial radii used in the simulation varied from 50 mum to 3 mm; microsphere radii varied from 10 mum to 0.7 mm. Dose varied significantly as a function of microsphere size, for constant arterial sizes. For the same sizes of arteries, significant dose increase was observed because of inter-artery exposure for large arteries (>0.1 cm rad.) filled with large microspheres (>0.03 cm rad.). Dose increase between small arteries (<0.03 cm rad.) was less significant. The dose profiles of prototype 142Pr beta brachytherapy sources were calculated using MCNP 4C Monte Carlo code as well as dose point kernel (DPK) for selected cases. Dose profiles were similar to beta sources currently used indicating that 142Pr can substitute for current sources for certain cases and the DPK was closely matched with MCNP result. Backscattering of electrons is a prominent secondary effect in beta dosimetry. The backscattering is closely correlated with factors such as geometry of source and scattering material, and composition of scattering material. The backscattering factors were calculated for selected beta sources that are currently used as well as potentially useful sources for therapeutic purpose. The factors were calculated as a function of distance from the interface between water and scatterers. These factors were fit by a simple function for future incorporation into

  1. MCPI: a sub-minute Monte Carlo dose calculation engine for prostate implants.

    PubMed

    Chibani, Omar; Williamson, Jeffrey F

    2005-12-01

    An accelerated Monte Carlo code [Monte Carlo dose calculation for prostate implant (MCPI)] is developed for dose calculation in prostate brachytherapy. MCPI physically simulates a set of radioactive seeds with arbitrary positions and orientations, merged in a three-dimensional (3D) heterogeneous phantom representing the prostate and surrounding tissue. MCPI uses a phase space data source-model to account for seed self-absorption and seed anisotropy. A "hybrid geometry" model (full 3D seed geometry merged in 3D mesh of voxels) is used for rigorous treatment of the interseed attenuation and tissue heterogeneity effects. MCPI is benchmarked against the MCNP5 code for idealized and real implants, for 103Pd and 125I seeds. MCPI calculates the dose distribution (2-mm voxel mesh) of a 103Pd implant (83 seeds) with 2% average statistical uncertainty in 59 s using a single Pentium 4 PC (2.4 GHz). MCPI is more than 10(3) and 10(4) times faster than MCNP5 for prostate dose calculations using 2- and 1-mm voxels, respectively. To illustrate its usefulness, MCPI is used to quantify the dosimetric effects of interseed attenuation, tissue composition, and tissue calcifications. Ignoring the interseed attenuation effect or slightly varying the prostate tissue composition may lead to 6% decreases of D100, the dose delivered to 100% of the prostate. The presence of calcifications, covering 1%-5% of the prostate volume, decreases D80, D90, and D100 by up to 32%, 37%, and 58%, respectively. In conclusion, sub-minute dose calculations, taking into account all dosimetric effects, are now possible for more accurate dose planning and dose assessment in prostate brachytherapy.

  2. SU-E-T-27: A Tool for Routine Quality Assurance of Radiotherapy Dose Calculation Software

    SciTech Connect

    Popple, R; Cardan, R; Duan, J; Wu, X; Shen, S; Brezovich, I

    2014-06-01

    Purpose: Dose calculation software is thoroughly evaluated when it is commissioned; however, evaluation of periodic software updates is typically limited in scope due to staffing constraints and the need to quickly return the treatment planning system to clinical service. We developed a tool for quickly and comprehensively testing and documenting dose calculation software against measured data. Methods: A tool was developed using MatLab (The MathWorks, Natick, MA) for evaluation of dose calculation algorithms against measured data. Inputs to the tool are measured data, reference DICOM RT PLAN files describing the measurements, and dose calculations in DICOM format. The tool consists of a collection of extensible modules that can perform analysis of point dose, depth dose curves, and profiles using dose difference, distance-to-agreement, and the gamma-index. Each module generates a report subsection that is incorporated into a master template, which is converted to final form in portable document format (PDF). Results: After each change to the treatment planning system, a report can be generated in approximately 90 minutes. The tool has been in use for more than 5 years, spanning 5 versions of the eMC and 4 versions of the AAA. We have detected changes to the algorithms that affected clinical practice once during this period. Conclusion: Our tool provides an efficient method for quality assurance of dose calculation software, providing a complete set of tests for an update. Future work includes the addition of plan level tests, allowing incorporation of, for example, the TG-119 test suite for IMRT, and integration with the treatment planning system via an application programming interface. Integration with the planning system will permit fully-automated testing and reporting at scheduled intervals.

  3. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    SciTech Connect

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  4. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    SciTech Connect

    García-Garduño, O. A. E-mail: amanda.garcia.g@gmail.com; Rodríguez-Ponce, M.; Gamboa-deBuen, I.; Rodríguez-Villafuerte, M.; Galván de la Cruz, O. O.; and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  5. Review of fast monte carlo codes for dose calculation in radiation therapy treatment planning.

    PubMed

    Jabbari, Keyvan

    2011-01-01

    An important requirement in radiation therapy is a fast and accurate treatment planning system. This system, using computed tomography (CT) data, direction, and characteristics of the beam, calculates the dose at all points of the patient's volume. The two main factors in treatment planning system are accuracy and speed. According to these factors, various generations of treatment planning systems are developed. This article is a review of the Fast Monte Carlo treatment planning algorithms, which are accurate and fast at the same time. The Monte Carlo techniques are based on the transport of each individual particle (e.g., photon or electron) in the tissue. The transport of the particle is done using the physics of the interaction of the particles with matter. Other techniques transport the particles as a group. For a typical dose calculation in radiation therapy the code has to transport several millions particles, which take a few hours, therefore, the Monte Carlo techniques are accurate, but slow for clinical use. In recent years, with the development of the 'fast' Monte Carlo systems, one is able to perform dose calculation in a reasonable time for clinical use. The acceptable time for dose calculation is in the range of one minute. There is currently a growing interest in the fast Monte Carlo treatment planning systems and there are many commercial treatment planning systems that perform dose calculation in radiation therapy based on the Monte Carlo technique.

  6. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approach that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan

  7. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    SciTech Connect

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  8. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    DOE PAGES

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less

  9. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    SciTech Connect

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple because it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.

  10. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    SciTech Connect

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-02-15

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model

  11. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    SciTech Connect

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  12. [Leakage radiations in a medical electron accelerator facility--calculation of neutron doses in the facility].

    PubMed

    Ishimatsu, K; Morikawa, K

    1990-02-01

    Neutron doses often come dominant in mazes of electron accelerator facilities in which X-rays of energies more than 10 MV are produced. A simple analytical method to calculate neutron doses in such a facility is developed. In the calculation procedure, it is assumed that the irradiation room is spherical in shape and the maze is cylindrical. Multiple reflection of neutrons is also considered using the albedo concept in the calculation. The procedure allows to exist a hanging wall over the entrance of the irradiation room and also multiple legs in the maze. All the parameters used in the calculation are given definitely in the procedure, and any experiment is unnecessary to determine value of the parameters. Comparison of the calculated results with experimental ones will be described in the following report. PMID:2326507

  13. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  14. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  15. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  16. Radiation dose calculation for Tc-99m HIDA in health and disease

    SciTech Connect

    Brown, P.H.; Krishnamurthy, G.T.; Bobba, V.V.R.; Kingston, E.

    1981-02-01

    Radiation dose from Tc-99m HIDA has been calculated for normal subjects and for patients with various hepatobiliary diseases classified into four groups based on serum bilirubin level. The calculation was performed on biokinetic radioactivity data from blood, urine, liver, gallbladder, and intestines, using a biological approach that included a catenary model of the digestive organs. For normal subjects the critical organs were the gallbladder and the upper and lower large intestine, with doses of 910, 300, 200 mrad/mCi, respectively. The bone marrow, ovaries, and testes received 24, 62, and 4 mrad/mCi. For Group 4 patients with severe hepatobiliary disease (bilirubin > 10 mg/dl), the critical organs were the kidney, urinary bladder, and gallbladder, with doses of 130, 110, and 100 mrad/mCi. The bone marrow, ovaries, and testes received 9, 13, and 5 mrad/mCi. Thus the critical organs and overall radiation doses to organs change between health and disease.

  17. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can

  18. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  19. Calculation of absorbed doses to water pools in severe accident sequences

    SciTech Connect

    Weber, C.F.

    1991-12-01

    A methodology is presented for calculating the radiation dose to a water pool from the decay of uniformly distributed nuclides in that pool. Motivated by the need to accurately model radiolysis reactions of iodine, direct application is made to fission product sources dissolved or suspended in containment sumps or pools during a severe nuclear reactor accident. Two methods of calculating gamma absorption are discussed - one based on point-kernal integration and the other based on Monte Carlo techniques. Using least-squares minimization, the computed results are used to obtain a correlation that relates absorbed dose to source energy and surface-to-volume ratio of the pool. This correlation is applied to most relevant fission product nuclides and used to actually calculate transient sump dose rate in a pressurized-water reactor (PWR) severe accident sequence.

  20. Interpolation Method for Calculation of Computed Tomography Dose from Angular Varying Tube Current

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Gao, Yiming; Xu, X. George

    2014-06-01

    The scope and magnitude of radiation dose from computed tomography (CT) examination has led to increased scrutiny and focus on accurate dose tracking. The use of tube current modulation (TCM) results complicates dose tracking by generating unique scans that are specific to the patient. Three methods of estimating the radiation dose from a CT examination that uses TCM are compared: using the average current for an entire scan, using the average current for each slice in the scan, and using an estimation of the angular variation of the dose contribution. To determine the impact of TCM on the radiation dose received, a set of angular weighting functions for each tissue of the body are derived by fitting a function to the relative dose contributions tabulated for the four principle exposure projections. This weighting function is applied to the angular tube current function to determine the organ dose contributions from a single rotation. Since the angular tube current function is not typically known, a method for estimating that function is also presented. The organ doses calculated using these three methods are compared to simulations that explicitly include the estimated TCM function.

  1. Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects

    PubMed Central

    Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.

    2014-01-01

    Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931

  2. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Schlattl, H.; Zankl, M.; Endo, A.; Saito, K.

    2012-09-01

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm-2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy-1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.

  3. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy

    NASA Astrophysics Data System (ADS)

    Moiseenko, V.; Liu, M.; Loewen, S.; Kosztyla, R.; Vollans, E.; Lucido, J.; Fong, M.; Vellani, R.; Popescu, I. A.

    2013-10-01

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  4. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy.

    PubMed

    Moiseenko, V; Liu, M; Loewen, S; Kosztyla, R; Vollans, E; Lucido, J; Fong, M; Vellani, R; Popescu, I A

    2013-10-21

    Dosimetric consequences of plans optimized using the analytical anisotropic algorithm (AAA) implemented in the Varian Eclipse treatment planning system for spine stereotactic body radiotherapy were evaluated by re-calculating with BEAMnrc/DOSXYZnrc Monte Carlo. Six patients with spinal vertebral metastases were planned using volumetric modulated arc therapy. The planning goal was to cover at least 80% of the planning target volume with a prescribed dose of 35 Gy in five fractions. Tissue heterogeneity-corrected AAA dose distributions for the planning target volume and spinal canal planning organ-at-risk volume were compared against those obtained from Monte Carlo. The results showed that the AAA overestimated planning target volume coverage with the prescribed dose by up to 13.5% (mean 8.3% +/- 3.2%) when compared to Monte Carlo simulations. Maximum dose to spinal canal planning organ-at-risk volume calculated with Monte Carlo was consistently smaller than calculated with the treatment planning system and remained under spinal cord dose tolerance. Differences in dose distribution appear to be related to the dosimetric effects of accounting for body composition in Monte Carlo simulations. In contrast, the treatment planning system assumes that all tissues are water-equivalent in their composition and only differ in their electron density.

  5. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    NASA Astrophysics Data System (ADS)

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-08-01

    The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be

  6. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.

    PubMed

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-09-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  7. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    SciTech Connect

    Xiao, K; Chen, D. Z; Hu, X. S; Zhou, B

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  8. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  9. Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah

    SciTech Connect

    Alharbi, N. D.; Mayhoub, A. B.

    2011-12-26

    For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.

  10. Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films

    NASA Astrophysics Data System (ADS)

    Noblet, C.; Chiavassa, S.; Smekens, F.; Sarrut, D.; Passal, V.; Suhard, J.; Lisbona, A.; Paris, F.; Delpon, G.

    2016-05-01

    In preclinical studies, the absorbed dose calculation accuracy in small animals is fundamental to reliably investigate and understand observed biological effects. This work investigated the use of the split exponential track length estimator (seTLE), a new kerma based Monte Carlo dose calculation method for preclinical radiotherapy using a small animal precision micro irradiator, the X-RAD 225Cx. Monte Carlo modelling of the irradiator with GATE/GEANT4 was extensively evaluated by comparing measurements and simulations for half-value layer, percent depth dose, off-axis profiles and output factors in water and water-equivalent material for seven circular fields, from 20 mm down to 1 mm in diameter. Simulated and measured dose distributions in cylinders of water obtained for a 360° arc were also compared using dose, distance-to-agreement and gamma-index maps. Simulations and measurements agreed within 3% for all static beam configurations, with uncertainties estimated to 1% for the simulation and 3% for the measurements. Distance-to-agreement accuracy was better to 0.14 mm. For the arc irradiations, gamma-index maps of 2D dose distributions showed that the success rate was higher than 98%, except for the 0.1 cm collimator (92%). Using the seTLE method, MC simulations compute 3D dose distributions within minutes for realistic beam configurations with a clinically acceptable accuracy for beam diameter as small as 1 mm.

  11. Calculation of Radiation Dose to Man from Radionuclides in the Environment.

    1981-02-17

    ARRRG permits rapid and consistent estimates of the radiation dose and dose commitment to man resulting from radioactive materials released to the environment. It is designed to calculate the dose and dose commitment following an accumulation of radionuclides in the environment from one year's ingestion of contaminated food products and from one year's external radiation exposure. ARRRG addresses aquatic exposure pathways. ARRRG can compute doses for five ingestion pathways such as fish, other aquatic animalsmore » or plants, or drinking water, as well as three external pathways: swimming, boating, or shoreline exposure. ARRRG calculates one-year doses and dose commitments from any one or combination of radionuclides for which sufficient biological data are available. As many as five of 23 possible organs and tissues, and mixtures of up to 100 radionuclides may be selected in any one case. The user may select up to 14 food categories with corresponding consumption rates, growing periods, and either irrigation rates or atmospheric deposition rates. These foods include various kinds of produce, grains, and animal products.« less

  12. [Calculation of the first dose of amikacine: evaluation of the current dosage recommendations].

    PubMed

    Jean-Bart, E; Debeurme, G; Ducher, M; Bourguignon, L

    2013-01-01

    Aminoglycosides, including amikacin, are antibiotics with major interest in the management of sepsis, but with a high potential toxicity. The French national recommendations revised in 2011 recommend a dose of amikacin ranging from 15 to 30 mg/kg. The objective was to assess if such a dose interval allows reaching the efficiency target concentrations of 64 mg/L without exceeding the toxic threshold of 2.5mg/L. From a cohort of 100 patients treated with amikacin, the individual pharmacokinetic parameters were estimated using pharmacokinetic software (MM-USCPACK). Peak and residual concentrations obtained after simulated doses ranging from 15 to 30 mg/kg were estimated and compared with the effective and toxic thresholds. The optimum dose to achieve precisely the efficiency target was calculated for each patient. Patients studied had a mean age of 79 years, mean weight of 58 kg, and mean creatinine clearance of 45 mL/min. The dose of 30 mg/kg allows the achievement of an effective peak in 98.7% of patients, but led to a potentially toxic through for 72.4% of them. The optimal dose was at mean of 1264 mg, significantly different than doses calculated with weight (P<0.0001). A weak correlation was found between weight and the optimal dose. A fixed dose of 30 mg/kg seems to be effective for most patients, but often excessive and leads to a toxic residual to 72% of patients, whereas 15 mg/kg was insufficient for most patients. The low correlation between optimal dose and patient weight shows that weight does not explain fully the interindividual variability.

  13. Development of a New Shielding Model for JB-Line Dose Rate Calculations

    SciTech Connect

    Buckner, M.R.

    2001-08-09

    This report describes the shielding model development for the JB-Line Upgrade project. The product of this effort is a simple-to-use but accurate method of estimating the personnel dose expected for various operating conditions on the line. The current techniques for shielding calculations use transport codes such as ANISN which, while accurate for geometries which can be accurately approximated as one dimensional slabs, cylinders or spheres, fall short in calculating configurations in which two-or three-dimensional effects (e.g., streaming) play a role in the dose received by workers.

  14. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    SciTech Connect

    Han Tao; Followill, David; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mikell, Justin; Mourtada, Firas

    2013-05-15

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (D{sub m,m}) and dose-to-water in medium (D{sub w,m}), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%-4.4% to AXB doses (both D{sub m,m} and D{sub w,m}); and within 2.5%-6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes ({+-}3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB{sub Dm,m}, and AXB{sub Dw,m}, respectively. The differences between AXB and AAA in dose-volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord

  15. Characterization of dose in stereotactic body radiation therapy of lung lesions via Monte Carlo calculation

    NASA Astrophysics Data System (ADS)

    Rassiah, Premavathy

    Stereotactic Body Radiation Therapy is a new form of treatment where hypofractionated (i.e., large dose fractions), conformal doses are delivered to small extracranial target volumes. This technique has proven to be especially effective for treating lung lesions. The inability of most commercially available algorithms/treatment planning systems to accurately account for electron transport in regions of heterogeneous electron density and tissue interfaces make prediction of accurate doses especially challenging for such regions. Monte Carlo which a model based calculation algorithm has proven to be extremely accurate for dose calculation in both homogeneous and inhomogeneous environment. This study attempts to accurately characterize the doses received by static targets located in the lung, as well as critical structures (contra and ipsi -lateral lung, major airways, esophagus and spinal cord) for the serial tomotherapeutic intensity-modulated delivery method used for stereotactic body radiation therapy at the Cancer Therapy and Research Center. PEREGRINERTM (v 1.6. NOMOS) Monte Carlo, doses were compared to the Finite Sized Pencil Beam/Effective Path Length predicted values from the CORVUS 5.0 planning system. The Monte Carlo based treatment planning system was first validated in both homogenous and inhomogeneous environments. 77 stereotactic body radiation therapy lung patients previously treated with doses calculated using the Finite Sized Pencil Beam/Effective Path Length, algorithm were then retrieved and recalculated with Monte Carlo. All 77 patients plans were also recalculated without inhomogeneity correction in an attempt to counteract the known overestimation of dose at the periphery of the target by EPL with increased attenuation. The critical structures were delineated in order to standardize the contouring. Both the ipsi-lateral and contra-lateral lungs were contoured. The major airways were contoured from the apex of the lungs (trachea) to 4 cm below

  16. Analytic IMRT dose calculations utilizing Monte Carlo to predict MLC fluence modulation

    SciTech Connect

    Mihaylov, I.B.; Lerma, F.A.; Wu, Y.; Siebers, J.V.

    2006-04-15

    A hybrid dose-computation method is designed which accurately accounts for multileaf collimator (MLC)-induced intensity modulation in intensity modulated radiation therapy (IMRT) dose calculations. The method employs Monte Carlo (MC) modeling to determine the fluence modulation caused by the delivery of dynamic or multisegmental (step-and-shoot) MLC fields, and a conventional dose-computation algorithm to estimate the delivered dose to a phantom or a patient. Thus, it determines the IMRT fluence prediction accuracy achievable by analytic methods in the limit that the analytic method includes all details of the MLC leaf transport and scatter. The hybrid method is validated and benchmarked by comparison with in-phantom film dose measurements, as well as dose calculations from two in-house, and two commercial treatment planning system analytic fluence estimation methods. All computation methods utilize the same dose algorithm to calculate dose to a phantom, varying only in the estimation of the MLC modulation of the incident photon energy fluence. Gamma analysis, with respect to measured two-dimensional (2D) dose planes, is used to benchmark each algorithm's performance. The analyzed fields include static and dynamic test patterns, as well as fields from ten DMLC IMRT treatment plans (79 fields) and five SMLC treatment plans (29 fields). The test fields (fully closed MLC, picket fence, sliding windows of different size, and leaf-tip profiles) cover the extremes of MLC usage during IMRT, while the patient fields represent realistic clinical conditions. Of the methods tested, the hybrid method most accurately reproduces measurements. For the hybrid method, 79 of 79 DMLC field calculations have {gamma}{<=}1 (3%/3 mm) for more than 95% of the points (per field) while for SMLC fields, 27 of 29 pass the same criteria. The analytic energy fluence estimation methods show inferior pass rates, with 76 of 79 DMLC and 24 of 29 SMLC fields having more than 95% of the test points

  17. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to

  18. An algorithm to calculate a collapsed arc dose matrix in volumetric modulated arc therapy

    SciTech Connect

    Arumugam, Sankar; Xing Aitang; Jameson, Michael; Holloway, Lois

    2013-07-15

    Purpose: The delivery of volumetric modulated arc therapy (VMAT) is more complex than other conformal radiotherapy techniques. In this work, the authors present the feasibility of performing routine verification of VMAT delivery using a dose matrix measured by a gantry mounted 2D ion chamber array and corresponding dose matrix calculated by an inhouse developed algorithm.Methods: Pinnacle, v9.0, treatment planning system (TPS) was used in this study to generate VMAT plans for a 6 MV photon beam from an Elekta-Synergy linear accelerator. An algorithm was developed and implemented with inhouse computer code to calculate the dose matrix resulting from a VMAT arc in a plane perpendicular to the beam at isocenter. The algorithm was validated using measurement of standard patterns and clinical VMAT plans with a 2D ion chamber array. The clinical VMAT plans were also validated using ArcCHECK measurements. The measured and calculated dose matrices were compared using gamma ({gamma}) analysis with 3%/3 mm criteria and {gamma} tolerance of 1.Results: The dose matrix comparison of standard patterns has shown excellent agreement with the mean {gamma} pass rate 97.7 ({sigma}= 0.4)%. The validation of clinical VMAT plans using the dose matrix predicted by the algorithm and the corresponding measured dose matrices also showed good agreement with the mean {gamma} pass rate of 97.6 ({sigma}= 1.6)%. The validation of clinical VMAT plans using ArcCHECK measurements showed a mean pass rate of 95.6 ({sigma}= 1.8)%.Conclusions: The developed algorithm was shown to accurately predict the dose matrix, in a plane perpendicular to the beam, by considering all possible leaf trajectories in a VMAT delivery. This enables the verification of VMAT delivery using a 2D array detector mounted on a treatment head.

