Science.gov

Sample records for advanced ducted propeller

  1. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    It is shown that a time marching Navier-Stokes code called PARC can be utilized to provide a reasonable prediction of the flow field within an inlet for an advanced ducted propeller. The code validation was implemented for a nonseparated flow condition associated with the inlet functioning at angles-of-attack of zero and 25 deg. Comparison of the computational results with the test data shows that the PARC code with the propeller face fixed flow properties boundary conditions (BC) provided a better prediction of the inlet surface static pressures than the prediction when the mass flow BC was employed.

  2. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  3. An estimate of the noise shielding on the fuselage resulting from installing a short duct around an advanced propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1988-01-01

    A simple barrier shielding model was used to estimate the amount of noise shielding on the fuselage that could result from installing a short duct around a wing-mounted advanced propeller. With the propeller located one-third of the duct length from the inlet, estimates for the maximum blade passing tone attenuation varied from 7 dB for a duct 0.25 propeller diameter long to 16.75 dB for a duct 1 diameter long. Attenuations for the higher harmonics would be even larger because of their shorter wavelengths relative to the duct length. These estimates show that the fuselage noise reduction potential of a ducted compared with an unducted propeller is significant. Even more reduction might occur if acoustic attenuation material were installed in the duct.

  4. 3-D viscous flow CFD analysis of the propeller effect on an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1993-01-01

    The time-marching Navier-Stokes code PARC3D was used to study the 3D viscous flow associated with an advanced ducted propeller subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 deg became unstable at 29 deg, and separated at 30 deg. An experimental study with a similar inlet and without propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller, indicating the propeller's favorable effect on inlet performance. In the present numerical study, flow blockage analogous to the propeller was modeled via a PARC3D computational boundary condition (BC), the 'screen BC', based on 1-1/2 dimension actuator disk theory. The application of the screen BC in this numerical study provided results similar to those of past experimental efforts in which either the blockage device or the propeller was used.

  5. The 3-D viscous flow CFD analysis of the propeller effect on an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1993-01-01

    A time marching Navier-Stokes code called PARC3D was used to study the 3-D viscous flow associated with an advanced ducted propeller (ADP) subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 degrees became unstable at 29 degrees, and separated at 30 degrees. An experimental study with a similar inlet and with no propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller. This tends to indicate that the propeller exerts a favorable effect on the inlet performance. During the through-flow experiment a stationary blockage device was used to successfully simulate the propeller effect on the inlet flow field at angles of attack. In the present numerical study, this flow blockage was modeled via a PARC3D computational boundary condition (BC) called the screen BC. The principle formulation of this BC was based on the one-and-half dimension actuator disk theory. This screen BC was applied at the inlet propeller face station of the computational grid. Numerical results were obtained with and without the screen BC. The application of the screen BC in this numerical study provided results which are similar to the results of past experimental efforts in which either the blockage device or the propeller was used.

  6. Ducted propeller design and analysis

    SciTech Connect

    Weir, R.J.

    1987-10-01

    The theory and implementation of the design of a ducted propeller blade are presented and discussed. Straightener (anti-torque) vane design is also discussed. Comparisons are made to an existing propeller design and the results and performance of two example propeller blades are given. The inflow velocity at the propeller plane is given special attention and two dimensionless parameters independent of RPM are discussed. Errors in off-design performance are also investigated. 11 refs., 26 figs.

  7. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  8. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  9. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  10. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  11. Cavitation erosion in blocked flow with a ducted ice-class propeller

    SciTech Connect

    Doucet, J.M.; Bose, N.; Walker, D.; Jones, S.J.

    1996-12-31

    Ships that operate in ice often encounter momentary increased propeller cavitation because ice pieces block the flow into the propeller. For ducted propellers, this additional cavitation is more significant than it is for open propellers; ice pieces may become lodged against and within the duct and subject the propeller to longer periods of increased cavitation due to the blocked flow. Associated with this blocked flow is the possibility of cavitation erosion on the propeller. An erosion study, using paint films, was conducted in a cavitation tunnel with a model propeller of the type fitted to the Canadian Marine Drilling Ltd. vessel MV Robert LeMeur. A simulated ice blockage was installed ahead of the propeller model and within the duct. Tests were carried out over a range of advance coefficients for various test conditions. The resulting types of cavitation were documented, the erosion patterns were photographed and comparisons between each test were made.

  12. An unsteady Euler scheme for the analysis of ducted propellers

    NASA Technical Reports Server (NTRS)

    Srivastava, R.

    1992-01-01

    An efficient unsteady solution procedure has been developed for analyzing inviscid unsteady flow past ducted propeller configurations. This scheme is first order accurate in time and second order accurate in space. The solution procedure has been applied to a ducted propeller consisting of an 8-bladed SR7 propeller with a duct of NACA 0003 airfoil cross section around it, operating in a steady axisymmetric flowfield. The variation of elemental blade loading with radius, compares well with other published numerical results.

  13. Advanced Duct Sealing Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2003-08-01

    Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with natural rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected

  14. Sea trials of a ducted tip propeller designed for improved cavitation performance

    SciTech Connect

    Hordnes, I.; Bidaud, A.; Green, S.I.

    1994-12-31

    Studies have shown that ``ring-wing`` or ``ducted`` tip devices reduce substantially the inception index of trailing vortices generated by a hydrofoil (Green et al. 1988). It has also been shown that these devices improve the lift/drag ratio of an airfoil at high angle of incidence (Duan et al. 1992). These finding indicate that there may be a marine application for the ducted tip. Experimental equipment has been designed and manufactured in preparation for upcoming tests of a propeller with ducted tips. The tips are tubes aligned with the propeller blade tips that will replace a radial fraction of the original blade tips equal to the diameter of the tubes. The tube dimensions have been chosen according to the span/tip diameter and chord/tip length ratios used by Duan et al. (1992), and the tubes will be given a curvature equal to the propeller tip radius. Field trials will be given a curvature equal to the propeller tip radius. Field trials will be conducted on a 36 inch diameter propeller that is used to propel a 45 ft. fishing (seine) boat operating in the coastal waters outside Vancouver. The performance of the propeller will be measured in terms of the propeller efficiency as a function of advance ratio. A special force transducer has been designed that is capable of recording both torque and thrust on the propeller shaft even though these are expected to produce shaft strains of different orders of magnitude. As a supplementary means of monitoring the propeller performance, a hydrophone will be located near the propeller wake in order to measure the tip vortex cavitation noise.

  15. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  16. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet duct geometry. The fundamental tone level was essentially unaffected by propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  17. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet duct geometry. The fundamental tone level was essentially unaffected by propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  18. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  19. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  20. Effect of a rotating propeller on the separation angle of attack and distortion in ducted propeller inlets

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.

    1993-01-01

    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propeller removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.

  1. A model of the wall boundary layer for ducted propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Moehring, Willi

    1987-01-01

    The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.

  2. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  3. Low speed propellers: Impact of advanced technologies

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1980-01-01

    Sensitivity studies performed to evaluate the potential of several advanced technological elements on propeller performance, noise, weight, and cost for general aviation aircraft are discussed. Studies indicate that the application of advanced technologies to general aviation propellers can reduce fuel consumption in future aircraft an average of ten percent, meeting current regulatory noise limits. Through the use of composite blade construction, up to 25 percent propeller weight reduction can be achieved. This weight reduction in addition to seven percent propeller efficiency improvements through application of advanced technologies result in four percent reduction in direct operating costs, ten percent reduction in aircraft acquisition cost, and seven percent lower gross weight for general aviation aircraft.

  4. Measuring Combustion Advance in Solid Propellants

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1986-01-01

    Set of gauges on solid-propellant rocket motor with electrically insulating case measures advance of combustion front and local erosion rates of propellant and insulation. Data furnished by gauges aid in motor design, failure analysis, and performance prediction. Technique useful in determining propellant uniformity and electrical properties of exhaust plum. Gauges used both in flight and on ground. Foilgauge technique also useful in basic research on pulsed plasmas or combustion of solids.

  5. Recent Advancements in Propellant Densification

    NASA Technical Reports Server (NTRS)

    McNelis, Nancy B.; Tomsik, Thomas M.

    1998-01-01

    Next-generation launch vehicles demand several technological improvements to achieve lower cost and more reliable access to space. One technology area whose performance gains may far exceed others is densified propellants. The ideal rocket engine propellant is characterized by high specific impulse, high density, and low vapor pressure. A propellant combination of liquid hydrogen and liquid oxygen (LH2/LOX) is one of the highest performance propellants, but LH2 stored at standard conditions has a relatively low density and high vapor pressure. Propellant densification can significantly improve this propellant's properties relative to vehicle design and engine performance. Vehicle performance calculations based on an average of existing launch vehicles indicate that densified propellants may allow an increase in payload mass of up to 5 percent. Since the NASA Lewis Research Center became involved with the National Aerospace Plane program in the 1980's, it has been leading the way in making densified propellants a viable fuel for next-generation launch vehicles. Lewis researchers have been working to provide a method and critical data for continuous production of densified hydrogen and oxygen.

  6. Advanced solid propellant motor insulation

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Russ, R. F.

    1972-01-01

    An advanced lightweight insulation system suitable for use in long duration, low pressure planetary orbiter-type motor applications was developed. Experiments included the screening of various filler and binder materials with optimization studies combining the best of each. Small scale test motor data were used to judge the degree of success.

  7. Technology readiness for advanced ducted engines

    SciTech Connect

    Eckardt, D.; Brines, G.L.

    1989-01-01

    The Advanced Ducted Engines (ADEs) currently undergoing development for next-generation passenger aircraft typically possess bypass ratios of the order of 12-25 and specific fuel consumption figures 12-17 percent lower than current advanced turbofans. An extensive technology-readiness program has been mounted on behalf of ADE design definition over the last two years, encompassing among its concerns aircraft/engine-installation interference, low pressure-ratio fan aerodynamics, fan/nacelle interactions (including windmilling and thrust-reversal), acoustic characteristics, transonic-drive turbines, and slender nacelle aerodynamic and mechanical design. Both turbine-driven and geared ADE fans, which may be of single-rotating or contrarotating type, are discussed. 5 refs.

  8. Advanced space storable propellants for outer planet exploration

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.

    2004-01-01

    An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.

  9. Measurement of flowfield in a simulated solid-propellant ducted rocket combustor using laser Doppler velocimetry

    SciTech Connect

    Hsieh, W.H.; Yang, V.; Chuang, C.L.; Yang, A.S.; Cherng, D.L.

    1989-01-01

    A two-component LDV system was used to obtain detailed flow velocity and turbulence measurements in order to study the flow characteristics in a simulated solid-propellant ducted rocket combustor. The vortical structures near the dome region, the size of the recirculation zone, and the location of the reattachment point are all shown to be strongly affected by the jet momentum of both ram air and fuel streams. It is found that the turbulence intensity is anisotropic throughout the front portion of the simulated conbustor, and that the measured Reynolds stress conmponent distribution is well correlated with the local mean velocity vector distribution. 25 refs.

  10. Rocket Propellant Ducts (Cryogenic Fuel Lines): First Cut Approximations and Design Guidance

    NASA Technical Reports Server (NTRS)

    Brewer, William V.

    1998-01-01

    The design team has to set parameters before analysis can take place. Analysis is customarily a thorough and time consuming process which can take weeks or even months. Only when analysis is complete can the designer obtain feedback. If margins are negative, the process must be repeated to a greater or lesser degree until satisfactory results are achieved. Reduction of the number of iterations thru this loop would beneficially conserve time and resources. The task was to develop relatively simple, easy to use, guidelines and analytic tools that allow the designer to evaluate what effect various alternatives may have on performance as the design progresses. "Easy to use" is taken to mean closed form approximations and the use of graphic methods. "Simple" implies that 2-d and quasi 3-d approximations be exploited to whatever degree is useful before more resource intensive methods are applied. The objective is to avoid the grosser violation of performance margins at the outset. Initial efforts are focused on thermal expansion/contraction and rigid body kinematics as they relate to propellant duct displacements in the gimbal plane loop (GPL). The purpose of the loop is to place two flexible joints on the same two orthogonal intersecting axes as those of the rocket motor gimbals. This supposes the ducting will flex predictably with independent rotations corresponding to those of the motor gimbal actions. It can be shown that if GPL joint axes do not coincide with motor gimbal axes, displacement incompatibilities result in less predictable movement of the ducts.

  11. Advanced helium regulator for a fluorine propellant system

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Yankura, G.

    1976-01-01

    The space storable propulsion module is an advanced high performance (375 seconds Isp minimum) planetary spacecraft propulsion system with a mission life of 5-10 years. The propellants used are liquid fluorine and amine fuel. This application requires high pressure regulator accuracy to optimize propellant depletion characteristics. An advanced regulator concept was prepared which is compatible with both fuel and oxidizer and which features design concepts such as redundant bellows, all-metallic/ceramic construction, friction-free guidance of moving parts and gas damping. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of those propellant residual requirements imposed by regulator performance variables.

  12. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    SciTech Connect

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.

  13. Advanced digital methods for solid propellant burning rate determination

    NASA Astrophysics Data System (ADS)

    Jones, Daniel A.

    The work presented here is a study of a digital method for determining the combustion bomb burning rate of a fuel-rich gas generator propellant sample using the ultrasonic pulse-echo technique. The advanced digital method, which places user defined limits on the search for the ultrasonic echo from the burning surface, is computationally faster than the previous cross correlation method, and is able to analyze data for this class of propellant that the previous cross correlation data reduction method could not. For the conditions investigated, the best fit burning rate law at 800 psi from the ultrasonic technique and advanced cross correlation method is within 3 percent of an independent analysis of the same data, and is within 5 percent of the best fit burning rate law found from parallel research of the same propellant in a motor configuration.

  14. Advanced technologies available for future solid propellant grains

    NASA Astrophysics Data System (ADS)

    Thépénier, Jean; Fonblanc, Gilles

    2001-03-01

    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: Computer-aided method for the preliminary grain design Advanced models for SRM operating and performance predictions

  15. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  16. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  17. Multiple advanced surgical techniques to treat acquired seminal duct obstruction

    PubMed Central

    Jiang, Hong-Tao; Yuan, Qian; Liu, Yu; Liu, Zeng-Qin; Zhou, Zhen-Yu; Xiao, Ke-Feng; Yang, Jiang-Gen

    2014-01-01

    The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery) for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months). Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12) semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml−1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51), and the patency rate and natural pregnancy rate were 89.4% (42/47) and 38.1% (16/42), respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved. PMID:25337841

  18. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  19. CPI-613 in Treating Patients With Advanced or Metastatic Bile Duct Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2016-07-26

    Adult Primary Cholangiocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Localized Unresectable Adult Primary Liver Cancer; Metastatic Extrahepatic Bile Duct Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Unresectable Extrahepatic Bile Duct Cancer

  20. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Astrophysics Data System (ADS)

    Lasagna, P.; Mackall, K.

    1981-12-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  1. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  2. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  3. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 2: Unsteady ducted propfan analysis computer program users manual

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1991-01-01

    The primary objective of this study was the development of a time-dependent three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The computer codes resulting from this study are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). This report is intended to serve as a computer program user's manual for the ADPAC developed under Task 2 of NASA Contract NAS3-25270, Unsteady Ducted Propfan Analysis. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. A time-accurate implicit residual smoothing operator was utilized for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C-grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted propfan flows. The solution scheme demonstrated efficiency and accuracy comparable with other schemes of this class.

  4. Advanced chemical propulsion at NASA Lewis: Metallized and high energy density propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1991-01-01

    Two of the programs at the NASA Lewis Research Center investigating advanced systems for future space missions are the Metallized Propellant Program and the Advanced Concepts Program. Each program includes both experimental and theoretical studies of future propellants and the associated vehicle impacts and significant payload benefits for many types of space transportation. These programs are described.

  5. Aeroelastic analysis of advanced propellers using an efficient Euler solver

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Reddy, T. S. R.; Mehmed, O.

    1992-01-01

    A 3D Euler solver is coupled with a 3D structural dynamics model to investigate flutter of propfans. A hybrid scheme is used to reduce computational time for the Euler equations and a normal mode analysis is used for flutter calculations. Experimental and calculated flutter results are compared for an advanced propeller propfan which experienced flutter at transonic tip relative velocities. The predicted flutter calculations are in close agreement with the experimental data. A structural damping value of 0.5 percent was required to predict the behavior observed in the experiment. Computations show that the flutter behavior is dominated by the second mode, but coupling with the first mode is required. The addition of other modes to the calculations did not affect the flutter behavior.