  19. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer

    PubMed Central

    Han, Tao; Followill, David; Mikell, Justin; Repchak, Roman; Molineu, Andrea; Howell, Rebecca; Salehpour, Mohammad; Mourtada, Firas

    2013-01-01

    Purpose: The novel deterministic radiation transport algorithm, Acuros XB (AXB), has shown great potential for accurate heterogeneous dose calculation. However, the clinical impact between AXB and other currently used algorithms still needs to be elucidated for translation between these algorithms. The purpose of this study was to investigate the impact of AXB for heterogeneous dose calculation in lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). Methods: The thorax phantom from the Radiological Physics Center (RPC) was used for this study. IMRT and VMAT plans were created for the phantom in the Eclipse 11.0 treatment planning system. Each plan was delivered to the phantom three times using a Varian Clinac iX linear accelerator to ensure reproducibility. Thermoluminescent dosimeters (TLDs) and Gafchromic EBT2 film were placed inside the phantom to measure delivered doses. The measurements were compared with dose calculations from AXB 11.0.21 and the anisotropic analytical algorithm (AAA) 11.0.21. Two dose reporting modes of AXB, dose-to-medium in medium (Dm,m) and dose-to-water in medium (Dw,m), were studied. Point doses, dose profiles, and gamma analysis were used to quantify the agreement between measurements and calculations from both AXB and AAA. The computation times for AAA and AXB were also evaluated. Results: For the RPC lung phantom, AAA and AXB dose predictions were found in good agreement to TLD and film measurements for both IMRT and VMAT plans. TLD dose predictions were within 0.4%–4.4% to AXB doses (both Dm,m and Dw,m); and within 2.5%–6.4% to AAA doses, respectively. For the film comparisons, the gamma indexes (±3%/3 mm criteria) were 94%, 97%, and 98% for AAA, AXB_Dm,m, and AXB_Dw,m, respectively. The differences between AXB and AAA in dose–volume histogram mean doses were within 2% in the planning target volume, lung, heart, and within 5% in the spinal cord. However, differences up to 8

  20. Radiation-dose calculation for five /sup 99/mTc IDA hepatobiliary agents

    SciTech Connect

    Brown, P.H.; Krishnamurthy, G.T.; Bobba, V.R.; Kingston, E.; Turner, F.E.

    1982-11-01

    The radiation absorbed doses from five commercially available hepatobiliary agents--/sup 99m/Tc-tagged analogs of IDA (EIDA, PIPIDA, HIDA, PBIDA, DISIDA) have been calculated from biokinetic data in 41 normal subjects. Serial gamma images, with blood and urine samples, were obtained to calculate cumulated radioactivity in the source organs: blood, kidney, bladder, liver, gallbladder, and intestines. The critical organ was the gallbladder, with an absorbed-dose range of 690 to 780 mrad/mCl. Absorbed doses for other target organs were: upper large intestine 320 to 370 mrad/mCi, lower large intestine 210 to 240, small intestine 170 to 200, liver 65 (DISIDA) to 130 (PBIDA), ovaries 63 to 72, and urinary bladder wall 23 (PBIDA) to 36 (EIDA). The radiation absorbed dose was largely independent of changes in chemical structure except in (a) the liver, where absorbed dose varied by a factor of two in proportion to the rate of excretion of the IDA agent from the liver, and (b) the urinary bladder, where absorbed dose varied by a factor of 1.6 because of differences in rate of excretion. When the stimulus for gallbladder emptying is changed from whole-meal ingestion to cholecystokinin injection, the absorbed dose to the gallbladder increases to approximately 1 rad/mCi; if no gallbladder emptying is assumed, its absorbed dose increases to approximately 1.9 rad/mCi. In the absence of contraindication, the gallbladder absorbed dose may thus be decreased by inducing gallbladder emptying at the end of the imaging study.

  1. Radiation-dose calculation for five Tc-99m IDA hepatobiliary agents

    SciTech Connect

    Brown, P.H.; Krishnamurthy, G.T.; Bobba, V.R.; Kingston, E.; Turner, F.E.

    1982-11-01

    The radiation absorbed doses from five commercially available hepatobiliary agents-Tc-99m-tagged analogs of IDA (EIDA, PIPIDA, HIDA, PBIDA, DISIDA*) have been calculated from biokinetic data in 41 normal subjects. Serial gamma images, with blood and urine samples, were obtained to calculate cumulated radioactivity in the source organs: blood, kidey, bladder, liver, gallbladder, and intestines. The critical organ was the gallbladder, with an absorbed-dose range of 690 to 780 mrad/mCi. Absorbed doses for other target organs were: upper large intestine 320 to 370 mrad/mCi, lower large intestine 210 to 240, small intestine 170 to 200, liver 65 (DISIDA) to 130 (PBIDA), ovaries 63 to 72, and urinary bladder wall 23 (PBIDA) to 36 (EIDA). The radiation absorbed dose was largely independent of changes in chemical structure except in (a) the liver, where absorbed dose varied by a factor of two in proportion to the rate of excretion of the IDA agent from the liver, and (b) the urinary bladder, where absorbed dose varied by a factor of 1.6 because of differences in rate of excretion. When the stimulus for gallbladder emptying is changed from whole-meal ingestion to cholecystokinin injection, the absorbed dose to the gallbladder increases to approx. 1 rad/mCi; if no gallbladder emptying is assumed, its absorbed dose increases to approx. 1.9 rad/mCi. In the absence of contraindication, the gallbladder absorbed dose may thus be decreased by inducing gallbladder emptying at the end of the imaging study.

  2. Optimizing Normal Tissue Sparing in Ion Therapy Using Calculated Isoeffective Dose for Ion Selection

    SciTech Connect

    Remmes, Nicholas B.; Herman, Michael G.; Kruse, Jon J.

    2012-06-01

    Purpose: To investigate how the selection of ion type affects the calculated isoeffective dose to the surrounding normal tissue as a function of both normal tissue and target tissue {alpha}/{beta} ratios. Methods and Materials: A microdosimetric biologic dose model was incorporated into a Geant4 simulation of parallel opposed beams of protons, helium, lithium, beryllium, carbon, and neon ions. The beams were constructed to give a homogeneous isoeffective dose to a volume in the center of a water phantom for target tissues covering a range of cobalt equivalent {alpha}/{beta} ratios of 1-20 Gy. Concomitant normal tissue isoeffective doses in the plateau of the ion beam were then compared for different ions across the range of normal tissue and target tissue radiosensitivities for a fixed isoeffective dose to the target tissue. Results: The ion type yielding the optimal normal tissue sparing was highly dependent on the {alpha}/{beta} ratio of both the normal and the target tissue. For carbon ions, the calculated isoeffective dose to normal tissue at a 5-cm depth varied by almost a factor of 5, depending on the {alpha}/{beta} ratios of the normal and target tissue. This ranges from a factor of 2 less than the isoeffective dose of a similar proton treatment to a factor of 2 greater. Conclusions: No single ion is optimal for all treatment scenarios. The heavier ions are superior in cases in which the {alpha}/{beta} ratio of the target tissue is low and the {alpha}/{beta} ratio of normal tissue is high, and protons are superior in the opposite circumstances. Lithium and beryllium appear to offer dose advantages similar to carbon, with a considerably lower normal tissue dose when the {alpha}/{beta} ratio in the target tissue is high and the {alpha}/{beta} ratio in the normal tissue is low.

  3. Calculation of organ doses in x-ray examinations of premature babies

    SciTech Connect

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-02-15

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model.

  4. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.

    2016-03-01

    Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.

  5. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

    SciTech Connect

    Papanikolaou, Niko; Stathakis, Sotirios

    2009-10-15

    Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.

  6. X-ray dose estimation from cathode ray tube monitors by Monte Carlo calculation.

    PubMed

    Khaledi, Navid; Arbabi, Azim; Dabaghi, Moloud

    2015-04-01

    Cathode Ray Tube (CRT) monitors are associated with the possible emission of bremsstrahlung radiation produced by electrons striking the monitor screen. Because of the low dose rate, accurate dosimetry is difficult. In this study, the dose equivalent (DE) and effective dose (ED) to an operator working in front of the monitor have been calculated using the Monte Carlo (MC) method by employing the MCNP code. The mean energy of photons reaching the operator was above 17 keV. The phantom ED was 454 μSv y (348 nSv h), which was reduced to 16 μSv y (12 nSv h) after adding a conventional leaded glass sheet. The ambient dose equivalent (ADE) and personal dose equivalent (PDE) for the head, neck, and thorax of the phantom were also calculated. The uncertainty of calculated ED, ADE, and PDE ranged from 3.3% to 10.7% and 4.2% to 14.6% without and with the leaded glass, respectively.

  7. A two-dimensional point-kernel model for dose calculations in a glovebox array

    SciTech Connect

    Kornreich, D.E.; Dooley, D.E.

    1999-06-01

    An associated paper details a model of a room containing gloveboxes using the industry standard dose equivalent (dose) estimation tool MCNP. Such tools provide an excellent means for obtaining relatively reliable estimates of radiation transport in a complicated geometric structure. However, creating the input deck that models the complicated geometry is equally complicated. Therefore, an alternative tool is desirable that provides reasonable accurate dose estimates in complicated geometries for use in engineering-scale dose analyses. In the past, several tools that use the point-kernel model for estimating doses equivalent have been constructed (those referenced are only a small sample of similar tools). This new tool, the Photon and Neutron Dose Equivalent Model Of Nuclear materials Integrated with an Uncomplicated geometry Model (PANDEMONIUM), combines point-kernel and diffusion theory calculation routines with a simple geometry construction tool. PANDEMONIUM uses Visio{trademark} to draw a glovebox array in the room, including hydrogenous shields, sources and detectors. This simplification in geometric rendering limits the tool to two-dimensional geometries (and one-dimensional particle transport calculations).

  8. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams.

    PubMed

    Vidal, M; De Marzi, L; Szymanowski, H; Guinement, L; Nauraye, C; Hierso, E; Freud, N; Ferrand, R; François, P; Sarrut, D

    2016-02-21

    Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.

  9. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.

    2016-02-01

    Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.

  10. Dose calculation of 142Pr microspheres as a potential treatment for arteriovenous malformations

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo; Reece, Warren Daniel

    2005-01-01

    Arteriovenous malformation (AVM), especially cryptic AVM, can cause highly variable cerebral neurological defects. Injection of 142Pr microspheres into arteries feeding an AVM in order to simulate radio-embolism has been proposed as a novel treatment method. To investigate optimization of radiation dose to the clinically important arterial wall area, preliminary dosimetric studies have been performed. Monte Carlo calculations were performed for simulated arteries filled with microspheres packed by random packing. Arterial radii from 0.05 mm to 3 mm and microsphere radii from 0.01 mm to 0.7 mm were used in the simulation. For constant arterial size, dose varied significantly with microspheres radius. Inter-arterial effect was also simulated using simplified geometry. For the inter-arterial sites, the dose rate was calculated between two arteries of the same size parallel to each other. The dose increased significantly for large arteries (>1 mm radius) filled with large microspheres (>0.3 mm radius). The dose increase between small arteries (<0.3 mm radius) was not as significant as that between large arteries. Overall results indicate that arterial size and microsphere size significantly affect the dose profile. This factor should be taken into account in future clinical applications.

  11. Effect of the embolization material in the dose calculation for stereotactic radiosurgery of arteriovenous malformations

    SciTech Connect

    Galván de la Cruz, Olga Olinca; Lárraga-Gutiérrez, José Manuel; Moreno-Jiménez, Sergio; García-Garduño, Olivia Amanda; Celis, Miguel Angel

    2013-07-01

    It is reported in the literature that the material used in an embolization of an arteriovenous malformation (AVM) can attenuate the radiation beams used in stereotactic radiosurgery (SRS) up to 10% to 15%. The purpose of this work is to assess the dosimetric impact of this attenuating material in the SRS treatment of embolized AVMs, using Monte Carlo simulations assuming clinical conditions. A commercial Monte Carlo dose calculation engine was used to recalculate the dose distribution of 20 AVMs previously planned with a pencil beam dose calculation algorithm. Dose distributions were compared using the following metrics: average, minimal and maximum dose of AVM, and 2D gamma index. The effect in the obliteration rate was investigated using radiobiological models. It was found that the dosimetric impact of the embolization material is less than 1.0 Gy in the prescription dose to the AVM for the 20 cases studied. The impact in the obliteration rate is less than 4.0%. There is reported evidence in the literature that embolized AVMs treated with SRS have low obliteration rates. This work shows that there are dosimetric implications that should be considered in the final treatment decisions for embolized AVMs.

  12. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams.

    PubMed

    Vidal, M; De Marzi, L; Szymanowski, H; Guinement, L; Nauraye, C; Hierso, E; Freud, N; Ferrand, R; François, P; Sarrut, D

    2016-02-21

    Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times. PMID:26816191

  13. Accuracy of out-of-field dose calculations by a commercial treatment planning system.

    PubMed

    Howell, Rebecca M; Scarboro, Sarah B; Kry, S F; Yaldo, Derek Z

    2010-12-01

    The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.

  14. Accuracy of out-of-field dose calculations by a commercial treatment planning system

    NASA Astrophysics Data System (ADS)

    Howell, Rebecca M.; Scarboro, Sarah B.; Kry, S. F.; Yaldo, Derek Z.

    2010-12-01

    The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.

  15. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    PubMed Central

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-01-01

    The purpose of this study was to investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for 7 disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head & neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and Monte Carlo algorithms to obtain the average range differences (ARD) and root mean square deviation (RMSD) for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation (ADD) of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing Monte Carlo dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head & neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head & neck treatments. We conclude that currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific

  16. Optimizing portal dose calculation for an amorphous silicon detector using Swiss Monte Carlo Plan

    NASA Astrophysics Data System (ADS)

    Frauchiger, D.; Fix, M. K.; Frei, D.; Volken, W.; Mini, R.; Manser, P.

    2007-06-01

    Purpose: Modern treatment planning systems (TPS) are able to calculate doses within the patient for numerous delivery techniques as e. g. intensity modulated radiation therapy (IMRT). Even dose predictions to an electronic portal image device (EPID) are available in some TPS, but with limitations in accuracy. With the steadily increasing number of facilities using EPIDs for pre-treatment and treatment verification, the desire of calculating accurate EPID dose distributions is growing. A solution for this problem is the use of Monte Carlo (MC) methods. Aims of this study were firstly to implement geometries of an amorphous silicon based EPID with varying levels of geometry complexity. Secondly to analyze the differences between simulation results and measurements for each geometry. Thirdly, to compare different transport algorithms within all EPID geometries in a flexible C++ MC environment. Materials and Methods: In this work three geometry sets, representing the EPID, are implemented and investigated. To gain flexibility in the MC environment geometry and particle transport code are independent. That allows the user to select between the transport algorithms EGSnrc, VMC++ and PIN (an in-house developed transport code) while using one of the implemented geometries of the EPID. For all implemented EPID geometries dose distributions were calculated for 6 MV and 15 MV beams using different transport algorithms and are then compared with measurements. Results: A very simple geometry, consisting of a water slab, is not capable to reproduce measurements, whereas 8 material layers perform well. The more layers with different materials are used, the longer last the calculations. EGSnrc and VMC++ lead to dosimetrically equal results. Gamma analysis between calculated and measured EPID dose distributions, using a dose difference criterion of ± 3% and a distance to agreement criterion of ± 3 mm, revealed a gamma value < 1 within more than 95% of all pixels, that have a

  17. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  18. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy

    SciTech Connect

    Petti, P.L.

    1996-07-15

    The purpose of this article is to evaluate a pencil-beam dose calculation algorithm for protons and heavier charged particles in complex patient geometries defined by computed tomography (CT) data and to compare isodose distributions calculated with the new technique to those calculated with conventional algorithms in selected patients with skull-base tumors. Monte Carlo calculations were performed to evaluate the pencil-beam algorithm in patient geometries for a modulated 150-MeV proton beam. A modified version of a Monte Carlo code described in a previous publication (18) was used for these comparisons. Tissue densities were inferred from patient CT data on a voxel-by-voxel basis, and calculations were performed with and without tissue compensators. A dose calculation module using the new algorithm was written, and treatment plans using the new algorithm were compared to plans using standard ray-tracing techniques for 10 patients with clival chordoma and three patients with nasopharyngeal carcinoma were treated with helium ions at Lawrence Berkeley National Laboratory (LBL). Pencil beam calculations agreed well with Monte Carlo calculations in the patient geometries. 23 refs., 5 figs.

  19. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    NASA Astrophysics Data System (ADS)

    Seco, J.; Adams, E.; Bidmead, M.; Partridge, M.; Verhaegen, F.

    2005-03-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  20. Autoradiography-based, three-dimensional calculation of dose rate for murine, human-tumor xenografts.

    PubMed

    Koral, K F; Kwok, C S; Yang, F E; Brown, R S; Sisson, J C; Wahl, R L

    1993-11-01

    A Fast Fourier Transform method for calculating the three-dimensional dose rate distribution for murine, human-tumor xenografts is outlined. The required input includes evenly-spaced activity slices which span the tumor. Numerical values in these slices are determined by quantitative 125I autoradiography. For the absorbed dose-rate calculation, we assume the activity from both 131I- and 90Y-labeled radiopharmaceuticals would be distributed as is measured with the 125I label. Two example cases are presented: an ovarian-carcinoma xenograft with an IgG 2ak monoclonal antibody and a neuroblastoma xenograft with meta-iodobenzylguanidine (MIBG). Considering all the volume elements in a tumor, we show, by comparison of histograms and also relative standard deviations, that the measured 125I activity and the calculated 131I dose-rate distributions, are similarly non-uniform and that they are more non-uniform than the calculated 90Y dose-rate distribution. However, the maximum-to-minimum ratio, another measure of non-uniformity, decreases by roughly an order of magnitude from one distribution to the next in the order given above. PMID:8298569

  1. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  2. GPU-based ultra-fast dose calculation using a finite size pencil beam model

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Choi, Dongju; Men, Chunhua; Pan, Hubert; Majumdar, Amitava; Jiang, Steve B.

    2009-10-01

    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity-modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation in the case of a water phantom and the case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200 to 400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27 GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a nine-field prostate IMRT plan with this new framework is less than 1 s. This indicates that the GPU-based FSPB algorithm is well suited for online re-planning for adaptive radiotherapy.

  3. Dose Calculations for the Codsiposal WP of HLW Glass and the Shippingport LWBR SNF

    SciTech Connect

    G. Radulescu

    1999-11-05

    The purpose of this calculation is to determine the surface dose rates of a codisposal waste package (WP) containing an intact seed assembly of the Shippingport light-water breeder reactor (LWBR) spent nuclear fuel (SNF) and the Savannah River Site (SRS) high-level waste (HLW) in glass form. The Shippingport LWBR SNF is loaded in a Department of Energy (DOE) standardized 18-in. canister. The canister is surrounded by five 4.5-m-long Hanford pour canisters containing the HLW glass. Gamma dose rate calculation for the WP containing only the HLW glass is also performed. The results will provide information about the contribution of DOE SNF to the total dose rate on the WP surfaces.

  4. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.

    PubMed

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Yasushi; Miyahara, Nobuyuki

    2008-09-01

    The radiation-transport code PHITS with an event generator mode has been applied to analyze energy depositions of electrons and charged heavy particles in two spherical phantoms and a voxel-based mouse phantom upon neutron irradiation. The calculations using the spherical phantoms quantitatively clarified the type and energy of charged particles which are released through interactions of neutrons with the phantom elements and contribute to the radiation dose. The relative contribution of electrons increased with an increase in the size of the phantom and with a decrease in the energy of the incident neutrons. Calculations with the voxel-based mouse phantom for 2.0-MeV neutron irradiation revealed that the doses to different locations inside the body are uniform, and that the energy is mainly deposited by recoil protons. The present study has demonstrated that analysis using PHITS can yield dose distributions that are accurate enough for RBE evaluation. PMID:18580044

  5. [Calculation of the dose of low-intensity laser radiation: the need or the harm?].

    PubMed

    Moskvin, S V

    2012-01-01

    This study showed that it is highly undesirable to equip the devices for laser therapy with the dose-calculation function. In order to avoid mistakes, the operator should perform a strict sequence of actions as follows: to choose the needed wavelength and operating regime (the laser head block) of the LILR source, to set and measure the radiation power, the time and frequency of treatment, turn on the apparatus, control its operation and switch it off at the scheduled time. Meeting all these requirements eventually ensures obtaining a certain optimal dose density and guarantees that the entire procedure of laser irradiation is performed in a proper way. The equipment of the apparatus with the dose-calculation function is nothing more than a marketing ploy intended to earn extra money that apart from everything else creates additional problems for the customer. PMID:23373298

  6. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    SciTech Connect

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-05-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p {<=}.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  7. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    SciTech Connect

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  8. Dose calculations using artificial neural networks: A feasibility study for photon beams

    NASA Astrophysics Data System (ADS)

    Vasseur, Aurélien; Makovicka, Libor; Martin, Éric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-04-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150×1×150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  9. Probable solar flare doses encountered on an interplanetary mission as calculated by the MCFLARE code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Karp, I. M.

    1972-01-01

    The computer program, MCFLARE, uses Monte Carlo methods to simulate solar flare occurrences during an interplanetary space voyage. The total biological dose inside a shielded crew compartment due to the flares encountered during the voyage is determined. The computer program evaluates the doses obtained on a large number of trips having identical trajectories. From these results, a dose D sub p having a probability p of not being exceeded during the voyage can be determined as a function of p for any shield material configuration. To illustrate the use of the code, a trip to Mars and return is calculated, and estimated doses behind several thicknesses of aluminum shield and water shield are presented.

  10. Calculating excess risk with age-dependent adjustment factors and cumulative doses: ethylene oxide case study.

    PubMed

    Sielken, Robert L; Flores, Ciriaco Valdez

    2009-10-01

    U.S. EPA's Supplemental Guidance in 2005 documented their procedure for incorporating age-dependent adjustment factors (ADAFs) into lifetime excess risk calculations. EPA's first attempt to implement an ADAF when the dose-response model had a cumulative dose metric was for ethylene oxide and that attempt (US EPA, 2006) failed to successfully follow EPA's own guidelines. The failure suggested that the incorporation of ADAFs would increase the lifetime excess risk for ethylene oxide by approximately 66%. However, if the procedure in the guidelines were followed correctly, then the increase would have only been 0.008% or approximately 8,000 fold less. Because cumulative exposure is a common dose metric in dose-response models of epidemiological data, a correct implementation of the guidelines is of widespread importance.

  11. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  12. Mathematical child phantom for the calculation of dose to the organs at risk

    SciTech Connect

    Francois, P.; Beurtheret, C.; Dutreix, A.; De Vathaire, F.

    1988-05-01

    In order to calculate the doses received by the organs of 530 children treated by radiation for cancer between 1945 and 1969 at the G. Roussy Institute, we have developed a computer program for organ location calculation. To calculate the location of each child's organs of interest at the time of the treatment, only two parameters are necessary; sex and height or sex and age when the height at the time of the treatment is unknown. The algorithm is based on the metric studies of growth known as auxology. Each organ is located by one point representing its center. The model has been checked on 100 healthy children.

  13. Comparison of measured and calculated dose rates for the Castor HAW 20/28 CG.

    PubMed

    Ringleb, O; Kühl, H; Scheib, H; Rimpler, A

    2005-01-01

    In January 2003 neutron and gamma dose rate measurements at a CASTOR HAW 20/28 CG were performed by the Bundesamt für Strahlenschutz at Gorleben. First, commercial dose rate measurement devices were used, then spectral measurements with a Bonner sphere system were made to verify the results. Axial and circumferential dose rate profiles were measured near the cask surface and spectral measurements were performed for some locations. A shielding analysis of the cask was performed with the MCNP Monte Carlo Code with ENDF/B-VI cross section libraries. The cask was modelled 'as built', i.e. with its real inventory, dimensions and material densities and with the same configuration and position as in the storage facility. The average C/E-ratios are 1.3 for neutron dose rates and 1.4 for gamma dose rates. Both the measured and calculated dose rates show the same qualitative trends in the axial and circumferential direction. The spectral measurements show a variation in the spectra across the cask surface. This correlates with the variation found in the C/E-ratios. At cask midheight good agreement between the Bonner sphere system and the commercial device (LB 6411) is found with a 7% lower derived H*(10) dose rate from the Bonner sphere system. PMID:16604722

  14. TH-C-BRD-02: Analytical Modeling and Dose Calculation Method for Asymmetric Proton Pencil Beams

    SciTech Connect

    Gelover, E; Wang, D; Hill, P; Flynn, R; Hyer, D

    2014-06-15

    Purpose: A dynamic collimation system (DCS), which consists of two pairs of orthogonal trimmer blades driven by linear motors has been proposed to decrease the lateral penumbra in pencil beam scanning proton therapy. The DCS reduces lateral penumbra by intercepting the proton pencil beam near the lateral boundary of the target in the beam's eye view. The resultant trimmed pencil beams are asymmetric and laterally shifted, and therefore existing pencil beam dose calculation algorithms are not capable of trimmed beam dose calculations. This work develops a method to model and compute dose from trimmed pencil beams when using the DCS. Methods: MCNPX simulations were used to determine the dose distributions expected from various trimmer configurations using the DCS. Using these data, the lateral distribution for individual beamlets was modeled with a 2D asymmetric Gaussian function. The integral depth dose (IDD) of each configuration was also modeled by combining the IDD of an untrimmed pencil beam with a linear correction factor. The convolution of these two terms, along with the Highland approximation to account for lateral growth of the beam along the depth direction, allows a trimmed pencil beam dose distribution to be analytically generated. The algorithm was validated by computing dose for a single energy layer 5×5 cm{sup 2} treatment field, defined by the trimmers, using both the proposed method and MCNPX beamlets. Results: The Gaussian modeled asymmetric lateral profiles along the principal axes match the MCNPX data very well (R{sup 2}≥0.95 at the depth of the Bragg peak). For the 5×5 cm{sup 2} treatment plan created with both the modeled and MCNPX pencil beams, the passing rate of the 3D gamma test was 98% using a standard threshold of 3%/3 mm. Conclusion: An analytical method capable of accurately computing asymmetric pencil beam dose when using the DCS has been developed.

  15. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    SciTech Connect

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-06-15

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts.

  16. A new pencil beam model for photon dose calculations in heterogeneous media.

    PubMed

    Zhang, P; Simon, A; De Crevoisier, R; Haigron, P; Nassef, M H; Li, B; Shu, H

    2014-11-01

    The pencil beam method is commonly used for dose calculations in intensity-modulated radiation therapy (IMRT). In this study, we have proposed a novel pencil model for calculating photon dose distributions in heterogeneous media. To avoid any oblique kernel-related bias and reduce computation time, dose distributions were computed in a spherical coordinate system based on the pencil kernels of different distances from source to surface (DSS). We employed two different dose calculation methods: the superposition method and the fast Fourier transform convolution (FFTC) method. In order to render the superposition method more accurate, we scaled the depth-directed component by moving the position of the entry point and altering the DSS value for a given beamlet. The lateral components were thus directly corrected by the density scaling method along the spherical shell without taking the densities from the previous layers into account. Significant computation time could be saved by performing the FFTC calculations on each spherical shell, disregarding density changes in the lateral direction. The proposed methods were tested on several phantoms, including lung- and bone-type heterogeneities. We compared them with Monte Carlo (MC) simulation for several field sizes with 6 MV photon beams. Our results revealed mean absolute deviations <1% for the proposed superposition method. Compared to the AAA algorithm, this method improved dose calculation accuracy by at least 0.3% in heterogeneous phantoms. The FFTC method was approximately 40 times faster than the superposition method. However, compared with MC, mean absolute deviations were <3% for the FFTC method.

  17. Modelling lateral beam quality variations in pencil kernel based photon dose calculations.

    PubMed

    Nyholm, T; Olofsson, J; Ahnesjö, A; Karlsson, M

    2006-08-21

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  18. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    NASA Astrophysics Data System (ADS)

    Nyholm, T.; Olofsson, J.; Ahnesjö, A.; Karlsson, M.

    2006-08-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  19. Space Radiation Dose Calculations for the Space Experiment Matroshka-R Modelling Conditions

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Kartashov, Dmitrij; Tolochek, Raisa

    Space radiation dose calculations for the space experiment Matroshka-R modelling conditions are presented in the report. The experiment has been carried out onboard the ISS from 2004 to 2014. Dose measurements were realized both outside the ISS on the outer surface of the Service Module with the MTR-facility and in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility. Newly applied approach to calculate the shielding probability functions for complex shape objects is used when the object surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Using the simplified Matroshka-R shielding geometry models of the space station compartments the space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms, and for an additional shielding installed in the compartment are calculated. There is good agreement between the data obtained in the experiment and calculated ones within an experiment accuracy of about 10%. Thus the calculation method used has been successfully verified with the Matroshka-R experiment data. The suggested method can be recommended for modelling of radiation loads on the crewmembers, and estimation of the additional shielding efficiency in space station compartments, and also for pre-flight estimations of radiation shielding in future space missions.

  20. Review of dynamical models for external dose calculations based on Monte Carlo simulations in urbanised areas.

    PubMed

    Eged, Katalin; Kis, Zoltán; Voigt, Gabriele

    2006-01-01

    After an accidental release of radionuclides to the inhabited environment the external gamma irradiation from deposited radioactivity contributes significantly to the radiation exposure of the population for extended periods. For evaluating this exposure pathway, three main model requirements are needed: (i) to calculate the air kerma value per photon emitted per unit source area, based on Monte Carlo (MC) simulations; (ii) to describe the distribution and dynamics of radionuclides on the diverse urban surfaces; and (iii) to combine all these elements in a relevant urban model to calculate the resulting doses according to the actual scenario. This paper provides an overview about the different approaches to calculate photon transport in urban areas and about several dose calculation codes published. Two types of Monte Carlo simulations are presented using the global and the local approaches of photon transport. Moreover, two different philosophies of the dose calculation, the "location factor method" and a combination of relative contamination of surfaces with air kerma values are described. The main features of six codes (ECOSYS, EDEM2M, EXPURT, PARATI, TEMAS, URGENT) are highlighted together with a short model-model features intercomparison.

  1. Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.

    PubMed

    Liu, Han; Zhuang, Tingliang; Stephans, Kevin; Videtic, Gregory; Raithel, Stephen; Djemil, Toufik; Xia, Ping

    2015-11-08

    For patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy, early treatment plans were based on a simpler dose calculation algorithm, the pencil beam (PB) calculation. Because these patients had the longest treatment follow-up, identifying dose differences between the PB calculated dose and Monte Carlo calculated dose is clinically important for understanding of treatment outcomes. Previous studies found significant dose differences between the PB dose calculation and more accurate dose calculation algorithms, such as convolution-based or Monte Carlo (MC), mostly for three-dimensional conformal radiotherapy (3D CRT) plans. The aim of this study is to investigate whether these observed dose differences also exist for intensity-modulated radiotherapy (IMRT) plans for both centrally and peripherally located tumors. Seventy patients (35 central and 35 peripheral) were retrospectively selected for this study. The clinical IMRT plans that were initially calculated with the PB algorithm were recalculated with the MC algorithm. Among these paired plans, dosimetric parameters were compared for the targets and critical organs. When compared to MC calculation, PB calculation overestimated doses to the planning target volumes (PTVs) of central and peripheral tumors with different magnitudes. The doses to 95% of the central and peripheral PTVs were overestimated by 9.7% ± 5.6% and 12.0% ± 7.3%, respectively. This dose overestimation did not affect doses to the critical organs, such as the spinal cord and lung. In conclusion, for NSCLC treated with IMRT, dose differences between the PB and MC calculations were different from that of 3D CRT. No significant dose differences in critical organs were observed between the two calculations.

  2. Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.

    PubMed

    Liu, Han; Zhuang, Tingliang; Stephans, Kevin; Videtic, Gregory; Raithel, Stephen; Djemil, Toufik; Xia, Ping

    2015-01-01

    For patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy, early treatment plans were based on a simpler dose calculation algorithm, the pencil beam (PB) calculation. Because these patients had the longest treatment follow-up, identifying dose differences between the PB calculated dose and Monte Carlo calculated dose is clinically important for understanding of treatment outcomes. Previous studies found significant dose differences between the PB dose calculation and more accurate dose calculation algorithms, such as convolution-based or Monte Carlo (MC), mostly for three-dimensional conformal radiotherapy (3D CRT) plans. The aim of this study is to investigate whether these observed dose differences also exist for intensity-modulated radiotherapy (IMRT) plans for both centrally and peripherally located tumors. Seventy patients (35 central and 35 peripheral) were retrospectively selected for this study. The clinical IMRT plans that were initially calculated with the PB algorithm were recalculated with the MC algorithm. Among these paired plans, dosimetric parameters were compared for the targets and critical organs. When compared to MC calculation, PB calculation overestimated doses to the planning target volumes (PTVs) of central and peripheral tumors with different magnitudes. The doses to 95% of the central and peripheral PTVs were overestimated by 9.7% ± 5.6% and 12.0% ± 7.3%, respectively. This dose overestimation did not affect doses to the critical organs, such as the spinal cord and lung. In conclusion, for NSCLC treated with IMRT, dose differences between the PB and MC calculations were different from that of 3D CRT. No significant dose differences in critical organs were observed between the two calculations. PMID:26699560

  3. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body.

  4. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  5. Sex-specific tissue weighting factors for effective dose equivalent calculations

    SciTech Connect

    Xu, X.G.; Reece, W.D.

    1996-01-01

    The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.

  6. Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution

    NASA Astrophysics Data System (ADS)

    Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline

    2006-09-01

    Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.

  7. Dose calculations for the concrete water tunnels at 190-C Area, Hanford Site

    SciTech Connect

    Kamboj, S.; Yu, C.

    1997-01-01

    The RESRAD-BUILD code was used to calculate the radiological dose from the contaminated concrete water tunnels at the 190-C Area at the Hanford Site. Two exposure scenarios, recreationist and maintenance worker, were considered. A residential scenario was not considered because the material was assumed to be left intact (i.e., the concrete would not be rubbleized because the location would not be suitable for construction of a house). The recreationist was assumed to use the tunnel for 8 hours per day for 1 week as an overnight shelter. The maintenance worker was assumed to spend 20 hours per year working in the tunnel. Six exposure pathways were considered in calculating the dose. Three external exposure pathways involved penetrating radiation emitted directly from the contaminated tunnel floor, emitted from radioactive particulates deposited on the tunnel floor, and resulting from submersion in airborne radioactive particulates. Three internal exposure pathways involved inhalation of airborne radioactive particulates; inadvertent direct ingestion of removable, contaminated material on the tunnel floor; and inadvertent indirect ingestion of airborne particulates deposited on the tunnel floor. The gradual removal of surface contamination over time and the ingrowth of decay products were considered in calculating the dose at different times. The maximum doses were estimated to be 1.5 mrem/yr for the recreationist and 0.34 mrem/yr for the maintenance worker.

  8. Monte Carlo-based dose calculation for 32P patch source for superficial brachytherapy applications

    PubMed Central

    Sahoo, Sridhar; Palani, Selvam T.; Saxena, S. K.; Babu, D. A. R.; Dash, A.

    2015-01-01

    Skin cancer treatment involving 32P source is an easy, less expensive method of treatment limited to small and superficial lesions of approximately 1 mm deep. Bhabha Atomic Research Centre (BARC) has indigenously developed 32P nafion-based patch source (1 cm × 1 cm) for treating skin cancer. For this source, the values of dose per unit activity at different depths including dose profiles in water are calculated using the EGSnrc-based Monte Carlo code system. For an initial activity of 1 Bq distributed in 1 cm2 surface area of the source, the calculated central axis depth dose values are 3.62 × 10-10 GyBq-1 and 8.41 × 10-11 GyBq-1at 0.0125 and 1 mm depths in water, respectively. Hence, the treatment time calculated for delivering therapeutic dose of 30 Gy at 1 mm depth along the central axis of the source involving 37 MBq activity is about 2.7 hrs. PMID:26150682

  9. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    SciTech Connect

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-09-15

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  10. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Gu, Jianwei

    CT scanner models in this dissertation were versatile and accurate tools for estimating dose to different patient phantoms undergoing various CT procedures. The organ doses from kV and MV CBCT were also calculated. This dissertation finally summarizes areas where future research can be performed including MV CBCT further validation and application, dose reporting software and image and dose correlation study.

  11. Beyond Gaussians: a study of single spot modeling for scanning proton dose calculation

    PubMed Central

    Li, Yupeng; Zhu, Ronald X.; Sahoo, Narayan; Anand, Aman; Zhang, Xiaodong

    2013-01-01

    Active spot scanning proton therapy is becoming increasingly adopted by proton therapy centers worldwide. Unlike passive-scattering proton therapy, active spot scanning proton therapy, especially intensity-modulated proton therapy, requires proper modeling of each scanning spot to ensure accurate computation of the total dose distribution contributed from a large number of spots. During commissioning of the spot scanning gantry at the Proton Therapy Center in Houston, it was observed that the long-range scattering protons in a medium may have been inadequately modeled for high-energy beams by a commercial treatment planning system, which could lead to incorrect prediction of field-size effects on dose output. In the present study, we developed a pencil-beam algorithm for scanning-proton dose calculation by focusing on properly modeling individual scanning spots. All modeling parameters required by the pencil-beam algorithm can be generated based solely on a few sets of measured data. We demonstrated that low-dose halos in single-spot profiles in the medium could be adequately modeled with the addition of a modified Cauchy-Lorentz distribution function to a double-Gaussian function. The field-size effects were accurately computed at all depths and field sizes for all energies, and good dose accuracy was also achieved for patient dose verification. The implementation of the proposed pencil beam algorithm also enabled us to study the importance of different modeling components and parameters at various beam energies. The results of this study may be helpful in improving dose calculation accuracy and simplifying beam commissioning and treatment planning processes for spot scanning proton therapy. PMID:22297324

  12. Patient-specific Monte Carlo dose calculations for 103Pd breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Cygler, J. E.; Caudrelier, J. M.; Thomson, R. M.

    2016-04-01

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for 103Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV {{D}90} of up to 11% and skin {{D}1~\\text{c{{\\text{m}}3}}} of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ({{D}90} on average 10% and up to 27%) and underestimates dose to the skin ({{D}1~\\text{c{{\\text{m}}3}}} on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied

  13. Application of dose kernel calculation using a simplified Monte Carlo method to treatment plan for scanned proton beams.

    PubMed

    Mizutani, Shohei; Takada, Yoshihisa; Kohno, Ryosuke; Hotta, Kenji; Tansho, Ryohei; Akimoto, Tetsuo

    2016-01-01

    Full Monte Carlo (FMC) calculation of dose distribution has been recognized to have superior accuracy, compared with the pencil beam algorithm (PBA). However, since the FMC methods require long calculation time, it is difficult to apply them to routine treatment planning at present. In order to improve the situation, a simplified Monte Carlo (SMC) method has been introduced to the dose kernel calculation applicable to dose optimization procedure for the proton pencil beam scanning. We have evaluated accuracy of the SMC calculation by comparing a result of the dose kernel calculation using the SMC method with that using the FMC method in an inhomogeneous phantom. The dose distribution obtained by the SMC method was in good agreement with that obtained by the FMC method. To assess the usefulness of SMC calculation in clinical situations, we have compared results of the dose calculation using the SMC with those using the PBA method for three clinical cases of tumor treatment. The dose distributions calculated with the PBA dose kernels appear to be homogeneous in the planning target volumes (PTVs). In practice, the dose distributions calculated with the SMC dose kernels with the spot weights optimized with the PBA method show largely inhomogeneous dose distributions in the PTVs, while those with the spot weights optimized with the SMC method have moderately homogeneous distributions in the PTVs. Calculation using the SMC method is faster than that using the GEANT4 by three orders of magnitude. In addition, the graphic processing unit (GPU) boosts the calculation speed by 13 times for the treatment planning using the SMC method. Thence, the SMC method will be applicable to routine clinical treatment planning for reproduction of the complex dose distribution more accurately than the PBA method in a reasonably short time by use of the GPU-based calculation engine. PMID:27074456

  14. Calculation of effective dose from measurements of secondary neutron spectra and scattered photon dose from dynamic MLC IMRT for 6 MV, 15 MV, and 18 MV beam energies.