  6. Annoyance caused by advanced turboprop aircraft flyover noise: Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1991-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and turbofan aircraft flyover noise. A computer synthesis system was used to generate 40 realistic, time varying simulations of advanced turboprop takeoff noise. Of the 40 noises, single-rotating propeller configurations (8) and counter-rotating propeller configurations with an equal (12) and unequal (20) number of blades on each rotor were represented. Analyses found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops, but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved annoyance prediction ability.

  7. Advances in the research on the solid propellant properties abroad

    NASA Astrophysics Data System (ADS)

    Du, Lei; Jiang, Zhirong

    1994-06-01

    The recent research on the mechanical properties, burning behavior and processing technology of solid propellants abroad was reviewed. There are some available results in predicting theoretically the mechanical and rheological properties of solid propellants. In order to reduce the cost and increase the reliability in propellants processing, there is great demand on the design and manufacture of continuous mixer of high efficiency and safety. The research on the thermoplastic elastomers used as a kind of future binder of solid propellants has attracted more and more attention of many relevant experts.

  8. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  9. Advanced turboprop aircraft flyover noise annoyance - Comparison of different propeller configurations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1989-01-01

    A laboratory experiment was conducted to compare the annoyance of flyover noise from advanced turboprop aircraft having different propeller configurations with the annoyance of conventional turboprop and jet aircraft flyover noise. It was found that advanced turboprops with single-rotating propellers were, on average, slightly less annoying than the other aircraft. Fundamental frequency and tone-to-broadband noise ratio affected annoyance response to advanced turboprops but the effects varied with propeller configuration and noise metric. The addition of duration corrections and corrections for tones above 500 Hz to the noise measurement procedures improved prediction ability.

  10. Application of computational aeroacoustic methodologies to advanced propeller configurations - A review

    NASA Technical Reports Server (NTRS)

    Korkan, Kenneth D.; Eagleson, Lisa A.; Griffiths, Robert C.

    1991-01-01

    Current research in the area of advanced propeller configurations for performance and acoustics are briefly reviewed. Particular attention is given to the techniques of Lock and Theodorsen modified for use in the design of counterrotating propeller configurations; a numerical method known as SSTAGE, which is a Euler solver for the unducted fan concept; the NASPROP-E numerical analysis also based on a Euler solver and used to study the near acoustic fields for the SR series propfan configurations; and a counterrotating propeller test rig designed to obtain an experimental performance/acoustic data base for various propeller configurations.

  11. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  12. Bortezomib in Treating Patients With Unresectable Locally Advanced or Metastatic Adenocarcinoma of the Bile Duct or Gallbladder

    ClinicalTrials.gov

    2013-01-11

    Adenocarcinoma of the Extrahepatic Bile Duct; Adenocarcinoma of the Gallbladder; Advanced Adult Primary Liver Cancer; Gastrointestinal Cancer; Localized Unresectable Adult Primary Liver Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  13. Development of an advanced rocket propellant handler's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an

  14. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in

  15. Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.

    1986-01-01

    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.

  16. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  17. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  18. Instrumentation advances in emissions characterization from propellant/explosive combustion

    SciTech Connect

    Einfeld, W.; Morrison, D.J.; Mullins, S.E.

    1995-12-31

    Results from a chamber study to characterize emissions from combustion of selected pure energetic materials are presented in this paper. The study was carried out as a part of a comprehensive air pathways risk assessment for a propellant and explosive manufacturing facility that engages in open burning methods for manufacturing waste disposal. Materials selected for emissions characterization in this study included both aluminized and non-aluminized composite propellant, a double base propellant and a plastic bonded explosive. Combustion tests in a specialized chamber revealed very low emissions for gaseous products of incomplete combustion such as carbon monoxide and nitrogen oxides. Analysis of gaseous and aerosol emission products for a pre-selected target analyte list that included both volatile and semi-volatile organics revealed either low or non-detectable emissions for the four energetic types tested. Hydrogen chloride was detected as a major emission product from propellants containing ammonium perchlorate. Results from this work reveal that about one-half of the chlorine in the original material is released as hydrogen chloride. Based on earlier work, the balance of the chlorine emissions is expected to be in the form of chlorine gas.

  19. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary

  20. Application of an efficient hybrid scheme for aeroelastic analysis of advanced propellers

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Sankar, N. L.; Reddy, T. S. R.; Huff, D. L.

    1989-01-01

    An efficient 3-D hybrid scheme is applied for solving Euler equations to analyze advanced propellers. The scheme treats the spanwise direction semi-explicitly and the other two directions implicitly, without affecting the accuracy, as compared to a fully implicit scheme. This leads to a reduction in computer time and memory requirement. The calculated power coefficients for two advanced propellers, SR3 and SR7L, and various advanced ratios showed good correlation with experiment. Spanwise distribution of elemental power coefficient and steady pressure coefficient differences also showed good agreement with experiment. A study of the effect of structural flexibility on the performance of the advanced propellers showed that structural deformation due to centrifugal and aero loading should be included for better correlation.

  1. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  2. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    SciTech Connect

    Allen, Todd R.; Busby, Jeremy T; Klueh, Ronald L; Maloy, S; Toloczko, M

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP s advanced nuclear recycle reactors program.

  3. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  4. Advanced technology for Space Shuttle Auxiliary Propellant Valves.

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1972-01-01

    Propellant shutoff valves required for the operation of the pulse modulated gaseous hydrogen/gaseous oxygen rocket engines for the Space Shuttle Auxiliary Propulsion System are specified to operate for one million cycles over a ten-year period with zero maintenance, very fast response, very low leakage, and over a wide temperature range. Based on an analytical leakage and wear model, sealing configurations were conceived, sized, and developed. Two prototype valves featuring different components were designed, built, and evaluated for 100,000 cycles. Design concepts and test results are presented.

  5. A computational study of advanced exhaust system transition ducts with experimental validation

    NASA Technical Reports Server (NTRS)

    Wu, C.; Farokhi, S.; Taghavi, R.

    1992-01-01

    The current study is an application of CFD to a 'real' design and analysis environment. A subsonic, three-dimensional parabolized Navier-Stokes (PNS) code is used to construct stall margin design charts for optimum-length advanced exhaust systems' circular-to-rectangular transition ducts. Computer code validation has been conducted to examine the capability of wall static pressure predictions. The comparison of measured and computed wall static pressures indicates a reasonable accuracy of the PNS computer code results. Computations have also been conducted on 15 transition ducts, three area ratios, and five aspect ratios. The three area ratios investigated are constant area ratio of unity, moderate contracting area ratio of 0.8, and highly contracting area ratio of 0.5. The degree of mean flow acceleration is identified as a dominant parameter in establishing the minimum duct length requirement. The effect of increasing aspect ratio in the minimum length transition duct is to increase the length requirement, as well as to increase the mass-averaged total pressure losses. The design guidelines constructed from this investigation may aid in the design and manufacture of advanced exhaust systems for modern fighter aircraft.

  6. Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

  7. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  8. Radial inflow gas turbine engine with advanced transition duct

    SciTech Connect

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  9. Cholangiocarcinoma and malignant bile duct obstruction: A review of last decades advances in therapeutic endoscopy

    PubMed Central

    Bertani, Helga; Frazzoni, Marzio; Mangiafico, Santi; Caruso, Angelo; Manno, Mauro; Mirante, Vincenzo Giorgio; Pigò, Flavia; Barbera, Carmelo; Manta, Raffaele; Conigliaro, Rita

    2015-01-01

    In the last decades many advances have been achieved in endoscopy, in the diagnosis and therapy of cholangiocarcinoma, however blood test, magnetic resonance imaging, computed tomography scan may fail to detect neoplastic disease at early stage, thus the diagnosis of cholangiocarcinoma is achieved usually at unresectable stage. In the last decades the role of endoscopy has moved from a diagnostic role to an invaluable therapeutic tool for patients affected by malignant bile duct obstruction. One of the major issues for cholangiocarcinoma is bile ducts occlusion, leading to jaundice, cholangitis and hepatic failure. Currently, endoscopy has a key role in the work up of cholangiocarcinoma, both in patients amenable to surgical intervention as well as in those unfit for surgery or not amenable to immediate surgical curative resection owing to locally advanced or advanced disease, with palliative intention. Endoscopy allows successful biliary drainage and stenting in more than 90% of patients with malignant bile duct obstruction, and allows rapid reduction of jaundice decreasing the risk of biliary sepsis. When biliary drainage and stenting cannot be achieved with endoscopy alone, endoscopic ultrasound-guided biliary drainage represents an effective alternative method affording successful biliary drainage in more than 80% of cases. The purpose of this review is to focus on the currently available endoscopic management options in patients with cholangiocarcinoma. PMID:26078827

  10. Advances in aluminum powder usage as an energetic material and applications for rocket propellant

    NASA Astrophysics Data System (ADS)

    Sadeghipour, S.; Ghaderian, J.; Wahid, M. A.

    2012-06-01

    Energetic materials have been widely used for military purposes. Continuous research programs are performing in the world for the development of the new materials with higher and improved performance comparing with the available ones in order to fulfill the needs of the military in future. Different sizes of aluminum powders are employed to produce composite rocket propellants with the bases of Ammonium Perchlorate (AP) and Hydroxyl-Terminated-Polybutadiene (HTPB) as oxidizer and binder respectively. This paper concentrates on recent advances in using aluminum as an energetic material and the properties and characteristics pertaining to its combustion. Nano-sized aluminum as one of the most attractable particles in propellants is discussed particularly.

  11. Lateral noise attenuation of the advanced propeller of the propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, F. W.; Reddy, N. N.; Bartel, H. W.

    1989-01-01

    Lateral noise attenuation characteristics of the advanced propeller are determined using the flight test results of the testbed aircraft, Propfan Test Assessment (PTA), with a single, large-scale propfan. The acoustic data were obtained with an array of ground-mounted microphones positioned at distances up to 2.47 km (8100 feet) to the side of the flight path. The aircraft was flown at a Mach number of 0.31 for a variety of operating conditions. The lateral noise attenuation in a frequency range containing the blade passage frequency of the propeller was found to have positive magnitudes on the propfan side and negative magnitudes on the opposite side. The measured attenuation exhibits a strong dependence upon the elevation angle. The results also display a clear dependence upon the angle at which the propeller and nacelle are mounted on the wing (inflow angle).

  12. Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  13. Development Activities on an Advanced Propellant Flow Control Unit

    NASA Astrophysics Data System (ADS)

    Noci, G.; Siciliano, P.; Fallerini, L.; Kutufa, N.; Rivetti, A.; Galassi, C.; Bruschi, P.; Piotto, M.

    2004-10-01

    A new generation of propellant control equipment for electric propulsion systems is needed in order to improve performance and operating ranges, symplify h/w configuration, reduce mass and dimensions, eliminate mass flow ripple, reduce time response. In this frame, the development of key components, their assembly and experimental investigation/ validation is on-going at Alenia Spazio-Laben/Business Unit Proel Tecnologie ( Proel in the following ) in the frame of an ESA GSTP program. The new components shall support different EP technologies, future EP multi-tasking capability and wide operating ranges. This paper reports about the development effort, its achievements and perspectives. 1. ABBREVIATIONS AND ACRONYMS BOL Beginning of Life CMBR Ceramic multilayer bender ring CTA Constant Temperature Anemometry. DUT Device under test EOL End of Life EP Electric Propulsion GEO Geosyncrhonous Earth Orbit GFCU Gas Flow Control Unit GIT Gridded ion thruster HET Hall Effect Thrusters LEO Low Earth Orbit LPC Low pressure capillary MEOP Maximum Expected Operating Pressure MFS Mass Flow rate Sensor NSSK North-South Station Keeping Pred Reduced pressure Ptank Tank pressure RMT Radiofrequency Magnetic Thruster RMTA Radiofrequency Magnetic Thruster Assembly ROOV Regulation and On-Off Valve SoW Statement of Work SPT Stationary Plasma Thruster.

  14. Wind tunnel performance results of swirl recovery vanes as tested with an advanced high speed propeller

    NASA Technical Reports Server (NTRS)

    Gazzaniga, John A.; Rose, Gayle E.

    1992-01-01

    Tests of swirl recovery vanes designed for use in conjunction with advanced high speed propellers were carried out at the NASA Lewis Research Center. The eight bladed 62.23 cm vanes were tested with a 62.23 cm SR = 7A high speed propeller in the NASA Lewis 2.44 x 1.83 m Supersonic Wind Tunnel for a Mach number range of 0.60 to 0.80. At the design operating condition for cruise of Mach 0.80 at an advance ratio of 3.26, the vane contribution to the total efficiency approached 2 percent. At lower off-design Mach numbers, the vane efficiency is even higher, approaching 4.5 percent for the Mach 0.60 condition. Use of the swirl recovery vanes essentially shifts the peak of the high speed propeller efficiency to a higher operating speed. This allows a greater degree of freedom in the selection of rpm over a wider operating range. Another unique result of the swirl recovery vane configuration is their essentially constant torque split between the propeller and the swirl vanes over a wide range of operating conditions for the design vane angle.

  15. Nonlinear displacement analysis of advanced propeller structures using NASTRAN

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Kielb, R. E.

    1984-01-01

    The steady state displacements of a rotating advanced turboprop are computed using the geometrically nonlinear capabilities of COSMIC NASTRAN Rigid Format 4 and MSC NASTRAN Solution 64. A description of the modified Newton-Raphson algorithm used by Solution 64 and the iterative scheme used by Rigid Format 4 is provided. A representative advanced turboprop, SR3, was used for the study. Displacements for SR3 are computed for rotational speeds up to 10,000 rpm. The results show Solution 64 to be superior for computating displacements of flexible rotating structures. This is attributed to its ability to update the displacement dependent centrifugal force during the solution process.

  16. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  17. Selumetinib and Akt Inhibitor MK-2206 in Treating Patients With Refractory or Advanced Gallbladder or Bile Duct Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2014-09-08

    Adenocarcinoma of the Gallbladder; Adenocarcinoma With Squamous Metaplasia of the Gallbladder; Adult Primary Cholangiocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Localized Unresectable Adult Primary Liver Cancer; Metastatic Extrahepatic Bile Duct Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Stage II Gallbladder Cancer; Stage IIIA Gallbladder Cancer; Stage IIIB Gallbladder Cancer; Stage IVA Gallbladder Cancer; Stage IVB Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer

  18. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  19. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  20. In-flight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loffler, Irvin J.

    1991-01-01

    Flight tests to define the far-field tone source at cruise conditions have been completed on the full-scale SR-7L advanced turboprop, which was installed on the left wing of a Gulfstream II aircraft. These measurements defined source levels for input into long-distance propagation models to predict en route noise. Infight data were taken for seven test cases. The sideline directivities measured showed expected maximum levels near 105 deg from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. The tone level reduction associated with reductions in propeller tip speed is shown to be more significant in the horizontal plane than below the aircraft.

  1. Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report

    SciTech Connect

    Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.; Maskew, J.T.

    1994-12-01

    The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.

  2. Further comparison of wind tunnel and airplane acoustic data for advanced design high speed propeller models

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Comparisons were made between the SR-2 and SR-3 model propeller noise data taken in the NASA 8-by-6 wind tunnel, in the United Technologies Research Center (UTRC) anechoic tunnel, and with boom and fuselage microphones on the NASA Jetstar airplane. Plots of peak blade passage tone noise versus helical tip Mach number generally showed good agreement. The levels of the airplane fuselage data were somewhat lower than the boom data by an approximately uniform value. The curve shapes were similar except for the UTRC data which was flatter than the other sets. This was attributed to the UTRC data being taken at constant power while the other data were taken at constant advance ratio. General curves of the peak blade passage tone versus helical tip Mach number fit through all the data are also presented. Directivity shape comparisons at the cruise condition were similar for the airplane and 8-by-6 tunnel data. The UTRC data peaked farther forward but, when an angle correction was made for the different axial Mach number used in the UTRC tests, the shape was similar to the others. The general agreement of the data from the four configurations enables the formation of a good consensus of the noise from these propellers.

  3. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system is used to generate 18 realistic, time varying simulations of propeller aircraft takeoff noise in which the harmonic content is systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs are presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  4. Comparison of advanced turboprop and conventional jet and propeller aircraft flyover noise annoyance - Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.