    PubMed

    Howell, Rebecca M; Hertel, Nolan E; Wang, Zhonglu; Hutchinson, Jesson; Fullerton, Gary D

    2006-02-01

    Effective doses were calculated from the delivery of 6 MV, 15 MV, and 18 MV conventional and intensity-modulated radiation therapy (IMRT) prostate treatment plans. ICRP-60 tissue weighting factors were used for the calculations. Photon doses were measured in phantom for all beam energies. Neutron spectra were measured for 15 MV and 18 MV and ICRP-74 quality conversion factors used to calculate ambient dose equivalents. The ambient dose equivalents were corrected for each tissue using neutron depth dose data from the literature. The depth corrected neutron doses were then used as a measure of the neutron component of the ICRP protection quantity, organ equivalent dose. IMRT resulted in an increased photon dose to many organs. However, the IMRT treatments resulted in an overall decrease in effective dose compared to conventional radiotherapy. This decrease correlates to the ability of an intensity-modulated field to minimize dose to critical normal structures in close proximity to the treatment volume. In a comparison of the three beam energies used for the IMRT treatments, 6 MV resulted in the lowest effective dose, while 18 MV resulted in the highest effective dose. This is attributed to the large neutron contribution for 18 MV compared to no neutron contribution for 6 MV. PMID:16532941

  15. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields

    PubMed Central

    Colodro, Juan Fernando Mata; Berna, Alfredo Serna; Puchades, Vicente Puchades; Amores, David Ramos; Baños, Miguel Alcaraz

    2014-01-01

    It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond® (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans. PMID:25525309

  16. Feasibility of a Multigroup Deterministic Solution Method for 3D Radiotherapy Dose Calculations

    PubMed Central

    Vassiliev, Oleg N.; Wareing, Todd A.; Davis, Ian M.; McGhee, John; Barnett, Douglas; Horton, John L.; Gifford, Kent; Failla, Gregory; Titt, Uwe; Mourtada, Firas

    2008-01-01

    Purpose To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations. Methods and Materials Two hypothetical cases for prostate and head and neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes (100 cm SSD). The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head and neck cases. Results For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within 3% (relative point-wise difference) or 3mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft tissue interfaces, and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were under 20 CPU minutes on a single 2.2 GHz AMD Opteron processor. Conclusions The methods in Attila have the potential to be the basis for an efficient dose engine for patient specific treatment planning, providing accuracy similar to that obtained by Monte Carlo. PMID:18722273

  17. Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation

    SciTech Connect

    Beaulieu, Luc; Carlsson Tedgren, Asa; Carrier, Jean-Francois; and others

    2012-10-15

    the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.

  18. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  19. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum

  20. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    SciTech Connect

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-04-15

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000

  1. Automatic commissioning of a GPU-based Monte Carlo radiation dose calculation code for photon radiotherapy

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Jiang Graves, Yan; Jia, Xun; Jiang, Steve B.

    2014-10-01

    Monte Carlo (MC) simulation is commonly considered as the most accurate method for radiation dose calculations. Commissioning of a beam model in the MC code against a clinical linear accelerator beam is of crucial importance for its clinical implementation. In this paper, we propose an automatic commissioning method for our GPU-based MC dose engine, gDPM. gDPM utilizes a beam model based on a concept of phase-space-let (PSL). A PSL contains a group of particles that are of the same type and close in space and energy. A set of generic PSLs was generated by splitting a reference phase-space file. Each PSL was associated with a weighting factor, and in dose calculations the particle carried a weight corresponding to the PSL where it was from. Dose for each PSL in water was pre-computed, and hence the dose in water for a whole beam under a given set of PSL weighting factors was the weighted sum of the PSL doses. At the commissioning stage, an optimization problem was solved to adjust the PSL weights in order to minimize the difference between the calculated dose and measured one. Symmetry and smoothness regularizations were utilized to uniquely determine the solution. An augmented Lagrangian method was employed to solve the optimization problem. To validate our method, a phase-space file of a Varian TrueBeam 6 MV beam was used to generate the PSLs for 6 MV beams. In a simulation study, we commissioned a Siemens 6 MV beam on which a set of field-dependent phase-space files was available. The dose data of this desired beam for different open fields and a small off-axis open field were obtained by calculating doses using these phase-space files. The 3D γ-index test passing rate within the regions with dose above 10% of dmax dose for those open fields tested was improved averagely from 70.56 to 99.36% for 2%/2 mm criteria and from 32.22 to 89.65% for 1%/1 mm criteria. We also tested our commissioning method on a six-field head-and-neck cancer IMRT plan. The

  2. A response function calculation for a dose-equivalent neutron dosimeter using superheated drops

    SciTech Connect

    Wang, C.K. )

    1991-01-01

    A neutron dosimeter using superheated drops in gel was invented by Apfel. The SDD-100 or BD-100, which uses Freon-12 (CF{sub 2}Cl{sub 2}) for the superheated drops, is most useful in neutron dosimetry because it was claimed that the neutron response function of such a dosimeter is nearly dose equivalent. An ideal dose-equivalent neutron dosimeter should be totally independent of the energies of incident neutrons. Lo and Apfel have performed calculations and experiments to study the neutron response functions for various types of superheated drops, including Freon-12. Both their calculational and the experimental results demonstrated the dose-equivalent-like response function for the Freon-12. The agreement between the calculational results and the experimental results is not satisfactory, however, especially for neutrons with energies < 100 keV. One important factor, which was not considered and may have contributed to the disagreement, is the neutron-slowing-down effect. That is, kilo-electron-volt neutrons, although not energetic enough to trigger bubbles in Freon-12, have a short mean-free-path (< 1 cm) and can easily slow down or thermalize in the gel matrix and then trigger bubbles in Freon-12 via a {sup 35}Cl(n,p){sup 35}S reaction. To consider the slowing-down effect in the dosimeter, a neutron transport calculation must be performed. This paper describes the set of Monte Carlo neutron transport calculations that were performed to calculate the response function for a bare SDD-100 surrounded with various thicknesses of polyethylene (CH{sub 2}).

  3. SU-E-T-416: VMAT Dose Calculations Using Cone Beam CT Images: A Preliminary Study

    SciTech Connect

    Yu, S; Sehgal, V; Kuo, J; Daroui, P; Ramsinghani, N; Al-Ghazi, M

    2014-06-01

    Purpose: Cone beam CT (CBCT) images have been used routinely for patient positioning throughout the treatment course. However, use of CBCT for dose calculation is still investigational. The purpose of this study is to assess the utility of CBCT images for Volumetric Modulated Arc Therapy (VMAT) plan dose calculation. Methods: A CATPHAN 504 phantom (The Phantom Laboratory, Salem, NY) was used to compare the dosimetric and geometric accuracy between conventional CT and CBCT (in both full and half fan modes). Hounsfield units (HU) profiles at different density areas were evaluated. A C shape target that surrounds a central avoidance structure was created and a VMAT plan was generated on the CT images and copied to the CBCT phantom images. Patient studies included three brain patients, and one head and neck (H'N) patient. VMAT plans generated on the patients treatment planning CT was applied to CBCT images obtained during the first treatment. Isodose distributions and dosevolume- histograms (DVHs) were compared. Results: For the phantom study, the HU difference between CT and CBCT is within 100 (maximum 96 HU for Teflon CBCT images in full fan mode). The impact of these differences on the calculated dose distributions was clinically insignificant. In both phantom and patient studies, target DVHs based on CBCT images were in excellent agreement with those based on planning CT images. Mean, Median, near minimum (D98%), and near maximum (D2%) doses agreed within 0-2.5%. A slightly larger discrepancy is observed in the patient studies compared to that seen in the phantom study, (0-1% vs. 0 - 2.5%). Conclusion: CBCT images can be used to accurately predict dosimetric results, without any HU correction. It is feasible to use CBCT to evaluate the actual dose delivered at each fraction. The dosimetric consequences resulting from tumor response and patient geometry changes could be monitored.

  4. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  5. Phase I dose intensification study of 2-weekly epirubicin with GM-CSF in advanced cancer.

    PubMed

    Michael, M; Toner, G C; Olver, I N; Fenessy, A; Bishop, J F

    1997-06-01

    This study investigated dose intensification of epirubicin administered as a 2-weekly regimen with granulocyte-macrophage colony-stimulating factor (GM-CSF) support. The aim was to define the maximally tolerated dose of epirubicin and to assess the efficacy of GM-CSF to ameliorate its toxicity. Patients with anthracycline-responsive advanced malignancies were eligible. Six dose levels, commencing at 90 mg/m2, of epirubicin administered every 2 weeks for four courses were planned with GM-CSF 10 micrograms/kg/day administered for 10 days from the second day of each course. Six patients were to be entered at each dose level, and escalation to the next level was based upon toxicity criteria. Twelve patients were entered, six at dose level 1 (90 mg/m2) and six at dose level 2 (120 mg/m2). Prospectively defined haematological dose-limiting toxicities were noted in one patient at dose level 1 and in five patients at dose level 2. Further dose escalation was not attempted. Significant nonhaematological toxicities included febrile neutropenia in two and four patients at dose levels 1 and 2, respectively. This study has demonstrated that epirubicin can be safely administered at 2 week intervals with GM-CSF at a dose of 90 mg/m2, equivalent to the previously reported maximum tolerated dose intensity of 45 mg/m2/week. Neutropenia was dose-limiting despite the use of GM-CSF.

  6. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources.

    PubMed

    Townson, Reid W; Jia, Xun; Tian, Zhen; Graves, Yan Jiang; Zavgorodni, Sergei; Jiang, Steve B

    2013-06-21

    A novel phase-space source implementation has been designed for graphics processing unit (GPU)-based Monte Carlo dose calculation engines. Short of full simulation of the linac head, using a phase-space source is the most accurate method to model a clinical radiation beam in dose calculations. However, in GPU-based Monte Carlo dose calculations where the computation efficiency is very high, the time required to read and process a large phase-space file becomes comparable to the particle transport time. Moreover, due to the parallelized nature of GPU hardware, it is essential to simultaneously transport particles of the same type and similar energies but separated spatially to yield a high efficiency. We present three methods for phase-space implementation that have been integrated into the most recent version of the GPU-based Monte Carlo radiotherapy dose calculation package gDPM v3.0. The first method is to sequentially read particles from a patient-dependent phase-space and sort them on-the-fly based on particle type and energy. The second method supplements this with a simple secondary collimator model and fluence map implementation so that patient-independent phase-space sources can be used. Finally, as the third method (called the phase-space-let, or PSL, method) we introduce a novel source implementation utilizing pre-processed patient-independent phase-spaces that are sorted by particle type, energy and position. Position bins located outside a rectangular region of interest enclosing the treatment field are ignored, substantially decreasing simulation time with little effect on the final dose distribution. The three methods were validated in absolute dose against BEAMnrc/DOSXYZnrc and compared using gamma-index tests (2%/2 mm above the 10% isodose). It was found that the PSL method has the optimal balance between accuracy and efficiency and thus is used as the default method in gDPM v3.0. Using the PSL method, open fields of 4 × 4, 10 × 10 and 30 × 30 cm

  7. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    NASA Astrophysics Data System (ADS)

    Katz, Robert; Cucinotta, Francis A.; Zhang, C. X.

    1996-02-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to γ rays (modeled from biological target theory) onto the radial dose distribution from δ rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz, made use of simplified δ ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration

  8. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  9. X/Qs and unit dose calculations for Central Waste Complex interim safety basis effort

    SciTech Connect

    Huang, C.H.

    1996-04-03

    The objective for this problem is to calculate the ground-level release dispersion factors (X/Q) and unit doses for onsite facility and offsite receptors at the site boundary and at Highway 240 for plume meander, building wake effect, plume rise, and the combined effect. The release location is at Central Waste Complex Building P4 in the 200 West Area. The onsite facility is located at Building P7. Acute ground level release 99.5 percentile dispersion factors (X/Q) were generated using the GXQ. The unit doses were calculated using the GENII code. The dimensions of Building P4 are 15 m in W x 24 m in L x 6 m in H.

  10. Methods Used to Calculate Doses Resulting from Inhalation of Capstone Depleted Uranium Aerosols

    SciTech Connect

    Miller, Guthrie; Cheng, Yung-Sung; Traub, Richard J.; Little, Thomas T.; Guilmette, Ray A.

    2009-02-26

    The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a United States Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions is described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

  11. Calculation of conversion factors for effective dose for various interventional radiology procedures

    SciTech Connect

    Compagnone, Gaetano; Giampalma, Emanuela; Domenichelli, Sara; Renzulli, Matteo; Golfieri, Rita

    2012-05-15

    Purpose: To provide dose-area-product (DAP) to effective dose (E) conversion factors for complete interventional procedures, based on in-the-field clinical measurements of DAP values and using tabulated E/DAP conversion factors for single projections available from the literature. Methods: Nine types of interventional procedures were performed on 84 patients with two angiographic systems. Different calibration curves (with and without patient table attenuation) were calculated for each DAP meter. Clinical and dosimetric parameters were recorded in-the-field for each projection and for all patients, and a conversion factor linking DAP and effective doses was derived for each complete procedure making use of published, Monte Carlo calculated conversion factors for single static projections. Results: Fluoroscopy time and DAP values for the lowest-dose procedure (biliary drainage) were approximately 3-fold and 13-fold lower, respectively, than those for the highest-dose examination (transjugular intrahepatic portosystemic shunt, TIPS). Median E/DAP conversion factors from 0.12 (abdominal percutaneous transluminal angioplasty) to 0.25 (Nephrostomy) mSvGy{sup -1} cm{sup -2} were obtained and good correlations between E and DAP were found for all procedures, with R{sup 2} coefficients ranging from 0.80 (abdominal angiography) to 0.99 (biliary stent insertion, Nephrostomy and TIPS). The DAP values obtained in this study showed general consistency with the values provided in the literature and median E values ranged from 4.0 mSv (biliary drainage) to 49.6 mSv (TIPS). Conclusions: Values of E/DAP conversion factors were derived for each procedure from a comprehensive analysis of projection and dosimetric data: they could provide a good evaluation for the stochastic effects. These results can be obtained by means of a close cooperation between different interventional professionals involved in patient care and dose optimization.

  12. Calculations of increased solar UV fluxes and DUV doses due to stratospheric-ozone depletions

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.

    1982-02-01

    Accurate radiative transfer calculations are performed in the middle ultraviolet spectral region for aerosol-loaded atmospheres with the goal of determining the solar irradiance at the ground and quantifying the irradiance perturbations due to the presence of aerosols and various ozone depletions. The extent of the increase of UV-B radiation as a function of wave-length and solar zenith angle is calculated for five model atmospheres. In addition, the damaging ultraviolet dose rates and radiation amplification factors are evaluated at different latitudes and seasons for erythemal and DNA action spectra.

  13. BNCT dose calculation in irregular fields using the sector integration method.

    PubMed

    Blaumann, H R; Sanz, D E; Longhino, J M; Larrieu, O A Calzetta

    2004-11-01

    Irregular fields for boron neutron capture therapy (BNCT) have been already proposed to spare normal tissue in the treatment of superficial tumors. This added dependence would require custom measurements and/or to have a secondary calculation system. As a first step, we implemented the sector-integration method for irregular field calculation in a homogeneous medium and on the central beam axis. The dosimetric responses (fast neutron and photon dose and thermal neutron flux), are calculated by sector integrating the measured responses of circular fields over the field boundary. The measurements were carried out at our BNCT facility, the RA-6 reactor (Argentina). The input data were dosimetric responses for circular fields measured at different depths in a water phantom using ionisation and activation techniques. Circular fields were formed by shielding the beam with two plates: borated polyethilene plus lead. As a test, the dosimetric responses of a 7x4 cm(2) rectangular field, were measured and compared to calculations, yielding differences less than 3% in equivalent dose at any depth indicating that the tool is suitable for redundant calculations.

  14. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

    PubMed

    Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated. PMID:26216484

  15. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

    PubMed

    Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  16. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  17. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    NASA Astrophysics Data System (ADS)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  18. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  19. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    SciTech Connect

    Qu, H; Xia, P; Yu, N

    2015-06-15

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.

  20. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    SciTech Connect

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  1. Modeling a superficial radiotherapy X-ray source for relative dose calculations.

    PubMed

    Johnstone, Christopher D; LaFontaine, Richard; Poirier, Yannick; Tambasco, Mauro

    2015-05-08

    The purpose of this study was to empirically characterize and validate a kilovoltage (kV) X-ray beam source model of a superficial X-ray unit for relative dose calculations in water and assess the accuracy of the British Journal of Radiology Supplement 25 (BJR 25) percentage depth dose (PDD) data. We measured central axis PDDs and dose profiles using an Xstrahl 150 X-ray system. We also compared the measured and calculated PDDs to those in the BJR 25. The Xstrahl source was modeled as an effective point source with varying spatial fluence and spectra. In-air ionization chamber measurements were made along the x- and y-axes of the X-ray beam to derive the spatial fluence and half-value layer (HVL) measurements were made to derive the spatially varying spectra. This beam characterization and resulting source model was used as input for our in-house dose calculation software (kVDoseCalc) to compute radiation dose at points of interest (POIs). The PDDs and dose profiles were measured using 2, 5, and 15 cm cone sizes at 80, 120, 140, and 150 kVp energies in a scanning water phantom using IBA Farmer-type ionization chambers of volumes 0.65 and 0.13 cc, respectively. The percent difference in the computed PDDs compared with our measurements range from -4.8% to 4.8%, with an overall mean percent difference and standard deviation of 1.5% and 0.7%, respectively. The percent difference between our PDD measurements and those from BJR 25 range from -14.0% to 15.7%, with an overall mean percent difference and standard deviation of 4.9% and 2.1%, respectively - showing that the measurements are in much better agreement with kVDoseCalc than BJR 25. The range in percent difference between kVDoseCalc and measurement for profiles was -5.9% to 5.9%, with an overall mean percent difference and standard deviation of 1.4% and 1.4%, respectively. The results demonstrate that our empirically based X-ray source modeling approach for superficial X-ray therapy can be used to accurately

  2. MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations

    SciTech Connect

    Strange, D. L.; Bander, T. J.

    1981-04-01

    The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based

  3. SU-F-BRF-11: Dose Rearrangement in High Dose Locally Advanced Lung Patients Based On Perfusion Imaging

    SciTech Connect

    Matrosic, C; Jarema, D; Kong, F; McShan, D; Stenmark, M; Owen, D; Ten Haken, R; Matuszak, M

    2014-06-15

    Purpose: The use of mean lung dose (MLD) limits allows individualization of lung patient tumor doses at safe levels. However, MLD does not account for local lung function differences between patients, leading to toxicity variability at the same MLD. We investigated dose rearrangement to minimize dose to functional lung, as measured by perfusion SPECT, while maintaining target coverage and conventional MLD limits. Methods: Retrospective plans were optimized for 15 locally advanced NSCLC patients enrolled in a prospective imaging trial. A priority-based optimization system was used. The baseline priorities were (1) meet OAR dose constraints, (2) maximize target gEUD, and (3) minimize physical MLD. As a final step, normal tissue doses were minimized. To determine the benefit of rearranging dose using perfusion SPECT, plans were reoptimized to minimize functional lung gEUD as the 4th priority. Results: When only minimizing physical MLD, the functional lung gEUD was 10.8+/−5.0 Gy (4.3–19.8 Gy). Only 3/15 cases showed a decrease in functional lung gEUD of ≥4% when rearranging dose to minimize functional gEUD in the cost function (10.5+/−5.0 Gy range 4.3−19.7). Although OAR constraints were respected, the dose rearrangement resulted in ≥10% increases in gEUD to an OAR in 4/15 cases. Only slight reductions in functional lung gEUD were noted when omitting the minimization of physical MLD, suggesting that constraining the target gEUD minimizes the potential to redistribute dose. Conclusion: Prioritydriven optimization permits the generation of plans that respect traditional OAR limits and target coverage, but with the ability to rearrange dose based on functional imaging. The latter appears to be limited due to the decreased solution space when constraining target coverage. Since dose rearrangement may increase dose to other OARs, it is also worthwhile to investigate global biomarkers of lung toxicity to further individualize treatment in this population

  4. SU-F-19A-01: APBI Brachytherapy Treatment Planning: The Impact of Heterogeneous Dose Calculations

    SciTech Connect

    Loupot, S; Han, T; Salehpour, M; Gifford, K

    2014-06-15

    Purpose: To quantify the difference in dose to PTV-EVAL and OARs (skin and rib) as calculated by (TG43) and heterogeneous calculations (CCC). Methods: 25 patient plans (5 Contura and 20 SAVI) were selected for analysis. Clinical dose distributions were computed with a commercially available treatment planning algorithm (TG43-D-(w,w)) and then recomputed with a pre-clinical collapsed cone convolution algorithm (CCCD-( m,m)). PTV-EVAL coverage (V90%, V95%), and rib and skin maximum dose were compared via percent difference. Differences in dose to normal tissue (V150cc, V200cc of PTV-EVAL) were also compared. Changes in coverage and maximum dose to organs at risk are reported in percent change, (100*(TG43 − CCC) / TG43)), and changes in maximum dose to normal tissue are absolute change in cc (TG43 − CCC). Results: Mean differences in V90, V95, V150, and V200 for the SAVI cases were −0.2%, −0.4%, −0.03cc, and −0.14cc, respectively, with maximum differences of −0.78%, −1.7%, 1.28cc, and 1.01cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −1.4% and −0.22%, respectively, with maximum differences of −4.5% and 16%, respectively. Mean differences in V90, V95, V150, and V200 for the Contura cases were −1.2%, −2.1%, −1.8cc, and −0.59cc, respectively, with maximum differences of −2.0%, −3.16%, −2.9cc, and −0.76cc, respectively. Mean differences in the 0.1cc dose to the rib and skin were −2.6% and −3.9%, respectively, with maximum differences of −3.2% and −5.7%, respectively. Conclusion: The effects of translating clinical knowledge based on D-(w,w) to plans reported in D-(m,m) are minimal (2% or less) on average, but vary based on the type and placement of the device, source, and heterogeneity information.