    1985-01-01

    A laboratory experiment was conducted to compare the flyover noise annoyance of proposed advanced turboprop aircraft with that of conventional turboprop and jet aircraft. The effects of fundamental frequency and tone-to-broadband noise ratio on advanced turboprop annoyance were also examined. A computer synthesis system was used to generate 18 realistic, time varyring simulations of propeller aircraft takeoff noise in which the harmonic content was systematically varied to represent the factorial combinations of six fundamental frequencies ranging from 67.5 Hz to 292.5 Hz and three tone-to-broadband noise ratios of 0, 15, and 30 dB. These advanced turboprop simulations along with recordings of five conventional turboprop takeoffs and five conventional jet takeoffs were presented at D-weighted sound pressure levels of 70, 80, and 90 dB to 32 subjects in an anechoic chamber. Analyses of the subjects' annoyance judgments compare the three categories of aircraft and examine the effects of the differences in harmonic content among the advanced turboprop noises. The annoyance prediction ability of various noise measurement procedures and corrections is also examined.

  5. Annoyance caused by advanced turboprop aircraft flyover noise: Counter-rotating-propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Two experiments were conducted to quantify the annoyance of people to flyover noise of advanced turboprop aircraft with counter rotating propellers. The first experiment examined configurations having an equal number of blades on each rotor and the second experiment examined configurations having an unequal number of blades on each rotor. The objectives were to determine the effects on annoyance of various tonal characteristics, and to compare annoyance to advanced turboprops with annoyance to conventional turboprops and turbofans. A computer was used to synthesize realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. The simulations represented different combinations fundamental frequency and tone-to-broadband noise ratio. Also included in each experiment were recordings of 10 conventional turboprop and turbofan takeoffs. Each noise was presented at three sound pressure levels in an anechoic chamber. In each experiment, 64 subjects judged the annoyance of each noise stimulus. Analyses indicated that annoyance was significantly affected by the interaction of fundamental frequency with tone-to-broadband noise ratio. No significant differences in annoyance between the advanced turboprop aircraft and the conventional turbofans were found. The use of a duration correction and a modified tone correction improved the annoyance prediction for the stimuli.

  6. Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  7. Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1990-01-01

    An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.

  8. Internal Acoustics Measurements of a Full Scale Advanced Ducted Propulsor Demonstrator

    NASA Technical Reports Server (NTRS)

    Santa Maria, O. L.; Soderman, P. T.; Horne, W. C.; Jones, M. G.; Bock, L. A.

    1995-01-01

    Acoustics measurements of a Pratt & Whitney full-scale ADP (Advanced Ducted Propulsor), an ultrahigh by-pass ratio engine, were conducted in the NASA Ames 40- by 80-Foot Wind Tunnel. This paper presents data from measurements taken from sensors on a fan exit guide vane in the ADP. Data from two sensors, one at mid-span and the other at the tip of the fan exit guide vane, are presented. At the blade passage frequency (BPF), the levels observed at the various engine and wind speeds were higher at the mid-span sensor than the tip sensor. The coherence between these internal sensors and external microphones were calculated and plotted as a function of angle (angles ranged from 5 degrees to 160 degrees) relative to the ADP longitudinal axis. At the highest engine and wind speeds, the coherence between the tip sensor and the external microphones was observed to decrease at higher multiples of the BPF. These results suggest that the rotor-stator interaction tones are stronger in the mid-span region than at the tip.

  9. Some Acoustic Results from the Pratt and Whitney Advanced Ducted Propulsor: Fan 1

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Bock, Lawrence A.

    1999-01-01

    Noise measurements were obtained for the Advanced Ducted Propulsor (ADP) - Fan 1, with and without nacelle acoustic treatment. The fan was tested with no acoustic treatment (hard wall) and with acoustic treatment installed in three configurations in the nacelle (mid, mid plus aft, fully treated). The hard wall results showed that the radiated noise from the fan came primarily from the aft end of the nacelle. At takeoff and higher speeds, the noise measured at the inlet angles was also found to be dominated by noise from the aft end. Significant amounts of attenuation were observed with acoustic treatment installed and comparison with predictions showed the treatment gave more attenuation than predicted. Effective Perceived Noise Levels were determined for a large hypothetical 4 engine airplane. These levels showed that the installed acoustic treatment provided as much as 5 EPNdB of noise reduction. A traverse with a probe having three microphones, one above the other, showed azimuthal variations in the noise that need to be further investigated.

  10. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  11. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  12. Advanced launch vehicle upper stages using liquid propulsion and metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum particles are the metal additives. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellants for volume- and mass-constrained upper stages can deliver modest increases in performance for Low Earth Orbit to Geosynchronous Earth Orbit and other Earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System and Space Transportation System-Cargo launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  13. A numerical technique for calculation of the noise of high-speed propellers with advanced blade geometry

    NASA Technical Reports Server (NTRS)

    Nystrom, P. A.; Farassat, F.

    1980-01-01

    A numerical technique and computer program were developed for the prediction of the noise of propellers with advanced geometry. The blade upper and lower surfaces are described by a curvilinear coordinate system, which was also used to divide the blade surfaces into panels. Two different acoustic formulations in the time domain were used to improve the speed and efficiency of the noise calculations: an acoustic formualtion with the Doppler factor singularity for panels moving at subsonic speeds and the collapsing sphere formulation for panels moving at transonic or supersonic speeds. This second formulation involves a sphere which is centered at the observer position and whose radius decreases at the speed of sound. The acoustic equation consisted of integrals over the curve of intersection for both the sphere and the panels on the blade. Algorithms used in some parts of the computer program are discussed. Comparisons with measured acoustic data for two model high speed propellers with advanced geometry are also presented.

  14. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.

    1993-01-01

    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOAR\\CR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This document is the final report describing the theoretical basis and analytical results from the ADPAC-AOACR codes developed under task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR Program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.

  15. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    SciTech Connect

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  16. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  17. Solid propellants.

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Hutchison, J. J.

    1972-01-01

    The basic principles underlying propulsion by rocket motor are examined together with the configuration of a solid propellant motor. Solid propellants and their preparation are discussed, giving attention to homogeneous propellants, composite propellants, energetic considerations in choosing a solid propellant, the processing of composite propellants, and some examples of new developments. The performance of solid propellants is investigated, taking into account characteristics velocity, the specific impulse, and performance calculations. Aspects of propellant development considered include nonperformance requirements for solid propellants, the approach to development, propellant mechanical properties, and future trends.

  18. Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Jeracki, Robert J.

    1985-01-01

    Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34.

  19. Predicted and measured boundary layer refraction for advanced turboprop propeller noise

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Krejsa, Eugene A.

    1990-01-01

    Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.

  20. Flow field survey near the rotational plane of an advanced design propeller on a JetStar airplane

    NASA Technical Reports Server (NTRS)

    Walsh, K. R.

    1985-01-01

    An investigation was conducted to obtain upper fuselage surface static pressures and boundary layer velocity profiles below the centerline of an advanced design propeller. This investigation documents the upper fuselage velocity flow field in support of the in-flight acoustic tests conducted on a JetStar airplane. Initial results of the boundary layer survey show evidence of an unusual flow disturbance, which is attributed to the two windshield wiper assemblies on the aircraft. The assemblies were removed, eliminating the disturbances from the flow field. This report presents boundary layer velocity profiles at altitudes of 6096 and 9144 m (20,000 and 30,000 ft) and Mach numbers from 0.6 to 0.8, and it investigated the effects of windshield wiper assemblies on these profiles. Because of the unconventional velocity profiles that were obtained with the assemblies mounted, classical boundary layer parameters, such as momentum and displacement thicknesses, are not presented. The effects of flight test variables (Mach number and angles of attack and sideslip) and an advanced design propeller on boundary layer profiles - with the wiper assemblies mounted and removed - are presented.

  1. Advanced solar-propelled cargo spacecraft for Mars missions. Final report

    SciTech Connect

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-06-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  2. Experimental aerodynamic performance of advanced 40 deg-swept 10-blade propeller model at Mach 0.6 to 0.85

    NASA Technical Reports Server (NTRS)

    Mitchell, Glenn A.

    1988-01-01

    A propeller designated as SR-6, designed with 40 deg of sweep and 10 blades to cruise at Mach 0.8 at an altitude of 10.7 km (35,000 ft), was tested in the NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel. This propeller was one of a series of advanced single rotation propeller models designed and tested as part of the NASA Advanced Turboprop Project. Design-point net efficiency was almost constant to Mach 0.75 but fell above this speed more rapidly than that of any previously tested advanced propeller. Alternative spinners that further reduced the near-hub interblade Mach numbers and relieved the observed hub choking improved performance above Mach 0.75. One spinner attained estimated SR-6 Design-point net deficiencies of 80.6 percent at Mach 0.75 and 79.2 percent at Mach 0.8, higher than the measured performance of any previously tested advanced single-rotation propeller at these speeds.

  3. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  4. Design of a lunar propellant processing facility. NASA/USRA advanced program

    NASA Technical Reports Server (NTRS)

    Batra, Rajesh; Bell, Jason; Campbell, J. Matt; Cash, Tom; Collins, John; Dailey, Brian; France, Angelique; Gareau, Will; Gleckler, Mark; Hamilton, Charles

    1993-01-01

    Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.

  5. Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1985-01-01

    The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.

  6. Design of propellant acquisition systems for advanced cryogenic space propulsion systems

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.; Castle, J. N.

    1973-01-01

    This paper presents results of work conducted to expand the technology base and evolve practical propellant surface tension acquisition system designs for future cryogenic space vehicles. Surface tension screen device channel flow analysis and supporting tests showed that reasonable mesh sizes could provide the required retention performance. Integrated subsystem studies and development showed that practical and effective screen surface tension acquisition devices could be designed for typical applications, but that other interfacing feed subsystems are often constrained by the design of the particular acquisition device. These constraints may dominate the total feed system performance.

  7. Trastuzumab in Treating Patients With Locally Advanced or Metastatic Gallbladder Cancer or Bile Duct Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2014-05-15

    Adenocarcinoma of the Extrahepatic Bile Duct; Adenocarcinoma of the Gallbladder; Malignant Neoplasm; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  8. Lensing duct

    DOEpatents

    Beach, Raymond J. , Benett

    1994-01-01

    A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.

  9. Cruise noise of the 2/9th scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  10. Aerodynamic design and performance testing of an advanced 30 deg swept, eight bladed propeller at Mach numbers from 0.2 to 0.85

    NASA Technical Reports Server (NTRS)

    Black, D. M.; Menthe, R. W.; Wainauski, H. S.

    1978-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of from 15 to 28 percent may be realized by the use of an advanced high speed turboprop. The turboprop must be capable of high efficiency at Mach 0.8 above 10.68 km (35,000 ft) altitude if it is to compete with turbofan powered commercial aircraft. An advanced turboprop concept was wind tunnel tested. The model included such concepts as an aerodynamically integrated propeller/nacelle, blade sweep and power (disk) loadings approximately three times higher than conventional propeller designs. The aerodynamic design for the model is discussed. Test results are presented which indicate propeller net efficiencies near 80 percent were obtained at high disk loadings at Mach 0.8.

  11. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  12. Application of an advanced trajectory optimization method to ramjet propelled missiles

    NASA Technical Reports Server (NTRS)

    Paris, S. W.; Fink, L. E.; Joosten, B. K.

    1980-01-01

    The mission performance characteristics of ramjet-propelled missiles are highly dependent upon the trajectory flown. Integration of the trajectory profile with the ramjet propulsion system performance characteristics to achieve optimal missile performance is very complex. Past trajectory optimization methods have been extremely problem dependent and require a high degree of familiarity to achieve success. A general computer code (CTOP) has been applied to ramjet-powered missiles to compute open-loop optimal trajectories. CTOP employs Chebyshev polynomial representations of the states and controls. This allows a transformation of the continuous optimal control problem to one of parameter optimization. With this method, the trajectory boundary conditions are always satisfied. State dynamics and path constraints are enforced via penalty functions. The presented results include solutions to minimum fuel-to-climb, minimum time-to-climb, and minimum time-to-target intercept problems.

  13. Determination of near and far field acoustics for advanced propeller configurations

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Jaeger, S. M.; Kim, J. H.

    1989-01-01

    A method has been studied for predicting the acoustic field of the SR-3 transonic propfan using flow data generated by two versions of the NASPROP-E computer code. Since the flow fields calculated by the solvers include the shock-wave system of the propeller, the nonlinear quadrupole noise source term is included along with the monopole and dipole noise sources in the calculation of the acoustic near field. Acoustic time histories in the near field are determined by transforming the azimuthal coordinate in the rotating, blade-fixed coordinate system to the time coordinate in a nonrotating coordinate system. Fourier analysis of the pressure time histories is used to obtain the frequency spectra of the near-field noise.

  14. Results of an Advanced Development Zero Boil-Off Cryogenic Propellant Storage Test

    NASA Technical Reports Server (NTRS)

    Plachta, David

    2004-01-01

    A zero boil-off (ZBO) cryogenic propellant storage concept was recently tested in a thermally relevant low-earth orbit environment, an important development in the effort to apply this concept to flight projects. Previous efforts documented the benefits of ZBO for launch vehicle upper stages in a low-earth orbit (LEO). Central to that analysis is a ZBO Cryogenic Analysis Tool that estimates the performance of each component and the ZBO system. This test is essential to the validation of that tool, and was the first flight representative configuration tested in a thermally representative environment. The test article was comprised of a spherical 1.4 m diameter insulated propellant tank, with a submerged mixer, a cryogenic heat pipe, flight design cryocooler, and a radiator. All were enclosed in a thermal shroud and inserted into and tested in a vacuum chamber that simulated an LEO thermal environment. Thermal and pressure control tests were performed at sub-critical LN2 temperatures and approximately 2 atmospheres pressure. The cold side of the ZBO system performed well. In particular, the heat pipe performed better than expected, which suggests that the cryocooler could be located further from the tank than anticipated, i.e. on a spacecraft bus, while maintaining the desired efficiency. Also, the mixer added less heat than expected. The tank heating rate through the insulation was higher than expected; also the temperatures on the cryocooler hot side were higher than planned. This precluded the cryocooler from eliminating the boil-off. The results show the cryocooler was successful at removing 6.8 W of heat at approximately 75 K and 150 W of input power, with a heat rejection temperature of 311 K. The data generated on the ZBO components is essential for the upgrade of the ZBO Cryogenic Analysis Tool to more accurately apply the concept to future missions.

  15. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 4, Task 3, Optimized advanced process evaluation

    SciTech Connect

    Rosenhoover, W.A.; Stouffer, M.R.; Maskew, J.T.; Withum, J.A.; Wu, M.M.; Winschel, R.A.

    1994-12-01

    The objective of this research project is to develop second- generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific performance targets are 90% SO{sup 2} removal and 60% sorbent utilization efficiency. Research focused on the Advanced Coolside process, which showed the potential for exceeding these targets. The objective of Subtask 3.1, Performance Testing, was to develop process performance and operability data for design and scale-up of the optimized Advance Coolside process. Results of long-term pilot plant testing with 24 hour/day operation provided a positive indication of process operability. The objective of Subtask 3.2, Waste Characterization, was to determine the chemical and physical properties of the waste materials for designing the waste handling and disposal systems for the process. Test results show that the combined spent sorbent and fly ash waste is suitable for landfilling. Further, the waste management study indicated a potential for by-product utilization for synthetic aggregate production; a more thorough investigation of this potential is required.

  16. Feasibility of an advanced thrust termination assembly for a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A total of 68 quench tests were conducted in a vented bomb assembly (VBA). Designed to simulate full-scale motor operating conditions, this laboratory apparatus uses a 2-inch-diameter, end-burning propellant charge and an insulated disc of consolidated hydrated aluminum sulfate along with the explosive charge necessary to disperse the salt and inject it onto the burning surface. The VBA was constructed to permit variation of motor design parameters of interest; i.e., weight of salt per unit burning surface area, weight of explosive per unit weight of salt, distance from salt surface to burning surface, incidence angle of salt injection, chamber pressure, and burn time. Completely satisfactory salt quenching, without re-ignition, occurred in only two VBA tests. These were accomplished with a quench charge ratio (QCR) of 0.023 lb salt per square inch of burning surface at dispersing charge ratios (DCR) of 13 and 28 lb of salt per lb of explosive. Candidate materials for insulating salt charges from the rocket combustion environment were evaluated in firings of 5-inch-diameter, uncured end-burner motors. A pressed, alumina ceramic fiber material was selected for further evaluation and use in the final demonstration motor.