  5. Advancements in dynamic kill calculations for blowout wells

    SciTech Connect

    Kouba, G.E. . Production Fluids Div.); MacDougall, G.R. ); Schumacher, B.W. . Information Technology Dept.)

    1993-09-01

    This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.

  6. Patient-dependent beam-modifier physics in Monte Carlo photon dose calculations.

    PubMed

    Schach von Wittenau, A E; Bergstrom, P M; Cox, L J

    2000-05-01

    Model pencil-beam on slab calculations are used as well as a series of detailed calculations of photon and electron output from commercial accelerators to quantify level(s) of physics required for the Monte Carlo transport of photons and electrons in treatment-dependent beam modifiers, such as jaws, wedges, blocks, and multileaf collimators, in photon teletherapy dose calculations. The physics approximations investigated comprise (1) not tracking particles below a given kinetic energy, (2) continuing to track particles, but performing simplified collision physics, particularly in handling secondary particle production, and (3) not tracking particles in specific spatial regions. Figures-of-merit needed to estimate the effects of these approximations are developed, and these estimates are compared with full-physics Monte Carlo calculations of the contribution of the collimating jaws to the on-axis depth-dose curve in a water phantom. These figures of merit are next used to evaluate various approximations used in coupled photon/electron physics in beam modifiers. Approximations for tracking electrons in air are then evaluated. It is found that knowledge of the materials used for beam modifiers, of the energies of the photon beams used, as well as of the length scales typically found in photon teletherapy plans, allows a number of simplifying approximations to be made in the Monte Carlo transport of secondary particles from the accelerator head and beam modifiers to the isocenter plane.

  7. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-12-31

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ``pediatric`` models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ``individual`` pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  8. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  9. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  10. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  11. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields

    NASA Astrophysics Data System (ADS)

    Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  12. Calculation of External Gamma-Ray and Beta-Ray Doses from Accidental Atmospheric Releases of Radionuclides.

    1981-02-25

    SUBDOSA-II calculates submersion doses from an acute release of radionuclides to the atmosphere, as did SUBDOSA. Doses are calculated as a function of distance from release point, atmospheric stability, and wind speed for a specified radionuclide inventory. Contributions from both beta and gamma radiation are included as a function of tissue depth.

  13. Advanced Geometric Optics on a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  14. Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations

    SciTech Connect

    Tzedakis, Antonis; Damilakis, John; Perisinakis, Kostas; Karantanas, Apostolos; Karabekios, Spiros; Gourtsoyiannis, Nicholas

    2007-04-15

    multidetector CT system were calculated. This data was found to depend strongly on CT acquisition mode and exposure parameters as well as patient age and sex. The effective dose from a pediatric CT scan performed in axial mode was always considerably lower compared to the corresponding scan performed in helical mode, due to the additional tissue regions exposed to the primary beam in helical examinations as a result of z overscanning.

  15. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    SciTech Connect

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  16. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    SciTech Connect

    Jones, Bernard L. Westerly, David; Miften, Moyed

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  17. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  18. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    SciTech Connect

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-08-15

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm{sup 2}) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm{sup 2} field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  19. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately. PMID:16381760

  20. Calculation of Accumulated Radiation Doses to Man from Radionuclides Found in Food Products and from Radionuclides in the Environment.

    1981-02-17

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. It can be used to calculate accumulated doses to 23 possible body organs or tissues for any one or a combination of radionuclides. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in themore » environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. A chain decay scheme is used; it includes branching to account for transitions to and from isomeric states. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.« less

  1. Antikythera Calculator advances modern science of 19 centuries

    NASA Astrophysics Data System (ADS)

    Pastore, Giovanni

    2010-08-01

    The Greek astronomic calculator, discovered in the depth of the sea in a naval wreckage of the 1st century B.C. in front of the island of Antikythera, is the most amazing among the archaeological discoveries of last century. The mechanism immediately appeared like a device out of its time. After years of study this devise is still provoking a discussion between scientists and archaeologists because of the complexity and the modernity of the scientific knowledge the work presupposes. Its epicyclical gearings show the high level of the scientific culture reached in that period of history. The knowledge of the planetary motion, necessary to the design of the epicyclic gearing of the Calculator of Antikythera, presumes that ancient Greek scientists knew the planetary motion of the celestial bodies and had already achieved the same results that have been attributed to scientists 19 centuries later. The scientific value of this gear mechanism is indisputable because the inventor of the Calculator of Antikythera had the knowledge that was "re-discovered" centuries later as the heliocentric theory proposed by Niccolò Copernicus in 1543 ( De revolutionibus orbium coelestium), the universal gravitation law formulated by Isaac Newton in 1687 ( Philosophiae Naturalis Principia Mathematica), and the kinematic study of the epicyclical gearings published by Robert Willis in 1841 ( Principles of mechanism).

  2. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  3. Volume 1: Calculating potential to emit releases and doses for FEMP's and NOCs

    SciTech Connect

    HILL, J.S.

    1999-07-27

    The purpose of this document is to provide Hanford Site facilities a handbook for estimating potential emissions and the subsequent offsite doses. General guidelines and information are provided to assist personnel in estimating emissions for use with U.S. Department of Energy (DOE) facility effluent monitoring plans (FEMPs) and regulatory notices of construction (NOCs), per 40 Code of Federal Regulations (CFR) Part 61, Subpart H, and Washington Administrative Code (WAC) Chapter 246-247 requirements. This document replaces Unit Dose Calculation Methods and Summary of Facility Effluent Monitoring Plan Determinations (WHC-EP-0498). Meteorological data from 1983 through 1996, 13-year data set, was used to develop the unit dose factors provided by this document, with the exception of two meteorological stations. Meteorological stations 23 and 24, located at Gable Mountain and the 100-F Area, only have data from 1986 through 1996, 10-year data set. The scope of this document includes the following: Estimating emissions and resulting effective dose equivalents (EDE) to a facility's nearest offsite receptor (NOR) for use with NOCs under 40 CFR Part 61, Subpart H, requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with NOCs under the WAC Chapter 246-247 requirements Estimating emissions and resulting EDEs to a facility's or emission unit's NOR for use with FEMPs and FEMP determinations under DOE Orders 5400.1 and 5400.5 requirements.

  4. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology

    NASA Astrophysics Data System (ADS)

    Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.

    2014-02-01

    The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.

  5. The neutron dose conversion coefficients calculation in human tooth enamel in an anthropomorphic phantom.

    PubMed

    Khailov, A M; Ivannikov, A I; Skvortsov, V G; Stepanenko, V F; Tsyb, A F; Trompier, F; Hoshi, M

    2010-02-01

    In the present study, MCNP4B simulation code is used to simulate neutron and photon transport. It gives the conversion coefficients that relate neutron fluence to the dose in tooth enamel (molars and pre-molars only) for 20 energy groups of monoenergetic neutrons with energies from 10-9 to 20 MeV for five different irradiation geometries. The data presented are intended to provide the basis for connection between EPR dose values and standard protection quantities defined in ICRP Publication 74. The results of the calculations for critical organs were found to be consistent with ICRP data, with discrepancies generally less than 10% for the fast neutrons. The absorbed dose in enamel was found to depend strongly on the incident neutron energy for neutrons over 10 keV. The dependence of the data on the irradiation geometry is also shown. Lower bound estimates of enamel radiation sensitivity to neutrons were made using obtained coefficients for the secondary photons. Depending on neutron energy, tooth enamel was shown to register 10-120% of the total neutron dose in the human body in the case of pure neutron exposure and AP irradiation geometry. PMID:20065707

  6. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations. PMID:12645766

  7. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

    PubMed

    Chibani, Omar; Ma, Chang-Ming Charlie

    2003-08-01

    The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to

  8. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. PMID:20835833

  9. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry.

  10. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    SciTech Connect

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  11. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    SciTech Connect

    Westerly, David C.; Mo Xiaohu; DeLuca, Paul M. Jr.; Tome, Wolfgang A.; Mackie, Thomas R.

    2013-06-15

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth

  12. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

    PubMed Central

    Westerly, David C.; Mo, Xiaohu; Tomé, Wolfgang A.; Mackie, Thomas R.; DeLuca, Paul M.

    2013-01-01

    Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke [“Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,” Phys. Med. Biol. 47, 3313–3330 (2002)10.1088/0031-9155/47/18/304] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as

  13. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    SciTech Connect

    Austerlitz, C.; Campos, C. A. T.

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with the Brachy

  14. Ultraviolet radiation dose calculation for algal suspensions using UVA and UVB extinction coefficients.

    PubMed

    Navarro, Enrique; Muñiz, Selene; Korkaric, Muris; Wagner, Bettina; de Cáceres, Miquel; Behra, Renata

    2014-03-01

    Although the biological importance of ultraviolet light (UVR) attenuation has been recognised in marine and freshwater environments, it is not generally considered in in vitro ecotoxicological studies using algal cell suspensions. In this study, UVA and UVB extinction were determined for cultures of algae with varying cell densities, and the data were used to calculate the corresponding extinction coefficients for both UVA and UVB wavelength ranges. Integrating the Beer-Lambert equation to account for changes in the radiation intensity reaching each depth, from the surface until the bottom of the experimental vessel, we obtained the average UVA and UVB intensity to which the cultured algal cells were exposed. We found that UVR intensity measured at the surface of Chlamydomonas reinhardtii cultures lead to a overestimation of the UVR dose received by the algae by 2-40 times. The approach used in this study allowed for a more accurate estimation of UVA and UVB doses. PMID:24607609

  15. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy

    SciTech Connect

    Carver, Robert L.; Hogstrom, Kenneth R.; Chu, Connel; Fields, Robert S.; Sprunger, Conrad P.

    2013-07-15

    Purpose: The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer.Methods: PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal{sup Registered-Sign} (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle{sup 3} (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point.Results: The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average {+-}1{sigma} dose difference (calculated - measured) of -0.65%{+-} 1.62% without the bolus and -0.20%{+-} 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19%{+-} 3.27% without the bolus and -0.05%{+-} 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50%{+-} 3.06% without bolus and -0.18%{+-} 1.22% with the bolus. The PBA

  16. WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material

    SciTech Connect

    Scherpelz, R. I.; Borst, F. J.; Hoenes, G. R.

    1980-12-01

    WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation.

  17. Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT

    SciTech Connect

    Di Salvio, A.; Bedwani, S.; Carrier, J-F.; Bouchard, H.

    2014-08-15

    Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization from single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.

  18. Advancing QCD-based calculations of energy loss

    NASA Astrophysics Data System (ADS)

    Tywoniuk, Konrad

    2013-08-01

    We give a brief overview of the basics and current developments of QCD-based calculations of radiative processes in medium. We put an emphasis on the underlying physics concepts and discuss the theoretical uncertainties inherently associated with the fundamental parameters to be extracted from data. An important area of development is the study of the single-gluon emission in medium. Moreover, establishing the correct physical picture of multi-gluon emissions is imperative for comparison with data. We will report on progress made in both directions and discuss perspectives for the future.

  19. Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC

    NASA Astrophysics Data System (ADS)

    Kawrakow, Iwan; Fippel, Matthias

    2000-08-01

    Several variance reduction techniques, such as photon splitting, electron history repetition, Russian roulette and the use of quasi-random numbers are investigated and shown to significantly improve the efficiency of the recently developed XVMC Monte Carlo code for photon beams in radiation therapy. It is demonstrated that it is possible to further improve the efficiency by optimizing transport parameters such as electron energy cut-off, maximum electron energy step size, photon energy cut-off and a cut-off for kerma approximation, without loss of calculation accuracy. These methods increase the efficiency by a factor of up to 10 compared with the initial XVMC ray-tracing technique or a factor of 50 to 80 compared with EGS4/PRESTA. Therefore, a common treatment plan (6 MV photons, 10×10 cm2 field size, 5 mm voxel resolution, 1% statistical uncertainty) can be calculated within 7 min using a single CPU 500 MHz personal computer. If the requirement on the statistical uncertainty is relaxed to 2%, the calculation time will be less than 2 min. In addition, a technique is presented which allows for the quantitative comparison of Monte Carlo calculated dose distributions and the separation of systematic and statistical errors. Employing this technique it is shown that XVMC calculations agree with EGSnrc on a sub-per cent level for simulations in the energy and material range of interest for radiation therapy.

  20. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation

    SciTech Connect

    Tyagi, Neelam; Moran, Jean M.; Litzenberg, Dale W.; Bielajew, Alex F.; Fraass, Benedick A.; Chetty, Indrin J.

    2007-02-15

    Inter- and intra-leaf transmission and head scatter can play significant roles in intensity modulated radiation therapy (IMRT)-based treatment deliveries. In order to accurately calculate the dose in the IMRT planning process, it is therefore important that the detailed geometry of the multi-leaf collimator (MLC), in addition to other components in the accelerator treatment head, be accurately modeled. In this paper, we have used the Monte Carlo method (MC) to develop a comprehensive model of the Varian 120 leaf MLC and have compared it against measurements in homogeneous phantom geometries under different IMRT delivery circumstances. We have developed a geometry module within the DPM MC code to simulate the detailed MLC design and the collimating jaws. Tests consisting of leakage, leaf positioning and static MLC shapes were performed to verify the accuracy of transport within the MLC model. The calculations show agreement within 2% in the high dose region for both film and ion-chamber measurements for these static shapes. Clinical IMRT treatment plans for the breast [both segmental MLC (SMLC) and dynamic MLC (DMLC)], prostate (SMLC) and head and neck split fields (SMLC) were also calculated and compared with film measurements. Such a range of cases were chosen to investigate the accuracy of the model as a function of modulation in the beamlet pattern, beamlet width, and field size. The overall agreement is within 2%/2 mm of the film data for all IMRT beams except the head and neck split field, which showed differences up to 5% in the high dose regions. Various sources of uncertainties in these comparisons are discussed.

  1. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-07-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.

  2. Advances in metered dose inhaler technology: formulation development.

    PubMed

    Myrdal, Paul B; Sheth, Poonam; Stein, Stephen W

    2014-04-01

    Pressurized metered dose inhalers (MDIs) are a long-standing method to treat diseases of the lung, such as asthma and chronic obstructive pulmonary disease. MDIs rely on the driving force of the propellant, which comprises the bulk of the MDI formulation, to atomize droplets containing drug and excipients, which ideally should deposit in the lungs. During the phase out of chlorofluorocarbon propellants and the introduction of more environmentally friendly hydrofluoroalkane propellants, many improvements were made to the methods of formulating for MDI drug delivery along with a greater understanding of formulation variables on product performance. This review presents a survey of challenges associated with formulating MDIs as solution or suspension products with one or more drugs, while considering the physicochemical properties of various excipients and how the addition of these excipients may impact overall product performance of the MDI. Propellants, volatile and nonvolatile cosolvents, surfactants, polymers, suspension stabilizers, and bulking agents are among the variety of excipients discussed in this review article. Furthermore, other formulation approaches, such as engineered excipient and drug-excipient particles, to deliver multiple drugs from a single MDI are also evaluated. PMID:24452499

  3. Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients.

    PubMed

    Grassberger, C; Lomax, Anthony; Paganetti, H

    2015-01-21

    The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.

  4. Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients

    NASA Astrophysics Data System (ADS)

    Grassberger, C.; Lomax, Anthony; Paganetti, H.

    2015-01-01

    The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.

  5. Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients

    PubMed Central

    Grassberger, C; Lomax, Tony; Paganetti, H

    2015-01-01

    The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (<0.6MeV for 230MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079

  6. Modulation index for VMAT considering both mechanical and dose calculation uncertainties.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun

    2015-09-21

    The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman's correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were  -0.728,-0.847 and  -0.617, respectively (p  <  0.001). Those to local gamma passing rates were  -0.765,-0.767 and  -0.748, respectively (p  <  0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and  -0.712, respectively (p  <  0.001). The MIc (f = 0.5) showed a total of 20 rs values (p  <  0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy.

  7. Modulation index for VMAT considering both mechanical and dose calculation uncertainties

    NASA Astrophysics Data System (ADS)

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun

    2015-09-01

    The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman’s correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were  -0.728,-0.847 and  -0.617, respectively (p  <  0.001). Those to local gamma passing rates were  -0.765,-0.767 and  -0.748, respectively (p  <  0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and  -0.712, respectively (p  <  0.001). The MIc (f = 0.5) showed a total of 20 rs values (p  <  0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy.

  8. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    SciTech Connect

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  9. Modulation index for VMAT considering both mechanical and dose calculation uncertainties.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun

    2015-09-21

    The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman's correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were  -0.728,-0.847 and  -0.617, respectively (p  <  0.001). Those to local gamma passing rates were  -0.765,-0.767 and  -0.748, respectively (p  <  0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and  -0.712, respectively (p  <  0.001). The MIc (f = 0.5) showed a total of 20 rs values (p  <  0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy. PMID:26317697

  10. Offsite dose calculation manual guidance: Standard radiological effluent controls for boiling water reactors

    SciTech Connect

    Meinke, W.W.; Essig, T.H.

    1991-04-01

    This report contains guidance which may be voluntarily used by licensees who choose to implement the provision of Generic Letter 89-- 01, which allows Radiological Effluent Technical Specifications (RETS) to be removed from the main body of the Technical Specifications and placed in the Offsite Dose Calculation Manual (ODCM). Guidance is provided for Standard Effluent Controls definitions, Controls for effluent monitoring instrumentation, Controls for effluent releases, Controls for radiological environmental monitoring, and the basis for Controls. Guidance on the formulation of RETS has been available in draft form for a number of years; the current effort simply recasts those RETS into Standard Radiological Effluent Controls for application to the ODCM. 11 tabs.

  11. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  12. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.

    PubMed

    Matthiä, Daniel; Sihver, Lembit; Meier, Matthias

    2008-01-01

    Monitoring of radiation exposure of aircrew is a legal requirement for many airlines in the EU and a challenging task in dosimetry. Monte-Carlo simulations of cosmic particles in the atmosphere can contribute to the understanding of the corresponding radiation field. Calculations of secondary neutron fluences in the atmosphere produced by galactic cosmic rays together with the resulting neutron-effective dose rates are shown in this paper and compared with results from the AIR project. The PLANETOCOSMICS package based on GEANT4 and two models for the local interstellar spectra of galactic cosmic rays have been used for the calculations. Furthermore, secondary muon fluences have been computed and are compared with CAPRICE measurements.

  13. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  14. A model of the circulating blood for use in radiation dose calculations

    SciTech Connect

    Hui, T.E.; Poston, J.W. Sr.

    1987-12-31

    Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.

  15. A model of the circulating blood for use in radiation dose calculations

    SciTech Connect

    Hui, T.E.; Poston, J.W. Sr.

    1987-01-01

    Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.

  16. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.

    PubMed

    Renner, F; Wulff, J; Kapsch, R-P; Zink, K

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  17. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.

    PubMed

    Renner, F; Wulff, J; Kapsch, R-P; Zink, K

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  18. Evaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer.

    PubMed

    Matsugi, Kiyotomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Yamauchi, Chikako; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro

    2013-01-01

    We evaluated the four-dimensional (4D) dose to a moving target by a Monte Carlo dose calculation algorithm in stereotactic body radiation therapy (SBRT) planning based on the isocenter dose prescription. 4D computed tomography scans were performed for 12 consecutive patients who had 14 tumors. The gross tumor volume (GTV) and internal target volume (ITV) were contoured manually, and the planning target volume (PTV) was defined as the ITV with a 5-mm margin. The beam apertures were shaped into the PTV plus a 5-mm leaf margin. The prescription dose was 48 Gy in 4 fractions at the isocenter. The GTV dose was calculated by accumulation of respiratory-phase dose distributions that were mapped to a reference images, whereas the ITV and PTV doses were calculated with the respiration-averaged images. The doses to 99 % (D(99)) of the GTV, ITV, and PTV were 90.2, 89.3, and 82.0 %, respectively. The mean difference between the PTV D(99) and GTV D(99) was -9.1 % (range -13.4 to -4.0 %), and that between the ITV and GTV was -1.1 % (range -5.5 to 1.9 %). The mean homogeneity index (HI) for the GTV, ITV, and PTV was 1.14, 1.15, and 1.26, respectively. Significant differences were observed in the D(99) and HI between the PTV and GTV, whereas no significant difference was seen between the ITV and GTV. When SBRT planning is performed based on the isocenter dose prescription with a 5-mm PTV margin and a 5-mm leaf margin, the ITV dose provides a good approximation of the GTV dose.

  19. SU-E-T-626: Accuracy of Dose Calculation Algorithms in MultiPlan Treatment Planning System in Presence of Heterogeneities

    SciTech Connect

    Moignier, C; Huet, C; Barraux, V; Loiseau, C; Sebe-Mercier, K; Batalla, A; Makovicka, L

    2014-06-15

    Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MC algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.

  20. Dose-Effect Relationship in Chemoradiotherapy for Locally Advanced Rectal Cancer: A Randomized Trial Comparing Two Radiation Doses

    SciTech Connect

    Jakobsen, Anders; Ploen, John; Vuong, Te; Appelt, Ane; Lindebjerg, Jan; Rafaelsen, Soren R.

    2012-11-15

    Purpose: Locally advanced rectal cancer represents a major therapeutic challenge. Preoperative chemoradiation therapy is considered standard, but little is known about the dose-effect relationship. The present study represents a dose-escalation phase III trial comparing 2 doses of radiation. Methods and Materials: The inclusion criteria were resectable T3 and T4 tumors with a circumferential margin of {<=}5 mm on magnetic resonance imaging. The patients were randomized to receive 50.4 Gy in 28 fractions to the tumor and pelvic lymph nodes (arm A) or the same treatment supplemented with an endorectal boost given as high-dose-rate brachytherapy (10 Gy in 2 fractions; arm B). Concomitant chemotherapy, uftoral 300 mg/m{sup 2} and L-leucovorin 22.5 mg/d, was added to both arms on treatment days. The primary endpoint was complete pathologic remission. The secondary endpoints included tumor response and rate of complete resection (R0). Results: The study included 248 patients. No significant difference was found in toxicity or surgical complications between the 2 groups. Based on intention to treat, no significant difference was found in the complete pathologic remission rate between the 2 arms (18% and 18%). The rate of R0 resection was different in T3 tumors (90% and 99%; P=.03). The same applied to the rate of major response (tumor regression grade, 1+2), 29% and 44%, respectively (P=.04). Conclusions: This first randomized trial comparing 2 radiation doses indicated that the higher dose increased the rate of major response by 50% in T3 tumors. The endorectal boost is feasible, with no significant increase in toxicity or surgical complications.

  1. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors

    NASA Astrophysics Data System (ADS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Keshazare, Shiva; Jette, David

    2015-12-01

    Recent studies in eye plaque brachytherapy have found considerable differences between the dosimetric results by using a water phantom, and a complete human eye model. Since the eye continues to be simulated as water-equivalent tissue in the proton therapy literature, a similar study for investigating such a difference in treating eye tumors by protons is indispensable. The present study inquires into this effect in proton therapy utilizing Monte Carlo simulations. A three-dimensional eye model with elemental compositions is simulated and used to examine the dose deposition to the phantom. The beam is planned to pass through a designed beam line to moderate the protons to the desired energies for ocular treatments. The results are compared with similar irradiation to a water phantom, as well as to a material with uniform density throughout the whole volume. Spread-out Bragg peaks (SOBPs) are created by adding pristine peaks to cover a typical tumor volume. Moreover, the corresponding beam parameters recommended by the ICRU are calculated, and the isodose curves are computed. The results show that the maximum dose deposited in ocular media is approximately 5-7% more than in the water phantom, and about 1-1.5% less than in the homogenized material of density 1.05 g cm-3. Furthermore, there is about a 0.2 mm shift in the Bragg peak due to the tissue composition difference between the models. It is found that using the weighted dose profiles optimized in a water phantom for the realistic eye model leads to a small disturbance of the SOBP plateau dose. In spite of the plaque brachytherapy results for treatment of eye tumors, it is found that the differences between the simplified models presented in this work, especially the phantom containing the homogenized material, are not clinically significant in proton therapy. Taking into account the intrinsic uncertainty of the patient dose calculation for protons, and practical problems corresponding to applying patient

  2. A Comparison of Model Calculation and Measurement of Absorbed Dose for Proton Irradiation. Chapter 5

    NASA Technical Reports Server (NTRS)

    Zapp, N.; Semones, E.; Saganti, P.; Cucinotta, F.

    2003-01-01

    With the increase in the amount of time spent EVA that is necessary to complete the construction and subsequent maintenance of ISS, it will become increasingly important for ground support personnel to accurately characterize the radiation exposures incurred by EVA crewmembers. Since exposure measurements cannot be taken within the organs of interest, it is necessary to estimate these exposures by calculation. To validate the methods and tools used to develop these estimates, it is necessary to model experiments performed in a controlled environment. This work is such an effort. A human phantom was outfitted with detector equipment and then placed in American EMU and Orlan-M EVA space suits. The suited phantom was irradiated at the LLUPTF with proton beams of known energies. Absorbed dose measurements were made by the spaceflight operational dosimetrist from JSC at multiple sites in the skin, eye, brain, stomach, and small intestine locations in the phantom. These exposures are then modeled using the BRYNTRN radiation transport code developed at the NASA Langley Research Center, and the CAM (computerized anatomical male) human geometry model of Billings and Yucker. Comparisons of absorbed dose calculations with measurements show excellent agreement. This suggests that there is reason to be confident in the ability of both the transport code and the human body model to estimate proton exposure in ground-based laboratory experiments.

  3. Gamma Dose Calculations in the Target Service Cell of the SNS

    SciTech Connect

    Azmy, Y.Y.; Johnson, J.O.; Lillie, R.A.; Santoro, R.T.

    1999-11-14

    Calculations of the gamma dose rates inside and outside of the Target Service Cell (TSC) of the Spallation Neutron Source (SNS) are complicated by the large size of the structure, large volume of air (internal void), optical thickness of the enclosing walls, and multiplicity of radiation sources. Furthermore, a reasonably detailed distribution of the dose rate over the volume of the TSC, and on the outside of its walls is necessary in order to optimize electronic instrument locations, and plan access control. For all these reasons a deterministic transport method was preferred over Monte Carlo, The three- dimensional neutral particle transport code TORT was employed for this purpose with support from other peripheral codes in the Discrete Ordinates of Oak Ridge System (DOORS). The computational model for the TSC is described and the features of TORT and its companion codes that enable such a difficult calculation are discussed. Most prominent is the presence of severe ray effects in the air cavity of the TSC that persists in the transport through the concrete walls and is pronounced throughout the problem volume. Initial attempts at eliminating ray effects from the computed results using the newly developed three-dimensional uncollided flux and first collided source code GRTUNCL3D are described.

  4. Dose calculation errors due to inaccurate representation of heterogeneity correction obtained from computerized tomography.

    PubMed

    Williams, Greg; Tobler, Matthew; Gaffney, David; Moeller, John; Leavitt, Dennis D

    2002-01-01

    Computerized tomography (CT) is used routinely in evaluating radiation therapy isodose plans. With the introduction of 3D algorithms such as the voxel raytrace, which determines inhomogeneity corrections from actual CT Hounsfield numbers, caution must be used when evaluating isodose calculations. Artifacts from contrast media and dental work, radiopaque markers placed by the treatment planner, and changing bowel and rectal air patterns all have the potential to introduce error into the calculation due to inaccurate assessment of high or low density. Radiopaque makers such as x-spot BB's or solder wire are placed externally on the patient. Barium contrast media introduced at the time of simulation may be necessary to visualize specific anatomical structures on the CT images. While these localization and visualization tools may be necessary, it is important to understand the effects they may introduce in the planning process. Other problems encountered are patient specific and out of the control of the treatment planner. These include high- and low-density streaking caused by dental work, which produce computational errors due to overestimation, and small bowel and rectal air, the patterns of which change on a daily basis and may result in underestimation of structure density. It is important for each treatment planner to have an understanding of how this potentially tainted CT information may be applied in dose calculations and the possible effects they may have. At our institution, the voxel raytrace calculation is automatically forced any time couch angle is introduced. Errors in the calculation from the above mentioned situations may be introduced if a heterogeneity correction is applied. Examples of potential calculation errors and the magnitude of each will be discussed. The methods used to minimize these errors and the possible solutions will also be evaluated.

  5. DEPDOSE: An interactive, microcomputer based program to calculate doses from exposure to radionuclides deposited on the ground

    SciTech Connect

    Beres, D.A.; Hull, A.P.

    1991-12-01

    DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer.

  6. Validation of calculation algorithms for organ doses in CT by measurements on a 5 year old paediatric phantom

    NASA Astrophysics Data System (ADS)

    Dabin, Jérémie; Mencarelli, Alessandra; McMillan, Dayton; Romanyukha, Anna; Struelens, Lara; Lee, Choonsik

    2016-06-01

    Many organ dose calculation tools for computed tomography (CT) scans rely on the assumptions: (1) organ doses estimated for one CT scanner can be converted into organ doses for another CT scanner using the ratio of the Computed Tomography Dose Index (CTDI) between two CT scanners; and (2) helical scans can be approximated as the summation of axial slices covering the same scan range. The current study aims to validate experimentally these two assumptions. We performed organ dose measurements in a 5 year-old physical anthropomorphic phantom for five different CT scanners from four manufacturers. Absorbed doses to 22 organs were measured using thermoluminescent dosimeters for head-to-torso scans. We then compared the measured organ doses with the values calculated from the National Cancer Institute dosimetry system for CT (NCICT) computer program, developed at the National Cancer Institute. Whereas the measured organ doses showed significant variability (coefficient of variation (CoV) up to 53% at 80 kV) across different scanner models, the CoV of organ doses normalised to CTDIvol substantially decreased (12% CoV on average at 80 kV). For most organs, the difference between measured and simulated organ doses was within  ±20% except for the bone marrow, breasts and ovaries. The discrepancies were further explained by additional Monte Carlo calculations of organ doses using a voxel phantom developed from CT images of the physical phantom. The results demonstrate that organ doses calculated for one CT scanner can be used to assess organ doses from other CT scanners with 20% uncertainty (k  =  1), for the scan settings considered in the study.

  7. Evaluation of Size Correction Factor for Size-specific Dose Estimates (SSDE) Calculation.

    PubMed

    Mizonobe, Kazufusa; Shiraishi, Yuta; Nakano, Satoshi; Fukuda, Chiaki; Asanuma, Osamu; Harada, Kohei; Date, Hiroyuki

    2016-09-01

    American Association of Physicists in Medicine (AAPM) Report No.204 recommends the size-specific dose estimates (SSDE), wherein SSDE=computed tomography dose index-volume (CTDIvol )×size correction factor (SCF), as an index of the CT dose to consider patient thickness. However, the study on SSDE has not been made yet for area detector CT (ADCT) device such as a 320-row CT scanner. The purpose of this study was to evaluate the SCF values for ADCT by means of a simulation technique to look into the differences in SCF values due to beam width. In the simulation, to construct the geometry of the Aquilion ONE X-ray CT system (120 kV), the dose ratio and the effective energies were measured in the cone angle and fan angle directions, and these were incorporated into the simulation code, Electron Gamma Shower Ver.5 (EGS5). By changing the thickness of a PMMA phantom from 8 cm to 40 cm, CTDIvol and SCF were determined. The SCF values for the beam widths in conventional and volume scans were calculated. The differences among the SCF values of conventional, volume scans, and AAPM were up to 23.0%. However, when SCF values were normalized in a phantom of 16 cm diameter, the error tended to decrease for the cases of thin body thickness, such as those of children. It was concluded that even if beam width and device are different, the SCF values recommended by AAPM are useful in clinical situations. PMID:27647595

  8. Solubility of hot fuel particles from Chernobyl--influencing parameters for individual radiation dose calculations.

    PubMed

    Garger, Evgenii K; Meisenberg, Oliver; Odintsov, Oleksiy; Shynkarenko, Viktor; Tschiersch, Jochen

    2013-10-15

    Nuclear fuel particles of Chernobyl origin are carriers of increased radioactivity (hot particles) and are still present in the atmosphere of the Chernobyl exclusion zone. Workers in the zone may inhale these particles, which makes assessment necessary. The residence time in the lungs and the transfer in the blood of the inhaled radionuclides are crucial for inhalation dose assessment. Therefore, the dissolution of several kinds of nuclear fuel particles from air filters sampled in the Chernobyl exclusion zone was studied. For this purpose filter fragments with hot particles were submersed in simulated lung fluids (SLFs). The activities of the radionuclides (137)Cs, (90)Sr, (239+240)Pu and (241)Am were measured in the SLF and in the residuum of the fragments by radiometric methods after chemical treatment. Soluble fractions as well as dissolution rates of the nuclides were determined. The influence of the genesis of the hot particles, represented by the (137)Cs/(239+240)Pu ratio, on the availability of (137)Cs was demonstrated, whereas the dissolution of (90)Sr, (239+240)Pu and (241)Am proved to be independent of genesis. No difference in the dissolution of (137)Cs and (239+240)Pu was observed for the two applied types of SLF. Increased solubility was found for smaller hot particles. A two-component exponential model was used to describe the dissolution of the nuclides as a function of time. The results were applied for determining individual inhalation dose coefficients for the workers at the Chernobyl construction site. Greater dose coefficients for the respiratory tract and smaller coefficients for the other organs were calculated (compared to ICRP default values). The effective doses were in general lower for the considered radionuclides, for (241)Am even by one order of magnitude.

  9. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  10. A novel lateral disequilibrium inclusive (LDI) pencil-beam based dose calculation algorithm: Evaluation in inhomogeneous phantoms and comparison with Monte Carlo calculations

    SciTech Connect

    Wertz, Hansjoerg; Jahnke, Lennart; Schneider, Frank; Polednik, Martin; Fleckenstein, Jens; Lohr, Frank; Wenz, Frederik

    2011-03-15

    Purpose: Pencil-beam (PB) based dose calculation for treatment planning is limited by inaccuracies in regions of tissue inhomogeneities, particularly in situations with lateral electron disequilibrium as is present at tissue/lung interfaces. To overcome these limitations, a new ''lateral disequilibrium inclusive'' (LDI) PB based calculation algorithm was introduced. In this study, the authors evaluated the accuracy of the new model by film and ionization chamber measurements and Monte Carlo simulations. Methods: To validate the performance of the new LDI algorithm implemented in Corvus 09, eight test plans were generated on inhomogeneous thorax and pelvis phantoms. In addition, three plans were calculated with a simple effective path length (EPL) algorithm on the inhomogeneous thorax phantom. To simulate homogeneous tissues, four test plans were evaluated in homogeneous phantoms (homogeneous dose calculation). Results: The mean pixel pass rates and standard deviations of the gamma 4%/4 mm test for the film measurements were (96{+-}3)% for the plans calculated with LDI, (70{+-}5)% for the plans calculated with EPL, and (99{+-}1)% for the homogeneous plans. Ionization chamber measurements and Monte Carlo simulations confirmed the high accuracy of the new algorithm (dose deviations {<=}4%; gamma 3%/3 mm {>=}96%)Conclusions: LDI represents an accurate and fast dose calculation algorithm for treatment planning.

  11. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs

    SciTech Connect

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen; Sawkey, Daren

    2015-05-15

    Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for

  12. Dosimetric comparison of Acuros™ BV with AAPM TG43 dose calculation formalism in breast interstitial high-dose-rate brachytherapy with the use of metal catheters

    PubMed Central

    Nagarajan, Vivekanandan; Reddy K, Sathyanarayana; Karunanidhi, Gunaseelan; Singhavajala, Vivekanandam

    2015-01-01

    Purpose Radiotherapy for breast cancer includes different techniques and methods. The purpose of this study is to compare dosimetric calculations using TG-43 dose formalism and Varian Acuros™ BV (GBBS) dose calculation algorithm for interstitial implant of breast using metal catheters in high-dose-rate (HDR) brachytherapy, using 192Ir. Material and methods Twenty patients who were considered for breast conservative surgery (BCS), underwent lumpectomy and axillary dissection. These patients received perioperative interstitial HDR brachytherapy as upfront boost using rigid metal implants. Whole breast irradiation was delivered TG-43 after a gap of two weeks. Standard brachytherapy dose calculation was done by dosimetry. This does not take into account tissue heterogeneity, attenuation and scatter in the metal applicator, and effects of patient boundary. Acuros™ BV is a Grid Based Boltzmann Solver code (GBBS), which takes into consideration all the above, was used to compute dosimetry and the two systems were compared. Results Comparison of GBBS and TG-43 formalism on interstitial metal catheters shows difference in dose prescribed to CTV and other OARs. While the estimated dose to CTV was only marginally different with the two systems, there is a significant difference in estimated doses of starting from 4 to 53% in the mean value of all parameters analyzed. Conclusions TG-43 algorithm seems to significantly overestimate the dose to various volumes of interest; GBBS based dose calculation algorithm has impact on CTV, heart, ipsilateral lung, heart, contralateral breast, skin, and ribs of the ipsilateral breast side; the prescription changes occurred due to effect of metal catheters, inhomogeneities, and scatter conditions. PMID:26622230

  13. Calculs Monte Carlo en transport d'energie pour le calcul de la dose en radiotherapie sur plateforme graphique hautement parallele

    NASA Astrophysics Data System (ADS)

    Hissoiny, Sami

    Dose calculation is a central part of treatment planning. The dose calculation must be 1) accurate so that the medical physicists and the radio-oncologists can make a decision based on results close to reality and 2) fast enough to allow a routine use of dose calculation. The compromise between these two factors in opposition gave way to the creation of several dose calculation algorithms, from the most approximate and fast to the most accurate and slow. The most accurate of these algorithms is the Monte Carlo method, since it is based on basic physical principles. Since 2007, a new computing platform gains popularity in the scientific computing community: the graphics processor unit (GPU). The hardware platform exists since before 2007 and certain scientific computations were already carried out on the GPU. Year 2007, on the other hand, marks the arrival of the CUDA programming language which makes it possible to disregard graphic contexts to program the GPU. The GPU is a massively parallel computing platform and is adapted to data parallel algorithms. This thesis aims at knowing how to maximize the use of a graphics processing unit (GPU) to speed up the execution of a Monte Carlo simulation for radiotherapy dose calculation. To answer this question, the GPUMCD platform was developed. GPUMCD implements the simulation of a coupled photon-electron Monte Carlo simulation and is carried out completely on the GPU. The first objective of this thesis is to evaluate this method for a calculation in external radiotherapy. Simple monoenergetic sources and phantoms in layers are used. A comparison with the EGSnrc platform and DPM is carried out. GPUMCD is within a gamma criteria of 2%-2mm against EGSnrc while being at least 1200x faster than EGSnrc and 250x faster than DPM. The second objective consists in the evaluation of the platform for brachytherapy calculation. Complex sources based on the geometry and the energy spectrum of real sources are used inside a TG-43

  14. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    SciTech Connect

    Walters, Jerri; Ryan, Stewart; Harmon, Joseph F.

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  15. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor. PMID:26292419

  16. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  17. Calculation of indoor effective dose factors in ORNL phantoms series due to natural radioactivity in building materials.

    PubMed

    Krstic, D; Nikezic, D

    2009-10-01

    In this paper the effective dose in the age-dependent ORNL phantoms series, due to naturally occurring radionuclides in building materials, was calculated. The absorbed doses for various organs or human tissues have been calculated. The MCNP-4B computer code was used for this purpose. The effective dose was calculated according to ICRP Publication 74. The obtained values of dose conversion factors for a standard room are: 1.033, 0.752 and 0.0538 nSv h-1 per Bq kg-1 for elements of the U and Th decay series and for the K isotope, respectively. The values of effective dose agreed generally with those found in the literature, although the values estimated here for elements of the U series were higher in some cases.

  18. Calculation of indoor effective dose factors in ORNL phantoms series due to natural radioactivity in building materials.