  17. Annoyance caused by advanced turboprop aircraft flyover noise: Single-rotating propeller configuration

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1988-01-01

    Two experiments were conducted to quantify the annoyance of people to advanced turboprop (propfan) aircraft flyover noise. The objectives were to: (1) determine the effects on annoyance of various tonal characteristics; and (2) compare annoyance to advanced turboprops with annoyance to conventional turboprops and jets. A computer was used to produce realistic, time-varying simulations of advanced turboprop aircraft takeoff noise. In the first experiment, subjects judged the annoyance of 45 advanced turboprop noises in which the tonal content was systematically varied to represent the factorial combinations of five fundamental frequencies, three frequency envelope shapes, and three tone-to-broadband noise ratios. Each noise was presented at three sound levels. In the second experiment, 18 advanced turboprop takeoffs, 5 conventional turboprop takeoffs, and 5 conventional jet takeoffs were presented at three sound pressure levels to subjects. Analysis indicated that frequency envelope shape did not significantly affect annoyance. The interaction of fundamental frequency with tone-to-broadband noise ratio did have a large and complex effect on annoyance. The advanced turboprop stimuli were slightly less annoying than the conventional stimuli.

  18. Analysis of Dual Rotating Rake Data from the NASA Glenn Advanced Noise Control Fan Duct with Artificial Sources

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sutliff, Daniel L.

    2014-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. Initially, the mode amplitudes and phases were quantified from a single rake measurement at one axial location. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was then extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. Validation experiments have been conducted using artificial acoustic sources. Results are shown for the measurement of the standing waves in the duct from sound generated by one and two acoustic sources that are separated into the component modes propagating in both directions within the duct. Measured reflection coefficients from the open end of the duct are compared to analytical predictions.

  19. Duct closure

    DOEpatents

    Vowell, Kennison L.

    1987-01-01

    A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.

  20. Fabrication process of a high temperature polymer matrix engine duct

    NASA Technical Reports Server (NTRS)

    Pratt, R. D.; Wilson, A. J.

    1985-01-01

    The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system.

  1. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis. Computer program user's manual

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Adamczyk, John J.; Miller, Christopher J.; Arnone, Andrea; Swanson, Charles

    1993-01-01

    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.

  2. Study of the supersonic propeller

    NASA Technical Reports Server (NTRS)

    Fabri, Jean; Siestrunck, Raymond

    1953-01-01

    In this paper a propeller having all sections operating at supersonic speeds is designated a supersonic propeller regardless of flight speed. Analyses assume subsonic flight speeds but very high rotational speeds. A very elementary analysis of the efficiency of a jet-propeller system is presented. A propeller analysis based on conventional vortex blade element theory is presented and reduced to a single point method which leads to an expression for optimum advance ratio in terms of hub-tip diameter ratio and airfoil fineness ratio. An expression for propeller efficiency in terms of advance ratio, hub-tip diameter ratio, and airfoil thickness ratio is also presented. Use is made of theoretical airfoil characteristics at supersonic speeds. A study of blade section interference, blade shock and expansion fields, at supersonic section speeds is presented. An example taken indicates that an efficiency of seventy percent can be obtained with a propeller having a tip Mach number of 2.3.

  3. Numerical simulation of shrouded propellers

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.

    1991-01-01

    A numerical model was developed for the evaluation of the performance characteristics of a shrouded propeller. Using this model, a computational study was carried out to investigate the feasibility of improving the aerodynamic performance of a propeller by encasing it in a shroud. The propeller blade was modeled by a segmented bound vortex positioned along the span of the blade at its quarter-chord-line. The shroud was modeled by a number of discrete vortex rings. Due to the mutual dependence of shroud and propeller vortex strengths and the propeller vortex wake an iterative scheme was employed. Three shroud configurations were considered: a cylindrical and two conical shrouds. The computed performance of the shrouded propeller was compared with that of a free propeller of identical propeller geometry. The numerical results indicated that the cylindrical shroud outperformed the conical shroud configurations for the cases considered. Furthermore, when compared to the free propeller performance, the cylindrical shroud showed a considerable performance enhancement over the free propeller. However, the improvements were found to decrease with an increase in the advance ratio and to virtually diminish at advance ratios of about 2.5.

  4. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 6, Task 5: Conceptual commercial process design and economic evaluation

    SciTech Connect

    Deluliis, N.J.; Maskew, J.T.

    1994-12-01

    The objective of this research project is the development of a second generation in-duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research focused on the Advanced Coolside Process, which has shown the potential of exceeding the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Task 5, Conceptual Process Design and Economic Evaluation, the economics of the CONSOL Advanced Coolside Process as a Clean Air Act compliance option were evaluated. A conceptual process design for full-scale, coal-fired applications is described. Advanced Coolside is compared to conventional Limestone Forced Oxidation (LSFO) wet FGD technology. The process economics for coal sulfur levels ranging from 1.0% to 3.5% (as-received) and plant sizes ranging from 160 to 512 gross MW were investigated, In addition, the economics of on-site versus off-site lime hydration and the cost sensitivity to delivered pebble lime and hydrate prices are investigated, Advanced in-duct sorbent injection enjoys a capital and levelized cost advantage relative to LSFO in all cases examined in this study. As a result of this study and others made during this contract, the following conclusions can be made: (1) The capital cost of Advanced Coolside is 55% to 60% less than that of LSFO and varies slightly depending on coal sulfur content and plant size. (2) The total levelized SO{sub 2} control cost advantage relative to LSFO varies from 15% to 35% over the range of coal sulfur contents and plant sizes evaluated. This cost advantage is sensitive to sorbent transportation charges. As a result, the economics are site-specific. (3) The experimental optimizations based on interim economic analyses were the key to capital and levelized cost reductions.

  5. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  6. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  7. Complicated bile duct stones

    PubMed Central

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  8. Rocket-in-a-Duct Performance Analysis

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1999-01-01

    An axisymmetric, 110 N class, rocket configured with a free expansion between the rocket nozzle and a surrounding duct was tested in an altitude simulation facility. The propellants were gaseous hydrogen and gaseous oxygen and the hardware consisted of a heat sink type copper rocket firing through copper ducts of various diameters and lengths. A secondary flow of nitrogen was introduced at the blind end of the duct to mix with the primary rocket mass flow in the duct. This flow was in the range of 0 to 10% of the primary massflow and its effect on nozzle performance was measured. The random measurement errors on thrust and massflow were within +/-1%. One dimensional equilibrium calculations were used to establish the possible theoretical performance of these rocket-in-a-duct nozzles. Although the scale of these tests was small, they simulated the relevant flow expansion physics at a modest experimental cost. Test results indicated that lower performance was obtained at higher free expansion area ratios and longer ducts, while, higher performance was obtained with the addition of secondary flow. There was a discernable peak in specific impulse efficiency at 4% secondary flow. The small scale of these tests resulted in low performance efficiencies, but prior numerical modeling of larger rocket-in-a-duct engines predicted performance that was comparable to that of optimized rocket nozzles. This remains to be proven in large-scale, rocket-in-a-duct tests.

  9. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  10. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  11. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report number 3, Subtask 2.3: Sorbent optimization

    SciTech Connect

    Rosenhoover, W.A.; Maskew, J.T.; Withum, J.A.; Stouffer, M.R.

    1994-11-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific process performance goals are to achieve 90% SO{sub 2} removal and 60% sorbent utilization efficiency. Research is focused on the Advanced Coolside process, which has shown the potential of achieving these targets. The objective of Subtask 2.3, Sorbent Optimization, was to explore means of improving performance and economics of the Advanced Coolside process through optimizing the sorbent system. Pilot plant tests of commercial and specially prepared hydrated limes showed that the process is relatively insensitive to sorbent source. This can be an important economic advantage, allowing the use of the lowest cost sorbent available at a site. A pilot plant hydration study conducted in cooperation with Dravo Lime Company further indicated the relative insensitivity of process performance to lime source and to lime physical properties. Pilot plant tests indicated that the use of very small amounts of additives in the Advanced Coolside process can improve performance under some circumstances; however, additives are not necessary to exceed process performance targets.

  12. Efficacy and Safety of Endoscopic Papillary Large Balloon Dilation for Removal of Large Bile Duct Stones in Advanced Age

    PubMed Central

    Kim, Kook Hyun

    2016-01-01

    Objective. Bile duct stone-related adverse events can be detrimental in the elderly. However, little is known about clinical outcomes and adverse events following endoscopic papillary large balloon dilation (EPLBD) in the elderly. The aim of this study was to evaluate the safety and feasibility of EPLBD for the removal of CBD stones in patients aged ≥ 80 years. Methods. A total of 204 patients who underwent EPLBD from 2006 to 2012 were retrospectively reviewed. Patients were classified into two groups (148 patients < 80 years old, Group A; 56 patients ≥ 80 years old, Group B). Endoscopic findings, clinical outcomes, and adverse events in two groups were compared. Results. The number of underlying chronic diseases in Group B was significantly higher than in Group A (P = 0.032). The rates of overall stone clearance were similar between two groups (P = 0.145). No significant difference with regard to post-ERCP pancreatitis between two groups was observed (P = 0.687). All episodes of pancreatitis had full recovery with conservative treatment. One major hemorrhage in Group A was successfully controlled endoscopically and one death caused by retroperitoneal perforation occurred in Group A. Conclusions. EPLBD appear to be safe and effective for CBD stone removal in patients aged ≥ 80 years. PMID:27812520

  13. Propeller injuries.

    PubMed

    Mann, R J

    1976-05-01

    Water skiing, boat racing, skin and scuba diving, and pleasure boat cruising are increasing in popularity. As a result the incidence of injuries secondary to motor propellers is becoming more frequent. In a ten-year period from 1963 to 1973, I collected a total of nine cases. In some amputations were necessary, and in other cases amputations occurred at the time of injury. Problems with bacterial flora occurring in open sea water versus salt water enclosed near docks and fresh lake water are discussed. A review of the orthopedic literature revealed sparse information regarding propeller injuries.

  14. Flow analysis for the nacelle of an advanced ducted propeller at high angle-of-attack and at cruise with boundary layer control

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.; Boldman, D. R.; Hughes, C. E.

    1994-01-01

    An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.

  15. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization

    SciTech Connect

    Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.

    1994-12-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed that the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.

  16. Computation of flows in a turn-around duct and a turbine cascade using advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1993-01-01

    Numerical investigation has been carried out to evaluate the capability of the Algebraic Reynolds Stress Model (ARSM) and the Nonlinear Stress Model (NLSM) to predict strongly curved turbulent flow in a turn-around duct (TAD). The ARSM includes the near-wall damping term of pressure-strain correlation phi(sub ij,w), which enables accurate prediction of individual Reynolds stress components in wall flows. The TAD mean flow quantities are reasonably well predicted by various turbulence models. The ARSM yields better predictions for both the mean flow and the turbulence quantities than the NLSM and the k-epsilon (k = turbulent kinetic energy, epsilon = dissipation rate of k) model. The NLSM also shows slight improvement over the k-epsilon model. However, all the models fail to capture the recovery of the flow from strong curvature effects. The formulation for phi(sub ij,w) appears to be incorrect near the concave surface. The hybrid k-epsilon/ARSM, Chien's k-epsilon model, and Coakley's q-omega (q = the square root of k, omega = epsilon/k) model have also been employed to compute the aerodynamics and heat transfer of a transonic turbine cascade. The surface pressure distributions and the wake profiles are predicted well by all the models. The k-epsilon model and the k-epsilon/ARSM model provide better predictions of heat transfer than the q-omega model. The k-epsilon/ARSM solutions show significant differences in the predicted skin friction coefficients, heat transfer rates and the cascade performance parameters, as compared to the k-epsilon model. The k-epsilon/ARSM model appears to capture, qualitatively, the anisotropy associated with by-pass transition.

  17. Radiated noise of ducted fans

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  18. Radiated noise of ducted fans

    NASA Astrophysics Data System (ADS)

    Eversman, Walter

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  19. Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

    DOE PAGES

    Allen, Todd R.; Kaoumi, Djamel; Wharry, Janelle P.; Jiao, Zhijie; Topbasi, Cem; Kohnert, Aaron; Barnard, Leland; Certain, Alicia; Field, Kevin G.; Was, Gary S.; et al

    2015-05-20

    Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. Here, the studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocationmore » networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Lastly, transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.« less

  20. Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

    SciTech Connect

    Allen, Todd R.; Kaoumi, Djamel; Wharry, Janelle P.; Jiao, Zhijie; Topbasi, Cem; Kohnert, Aaron; Barnard, Leland; Certain, Alicia; Field, Kevin G.; Was, Gary S.; Morgan, Dane L.; Motta, Arthur T.; Wirth, Brian D.; Yang, Y.

    2015-05-20

    Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. Here, the studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocation networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Lastly, transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.

  1. New Propellants and Cryofuels

    NASA Technical Reports Server (NTRS)

    Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.

    2006-01-01

    The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to

  2. Electrochemical corrosion studies in low conductivity propellants

    NASA Technical Reports Server (NTRS)

    Blue, G. D.; Moran, C. M.; Distefano, S.

    1986-01-01

    The Jet Propulsion Laboratory is investigating the possibility of developing advanced electrochemical techniques as accelerated compatibility tests for metal/propellant systems which overcome the problems associated with the low conductivity of the liquid propellants (e.g., hydrazines, nitrogen tetroxide). Both DC techniques and AC electrochemical impedance spectroscopy are being evaluated. Progress has been made in experiments involving stainless steel with hydrazine and nitrogen tetroxide propellants.

  3. The Theory of Propellers I : Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    Values of the circulation function have been obtained for dual-rotating propellers. Numerical values are given for four, eight, and twelve-blade dual-rotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determine for single-rotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced.

  4. Effect of a rotating propeller on the separation angle of attack

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.

    1993-01-01

    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propellar removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.

  5. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  6. Low-speed wind tunnel investigation of the static stability and control characteristics of an advanced turboprop configuration with the propellers placed over the tail. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rhodes, Graham Scott

    1990-01-01

    An exploratory wind tunnel investigation was performed in the 30 x 60 foot wind tunnel to determine the low speed static stability and control characteristics into the deep stall regime of an advanced turboprop aircraft with the propellers located over the horizontal tail. By this arrangement, the horizontal tail could potentially provide acoustic shielding to reduce the high community noise caused by the propeller blades. The current configuration was a generic turboprop model equipped with 1 foot diameter single rotating eight bladed propellers that were designed for efficient cruise operation at a Mach number of 0.8. The data presented is static force data. The effects of power on the configuration characteristics were generally favorable. An arrangement with the propellers rotating with the outboard blades moving down was found to have significantly higher installed thrust than an arrangement with the propellers rotating with the inboard blades moving down. The primary unfavorable effect was a large pitch trim change which occurred with power, but the trim change could be minimized with a proper configuration design.

  7. Future Treatment of Common Bile Duct Stones.

    PubMed

    Johnson; Hunter

    1997-03-01

    Management options for patients found to have common bile duct stones have expanded as a function of improved instrumentation and radiographic support. Technological advances initially lead to increased costs but eventually result in improved quality for patients. Controversy exists for patients with either soft clinical findings or stones found at the time of laparoscopic cholecystectomy. As laparoscopic common duct exploration becomes more widespread the need for perioperative ERCP will likely decrease; however, this will depend on the experience of the surgeons at a given institution. Common bile duct stones found at the time of laparoscopic cholecystectomy can be approached in a variety of different ways. The most commonly used methods are laparoscopic transcystic common bile duct exploration, laparoscopic choledochotomy with common bile duct exploration, open common bile duct exploration, laparoscopic antegrade sphincterotomy, and postoperative ERCP. In the future, the treatment goal of biliary lithiasis will be to accomplish cholecystectomy and removal of bile duct stones in a single stage. Advances in fiberoptic technology will make transcystic duct exploration more effective, but it is likely that sphincterotomy (antegrade or retrograde) will be used preferentially for the distally impacted stone.

  8. Laparoscopic common bile duct exploration.

    PubMed

    Vecchio, Rosario; MacFadyen, Bruce V

    2002-04-01

    In recent years, laparoscopic common bile duct exploration has become the procedure of choice in the management of choledocholithiasis in several laparoscopic centers. The increasing interest for this laparoscopic approach is due to the development of instrumentation and technique, allowing the procedure to be performed safely, and it is also the result of the revised role of endoscopic retrograde cholangiopancreatography, which has been questioned because of its cost, risk of complications and effectiveness. Many surgeons, however, are still not familiar with this technique. In this article we discuss the technique and results of laparoscopic common bile duct exploration. Both the laparoscopic transcystic approach and choledochotomy are discussed, together with the results given in the literature. When one considers the costs, morbidity, mortality and the time required before the patient can return to work, it would appear that laparoscopic cholecystectomy with common bile duct exploration is more favorable than open surgery or laparoscopic cholecystectomy with preoperative or postoperative endoscopic sphincterotomy. However, the technique requires advanced laparoscopic skills, including suturing, knot tying, the use of a choledochoscope, guidewire, dilators and balloon stone extractor. Although laparoscopic common bile duct exploration appears to be the most cost-effective method to treat common bile duct stones, it should be emphasized that this procedure is very challenging, and it should be performed by well-trained laparoscopic surgeons with experience in biliary surgery. PMID:11981684

  9. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  10. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments

    SciTech Connect

    Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

    2013-12-20

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by microchemistry changes due to radiation-induced segregation, dislocation loop formation and growth, radiation induced precipitation, destabilization of the existing precipitate structure, as well as the possibility for void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiation-induced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses to 200 dpa and beyond). Further, predictive modeling is not yet possible, as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. This project builds upon joint work at the proposing institutions, under a NERI-C program that is scheduled to end in September, to understand the effects of

  11. Salivary duct stones

    MedlinePlus

    Spit (saliva) is produced by the salivary glands in the mouth. The chemicals in saliva can form a hard crystal that can block the salivary ducts. When saliva cannot exit a blocked duct, it backs up ...

  12. Propeller dynamic and aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Mccormick, B. W.

    1980-01-01

    Various aspects of propeller blade dynamics are considered including those factors which are exciting the blades and the dynamic response of the blades to the excitations. Methods for treating this dynamic system are described and problems are discussed which may arise with advanced turboprop designs employing thin, swept blades.

  13. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  14. Solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)

    1973-01-01

    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  15. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    SciTech Connect

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

    2013-12-01

    irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.

  16. Bile duct stricture

    MedlinePlus

    ... bile duct Damage or scarring after gallbladder removal Pancreatitis Primary sclerosing cholangitis ... your health care provider if symptoms recur after pancreatitis, cholecystectomy , or other biliary surgery.

  17. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  18. Duct Tape Durability Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2004-04-01

    Duct leakage is a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums, or branches in the duct system. At each of these connections, a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that taped seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory (LBNL) has been testing sealant durability for several years using accelerated test methods and found that typical duct tape (i.e., cloth-backed tapes with natural rubber adhesives) fails more rapidly than other duct sealants. This report summarizes the results of duct sealant durability testing over two years for four UL 181B-FX listed duct tapes (two cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The tests involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars. Periodic air leakage tests and visual inspection were used to document changes in sealant performance. After two years of testing, the flex-to-collar connections showed little change in air leakage, but substantial visual degradation from some products. A surprising experimental result was failure of most of the clamps used to mechanically fasten the connections. This indicates that the durability of clamps also need to be addressed ensure longevity of the duct connection. An accelerated test method developed during this study has been used as the basis for an ASTM standard (E2342-03).

  19. LAM actuated propellant flow control device

    NASA Astrophysics Data System (ADS)

    Reinicke, Robert H.; Cust, Kevin M.

    1992-02-01

    An advanced design LAM (limited angle motor) positions an integral flow control element for bi-level flow control of storable propellants. The LAM incorporates permanent magnet latching to maintain the flow control element in either the low or high flow position without continuous electrical energization. The LAM stator and rotor are fully sheathed within stainless steel. This construction method permits the LAM to control storable propellants without using dynamic seals to isolate the LAM from the propellants. All welded construction prevents external leakage. The design concept selection rationale and the computer FEA (finite element analysis) methods employed to optimize design characteristics are presented. Correlations of analyses to test results are described.

  20. Settled Cryogenic Propellant Transfer

    NASA Technical Reports Server (NTRS)

    Kutter, Bernard F.; Zegler, Frank; Sakla, Steve; Wall, John; Hopkins, Josh; Saks, Greg; Duffey, Jack; Chato, David J.

    2006-01-01

    Cryogenic propellant transfer can significantly benefit NASA s space exploration initiative. LMSSC parametric studies indicate that "Topping off" the Earth Departure Stage (EDS) in LEO with approx.20 mT of additional propellant using cryogenic propellant transfer increases the lunar delivered payload by 5 mT. Filling the EDS to capacity in LEO with 78 mT of propellants increases the delivered payload by 20 mT. Cryogenic propellant transfer is directly extensible to Mars exploration in that it provides propellant for the Mars Earth Departure stage and in-situ propellant utilization at Mars. To enable the significant performance increase provided by cryogenic propellant transfer, the reliability and robustness of the transfer process must be guaranteed. By utilizing low vehicle acceleration during the cryogenic transfer the operation is significantly simplified and enables the maximum use of existing, reliable, mature upper stage cryogenic-fluid-management (CFM) techniques. Due to settling, large-scale propellant transfer becomes an engineering effort, and not the technology development endeavor required with zero-gravity propellant transfer. The following key CFM technologies are all currently implemented by settling on both the Centaur and Delta IV upper stages: propellant acquisition, hardware chilldown, pressure control, and mass gauging. The key remaining technology, autonomous rendezvous and docking, is already in use by the Russians, and must be perfected for NASA whether the use of propellant transfer is utilized or not.

  1. Low loss duct burner

    SciTech Connect

    Mar, H. M.; Reider, S. B.

    1985-07-09

    A jet propulsion engine with a fan bypass duct includes a duct burner with a plurality of flame stabilizers therein each mounted to inner case and outer case members through spherical bearings. Each of the stabilizers consists of two blade members having integral arms thereon actuated by fore and aft motion of an external actuating ring to assume an expanded position to increase duct turbulence for mixing air flow therethrough with a fuel supply and into a retracted position against each other to reduce pressure drop under nonafterburning operation. Each of the flame stabilizer blades has a platform that controls communication between a hot air source and a duct for improving fuel vaporization during afterburner operation thereby to increase afterburning limits; the platforms close communication between the hot air source and the duct during nonafterburning operation when flame stabilization is not required.

  2. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  3. Propeller/wing interaction

    NASA Technical Reports Server (NTRS)

    Witkowski, David P.; Johnston, Robert T.; Sullivan, John P.

    1989-01-01

    The present experimental investigation of the steady-state and unsteady-state effects due to the interaction between a tractor propeller's wake and a wing employs, in the steady case, wind tunnel measurements at low subsonic speed; results are obtained which demonstrate wing performance response to variations in configuration geometry. Other steady-state results involve the propeller-hub lift and side-force due to the wing's influence on the propeller. The unsteady effects of interaction were studied through flow visualization of propeller-tip vortex distortion over a wing, again using a tractor-propeller configuration.

  4. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2007-01-02

    A clog-resistant injector spray nozzle allows relatively unobtrusive insertion through a small access aperture into existing ductwork in occupied buildings for atomized particulate sealing of a ductwork. The spray nozzle comprises an easily cleaned and easily replaced straight liquid tube whose liquid contents are principally propelled by a heated propellant gas, such as heated air. Heat transfer is minimized from the heated propellant gas to the liquid tube until they both exit the injector, thereby greatly reducing the likelihood of nozzle clogging. A method of duct sealing using particles driven by heated propellant gas is described, whereby duct-sealing operations become both faster, and commercially practicable in inhabited commercial and residential buildings.

  5. Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV

    NASA Technical Reports Server (NTRS)

    Martin, Preston; Tung, Chee

    2004-01-01

    A ducted fan VTOL UAV with a 10-inch diameter rotor was tested in the US Army 7-by 10-Foot Wind Tunnel. The test conditions covered a range of angle of attack from 0 to 110 degrees to the freestream. The tunnel velocity was varied from 0 (simulating a hover condition) to 128 ft/sec in propeller mode. A six-component internal balance measured the aerodynamic loads for a range of model configurations. including the isolated rotor, the isolated duct, and the full configuration of the duct and rotor. For some conditions, hotwire velocity surveys were conducted along the inner and outer surface of the duct and across the downstream wake. In addition, fluorescent oil flow visualization allowed the flow separation patterns inside and outside of the duct to be mapped for a few test conditions. Two different duct shapes were tested to determine the performance effects of leading edge radius. For each duct, a range of rotor tip gap from 1%R to 4.5%R was tested to determine the performance penalty in hover and axial flight. Measured results are presented in terms of hover performance, hover performance in a crosswind, and high angle of attack performance in propeller mode. In each case, the effects of both tip gap and duct leading edge radius are illustrated using measurements. Some of the hover performance issues were also studied using a simple analytical method, and the results agreed with the measurements.

  6. Erlotinib in Treating Patients With Unresectable Liver, Bile Duct, or Gallbladder Cancer

    ClinicalTrials.gov

    2013-06-03

    Adult Primary Cholangiocellular Carcinoma; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Localized Unresectable Adult Primary Liver Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  7. Design and Performance Calculations of a Propeller for Very High Altitude Flight. Degree awarded by Case Western Univ.

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1998-01-01

    Reported here is a design study of a propeller for a vehicle capable of subsonic flight in Earth's stratosphere. All propellers presented were required to absorb 63.4 kW (85 hp) at 25.9 km (85,000 ft) while aircraft cruise velocity was maintained at Mach 0.40. To produce the final design, classic momentum and blade-element theories were combined with two and three-dimensional results from the Advanced Ducted Propfan Analysis Code (ADPAC), a numerical Navier-Stokes analysis code. The Eppler 387 airfoil was used for each of the constant section propeller designs compared. Experimental data from the Langley Low-Turbulence Pressure Tunnel was used in the strip theory design and analysis programs written. The experimental data was also used to validate ADPAC at a Reynolds numbers of 60,000 and a Mach number of 0.20. Experimental and calculated surface pressure coefficients are compared for a range of angles of attack. Since low Reynolds number transonic experimental data was unavailable, ADPAC was used to generate two-dimensional section performance predictions for Reynolds numbers of 60,000 and 100,000 and Mach numbers ranging from 0.45 to 0.75. Surface pressure coefficients are presented for selected angles of attack. in addition to the variation of lift and drag coefficients at each flow condition. A three-dimensional model of the final design was made which ADPAC used to calculated propeller performance. ADPAC performance predictions were compared with strip-theory calculations at design point. Propeller efficiency predicted by ADPAC was within 1.5% of that calculated by strip theory methods, although ADPAC predictions of thrust, power, and torque coefficients were approximately 5% lower than the strip theory results. Simplifying assumptions made in the strip theory account for the differences seen.

  8. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  9. Numerical computation of aerodynamics and heat transfer in a turbine cascade and a turn-around duct using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, B.; Luo, J.

    1993-07-01

    The objective of this research is to develop turbulence models to predict the flow and heat transfer fields dominated by the curvature effect such as those encountered in turbine cascades and turn-around ducts. A Navier-Stokes code has been developed using an explicit Runge-Kutta method with a two layer k-epsilon/ARSM (Algebraic Reynolds Stress Model), Chien's Low Reynolds Number (LRN) k-epsilon model and Coakley's LRN q-omega model. The near wall pressure strain correlation term was included in the ARSM. The formulation is applied to Favre-averaged N-S equations and no thin-layer approximations are made in either the mean flow or turbulence transport equations. Anisotropic scaling of artificial dissipation terms was used. Locally variable timestep was also used to improve convergence. Detailed comparisons were made between computations and data measured in a turbine cascade by Arts et al. at Von Karman Institute. The surface pressure distributions and wake profiles were predicted well by all the models. The blade heat transfer is predicted well by k-epsilon/ARSM model, as well as the k-epsilon model. It's found that the onset of boundary layer transition on both surfaces is highly dependent upon the level of local freestream turbulence intensity, which is strongly influenced by the streamline curvature. Detailed computation of the flow in the turn around duct has been carried out and validated against the data by Monson as well as Sandborn. The computed results at various streamwise locations both on the concave and convex sides are compared with flow and turbulence data including the separation zone on the inner well. The k-epsilon/ARSM model yielded relatively better results than the two-equation turbulence models. A detailed assessment of the turbulence models has been made with regard to their applicability to curved flows.

  10. Numerical computation of aerodynamics and heat transfer in a turbine cascade and a turn-around duct using advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Luo, J.

    1993-01-01

    The objective of this research is to develop turbulence models to predict the flow and heat transfer fields dominated by the curvature effect such as those encountered in turbine cascades and turn-around ducts. A Navier-Stokes code has been developed using an explicit Runge-Kutta method with a two layer k-epsilon/ARSM (Algebraic Reynolds Stress Model), Chien's Low Reynolds Number (LRN) k-epsilon model and Coakley's LRN q-omega model. The near wall pressure strain correlation term was included in the ARSM. The formulation is applied to Favre-averaged N-S equations and no thin-layer approximations are made in either the mean flow or turbulence transport equations. Anisotropic scaling of artificial dissipation terms was used. Locally variable timestep was also used to improve convergence. Detailed comparisons were made between computations and data measured in a turbine cascade by Arts et al. at Von Karman Institute. The surface pressure distributions and wake profiles were predicted well by all the models. The blade heat transfer is predicted well by k-epsilon/ARSM model, as well as the k-epsilon model. It's found that the onset of boundary layer transition on both surfaces is highly dependent upon the level of local freestream turbulence intensity, which is strongly influenced by the streamline curvature. Detailed computation of the flow in the turn around duct has been carried out and validated against the data by Monson as well as Sandborn. The computed results at various streamwise locations both on the concave and convex sides are compared with flow and turbulence data including the separation zone on the inner well. The k-epsilon/ARSM model yielded relatively better results than the two-equation turbulence models. A detailed assessment of the turbulence models has been made with regard to their applicability to curved flows.

  11. Comparison of radiated noise from shrouded and unshrouded propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.

  12. Modern management of common bile duct stones.

    PubMed

    Buxbaum, James

    2013-04-01

    It is imperative for gastroenterologists to understand the different formations of bile duct stones and the various medical treatments available. To minimize the complications of endoscopic retrograde cholangiopancreatography (ERCP), it is critical to appropriately assess the risk of bile duct stones before intervention. Biliary endoscopists should be comfortable with the basic techniques of stone removal, including sphincterotomy, mechanical lithotripsy, and stent placement. It is important to be aware of advanced options, including laser and electrohydraulic stone fragmentation, and papillary dilatation for problematic cases. The timing and need for ERCP in those who require a cholecystectomy is also a consideration. PMID:23540960

  13. A case of cholecystohepatic duct with atrophic common hepatic duct

    PubMed Central

    Schofield, A; Hankins, J

    2003-01-01

    Background Cholecystohepatic ducts are rare congenital variants of the biliary tree. Case outline An 81-year-old woman presented with biliary colic and elevated liver function tests. An ERCP demonstrated a common bile duct stone and stricture of the common hepatic duct. An operative cholangiogram demonstrated an atrophic common hepatic duct and retrograde filling of the gallbladder through a large cholecystoheptic duct. The patient had a cholecystectomy and reconstructive cholecystohepatic duct jejunostomy. Discussion This case demonstrates a rare congenital anomaly where the gallbladder fills retrograde during an intraoperative cholangiogram despite clipping of the cystic duct. The major path of biliary drainage was through a large cholecystoheptic duct similar to a gallbladder interposition; however, the common hepatic duct was still present but atrophic. This anomaly has not been described previously. PMID:18332999

  14. Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

  15. Transcystic Approach to Laparoscopic Common Bile Duct Exploration

    PubMed Central

    Fei, Zhewei; Huang, Xia; Wang, Xiaojun

    2014-01-01

    Background and Objectives: One-stage laparoscopic management for common bile duct stones in patients with gallbladder stones has gained wide acceptance. We developed a novel technique using a transcystic approach for common bile duct exploration as an alternative to the existing procedures. Methods: From April 2010 to June 2012, 9 consecutive patients diagnosed with cholelithiasis and common bile duct stones were enrolled in this study. The main inclusion criteria included no upper abdominal surgical history and the presence of a stone measuring <5 mm. After the gallbladder was dissected free from the liver connections in a retrograde fashion, the fundus of the gallbladder was extracted via the port incision in the right epigastrium. The choledochoscope was inserted into the gallbladder through the small opening in the fundus of the gallbladder extracorporeally and was advanced toward the common bile duct via the cystic duct under the guidance of both laparoscopic imaging and endoscopic imaging. After stones were retrieved under direct choledochoscopic vision, a drainage tube was placed in the subhepatic space. Results: Of 9 patients, 7 had successful transcystic common bile duct stone clearance. A narrow cystic duct and the unfavorable anatomy of the junction of the cystic duct and common bile duct resulted in losing access to the common bile duct. No bile leakage, hemobilia, or pancreatitis occurred. Wound infection occurred in 2 patients. Transient epigastric colic pain occurred in 2 patients and was relieved by use of anisodamine. A transient increase in the amylase level was observed in 3 patients. Short-term follow-up did not show any recurrence of common bile duct stones. Conclusion: Our novel transcystic approach to laparoscopic common bile duct exploration is feasible and efficient. PMID:25516702

  16. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1985-01-01

    Advanced high speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eight bladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller nearfield noise data with linear acoustic theory indicate that the theory adequately predicts nearfield noise for subsonic tip speeds, but overpredicts the noise for supersonic tip speeds.