    PubMed

    Krstic, D; Nikezic, D

    2009-10-01

    In this paper the effective dose in the age-dependent ORNL phantoms series, due to naturally occurring radionuclides in building materials, was calculated. The absorbed doses for various organs or human tissues have been calculated. The MCNP-4B computer code was used for this purpose. The effective dose was calculated according to ICRP Publication 74. The obtained values of dose conversion factors for a standard room are: 1.033, 0.752 and 0.0538 nSv h-1 per Bq kg-1 for elements of the U and Th decay series and for the K isotope, respectively. The values of effective dose agreed generally with those found in the literature, although the values estimated here for elements of the U series were higher in some cases. PMID:19741358

  19. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    SciTech Connect

    Dooling, J.; Accelerator Systems Division

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker

  20. Tritium Dose Assessments with Regulatory and Advanced Computer Models for the Potential European ITER Site Vandellos (Spain)

    SciTech Connect

    Raskob, W.; Velarde, M.; Perlado, J.M

    2005-07-15

    Deterministic and probabilistic dose assessments for releases of tritium have been performed for the potential European ITER Site of Vandellos (Spain). Besides national regulatory models, internationally accepted computer codes such as NORMTRI (for normal conditions) and UFOTRI (for incidental/accidental conditions) were used for the calculations. The paper concentrates on releases of tritium in either HT or HTO form. Source terms from the ITER documentation (GSSR vol. IV and VII) have been used for the HT/HTO releases.The data base of NORMTRI/UFOTRI was adapted to the national regulatory prescriptions. This comprised in particular ingestion habits and dose conversion factors. Important for the calculations was also the selection of meteorological, demographic, nutritional and agricultural data. Meteorological data over a period of one year was used for the probabilistic calculations. Deterministic scenarios were selected to be as close as possible to other studies performed in the frame of ITER. Results of the assessments were early and chronic doses which have been evaluated for the Most Exposed Individual at particular distance bands from the release point.Of particular importance was the comparison between the regulatory and the advanced assessment models. Regulatory models for tritium are sometimes simplistic and are either too conservative or do not consider important processes which might lead to underestimation of the dose. This is for example the case with organically bound tritium which is often not considered in regulatory models but may dominate the dose from ingestion pathways. Therefore, this comparison provided the opportunity to evaluate the appropriateness of a national accepted tool. As the site of ITER was still to be defined, such a comparison was vital and might be also necessary for any other site to assure public confidence in the licensing procedure.

  1. [Evaluation tests of computer systems concerning tri-dimensional dose calculations].

    PubMed

    Simonian-Sauve, M; Smart, C

    1998-01-01

    The development of irradiation techniques in radiotherapy shows a clear tendency towards the systematic use of three-dimensional (3D) information. Great efforts are being made to set up 3D conformal radiotherapy. Consequently, in the aim of greater coherence and accuracy, "the dosimetric tool" must also meet the requirements of 3D radiotherapy, as it plays a role in the treatment chain. To know if the treatment planning system is a "3D", "2D" or even "1D" system, one should not be satisfied with reading the technical documentation and the program algorithm description nor entirely trust the constructor's assertions. It is essential to clearly and precisely evaluate the possibilities of the treatment planning system. Even if it is proved not to satisfy perfectly all the tests which would qualify it as a real 3D calculation system, the study of the test results helps to give clear explanations of the dosimetric results. Two series of test cases are proposed. The first series allows us to understand in which conditions the treatment planning system takes into account the scatter influence in a volume. The second series is designed to inform us about the capability of the dose calculation algorithm when the medium encloses non-homogeneities. These test cases do not constitute an exhaustive "check-list" able to tackle completely the question of 3D calculation. They are submitted as examples and should be considered as an evaluation methodology for the software implanted in the treatment planning system. PMID:9749097

  2. SPENVIS Implementation of End-of-Life Solar Cell Calculations Using the Displacement Damage Dose Methodology

    NASA Technical Reports Server (NTRS)

    Walters, Robert; Summers, Geoffrey P.; Warmer. Keffreu J/; Messenger, Scott; Lorentzen, Justin R.; Morton, Thomas; Taylor, Stephen J.; Evans, Hugh; Heynderickx, Daniel; Lei, Fan

    2007-01-01

    This paper presents a method for using the SPENVIS on-line computational suite to implement the displacement damage dose (D(sub d)) methodology for calculating end-of-life (EOL) solar cell performance for a specific space mission. This paper builds on our previous work that has validated the D(sub d) methodology against both measured space data [1,2] and calculations performed using the equivalent fluence methodology developed by NASA JPL [3]. For several years, the space solar community has considered general implementation of the D(sub d) method, but no computer program exists to enable this implementation. In a collaborative effort, NRL, NASA and OAI have produced the Solar Array Verification and Analysis Tool (SAVANT) under NASA funding, but this program has not progressed beyond the beta-stage [4]. The SPENVIS suite with the Multi Layered Shielding Simulation Software (MULASSIS) contains all of the necessary components to implement the Dd methodology in a format complementary to that of SAVANT [5]. NRL is currently working with ESA and BIRA to include the Dd method of solar cell EOL calculations as an integral part of SPENVIS. This paper describes how this can be accomplished.

  3. Significant impact on effective doses received during commercial flights calculated using the new ICRP radiation weighting factors.

    PubMed

    Chen, Jing; Mares, Vladimir

    2010-01-01

    This note discusses the significant impact on effective doses received during commercial flights calculated using the new International Commission on Radiological Protection (ICRP) radiation weighting factors. It also provides an update on adult effective doses given in a previous article in Health Physics when the old ICRP radiation weighting factors were used.

  4. Significant impact on effective doses received during commercial flights calculated using the new ICRP radiation weighting factors.

    PubMed

    Chen, Jing; Mares, Vladimir

    2010-01-01

    This note discusses the significant impact on effective doses received during commercial flights calculated using the new International Commission on Radiological Protection (ICRP) radiation weighting factors. It also provides an update on adult effective doses given in a previous article in Health Physics when the old ICRP radiation weighting factors were used. PMID:19959953

  5. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  6. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  7. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  8. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  9. 42 CFR 82.18 - How will NIOSH calculate internal dose to the primary cancer site(s)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... primary cancer site(s)? 82.18 Section 82.18 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... Dose Reconstruction Process § 82.18 How will NIOSH calculate internal dose to the primary cancer site(s... cancer covered by a claim is in a tissue not covered by existing ICRP models, NIOSH will use the...

  10. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    PubMed Central

    Sampson, Andrew; Le, Yi; Williamson, Jeffrey F.

    2012-01-01

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, ΔD, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 125I seeds. The breast case consisted of 87 Model-200 103Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D90, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 × 1 × 1 mm3 dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and heterogeneous doses

  11. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling*

    PubMed Central

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B.; LoSasso, Thomas; Mageras, Gig

    2016-01-01

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds’ degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%–8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  12. Code System to Calculate Radiation Dose Rates Relative to Spent Fuel Shipping Casks.

    1993-05-20

    Version 00 QBF calculates and plots in a short running time, three dimensional radiation dose rate distributions in the form of contour maps on specified planes resulting from cylindrical sources loaded into vehicles or ships. Shielding effects by steel walls and shielding material layers are taken into account in addition to the shadow effect among casks. This code system identifies the critical points on which to focus when designing the radiation shielding structure and wheremore » each of the spent fuel shipping casks should be stored. The code GRAPH reads the output data file of QBF and plots it using the HGX graphics library. QBF unifies the functions of the SMART and MANYCASK codes included in CCC-482.« less

  13. The development and application of the visible Chinese human model for Monte Carlo dose calculations.

    PubMed

    Zhang, Guozhi; Luo, Qingming; Zeng, Shaoqun; Liu, Qian

    2008-02-01

    A new whole-body computational phantom, the Visible Chinese Human (VCH), was developed using high-resolution transversal photographs of a Chinese adult male cadaver. Following the segmentation and tridimensional reconstruction, a voxel-based model that faithfully represented the average anatomical characteristics of the Chinese population was established for radiation dosimetry. The vascular system of VCH was fully preserved, and the cadaver specimen was processed in the standing posture. A total of 8,920 slices were obtained by continuous sectioning at 0.2 mm intervals, and 48 organs and tissues were segmented from the tomographic color images at 5440 x 4080 pixel resolution, corresponding to a voxel size of 0.1 x 0.1 x 0.2 mm3. The resulting VCH computational phantom, consisting of 230 x 120 x 892 voxels with a unit volume of 2 x 2 x 2 mm3, was ported into Monte Carlo code MCNPX2.5 to calculate the conversion coefficients from kerma free-in-air to absorbed dose and to effective dose for external monoenergetic photon beams from 15 keV to 10 MeV under six idealized external irradiation geometries (anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic). Organ masses of the VCH model are fairly different from other human phantoms. Differences of up to 300% are observed between doses from ICRP 74 data and those of VIP-Man. Detailed information from the VCH model is able to improve the radiological datasets, particular for the Chinese population, and provide insights into the research of various computational phantoms. PMID:18188046

  14. Lens of the eye dose calculation for neuro-interventional procedures and CBCT scans of the head

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rana, Vijay; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital CAN bus on the Toshiba Infinix C-Arm system which is saved in a log file by the real-time skin-dose tracking system (DTS) we previously developed. The x-ray beam spectra on this machine were simulated using BEAMnrc. These spectra were compared to those determined by SpekCalc and validated through measured percent-depth-dose (PDD) curves and half-value-layer (HVL) measurements. We simulated CBCT procedures in DOSXYZnrc for a CTDI head phantom and compared the surface dose distribution with that measured with Gafchromic film, and also for an SK150 head phantom and compared the lens dose with that measured with an ionization chamber. Both methods demonstrated good agreement. Organ dose calculated for a simulated neuro-interventional-procedure using DOSXYZnrc with the Zubal CT voxel phantom agreed within 10% with that calculated by PCXMC code for most organs. To calculate the lens dose in a neuro-interventional procedure, we developed a library of normalized lens dose values for different projection angles and kVp's. The total lens dose is then calculated by summing the values over all beam projections and can be included on the DTS report at the end of the procedure.

  15. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect

    Barnett, J. Matthew; Rhoads, Kathleen

    2009-06-11

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  16. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect

    Barnett, J. Matthew; Rhoads, Kathleen

    2008-09-29

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  17. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    SciTech Connect

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  18. DIABETEX decision module 2--calculation of insulin dose proposals and situation recognition by means of classifiers.

    PubMed

    Stadelmann, A; Abbas, S; Zahlmann, G; Bruns, W; Hennig, I

    1990-01-01

    Current research in the field of medical decision making tries to represent and to analyse complex, uncertain and complicated situations. The first version of DIABETEX, which is a decision support system for the treatment of diabetic out-patients, accepts the challenge to overcome these difficulties. It includes a network of rules on the basis of known glucose-insulin relationships under different situations. The insulin dose for type I diabetic patients is suggested accordingly. In this, the application of special cybernetic methods offers the chance to overcome complexity, uncertainty, fuzzyness and incompleteness of data. Two methods of classification are presented to complete the DIABETEX decision unit: (1) the Bayes' classification is used in the calculation of insulin doses for type I diabetic patients on multiple subcutaneous insulin injections considering the basis-bolus concept; (2) fuzzy classification is employed in separating 'normal diabetic days' from days with information on special situations such as exercise, illness, menstruation on the one side, from stress, hypoglycaemia etc. on the other.

  19. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  20. A study of potential numerical pitfalls in GPU-based Monte Carlo dose calculation

    NASA Astrophysics Data System (ADS)

    Magnoux, Vincent; Ozell, Benoît; Bonenfant, Éric; Després, Philippe

    2015-07-01

    The purpose of this study was to evaluate the impact of numerical errors caused by the floating point representation of real numbers in a GPU-based Monte Carlo code used for dose calculation in radiation oncology, and to identify situations where this type of error arises. The program used as a benchmark was bGPUMCD. Three tests were performed on the code, which was divided into three functional components: energy accumulation, particle tracking and physical interactions. First, the impact of single-precision calculations was assessed for each functional component. Second, a GPU-specific compilation option that reduces execution time as well as precision was examined. Third, a specific function used for tracking and potentially more sensitive to precision errors was tested by comparing it to a very high-precision implementation. Numerical errors were found in two components of the program. Because of the energy accumulation process, a few voxels surrounding a radiation source end up with a lower computed dose than they should. The tracking system contained a series of operations that abnormally amplify rounding errors in some situations. This resulted in some rare instances (less than 0.1%) of computed distances that are exceedingly far from what they should have been. Most errors detected had no significant effects on the result of a simulation due to its random nature, either because they cancel each other out or because they only affect a small fraction of particles. The results of this work can be extended to other types of GPU-based programs and be used as guidelines to avoid numerical errors on the GPU computing platform.

  1. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  2. [The model of geometrical human body phantom for calculating tissue doses in the service module of the International Space Station].

    PubMed

    Bondarenko, V A; Mitrikas, V G

    2007-01-01

    The model of a geometrical human body phantom developed for calculating the shielding functions of representative points of the body organs and systems is similar to the anthropomorphic phantom. This form of phantom can be integrated with the shielding model of the ISS Russian orbital segment to make analysis of radiation loading of crewmembers in different compartments of the vehicle. Calculation of doses absorbed by the body systems in terms of the representative points makes it clear that doses essentially depend on the phantom spatial orientation (eye direction). It also enables the absorbed dose evaluation from the shielding functions as the mean of the representative points and phantom orientation.

  3. SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac

    SciTech Connect

    Sugimoto, S; Inoue, T; Kurokawa, C; Usui, K; Sasai, K; Utsunomiya, S; Ebe, K

    2014-06-01

    Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbal motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.

  4. SOILD: A computer model for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil

    SciTech Connect

    Chen, S.Y.; LePoire, D.; Yu, C. ); Schafetz, S. ); Mehta, P. )

    1991-01-01

    The SOLID computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The models four major functional features address (1) dose versus source depth in soil, (2) shielding of clean cover soil, (3) area of contamination, and (4) nonuniform distribution of sources. The model is also capable of adjusting doses when there are variations in soil densities for both source and cover soils. The model is supported by a data base of approximately 500 radionuclides. 4 refs.

  5. Updates in the real-time Dose Tracking System (DTS) to improve the accuracy in calculating the radiation dose to the patients skin during fluoroscopic procedures

    PubMed Central

    Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2013-01-01

    We have developed a dose-tracking system (DTS) to manage the risk of deterministic skin effects to the patient during fluoroscopic image-guided interventional cardiac procedures. The DTS calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system geometry from the digital bus on a Toshiba C-arm unit and displays the cumulative dose values as a color map on a 3D graphic of the patient for immediate feedback to the interventionalist. Several recent updates have been made to the software to improve its function and performance. Whereas the older system needed manual input of pulse rate for dose-rate calculation and used the CPU clock with its potential latency to monitor exposure duration, each x-ray pulse is now individually processed to determine the skin-dose increment and to automatically measure the pulse rate. We also added a correction for the table pad which was found to reduce the beam intensity to the patient for under-table projections by an additional 5–12% over that of the table alone at 80 kVp for the x-ray filters on the Toshiba system. Furthermore, mismatch between the DTS graphic and the patient skin can result in inaccuracies in dose calculation because of inaccurate inverse-square-distance calculation. Therefore, a means for quantitative adjustment of the patient-graphic-model position and a parameterized patient-graphic library have been developed to allow the graphic to more closely match the patient. These changes provide more accurate estimation of the skin-dose which is critical for managing patient radiation risk. PMID:24817801

  6. Updates in the real-time Dose Tracking System (DTS) to improve the accuracy in calculating the radiation dose to the patients skin during fluoroscopic procedures.

    PubMed

    Rana, Vijay K; Rudin, Stephen; Bednarek, Daniel R

    2013-03-01

    We have developed a dose-tracking system (DTS) to manage the risk of deterministic skin effects to the patient during fluoroscopic image-guided interventional cardiac procedures. The DTS calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system geometry from the digital bus on a Toshiba C-arm unit and displays the cumulative dose values as a color map on a 3D graphic of the patient for immediate feedback to the interventionalist. Several recent updates have been made to the software to improve its function and performance. Whereas the older system needed manual input of pulse rate for dose-rate calculation and used the CPU clock with its potential latency to monitor exposure duration, each x-ray pulse is now individually processed to determine the skin-dose increment and to automatically measure the pulse rate. We also added a correction for the table pad which was found to reduce the beam intensity to the patient for under-table projections by an additional 5-12% over that of the table alone at 80 kVp for the x-ray filters on the Toshiba system. Furthermore, mismatch between the DTS graphic and the patient skin can result in inaccuracies in dose calculation because of inaccurate inverse-square-distance calculation. Therefore, a means for quantitative adjustment of the patient-graphic-model position and a parameterized patient-graphic library have been developed to allow the graphic to more closely match the patient. These changes provide more accurate estimation of the skin-dose which is critical for managing patient radiation risk.

  7. Comparison of measured and calculated dose rates near nuclear medicine patients.

    PubMed

    Yi, Y; Stabin, M G; McKaskle, M H; Shone, M D; Johnson, A B

    2013-08-01

    Widely used release criteria for patients receiving radiopharmaceuticals (NUREG-1556, Vol. 9, Rev.1, Appendix U) are known to be overly conservative. The authors measured external exposure rates near patients treated with I, Tc, and F and compared the measurements to calculated values using point and line source models. The external exposure dose rates for 231, 11, and 52 patients scanned or treated with I, Tc, and F, respectively, were measured at 0.3 m and 1.0 m shortly after radiopharmaceutical administration. Calculated values were always higher than measured values and suggested the application of "self-shielding factors," as suggested by Siegel et al. in 2002. The self-shielding factors of point and line source models for I at 1 m were 0.60 ± 0.16 and 0.73 ± 0.20, respectively. For Tc patients, the self-shielding factors for point and line source models were 0.44 ± 0.19 and 0.55 ± 0.23, and the values were 0.50 ± 0.09 and 0.60 ± 0.12, respectively, for F (all FDG) patients. Treating patients as unshielded point sources of radiation is clearly inappropriate. In reality, they are volume sources, but treatment of their exposures using a line source model with appropriate self-shielding factors produces a more realistic, but still conservative, approach for managing patient release.

  8. Comparison of measured and calculated dose rates near nuclear medicine patients.

    PubMed

    Yi, Y; Stabin, M G; McKaskle, M H; Shone, M D; Johnson, A B

    2013-08-01

    Widely used release criteria for patients receiving radiopharmaceuticals (NUREG-1556, Vol. 9, Rev.1, Appendix U) are known to be overly conservative. The authors measured external exposure rates near patients treated with I, Tc, and F and compared the measurements to calculated values using point and line source models. The external exposure dose rates for 231, 11, and 52 patients scanned or treated with I, Tc, and F, respectively, were measured at 0.3 m and 1.0 m shortly after radiopharmaceutical administration. Calculated values were always higher than measured values and suggested the application of "self-shielding factors," as suggested by Siegel et al. in 2002. The self-shielding factors of point and line source models for I at 1 m were 0.60 ± 0.16 and 0.73 ± 0.20, respectively. For Tc patients, the self-shielding factors for point and line source models were 0.44 ± 0.19 and 0.55 ± 0.23, and the values were 0.50 ± 0.09 and 0.60 ± 0.12, respectively, for F (all FDG) patients. Treating patients as unshielded point sources of radiation is clearly inappropriate. In reality, they are volume sources, but treatment of their exposures using a line source model with appropriate self-shielding factors produces a more realistic, but still conservative, approach for managing patient release. PMID:23799503

  9. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  10. Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom

    NASA Astrophysics Data System (ADS)

    Krieger, Thomas; Sauer, Otto A.

    2005-03-01

    The aim of this work was to evaluate the accuracy of dose predicted in heterogeneous media by a pencil beam (PB), a collapsed cone (CC) and a Monte Carlo (MC) algorithm. For this purpose, a simple multi-layer phantom composed of Styrofoam and white polystyrene was irradiated with 10 × 10 cm2 as well as 20 × 20 cm2 open 6 MV photon fields. The beam axis was aligned parallel to the layers and various field offsets were applied. Thereby, the amount of lateral scatter was controlled. Dose measurements were performed with an ionization chamber positioned both in the central layer of white polystyrene and the adjacent layers of Styrofoam. It was found that, in white polystyrene, both MC and CC calculations agreed satisfactorily with the measurements whereas the PB algorithm calculated 12% higher doses on average. By studying off-axis dose profiles the observed differences in the calculation results increased dramatically for the three algorithms. In the regions of low density CC calculated 10% (8%) lower doses for the 10 × 10 cm2 (20 × 20 cm2) fields than MC. The MC data on the other hand agreed well with the measurements, presuming that proper replacement correction for the ionization chamber embedded in Styrofoam was performed. PB results evidently did not account for the scattering geometry and were therefore not really comparable. Our investigations showed that the PB algorithm generates very large errors for the dose in the vicinity of interfaces and within low-density regions. We also found that for the used CC algorithm large deviations for the absolute dose (dose/monitor unit) occur in regions of electronic disequilibrium. The performance might be improved by better adapted parameters. Therefore, we recommend a careful investigation of the accuracy for dose calculations in heterogeneous media for each beam data set and algorithm.

  11. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    PubMed Central

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-01-01

    A key task within all Monte Carlo particle transport codes is Navigation, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the effciency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the latter with and without boundary skipping, a method where neighboring voxels with the same Hounsfield Unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a TOol for PArticle Simulations layered on top of Geant4. Runtime comparisons were performed on three distinct patient CT data sets: A head and neck, a liver, and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average run time ratio for G4PhantomParamererisation with and without boundary skipping for our heterogeneous data was = 0:97 : 1. The calculated dose distributions agreed with the reference distribution for all but the G4Phantom

  12. MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE

    SciTech Connect

    Slater, Charles O; Primm, Trent; Pinkston, Daniel; Cook, David Howard; Selby, Douglas L; Ferguson, Phillip D; Bucholz, James A; Popov, Emilian L

    2009-03-01

    The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

  13. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  14. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    PubMed Central

    Park, Yang-Kyun; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A.