  17. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1984-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds.

  18. Patent arterial duct.

    PubMed

    Forsey, Jonathan T; Elmasry, Ola A; Martin, Robin P

    2009-07-10

    Patent arterial duct (PAD) is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area) is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes). Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of pulmonary overcirculation

  19. Patent arterial duct

    PubMed Central

    Forsey, Jonathan T; Elmasry, Ola A; Martin, Robin P

    2009-01-01

    Patent arterial duct (PAD) is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area) is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes). Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of pulmonary overcirculation

  20. CORNICE DUCT SYSTEM

    SciTech Connect

    Wayne Place; Chuck Ladd; TC Howard

    2002-12-01

    SYNERGETICS, INC., is in the process of designing, developing, and testing an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building. Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. A patent has been submitted, refined based on feedback from the patent office, and resubmitted. Additional refinements to the design will lead to additional claims being added to the patent in the near future. Designs are being finalized for a refined version that will be fabricated and tested in the same residential laboratory house. Work is expected to be complete on this project in April of 2003.

  1. Mobile propeller dynamometer validation

    NASA Astrophysics Data System (ADS)

    Morris, Mason Wade

    With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.

  2. Liquid propellant densification

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor); Petrilla, Steve P. (Inventor); Lozano, Martin E. (Inventor)

    1997-01-01

    Super cooling the cryogenic liquid propellant in a vehicle propellant tank densities the propellant allowing the vehicle propellant tank to carry more fuel in the same volume tank while lowering the vapor pressure and thus the tank operating pressure. Lowering the tank operating pressure reduces the stress and therefore allows the walls of the tank to be thinner. Both the smaller tank volume and thinner tank wall results in an overall smaller and lighter vehicle with increased payload capability. The cryogenic propellant can be supercooled well below the normal boiling point temperature level by transporting the liquid propellant from the vehicle tanks to a ground based cooling unit which utilizes a combination of heat exchanger and compressor. The compressor lowers the coolant fluid bath pressure resulting in a low temperature boiling liquid which is subsequently used to cool the recirculating liquid. The cooled propellant is then returned to the vehicle propellant tank. In addition to reducing the vehicle size and weight the invention also allows location of the vent valve on the ground, elimination of on-board recirculation pumps or bleed systems, smaller and lighter engine pumps and valves, lighter and more stable ullage gas, and significant reduction in tank fill operation. All of these mentioned attributes provide lower vehicle weight and cost.

  3. Return of the propeller

    SciTech Connect

    Not Available

    1987-05-01

    Resurrecting the propeller-driven airplane could help save fuel if there is another oil crisis like in the 1970s. This article discusses the new propeller engine, propfans, which are being developed for commercial airplanes. It discusses the three types of propfan engines and the advantages and disadvantages of each. It also tells about the propfan airplanes several companies are developing.

  4. A thermodynamic study of the turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Karp, Irvin M

    1953-01-01

    Equations and charts are presented for computing the thrust, the power output, the fuel consumption, and other performance parameters of a turbine-propeller engine for any given set of operating conditions and component efficiencies. Included are the effects of the pressure losses in the inlet duct and the combustion chamber, the variation of the physical properties of the gas as it passes through the system, and the change in mass flow of the gas by the addition of fuel.

  5. Propellant-remaining modeling

    NASA Technical Reports Server (NTRS)

    Torgovitsky, S.

    1991-01-01

    A successful satellite mission is predicted upon the proper maintenance of the spacecraft's orbit and attitude. One requirement for planning and predicting the orbit and attitude is the accurate estimation of the propellant remaining onboard the spacecraft. Focuss is on the three methods that were developed for calculating the propellant budget: the errors associated with each method and the uncertainties in the variables required to determine the propellant remaining that contribute to these errors. Based on these findings, a strategy is developed for improved propellant-remaining estimation. The first method is based on Boyle's law, which related the values of pressure, volume, and temperature (PVT) of an ideal gas. The PVT method is used for the monopropellant and the bipropellant engines. The second method is based on the engine performance tests, which provide data that relate thrust and specific impulse associated with a propellant tank to that tank's pressure. Two curves representing thrust and specific impulse as functions of pressure are then generated using a polynomial fit on the engine performance data. The third method involves a computer simulation of the propellant system. The propellant flow is modeled by creating a conceptual model of the propulsion system configuration, taking into account such factors as the propellant and pressurant tank characteristics, thruster functionality, and piping layout. Finally, a thrust calibration technique is presented that uses differential correction with the computer simulation method of propellant-remaining modeling. Thrust calibration provides a better assessment of thruster performance and therefore enables a more accurate estimation of propellant consumed during a given maneuver.

  6. [Iatrogenic bile duct injuries].

    PubMed

    Ruiz Gómez, Francisco; Ramia Ángel, José Manuel; García-Parreño Jofré, Jorge; Figueras, Joan

    2010-10-01

    Bile duct injuries can be caused by different reasons, with Iatrogenic Bile Duct Injuries (IBDI) being the most common factor. IBDI is a complex situation produced in apparently healthy patients and is associated with a high rate of morbidity and a low rate of mortality. A multidisciplinary approach between surgeons, radiologist and endoscopist offers the best chances for an initial diagnosis, therapeutic options, management and follow up of complications for the patient. The aim of this review is to describe the current medical literature with reference to IBDI, and discuss our therapeutic algorithm.

  7. Effectiveness of duct cleaning methods on newly installed duct surfaces.

    PubMed

    Holopainen, R; Asikainen, V; Tuomainen, M; Björkroth, M; Pasanen, P; Seppänen, O

    2003-09-01

    Two kinds of air duct cleaning methods, mechanical brushing with different brushes and compressed air cleaning, were compared in the laboratory and in newly built buildings. The ducts were contaminated either with test dust or with dust originated from a construction site. The amount of dust on the duct surface was measured with the vacuum test method and estimated visually before and after the cleaning. In addition, the cleaning times of the different techniques were compared and the amount of residual oil in the ducts was measured in the laboratory test. The brushing methods were more efficient in metal ducts, and compressed air cleaning was more efficient in plastic ducts. After the duct cleaning the mean amount of residual dust on the surface of the ducts was ducts contaminated at construction site and ducts cleaned in the laboratory or in the building site, respectively. The oil residues and the dust stuck onto the oil were difficult to scrape off and remove, and none of the cleaning methods were capable of cleaning the oily duct surfaces efficiently enough. Thus new installations should consist only of oil-free ducts.

  8. Nitramine propellants. [gun propellant burning rate

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D. (Inventor)

    1978-01-01

    Nitramine propellants without a pressure exponent shift in the burning rate curves are prepared by matching the burning rate of a selected nitramine or combination of nitramines within 10% of burning rate of a plasticized active binder so as to smooth out the break point appearance in the burning rate curve.

  9. Nitramine smokeless propellant research

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. P.

    1977-01-01

    A transient ballistics and combustion model is derived to represent the closed vessel experiment that is widely used to characterize propellants. A computer program is developed to solve the time-dependent equations, and is applied to explain aspects of closed vessel behavior. In the case of nitramine propellants the cratering of the burning surface associated with combustion above break-point pressures augments the effective burning rate as deduced from the closed vessel experiment. Low pressure combustion is significantly affected by the ignition process and, in the case of nitramine propellants, by the developing and changing surface structure. Thus, burning rates deduced from the closed vessel experiment may or may not agree with those measured in the equilibrium strand burner. Series of T burner experiments are performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP)propellants. Although ash produced by more fuel rich propellants could have provided mechanical suppression, results from clean-burning propellants permit the conclusion that HMX reduces the acoustic driving.

  10. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  11. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  12. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    2000-01-01

    An automated propellant blending apparatus and method that uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation is discussed. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  13. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    1999-01-01

    An automated propellant blending apparatus and method uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  14. High temperature propellant development

    NASA Technical Reports Server (NTRS)

    Anderson, F. A.

    1981-01-01

    It is reported that the neccessary technology has been developed and demonstrated for the manufacture of heat-sterilizable solid propellants which meet specific ballistic goals. It is shown that: (1) phosphate doping of ammonium perchlorate significantly enhances the thermal stability of the substance; (2) grinding the ammonium perchlorate to reduce particle size further increases thermal stability; and (3) unsaturated polymers such as the polybutadienes can be successfully used in a heat-sterilizable propellant system. Among the topics considered by the study are oxidizers, dopants, binders, and the thermal cycling of 70 lb and 600 lb propellant grains.

  15. Small transport aircraft technology propeller study

    NASA Technical Reports Server (NTRS)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  16. Cornice Duct System

    SciTech Connect

    Wayne Place; Chuck Ladd

    2004-10-29

    SYNERGETICS, INC., has designed, developed, and tested an air handling duct system that integrates the air duct with the cornice trim of interior spaces. The device has the advantage that the normal thermal losses from ducts into unconditioned attics and crawl spaces can be totally eliminated by bringing the ducts internal to the conditioned space. The following report details work conducted in the second budget period to develop the Cornice Duct System into a viable product for use in a variety of residential or small commercial building settings. A full-scale prototype has been fabricated and tested in a laboratory test building at the Daylighting Facility at North Carolina State University., Based on the results of that testing, the prototype design as been refined, fabricated, installed, and extensively tested in a residential laboratory house. The testing indicates that the device gives substantially superior performance to a standard air distribution system in terms of energy performance and thermal comfort. Patent Number US 6,511,373 B2 has been granted on the version of the device installed and tested in the laboratory house. (A copy of that patent is attached.) Refinements to the device have been carried through two additional design iterations, with a particular focus on reducing installation time and cost and refining the air control system. These new designs have been fabricated and tested and show substantial promise. Based on these design and testing iterations, a final design is proposed as part of this document. That final design is the basis for a continuation in part currently being filed with the U.5, Patent office.

  17. Aerodynamic interaction between propellers and wings

    NASA Technical Reports Server (NTRS)

    Witkowski, David; Lee, Alex K. H.; Sullivan, John P.

    1988-01-01

    A combined computational/experimental investigation has been conducted to determine the time-averaged interactive performance of a propeller and wing in tractor configuration at Mach 0.1 and Re=470,000, based on a wind tunnel model wing chord of 8 in. Wing angle-of-attack was varied from 0 to +13 deg, and propeller advance ratio ranged from 2.4 (windmilling) to 1.1 (maximum power). Both a semiempirical model and a vortex lattice simulation were used in the computational analysis. Good agreement has been obtained between theory and experiment.

  18. Remnant cystic duct adenocarcinoma presenting as gastric outlet obstruction

    PubMed Central

    Lo, Samuel Tsoon Wuan; Cheng, Yue; Cheung, Frances; Tang, Chung Ngai

    2016-01-01

    Only a few case reports of remnant cystic duct carcinoma exist. The presented case of remnant cystic duct carcinoma with invasion to pylorus and bulbus of duodenum leading to gastric outlet obstruction was the first of its kind. We reviewed all cases of remnant cystic duct carcinoma that we found in the literature and summarized its definition, presentation, extent of invasion and clinical outcome after operation. The diagnosis can be difficult due to the rarity of disease, locally advanced nature of disease and distorted postoperative anatomy. A high index of suspicion can increase the likelihood of a preoperative diagnosis. PMID:27154747

  19. Nitramine smokeless propellant research

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transient ballistics and combustion model was derived to represent the closed vessel experiment that is widely used to characterize propellants. The model incorporates the nitramine combustion mechanisms. A computer program was developed to solve the time dependent equations, and was applied to explain aspects of closed vessel behavior. It is found that the rate of pressurization in the closed vessel is insufficient at pressures of interest to augment the burning rate by time dependent processes. Series of T-burner experiments were performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP) propellants. It is found that the inclusion of HMX consistently renders the propellant more stable.

  20. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; Hedayat, Ali

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  1. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  2. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  3. Propellant Readiness Level: A Methodological Approach to Propellant Characterization

    NASA Technical Reports Server (NTRS)

    Bossard, John A.; Rhys, Noah O.

    2010-01-01

    A methodological approach to defining propellant characterization is presented. The method is based on the well-established Technology Readiness Level nomenclature. This approach establishes the Propellant Readiness Level as a metric for ascertaining the readiness of a propellant or a propellant combination by evaluating the following set of propellant characteristics: thermodynamic data, toxicity, applications, combustion data, heat transfer data, material compatibility, analytical prediction modeling, injector/chamber geometry, pressurization, ignition, combustion stability, system storability, qualification testing, and flight capability. The methodology is meant to be applicable to all propellants or propellant combinations; liquid, solid, and gaseous propellants as well as monopropellants and propellant combinations are equally served. The functionality of the proposed approach is tested through the evaluation and comparison of an example set of hydrocarbon fuels.

  4. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  5. High performance storable propellant resistojet

    NASA Astrophysics Data System (ADS)

    Vaughan, C. E.

    1992-01-01

    From 1965 until 1985 resistojets were used for a limited number of space missions. Capability increased in stages from an initial application using a 90 W gN2 thruster operating at 123 sec specific impulse (Isp) to a 830 W N2H4 thruster operating at 305 sec Isp. Prior to 1985 fewer than 100 resistojets were known to have been deployed on spacecraft. Building on this base NASA embarked upon the High Performance Storable Propellant Resistojet (HPSPR) program to significantly advance the resistojet state-of-the-art. Higher performance thrusters promised to increase the market demand for resistojets and enable space missions requiring higher performance. During the program three resistojets were fabricated and tested. High temperature wire and coupon materials tests were completed. A life test was conducted on an advanced gas generator.

  6. Mediastinal thoracic duct cyst.

    PubMed Central

    Gowar, F J

    1978-01-01

    A case of mediastinal thoracic duct cyst is described; it is believed to be the first to be reported in Britain. Five surgically treated cases have been reported but in none was the diagnosis made before operation. Symptoms are caused by pressure of the cyst on the trachea and oesophagus and my be aggravted by eating a fatty meal. Differential diagnosis from other mediastinal tumours, especially bronchogenic cyst and neurofibroma, could perhaps be established before operation by lymphangiography. Images PMID:746509

  7. Rhinosporidiosis of parotid duct.

    PubMed

    Sivapathasundharam, B; Saraswathi, T R; Manjunath, K; Sriram, G

    2009-01-01

    Rhinosporidiosis is a benign chronic granulomatous infection caused by Rhinosporidium seeberi. Rhinosporidiosis is endemic in south Asia, notably in southern India and Sri Lanka. Majority of the cases have been reported to occur in upper respiratory sites, notably anterior nares, nasal cavity, nasopharynx, larynx and soft palate. Only two rare cases of involvement of parotid duct, have been reported in literature. Hence, this case will probably be the third to be reported.

  8. Primary salivary duct carcinoma arising from the Stensen duct.

    PubMed

    Noda, Kenji; Hirano, Takashi; Okamoto, Tomoyo; Suzuki, Masashi

    2016-09-01

    This report describes a salivary duct carcinoma (SDC) arising from the extraglandular portion of the Stensen duct. The patient was a 56-year-old man who presented with a palpable, elastic, hard mass without tenderness in the right cheek. Computed tomography revealed a tumor of the extraglandular portion of the Stensen duct. Supraomohyoid right neck dissection and total right parotidectomy were performed, and the histologic diagnosis was SDC of the Stensen duct. Postoperatively, the patient received no additional treatment. Neither recurrence nor metastasis was observed during 4 years of follow-up examination. SDC of the Stensen duct is extremely rare. To our knowledge, there is no report that describes primary SDC arising from that location. We also believe this is the first report that describes the clinical course of primary SDC arising from a Stensen duct. PMID:27657321

  9. Numerical simulations in the development of propellant management devices

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Winkelmann, Yvonne; Dreyer, Michael

    Propellant management devices (PMDs) are used for positioning the propellant at the propel-lant port. It is important to provide propellant without gas bubbles. Gas bubbles can inflict cavitation and may lead to system failures in the worst case. Therefore, the reliable operation of such devices must be guaranteed. Testing these complex systems is a very intricate process. Furthermore, in most cases only tests with downscaled geometries are possible. Numerical sim-ulations are used here as an aid to optimize the tests and to predict certain results. Based on these simulations, parameters can be determined in advance and parts of the equipment can be adjusted in order to minimize the number of experiments. In return, the simulations are validated regarding the test results. Furthermore, if the accuracy of the numerical prediction is verified, then numerical simulations can be used for validating the scaling of the experiments. This presentation demonstrates some selected numerical simulations for the development of PMDs at ZARM.

  10. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2014-04-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings [5, 8]. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~ 100m in size) have been identified in Saturn's A ring through their propeller signature in the images [10, 7, 9, 11]. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring [6, 2]. In this paper we present our new results about by now classical A ring propellers and more enigmatic B ring population. Due to the presence of self-gravity wakes the analysis of propeller brightness in ISS images always bears some ambiguity [7, 9] and consequently the exact morphology of propellers is not a settled issue. In 2008 we obtained a fortunate Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS Persei Rev42 occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit [11]. We numerically investigated the possibility of simple moon

  11. Generation of Higher Order Modes in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Cabell, Randolph H.; Brown, Donald E.

    2004-01-01

    Advanced noise control methodologies to reduce sound emission from aircraft engines take advantage of the modal structure of the noise in the duct. This noise is caused by the interaction of rotor wakes with downstream obstructions such as exit guide vanes. Mode synthesis has been accomplished in circular ducts and current active noise control work has made use of this capability to cancel fan noise. The goal of the current effort is to examine the fundamental process of higher order mode propagation through an acoustically treated, curved duct. The duct cross-section is rectangular to permit greater flexibility in representation of a range of duct curvatures. The work presented is the development of a feedforward control system to generate a user-specified modal pattern in the duct. The multiple-error, filtered-x LMS algorithm is used to determine the magnitude and phase of signal input to the loudspeakers to produce a desired modal pattern at a set of error microphones. Implementation issues, including loudspeaker placement and error microphone placement, are discussed. Preliminary results from a 9-3/8 inch by 21 inch duct, using 12 loudspeakers and 24 microphones, are presented. These results demonstrate the ability of the control system to generate a user-specified mode while suppressing undesired modes.

  12. Propeller pitch change mechanism

    SciTech Connect

    Hora, P.

    1992-10-13

    This patent describes an aircraft propulsion system. It comprises: a first turbine carrying a first set of propeller blades; a second turbine carrying a second set of propeller blades; a gear system carried by the first turbine for changing pitch of the first set of propeller blades, which includes a pair of ring gears, both coaxial with the first turbine; a first set of planet gears which engage both ring gears and which induce pitch change when the planet gears rotate; a sun gear which drives the planet gears; a second set of planet gears which are carried by a planet gear carrier affixed to the second turbine and which drive the sun gear in order to change pitch by causing relative motion between the sung ear and the first turbine; and means for preventing a change in speed of the planet gear carrier from causing a change in pitch.

  13. Noise reduction of spiral ducts.

    PubMed

    Lapka, Wojciech; Cempel, Czesław

    2007-01-01

    The paper presents noise reduction (NR) of spiral ducts as a result of computational modeling of acoustic wave propagation. Three-dimensional models were created with the finite element method in COMSOL Multiphysics version 3.3. Nine models of spiral ducts with 1-9 spiral leads were considered. Time-harmonic analysis was used to predict NR, which was shown in spectral and interval frequency bands. Spiral duct performance can be seen as a comparison of NR before and after a change from a circular to a spiral duct.

  14. In-Space Cryogenic Propellant Depot Stepping Stone

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Fikes, John C.

    2005-01-01

    An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  15. Optimum propeller wind turbines

    NASA Astrophysics Data System (ADS)

    Sanderson, R. J.; Archer, R. D.

    1983-12-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different 'optimum' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  16. Technology Solutions Case Study: Buried and Encapsulated Ducts, Jacksonville, Florida

    SciTech Connect

    2013-11-01

    Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation; specifically for use in humid climates.

  17. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license.

  18. Active synchrophasing of propeller unbalance

    NASA Technical Reports Server (NTRS)

    Kaptein, Dick

    1992-01-01

    The results of a survey are presented to reduce the inflight propeller unbalance vibrations in the cabin of the Fokker 50 airplanes. Several approaches have been investigated. Active synchrophasing of the unbalance vibrations of both propellers appears to be successful.

  19. Green Propellant Loading Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  20. Green Propellant Landing Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  1. Propellant isolation shutoff valve program

    NASA Technical Reports Server (NTRS)

    Merritt, F. L.

    1973-01-01

    An analysis and design effort directed to advancing the state-of-the-art of space storable isolation valves for control of flow of the propellants liquid fluorine/hydrazine and Flox/monomethylhydrazine is discussed. Emphasis is on achieving zero liquid leakage and capability of withstanding missions up to 10 years in interplanetary space. Included is a study of all-metal poppet sealing theory, an evaluation of candidate seal configurations, a valve actuator trade-off study and design description of a pneumo-thermally actuated soft metal poppet seal valve. The concepts and analysis leading to the soft seal approach are documented. A theoretical evaluation of seal leakage versus seal loading, related finishes and yield strengths of various materials is provided. Application of a confined soft aluminum seal loaded to 2 to 3 times yield strength is recommended. Use of either an electro-mechanical or pneumatic actuator appears to be feasible for the application.

  2. Propeller Research Tunnel

    NASA Technical Reports Server (NTRS)

    1926-01-01

    This picture shows a general view of the Propeller Research Tunnel engine room under construction. Workmen were installing the two submarine diesel engines that would power the PRT. The room was constructed of concrete with corrugated metal siding and roofing with the intention of making the engine room as fireproof as possible.

  3. Silicone containing solid propellant

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N. R. (Inventor)

    1980-01-01

    The addition of a small amount, for example 1% by weight, of a liquid silicone oil to a metal containing solid rocket propellant provides a significant reduction in heat transfer to the inert nozzle walls. Metal oxide slag collection and blockage of the nozzle are eliminated and the burning rate is increased by about 5% to 10% thus improving ballistic performance.

  4. Intrahepatic Transposition of Bile Ducts

    PubMed Central

    Delić, Jasmin; Savković, Admedina; Isaković, Eldar; Marković, Sergije; Bajtarevic, Alma; Denjalić, Amir

    2012-01-01

    Objective. To describe the intrahepatic bile duct transposition (anatomical variation occurring in intrahepatic ducts) and to determine the frequency of this variation. Material and Methods. The researches were performed randomly on 100 livers of adults, both sexes. Main research methods were anatomical macrodissection. As a criterion for determination of variations in some parts of bile tree, we used the classification of Segmentatio hepatis according to Couinaud (1957) according to Terminologia Anatomica, Thieme Stuugart: Federative Committee on Anatomical Terminology, 1988. Results. Intrahepatic transposition of bile ducts was found in two cases (2%), out of total examined cases (100): right-left transposition (right segmental bile duct, originating from the segment VIII, joins the left liver duct-ductus hepaticus sinister) and left-right intrahepatic transposition (left segmental bile duct originating from the segment IV ends in right liver duct-ductus hepaticus dexter). Conclusion. Safety and success in liver transplantation to great extent depends on knowledge of anatomy and some common embryological anomalies in bile tree. Variations in bile tree were found in 24–43% of cases, out of which 1–22% are the variations of intrahepatic bile ducts. Therefore, good knowledge on ductal anatomy enables good planning, safe performance of therapeutic and operative procedures, and decreases the risk of intraoperative and postoperative complications. PMID:22550601

  5. Development of a Passively Varying Pitch Propeller

    NASA Astrophysics Data System (ADS)

    Heinzen, Stearns Beamon

    Small general aviation aircraft and unmanned aerial systems are often equipped with sophisticated navigation, control, and other avionics, but retain propulsion systems consisting of retrofitted radio control and ultralight equipment. Consequently, new high performance airframes often rely on relatively primitive propulsive technology. This trend is beginning to shift with recent advances in small turboprop engines, fuel injected reciprocating engines, and improved electric technologies. Although these systems are technologically advanced, they are often paired with standard fixed pitch propellers. To fully realize the potential of these aircraft and the new generation of engines, small propellers which can efficiently transmit power over wide flight envelopes and a variety of power settings must be developed. This work demonstrates a propeller which passively adjusts to incoming airflow at a low penalty to aircraft weight and complexity. This allows the propeller to operate in an efficient configuration over a wide flight envelope, and can prevent blade stall in low-velocity / highly-loaded thrust cases and over-speeding at high flight speeds. The propeller incorporates blades which pivot freely on a radial axis and are aerodynamically tailored to attain and maintain a pitch angle yielding favorable local blade angles of attack, matched to changing inflow conditions. This blade angle is achieved through the use of reflexed airfoils designed for a positive pitching moment, comparable to those used on many tailless flying wings. By setting the axis of rotation at a point forward of the blade aerodynamic center, the blades will naturally adjust to a predetermined positive lift 'trim' condition. Then, as inflow conditions change, the blade angle will automatically pivot to maintain the same angle with respect to incoming air. Computational, wind tunnel, and flight test results indicate that the extent of efficient propeller operation can be increased dramatically as

  6. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  7. The many blades of the β-propeller proteins: conserved but versatile.

    PubMed

    Chen, Cammy K-M; Chan, Nei-Li; Wang, Andrew H-J

    2011-10-01

    The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures.

  8. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  9. Measure Guideline: Buried and/or Encapsulated Ducts

    SciTech Connect

    Shapiro, C.; Zoeller, W.; Mantha, P.

    2013-08-01

    Buried and/or encapsulated ducts (BEDs) are a class of advanced, energy-efficiency strategies intended to address the significant ductwork thermal losses associated with ducts installed in unconditioned attics. BEDs are ducts installed in unconditioned attics that are covered in loose-fill insulation and/or encapsulated in closed cell polyurethane spray foam insulation. This Measure Guideline covers the technical aspects of BEDs as well as the advantages, disadvantages, and risks of BEDs compared to other alternative strategies. This guideline also provides detailed guidance on installation of BEDs strategies in new and existing homes through step-by-step installation procedures. This Building America Measure Guideline synthesizes previously published research on BEDs and provides practical information to builders, contractors, homeowners, policy analysts, building professions, and building scientists. Some of the procedures presented here, however, require specialized equipment or expertise. In addition, some alterations to duct systems may require a specialized license. Persons implementing duct system improvements should not go beyond their expertise or qualifications. This guideline provides valuable information for a building industry that has struggled to address ductwork thermal losses in new and existing homes. As building codes strengthen requirements for duct air sealing and insulation, flexibility is needed to address energy efficiency goals. While ductwork in conditioned spaces has been promoted as the panacea for addressing ductwork thermal losses, BEDs installations approach - and sometimes exceed - the performance of ductwork in conditioned spaces.

  10. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  11. Atomic hydrogen as a launch vehicle propellant

    SciTech Connect

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  12. PMR Graphite Engine Duct Development

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Yokel, S. A.

    1989-01-01

    The objective was to demonstrate the cost and weight advantages that could be obtained by utilizing the graphite/PMR15 material system to replace titanium in selected turbofan engine applications. The first component to be selected as a basis for evaluation was the outer bypass duct of the General Electric F404 engine. The operating environment of this duct was defined and then an extensive mechanical and physical property test program was conducted using material made by processing techniques which were also established by this program. Based on these properties, design concepts to fabricate a composite version of the duct were established and two complete ducts fabricated. One of these ducts was proof pressure tested and then run successfully on a factory test engine for over 1900 hours. The second duct was static tested to 210 percent design limit load without failure. An improved design was then developed which utilized integral composite end flanges. A complete duct was fabricated and successfully proof pressure tested. The net results of this effort showed that a composite version of the outer duct would be 14 percent lighter and 30 percent less expensive that the titanium duct. The other type of structure chosen for investigation was the F404 fan stator assembly, including the fan stator vanes. It was concluded that it was feasible to utilize composite materials for this type structure but that the requirements imposed by replacing an existing metal design resulted in an inefficient composite design. It was concluded that if composites were to be effectively used in this type structure, the design must be tailored for composite application from the outset.

  13. The screw propeller

    NASA Astrophysics Data System (ADS)

    Larrabee, E. E.

    1980-07-01

    Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.

  14. Velocity field measurements in the wake of a propeller model

    NASA Astrophysics Data System (ADS)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  15. Propellers and windmills

    SciTech Connect

    Newnham, J.H.

    1983-04-12

    The present invention provides a propeller or windmill blank comprising a planar sheet of material having markings defining, or being shaped to have, a central or hub region and two blades extending in opposite directions along imaginary lines; and wherein the blank has a marking or line of preferential folding inclined to the first mentioned lines which, when the blank is bent therealong, will result in pitch being applied to the blades.

  16. Basic tips for duct design

    SciTech Connect

    Evans, R.A.; Tsal, R.J.

    1996-07-01

    During the last few years, ASHRAE Journal and other trade publications have presented lucid descriptions of the basic physics of airflow in ductwork, pressure drop and methods of sizing and optimization (Brooks 1995, Tsal et al. 1988a, Williams 1995). What is missing is a practical means for numerically modeling HVAC duct systems. This article is centered on the performance, economics and modeling of duct systems. Specific subjects examined include duct shape, fitting performance, leakage and appropriate oversizing. Computer modeling is discussed to provide a better grasp as to how it can be used as a practical design tool.

  17. Evaluation of propeller/nacelle interactions in the PTA program

    NASA Technical Reports Server (NTRS)

    Aljabri, A. S.; Lyman, V.; Parker, R. J.

    1986-01-01

    Advanced highly-loaded propellers are proposed to power transport aircraft that cruise at high subsonic speeds giving significant fuel savings over the equivalent turbofan engine. In order to realize these savings, the propeller must be installed so that the aerodynamics of the propeller/nacelle combination do not lead to excessive cyclic blade stresses or installation losses. The on-going, NASA sponsored, Propfan Test Assessment Program (PTA) has provided the first high-speed wind-tunnel data on an installed propfan complete with an inlet. This paper presents computational techniques that allow: (1) optimization of inlet plane location, (2) contouring of lip and cowl, and (3) estimation of propeller cyclic loads due to a nonuniform flowfield. These computational methods, in spite of the complexity of the configuration and the slipstream effects, provide predictions of aerodynamic performance which are in excellent agreement with wind-tunnel data.

  18. Instrumented propellant block test and stress analysis comparison

    NASA Astrophysics Data System (ADS)

    Thompson, Richard E.; Perkins, Steven E.

    1992-02-01

    There is an on-going need to experimentally measure bond stresses in both termination stress and low-gradient stress areas of solid propellant rocket motors employing composite cases and having complex geometries. These measurements are needed to verify the finite element-predicted structural margins and environmental operating limits for these advanced tactical, strategic, and space motors. Chemical Systems Division undertook a program to develop stress transducers usable in low stress gradient regions and in termination, or high stress gradient, regions. The various transducers were evaluated in propellant blocks tested in tension and compression in the laboratory prior to being placed into structural test vehicles. Finite element analyses of the propellant test blocks were also performed to predict transducer response. The results of the instrumented propellant block tests are presented.

  19. Articulated transition duct in turbomachine

    SciTech Connect

    Flanagan, James Scott; McMahan, Kevin Weston; LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray

    2014-04-29

    Turbine systems are provided. A turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion and a downstream portion. The upstream portion extends from the inlet between an inlet end and an aft end. The downstream portion extends from the outlet between an outlet end and a head end. The turbine system further includes a joint coupling the aft end of the upstream portion and the head end of the downstream portion together. The joint is configured to allow movement of the upstream portion and the downstream portion relative to each other about or along at least one axis.

  20. Wave reflections from duct terminations.

    PubMed

    Selamet, A; Ji, Z L; Kach, R A

    2001-04-01

    The reflection coefficients and inertial end corrections of several duct terminations, including finite length duct extensions perpendicular to an infinite wall, as well as at a number of angles, curved interface surfaces, and annular cavities, are determined and analyzed in the absence of flow by employing the boundary element method. Predictions for the classical unflanged and flanged circular ducts show good agreement with analytical and computational results available in the literature. The predictions for curved interface surfaces (bellmouth or horn) are also consistent with the available experimental data. In view of its high reflection coefficient, the duct termination with an annular cavity may be suggested for the suppression of noise radiation in a specific frequency band or for an effective wave reflection from the termination. PMID:11325101

  1. Helium Saturation of Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Moran, Clifford M.

    1990-01-01

    The research is in three areas which are: (1) techniques were devised for achieving the required levels of helium (He) saturation in liquid propellants (limited to monomethylhydrazine (MMH) and nitrogen tetroxide (NTO)); (2) the values were evaluated for equilibrium solubilities of He in liquid propellants as currently used in the industry; and (3) the He dissolved in liquid propellants were accurately measured. Conclusions drawn from these studies include: (1) Techniques for dissolving He in liquid propellants depending upon the capabilities of the testing facility (Verification of the quantity of gas dissolved is essential); (2) Until greater accuracy is obtained, the equilibrium solubility values of He in MMH and NTO as cited in the Air Force Propellant Handbooks should be accepted as standard (There are still enough uncertainties in the He saturation values to warrant further basic experimental studies); and (3) The manometric measurement of gas volume from a frozen sample of propellant should be the accepted method for gas analysis.

  2. Performance optimization of marine propellers

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Sup; Choi, Young-Dal; Ahn, Byoung-Kwon; Shin, Myoung-Sup; Jang, Hyun-Gil

    2010-12-01

    Recently a Wide Chord Tip (WCT) propeller has been developed and applied to a commercial ship by STX Offshore & Shipbuilding. It is reported that the WCT propeller significantly reduces pressure fluctuations and also ship's noise and vibration. On the sea trial, vibration magnitude in the accommodations at NCR was measured at 0.9mm/sec which is only 10% of international allowable magnitude of vibration (9mm/sec). In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

  3. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 23.905 Section 23.905... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits for which the propeller is certificated. (c) Each featherable...

  4. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 23.905 Section 23.905... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits for which the propeller is certificated. (c) Each featherable...

  5. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 23.905 Section 23.905... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits for which the propeller is certificated. (c) Each featherable...

  6. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 23.905 Section 23.905... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits for which the propeller is certificated. (c) Each featherable...

  7. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Feathering propellers. 35.22 Section 35.22... STANDARDS: PROPELLERS Design and Construction § 35.22 Feathering propellers. (a) Feathering propellers are... feathering and unfeathering limitations must be documented in the appropriate manuals. (b) Propeller...

  8. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Feathering propellers. 35.22 Section 35.22... STANDARDS: PROPELLERS Design and Construction § 35.22 Feathering propellers. (a) Feathering propellers are... feathering and unfeathering limitations must be documented in the appropriate manuals. (b) Propeller...

  9. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Feathering propellers. 35.22 Section 35.22... STANDARDS: PROPELLERS Design and Construction § 35.22 Feathering propellers. (a) Feathering propellers are... feathering and unfeathering limitations must be documented in the appropriate manuals. (b) Propeller...

  10. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Feathering propellers. 35.22 Section 35.22... STANDARDS: PROPELLERS Design and Construction § 35.22 Feathering propellers. (a) Feathering propellers are... feathering and unfeathering limitations must be documented in the appropriate manuals. (b) Propeller...

  11. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 23.905 Section 23.905... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits for which the propeller is certificated. (c) Each featherable...

  12. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Feathering propellers. 35.22 Section 35.22... STANDARDS: PROPELLERS Design and Construction § 35.22 Feathering propellers. (a) Feathering propellers are... feathering and unfeathering limitations must be documented in the appropriate manuals. (b) Propeller...

  13. Flexible Borescope For Inspecting Ducts

    NASA Technical Reports Server (NTRS)

    Shinozaki, Keith; Armstrong, Mike P.; Urquidi, Ron

    1995-01-01

    Borescope and associated equipment developed specifically for use in optical inspection of inside of flexible joints in rocket-engine fuel duct. Apparatus includes assembly, characterized as "mouse/canoe," at sensing end of 10-ft borescope cable. Borescope tip rides in mouse/canoe. The mouse/canoe made laterally compressible, to facilitate movement past constrictions and provides fixed distance from inspection point permitting accurate description in duct inspected.

  14. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  15. Laminar flow in twisted ducts

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.

    1993-11-01

    Fully developed flow of an incompressible Newtonian fluid through a duct in which the orientation of the cross section is twisted about an axis parallel to an imposed pressure gradient is analyzed here with the aid of the penalty/Galerkin/finite element method. When the axis of twist is located within the duct, flow approaches limits at low and high torsion, the spatial frequency τ by which the duct is twisted. For small torsion, flow is nearly rectilinear and solutions approach previous asymptotic results for an elliptical cross section. For large torsion, flow exhibits an internal layer structure: a rotating circular-cylinder core with a nearly parabolic axial velocity profile, an internal layer of thickness τ-1 along the perimeter of the largest circular cylinder that can be inscribed in the duct, and nearly quiescent flow outside of the circular cylinder. The maximum rate of swirl in the core of a square duct is found to be at moderate torsion. The primary effect of inertia is an increase in pressure with distance from the axis, due to centrifugal acceleration. When the duct is offset from the axis of twist, inertia leads to one, two, or three primary vortices without apparent bifurcation of steady states, although stability of steady flows is lost beyond detected Hopf points.

  16. Composite propellant combustion modeling studies

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1977-01-01

    A review is presented of theoretical and experimental studies of composite propellant combustion. The theoretical investigations include a model of the combustion of a nonmetallized ammonium perchlorate (AP) propellant (noting time scales for vapor-phase combustion and the condensed phase) and response functions in pressure-coupled oscillations. The experimental studies are discussed with reference to scale-modeling apparatus, flame standoff distance versus velocity as a function of pressure, and results from T-burner firings of a nonmetallized AP/polysulfide propellant. Research applications including problems with nitramine propellants, the feasibility of stop-restart rockets with salt quench, and combustion problems in large boosters are outlined.

  17. Propeller Analysis from Experimental Data

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Crigler, John L

    1941-01-01

    The operation of the propeller is analyzed by the use of the distribution of forces along the radius, combined with theoretical equations. The data were obtained in the NACA 20-foot wind tunnel on a 4-foot-diameter, two-blade propeller, operating in front of four body shapes, ranging from a small shaft to support the propeller to conventional NACA cowling. A method of estimating the axial and the rotational energy in the wake as a fractional part of the propeller power is given. A knowledge of the total thrust and torque is necessary for the estimation.

  18. Resonance vibrations of aircraft propellers

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    On the basis of the consideration of various possible kinds of propeller vibrations, the resonance vibrations caused by unequal impacts of the propeller blades appear to be the most important. Their theoretical investigation is made by separate analysis of torsional and bending vibrations. This method is justified by the very great difference in the two natural frequencies of aircraft propeller blades. The calculated data are illustrated by practical examples. Thereby the observed vibration phenomenon in the given examples is explained by a bending resonance, for which the bending frequency of the propeller is equal to twice the revolution speed.

  19. 78 FR 41283 - Airworthiness Directives; Dowty Propellers Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... (75 FR 51656, August 23, 2010), and adding the following new AD: 2010-17-11R1 Dowty Propellers... (75 FR 51656, August 23, 2010). (c) Applicability This AD applies to Dowty Propellers R408/6-123-F/17... to revise AD 2010-17-11, Amendment 39-16403 (75 FR 51656, August 23, 2010). That AD applies to...

  20. 78 FR 9005 - Airworthiness Directives; Dowty Propellers Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... AD Was Issued Since we issued AD 2010-17-11 (75 FR 51656, August 23, 2010), Dowty Propellers... 39-16403 (75 FR 51656, August 23, 2010), and adding the following new AD: Dowty Propellers (formerly.... Discussion On August 5, 2010, we issued AD 2010-17-11, Amendment 39-16403 (75 FR 51656, August 23, 2010),...

  1. 78 FR 18255 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... 12866, (2) Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Hartzell Propeller, Inc. Propellers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...

  2. Propeller blade retention system

    NASA Technical Reports Server (NTRS)

    Elston, III, Sidney B. (Inventor); Simon, III, Victor H. (Inventor); Tseng, Wu-Yang (Inventor); Butler, Lawrence (Inventor)

    1993-01-01

    The invention concerns the mounting of propeller blades to a ring-shaped rotor. The blades are of the variable pitch type, and the shank of each blade extends through a respective hole in the rotor. Each hole contains an annular shelf which is fastened to the wall of the hole and surrounds each shank. Each shank bears a pair of bearing races which sandwich the annular shelf in order to connect the blade to the rotor. Bearing rollers are positioned between the annular shelf and the bearing races.

  3. Bile duct invasion can be an independent prognostic factor in early stage hepatocellular carcinoma

    PubMed Central

    Jang, Ye-Rang; Kim, Hyeyoung; Lee, Jeong-Moo; Yi, Nam-Joon; Suh, Kyung-Suk

    2015-01-01

    Backgrounds/Aims In hepatocellular carcinoma (HCC), bile duct invasion occurs far more rarely than vascular invasion and is not well characterized. In addition, the pathologic finding of bile duct invasion is not considered an independent prognostic factor for HCC following surgery. In this study, we determined the characteristics of HCC with bile duct invasion, and assessed the clinical significance of bile duct invasion. Methods We retrospectively reviewed the medical records of 363 patients who underwent hepatic resection for HCC at Seoul National University Hospital (SNUH) from January 2009 to December 2011. Preoperative, operative, and pathological data were collected. The risk factors for recurrence and survival were analyzed. Subsequently, the patients were divided into 2 groups according to disease stage (American Joint Committee on Cancer/International Union Against Cancer 7th edition): early stage (T1 and 2) and advanced stage (T3 and 4) group; and risk factors in the sub-groups were analyzed. Results Among 363 patients, 13 showed bile duct invasion on pathology. Patients with bile duct invasion had higher preoperative total bilirubin levels, greater microvascular invasion, and a higher death rate than those without bile duct invasion. In multivariate analysis, bile duct invasion was not an independent prognostic factor for survival for the entire cohort, but, was an independent prognostic factor for early stage. Conclusions Bile duct invasion accompanied microvascular invasion in most cases, and could be used as an independent prognostic factor for survival especially in early stage HCC (T1 and T2). PMID:26693236

  4. Phytotreatment of propellant contamination.

    PubMed

    Riefler, R Guy; Medina, Victor F

    2006-05-01

    Nitroglycerine (NG) and 2,4-dinitrotoluene (2,4-DNT) are propellants often found in soil and groundwater at military firing ranges. Because of the need for training with live ammunition, control or cleanup of these contaminants may be necessary for the continued use of these firing ranges. One inexpensive approach for managing sites exposed to these contaminants is the use phytoremedation, particularly using common or native grasses. In this study, the uptake of NG and 2,4-DNT from water by three common grasses, yellow nutsedge (Cyperus escalantus), yellow foxtail (Setaria glauca), and common rush (Juncus effusus), was investigated using hydroponic reactors. Rapid removal from solution by all grasses was observed, with yellow nutsedge removal rates being the highest. NG or 2,4-DNT accumulated in the tissues in all of the plants, except yellow foxtail did not accumulate NG. Higher concentrations were observed in killed roots, demonstrating the presence of plant-based enzymes actively transforming the contaminants. Yellow nutsedge was also grown in 2,4-DNT spiked soil. Significant uptake into the plants roots and leaves was observed and concentrations in the soil decreased rapidly, although 2,4-DNT concentration also decreased in the unplanted controls. In summary, the three grasses tested appear to be good candidates for phytoremediation of propellant contamination.

  5. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited...

  6. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited...

  7. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited...

  8. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited...

  9. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited...

  10. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  11. Propeller pitch change actuation system

    SciTech Connect

    Kusiak, E.H.

    1988-06-28

    An apparatus is described for adjusting the pitch of a variable pitch propeller blade characterized by: an actuator for setting the pitch of the propeller blade the actuator having; a rotatable screw for setting propeller pitch, a nut mounted for longitudinal motion along the screw as the screw is rotated, means for connecting the nut to the propeller blade to adjust the pitch of the propeller blade as the screw rotates, and a rotatable means mounted within the nut for locking the nut against longitudinal motion if the rotatable means is not rotating with the longitudinal motion of the nut and for allowing the nut to move longitudinally if the rotatable means is rotating with the longitudinal motion of the nut.

  12. Coated oxidizers for combustion stability in solid-propellant rockets

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.; Ramohalli, K. N. R.

    1985-01-01

    Experiments are conducted in a laboratory-scale (6.25-cm diameter) end-burning rocket motor with state-of-the-art, ammonium perchlorate hydroxy-terminated polybutadiene (HTPB), nonmetallized propellants. The concept of tailoring the stability characteristics with a small amount (less than 1 percent by weight) of COATING on the oxidizer is explored. The thermal degradation characteristics of the coat chemical are deduced through theoretical arguments on thermal diffusivity of the composite material (propellant). Several candidate coats are selected and propellants are cast. These propellants (with coated oxidizers) are fired in a laboratory-scale end-burning rocket motor, and real-time pressure histories are recorded. The control propellant (with no coating) is also tested for comparison. The uniformity of the coating, confirmed by SEM pictures and BET adsorption measurements, is thought to be an advance in technology. The frequency of bulk mode instability (BMI), the pressure fluctuation amplitudes, and stability boundaries are correlated with parameters related to the characteristic length (L-asterisk) of the rocket motor. The coated oxidizer propellants, in general, display greater combustion stability than the control (state-of-the-art). The correlations of the various parameters are thought to be new to a field filled with much uncertainty.

  13. Unsteady blade pressure measurements on a model counterrotation propeller

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Woodward, Richard P.

    1989-01-01

    In an exploratory effort an advanced counterrotation propeller instrumented with blade-mounted pressure transducers was tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel at a simulated takeoff and landing speed of Mach 0.20. The propeller's aft diameter was reduced to investigate possible noise reductions resulting from reduced blade row interaction with the tip vortex. The propeller was tested at three blade row spacings at fixed blade setting angles, at the maximum blade row spacing at higher blade setting angles and at propeller axis angles attack to the flow up to + or - 16 deg. A limited number of unsteady blade surface pressure measurements were made on both rotors of the model counterrotation propeller. Emphasis was placed on determining the effects of rotor-rotor interactions on the blade surface pressures. A unique method of processing the pressure signals was developed that enables even weak interaction waveforms and spectra to be separated from the total signal. The interaction on the aft rotor was many times stronger than that on the forward rotor. The fundamental rotor interaction tone exhibited complicated behavior but generally increased with rotational speed and blade setting angle and decreased with rotor spacing. With the propeller axis at an angle to the flow, the phase response of the aft rotor appeared to be significantly affected by the presence of the forward rotor.

  14. Computational Modeling of Magnetically Actuated Propellant Orientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.

    1996-01-01

    Unlike terrestrial applications where gravity positions liquid at the "bottom" of the tank, the location of liquid propellant in spacecraft tanks is uncertain unless specific actions are taken or special features are built into the tank. Some mission events require knowledge of liquid position prior to a particular action: liquid must be positioned over the tank outlet prior to starting the main engines and must be moved away from the tank vent before vapor can be released overboard to reduce pressure. It may also be desirable to positively position liquid to improve propulsion system performance: moving liquid away from the tank walls will dramatically decrease the rate of heat transfer to the propellant, suppressing the boil-off rate, thereby reducing overall mission propellant requirements. The process of moving propellant to a desired position is referred to as propellant orientation or reorientation. Propulsive reorientation relies on small auxiliary thrusters to accelerate the tank. The inertia of the liquid causes it to collect in the aft-end of the tank if the acceleration is forward. Liquid Acquisition Devices (LAD's) rely on surface tension to hold the liquid within special geometries, (i.e. vanes, wire-mesh channels, start-baskets), to positively position propellants. Both of these technologies add significant weight and complexity to the spacecraft and can be limiting systems for long duration missions. The subject of the present research is an alternate technique for positively positioning liquid within spacecraft propellant tanks: magnetic fields. LOX is paramagnetic (attracted toward a magnet) and LH2 is diamagnetic (repelled from a magnet). Order-of-magnitude analyses, performed in the 1960's to determine required magnet size, concluded that the magnets would be prohibitively massive and this option has remained dormant during the intervening years. Recent advances in high-temperature superconducting materials hold the promise of electromagnets with

  15. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  16. An isolated nasolacrimal duct osteoma.

    PubMed

    Kim, Joo Yeon; Kwon, Jae Hwan

    2013-07-01

    Osteomas of the nose and paranasal sinus are common benign tumors that can extend to surrounding structures and result in orbital or intracranial involvement. Presenting symptoms include facial pain, headache, cerebral symptoms, ocular symptoms, and so on, depending on the location and size of the tumor. They commonly occur within the frontal, ethmoid, maxillary, and sphenoid sinuses; however, there are rare cases of reported osteomas in the nasal cavity, turbinate, or orbit. Our case report describes a patient with nasolacrimal duct osteoma who presented with ipsilateral ocular pain, epiphora, and medial canthal swelling. We performed intranasal dacryocystorhinostomy using a nasal endoscope and removed the lacrimal duct osteoma. This report describes symptoms and management of an isolated nasolacrimal duct stone with a review of the literature.

  17. A numerical study of scale effects on performance of a tractor type podded propeller

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Kyu; Park, Hyoung-Gil; Kim, Hyoung-Tae

    2014-06-01