    2015-01-01

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCTus) and a priori CT-based scatter correction (CBCTap). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCTus, while no HU change was applied to the CBCTap. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CTref) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCTap was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCTus images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CTref, while the CBCTap images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCTap-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms. PMID:26233175

  15. Effect of skull contours on dose calculations in Gamma Knife Perfexion stereotactic radiosurgery.

    PubMed

    Nakazawa, Hisato; Komori, Masataka; Mori, Yoshimasa; Hagiwara, Masahiro; Shibamoto, Yuta; Tsugawa, Takahiko; Hashizume, Chisa; Kobayashi, Tatsuya

    2014-03-06

    In treatment planning of Leksell Gamma Knife (LGK) radiosurgery, the skull geometry defined by generally dedicated scalar measurement has a crucial effect on dose calculation. The LGK Perfexion (PFX) unit is equipped with a cone-shaped collimator divided into eight sectors, and its configuration is entirely different from previous model C. Beam delivery on the PFX is made by a combination of eight sectors, but it is also mechanically available from one sector with the remaining seven blocked. Hence the treatment time using one sector is more likely to be affected by discrepancies in the skull shape than that of all sectors. In addition, the latest version (Ver. 10.1.1) of the treatment planning system Leksell GammaPlan (LGP) includes a new function to directly generate head surface contouring from computed tomography (CT) images in conjunction with the Leksell skull frame. This paper evaluates change of treatment time induced by different skull models. A simple simulation using a uniform skull radius of 80 mm and anthropomorphic phantom was implemented in LGP to find the trend between dose and skull measuring error. To evaluate the clinical effect, we performed an interobserver comparison of ruler measurement for 41 patients, and compared instrumental and CT-based contours for 23 patients. In the phantom simulation, treatment time errors were less than 2% when the difference was within 3 mm. In the clinical cases, the variability of treatment time induced by the differences in interobserver measurements was less than 0.91%, on average. Additionally the difference between measured and CT-based contours was good, with a difference of -0.16% ± 0.66% (mean ±1 standard deviation) on average and a maximum of 3.4%. Although the skull model created from CT images reduced the dosimetric uncertainty caused by different measurers, these results showed that even manual skull measurement could reproduce the skull shape close to that of a patient's head within an acceptable

  16. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  17. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.

    PubMed

    Habib, B; Poumarede, B; Tola, F; Barthe, J

    2010-01-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within +/-1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE.

  18. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.

    PubMed

    Habib, B; Poumarede, B; Tola, F; Barthe, J

    2010-01-01

    The aim of the present study is to demonstrate the potential of accelerated dose calculations, using the fast Monte Carlo (MC) code referred to as PENFAST, rather than the conventional MC code PENELOPE, without losing accuracy in the computed dose. For this purpose, experimental measurements of dose distributions in homogeneous and inhomogeneous phantoms were compared with simulated results using both PENELOPE and PENFAST. The simulations and experiments were performed using a Saturne 43 linac operated at 12 MV (photons), and at 18 MeV (electrons). Pre-calculated phase space files (PSFs) were used as input data to both the PENELOPE and PENFAST dose simulations. Since depth-dose and dose profile comparisons between simulations and measurements in water were found to be in good agreement (within +/-1% to 1 mm), the PSF calculation is considered to have been validated. In addition, measured dose distributions were compared to simulated results in a set of clinically relevant, inhomogeneous phantoms, consisting of lung and bone heterogeneities in a water tank. In general, the PENFAST results agree to within a 1% to 1 mm difference with those produced by PENELOPE, and to within a 2% to 2 mm difference with measured values. Our study thus provides a pre-clinical validation of the PENFAST code. It also demonstrates that PENFAST provides accurate results for both photon and electron beams, equivalent to those obtained with PENELOPE. CPU time comparisons between both MC codes show that PENFAST is generally about 9-21 times faster than PENELOPE. PMID:19342258

  19. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  20. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    SciTech Connect

    Appelt, Ane L.; Ploen, John; Vogelius, Ivan R.; Bentzen, Soren M.; Jakobsen, Anders

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  1. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  2. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  3. Dose escalation for unresectable locally advanced non-small cell lung cancer: end of the line?

    PubMed Central

    Hong, Julian C.

    2016-01-01

    Radiation Therapy Oncology Group (RTOG) 0617 was a randomized trial that investigated both the impact of radiation dose-escalation and the addition of cetuximab on the treatment of non-small cell lung cancer (NSCLC). The results of RTOG 0617 were surprising, with the dose escalation randomization being closed prematurely due to futility stopping rules, and cetuximab ultimately showing no overall survival benefit. Locally advanced unresectable NSCLC has conventionally been treated with concurrent chemoradiation. Though advances in treatment technology have improved the ability to deliver adequate treatment dose, the foundation for radiotherapy (RT) has remained the same since the 1980s. Since then, progressive studies have sought to establish the safety and efficacy of escalating radiation dose to loco-regional disease. Though RTOG 0617 did not produce the anticipated result, much interest remains in dose escalation and establishing an explanation for the findings of this study. Cetuximab was also not found to provide a survival benefit when applied to an unselected population. However, planned retrospective analysis suggests that those patients with high epidermal growth factor receptor (EGFR) expression may benefit, suggesting that cetuximab should be applied in a targeted fashion. We discuss the results of RTOG 0617 and additional findings from post-hoc analysis that suggest that dose escalation may be limited by normal tissue toxicity. We also present ongoing studies that aim to address potential causes for mortality in the dose escalation arm through adaptive or proton therapy, and are also leveraging additional concurrent systemic agents such as tyrosine kinase inhibitors (TKIs) for EGFR-activating mutations or EML4-ALK rearrangements, and poly (ADP-ribose) polymerase (PARP) inhibitors. PMID:26958507

  4. Dose escalation for unresectable locally advanced non-small cell lung cancer: end of the line?

    PubMed

    Hong, Julian C; Salama, Joseph K

    2016-02-01

    Radiation Therapy Oncology Group (RTOG) 0617 was a randomized trial that investigated both the impact of radiation dose-escalation and the addition of cetuximab on the treatment of non-small cell lung cancer (NSCLC). The results of RTOG 0617 were surprising, with the dose escalation randomization being closed prematurely due to futility stopping rules, and cetuximab ultimately showing no overall survival benefit. Locally advanced unresectable NSCLC has conventionally been treated with concurrent chemoradiation. Though advances in treatment technology have improved the ability to deliver adequate treatment dose, the foundation for radiotherapy (RT) has remained the same since the 1980s. Since then, progressive studies have sought to establish the safety and efficacy of escalating radiation dose to loco-regional disease. Though RTOG 0617 did not produce the anticipated result, much interest remains in dose escalation and establishing an explanation for the findings of this study. Cetuximab was also not found to provide a survival benefit when applied to an unselected population. However, planned retrospective analysis suggests that those patients with high epidermal growth factor receptor (EGFR) expression may benefit, suggesting that cetuximab should be applied in a targeted fashion. We discuss the results of RTOG 0617 and additional findings from post-hoc analysis that suggest that dose escalation may be limited by normal tissue toxicity. We also present ongoing studies that aim to address potential causes for mortality in the dose escalation arm through adaptive or proton therapy, and are also leveraging additional concurrent systemic agents such as tyrosine kinase inhibitors (TKIs) for EGFR-activating mutations or EML4-ALK rearrangements, and poly (ADP-ribose) polymerase (PARP) inhibitors.

  5. Historical development of radiation dose calculations for the public in the vicinity of nuclear sites in the United States

    SciTech Connect

    Pettengill, H.L.; Soldat, J.K.; Swinth, K.L.

    1994-06-01

    Most Manhattan District (MD) and Atomic Energy Commission (AEC) sites began environmental monitoring programs in the earliest years of their operation. The results were used to establish trends and to monitor for effluent releases that might be otherwise undetected. Very few data concerning radiation doses to the public in the vicinity of the sites were generated prior to 1960. Authoritative guidelines for controlling doses to the public were issued by national and international bodies beginning in the 1950s. In 1957, the Hanford Site began calculating and reporting maximum potential radiation doses to the public from several environmental pathways of exposure. Shortly thereafter, most AEC sites began programs aimed at either determining public doses, or ensuring that the doses were below the regulatory limits. Calculations of radiation doses to Maximally Exposed Individuals (MEI) at the Hanford Site have been recently completed by the Hanford Environmental Dose Reconstruction (HEDR) project. Collective doses for the public at Hanford were generated for this paper by utilizing the data developed by HEDR and approximate demographic data.

  6. Integrated beta and gamma radiation dose calculations for the ferrocyanide waste tanks

    SciTech Connect

    Parra, S.A.

    1994-11-30

    This report contains the total integrated beta and gamma radiation doses in all the ferrocyanide waste tanks. It also contains estimated gamma radiation dose rates for all single-shell waste tanks containing a liquid observation well.

  7. High dose intensity combination chemotherapy for advanced epithelial ovarian carcinoma: results of a pilot study.

    PubMed Central

    Sweetenham, J. W.; McKendrick, J. J.; Jones, D. H.; Whitehouse, J. M.; Williams, C. J.

    1990-01-01

    Retrospective studies have recently demonstrated a significant correlation between dose intensity of chemotherapy and response rates and survival in various diseases including epithelial ovarian carcinoma. As part of a proposed randomised trial to assess the effect of dose intensity on outcome in ovarian carcinoma, a pilot study has been undertaken to determine the toxicity and efficacy of the high intensity therapy. Nineteen patients with advanced ovarian carcinoma received initial treatment with cisplatin 120 mg m-2 i.v. day 1, and cyclophosphamide 1,000 mg-2 i.v. day 1, given at 21-day intervals for six cycles. The average relative dose intensity of this therapy is 1.14 when compared with the CHAP regimen. Severe toxicity was experienced by most patients. The median received average relative dose intensity was 0.90, with only one patient receiving treatment to the proposed intensity. Randomised studies of the effect of dose intensity in ovarian carcinoma are essential, but an initial step must be to assess whether the proposed high dose treatment can be delivered. PMID:2155645

  8. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  9. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  10. 40 CFR Appendix A to Part 197 - Calculation of Annual Committed Effective Dose Equivalent

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Effective Dose Equivalent A Appendix A to Part 197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Dose Equivalent Unless otherwise directed by NRC, DOE shall use the radiation weighting factors and... effective dose equivalent for compliance with §§ 197.20 and 197.25 of this part. NRC may allow DOE to...

  11. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy

    SciTech Connect

    Hünemohr, Nora Greilich, Steffen; Paganetti, Harald; Seco, Joao; Jäkel, Oliver

    2014-06-15

    Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱ{sub e} and effective atomic number Z{sub eff} are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱ{sub e} that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱ{sub e} and the Z{sub eff} in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would

  12. The profound effects of patient arm positioning on organ doses from CT procedures calculated using Monte Carlo simulations and deformable phantoms

    PubMed Central

    Liu, Haikuan; Gao, Yiming; Ding, Aiping; Caracappa, Peter F.; Xu, X. George

    2015-01-01

    The purpose of this study was to evaluate the organ dose differences caused by the arms-raised and arms-lowered postures for multidetector computed tomography procedures. Organ doses were calculated using computational phantoms and Monte Carlo simulations. The arm position in two previously developed adult male and female human phantoms was adjusted to represent ‘raised’ and ‘lowered’ postures using advanced BREP-based mesh surface geometries. Organ doses from routine computed tomography (CT) scan protocols, including the chest, abdomen–pelvis, and chest–abdomen–pelvis scans, were simulated at various tube voltages and reported in the unit of mGy per 100 mAs. The CT scanner model was based on previously tested work. The differences in organ dose per unit tube current between raised and lowered arm postures were studied. Furthermore, the differences due to the tube current modulation (TCM) for these two different postures and their impact on organ doses were also investigated. For a given scan parameter, a patient having lowered arms received smaller doses to organs located within the chest, abdomen or pelvis when compared with the patient having raised arms. As expected, this is caused by the attenuation of the primary X rays by the arms. However, the skin doses and bone surface doses in the patient having lowered arms were found to be 3.97–32.12 % larger than those in a patient having raised arms due to the fact that more skin and spongiosa were covered in the scan range when the arms are lowered. This study also found that dose differences become smaller with the increase in tube voltage for most of organs or tissues except the skin. For example, the liver dose differences decreased from −15.01 to −11.33 % whereas the skin dose differences increased from 21.53 to 25.24 % with tube voltage increased from 80 to 140 kVp. With TCM applied, the organ doses of all the listed organs in patient having lowered arms are larger due to the additional tube

  13. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    SciTech Connect

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  14. SU-E-T-210: Independent MU Dose Calculation Software for S and S IMRT Using Modified Clarkson Integration Sector

    SciTech Connect

    Adrada, A; Miller, E; Tello, Z; Medina, L; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for S and S IMRT based in the algorithm proposed by Kung et.al. Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS and S and S IMRT modality. A 6MV photon beam produced by a Primus linear accelerator equipped with an Optifocus MLC was used. TPS dose calculation algorithms were pencil beam and Monte Carlo. 230 IMRT treatments plans were selected for the study. The software was written under MALTLAB environment. Treatment plans were imported by the software using RTP format. Field fluences were reconstructed adding all segments.The algorithm implemented in the software calculates the dose at a reference point as the sum of primary and scatter dose. The primary dose is obtained by masking the fluence map with a circle of radius 1cm. The scatter dose is obtained through a shaped ring mask around the previous circle with a thickness of 0.5cm; the rings are increased one after another with constant thickness until cover the entire map of influence. The dosimetric parameters Sc, Sp and TPR vary depending on radio, the transmission effect of the MLC, inverse square law and dose profile are used for the calculation. Results: The average difference between measured and independent calculated dose was 0.4% ± 2.2% [−6.8%, 6.4%]. For 91% of the studied plans the difference was less than 3%. The difference between the measured and TPS dose with pencilbeam algorithm was 2.6% ± 1.41% [−2.0%, 5.6%] and Monte Carlo algorithm was 0.4% ± 1.5% [−4.9%, 3.7%]. The differences obtained are comparable to that obtained with the ionization chamber and TPS. Conclusion: The developed software is suitable for use in S and S IMRT dose calculation. This application is open and can be downloading under request.

  15. SU-E-I-06: A Dose Calculation Algorithm for KV Diagnostic Imaging Beams by Empirical Modeling

    SciTech Connect

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I

    2015-06-15

    Purpose: To develop accurate three-dimensional (3D) empirical dose calculation model for kV diagnostic beams for different radiographic and CT imaging techniques. Methods: Dose was modeled using photon attenuation measured using depth dose (DD), scatter radiation of the source and medium, and off-axis ratio (OAR) profiles. Measurements were performed using single-diode in water and a diode-array detector (MapCHECK2) with kV on-board imagers (OBI) integrated with Varian TrueBeam and Trilogy linacs. The dose parameters were measured for three energies: 80, 100, and 125 kVp with and without bowtie filters using field sizes 1×1–40×40 cm2 and depths 0–20 cm in water tank. Results: The measured DD decreased with depth in water because of photon attenuation, while it increased with field size due to increased scatter radiation from medium. DD curves varied with energy and filters where they increased with higher energies and beam hardening from half-fan and full-fan bowtie filters. Scatter radiation factors increased with field sizes and higher energies. The OAR was with 3% for beam profiles within the flat dose regions. The heal effect of this kV OBI system was within 6% from the central axis value at different depths. The presence of bowtie filters attenuated measured dose off-axis by as much as 80% at the edges of large beams. The model dose predictions were verified with measured doses using single point diode and ionization chamber or two-dimensional diode-array detectors inserted in solid water phantoms. Conclusion: This empirical model enables fast and accurate 3D dose calculation in water within 5% in regions with near charge-particle equilibrium conditions outside buildup region and penumbra. It considers accurately scatter radiation contribution in water which is superior to air-kerma or CTDI dose measurements used usually in dose calculation for diagnostic imaging beams. Considering heterogeneity corrections in this model will enable patient specific dose

  16. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    SciTech Connect

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J.

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  17. Verification of TG-61 dose for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations

    SciTech Connect

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin

    2012-12-15

    Purpose: Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a polymethylmethacrylate (PMMA) phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. Methods: Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30 Degree-Sign -60 Degree-Sign . Differential Compton and Rayleigh scattering cross sections obtained from xraylib, an ANSI C library for x-ray-matter interactions, were applied to derive the incident fluence. MCNP5 simulations of the irradiation geometry provided the dose deposition per photon fluence as a function of depth in the phantom. Results: At 25 keV the fluence-normalized MCNP5 dose overestimated the ion-chamber measured dose by an average of 7.2 {+-} 3.0%-2.1 {+-} 3.0% for PMMA depths from 0.6 to 7.7 cm, respectively. At 35 keV the fluence-normalized MCNP5 dose underestimated the ion-chamber measured dose by an average of 1.0 {+-} 3.4%-2.5 {+-} 3.4%, respectively. Conclusions: These results showed that TG-61 ion chamber dosimetry, used to calibrate dose output for cell irradiations, agreed with fluence-normalized MCNP5 calculations to within approximately 7

  18. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy

    PubMed Central

    Koch, Nicholas; Newhauser, Wayne D; Titt, Uwe; Gombos, Dan; Coombes, Kevin; Starkschall, George

    2014-01-01

    The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy. PMID:18367789

  19. The Impact of the Calculator on the Content Validity of Advanced Placement Calculus Problems.

    ERIC Educational Resources Information Center

    Gimmestad, Beverly J.

    Nineteen Calculus II students were randomly sampled and divided into calculator (n=9) and noncalculator (n=10) groups. These students were asked to "think aloud" while solving 24 Advanced Placement calculus problems. Each student interview was videotaped, coded and analyzed for reasoning process as well as outcome. The results indicated that the…

  20. Detailed comparison of observed dose-time profile of October 19-20, 1989 SPE on Mir with model calculations.

    PubMed

    Badhwar, G D; Atwell, W

    1999-06-01

    The dose rate dynamics of the October 19-20, 1989 solar energetic particle (SPE) event as observed by the Liulin instrument onboard the Mir orbital station was analyzed in light of new calculations of the geomagnetic cutoff and improved estimates of the >100 MeV energy spectra from the GOES satellite instrument. The new calculations were performed using the as-flown Mir orbital trajectory and includes time variations of the cutoff rigidity due to changes in the Kp index. Although the agreement of total event integrated calculated dose to the measured dose is good, it results from some measured dose-time profile being higher and some lower than model calculations. They point to the need to include the diurnal variation of the geomagnetic cutoff and modifications of the cutoffs to variations in Kp in model calculations. Understanding of such events in light of the upcoming construction of the International Space Station during the period of maximum solar activity needs to be vigorously pursued.

  1. TU-F-18A-03: Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data

    SciTech Connect

    Di, Salvio A; Bedwani, S; Carrier, J

    2014-06-15

    Purpose: To develop a new segmentation technique using dual energy CT (DECT) to overcome limitations related to segmentation from a standard Hounsfield unit (HU) to electron density (ED) calibration curve. Both methods are compared with a Monte Carlo analysis of dose distribution. Methods: DECT allows a direct calculation of both ED and effective atomic number (EAN) within a given voxel. The EAN is here defined as a function of the total electron cross-section of a medium. These values can be effectively acquired using a calibrated method from scans at two different energies. A prior stoichiometric calibration on a Gammex RMI phantom allows us to find the parameters to calculate EAN and ED within a voxel. Scans from a Siemens SOMATOM Definition Flash dual source system provided the data for our study. A Monte Carlo analysis compares dose distribution simulated by dosxyz-nrc, considering a head phantom defined by both segmentation techniques. Results: Results from depth dose and dose profile calculations show that materials with different atomic compositions but similar EAN present differences of less than 1%. Therefore, it is possible to define a short list of basis materials from which density can be adapted to imitate interaction behavior of any tissue. Comparison of the dose distributions on both segmentations shows a difference of 50% in dose in areas surrounding bone at low energy. Conclusion: The presented segmentation technique allows a more accurate medium definition in each voxel, especially in areas of tissue transition. Since the behavior of human tissues is highly sensitive at low energies, this reduces the errors on calculated dose distribution. This method could be further developed to optimize the tissue characterization based on anatomic site.

  2. SU-E-T-209: Independent Dose Calculation in FFF Modulated Fields with Pencil Beam Kernels Obtained by Deconvolution

    SciTech Connect

    Azcona, J; Burguete, J

    2014-06-01

    Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.

  3. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration

    SciTech Connect

    Rong Yi

    2010-10-01

    Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulate sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site

  4. SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy

    SciTech Connect

    Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J

    2014-06-01

    Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows

  5. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  6. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines h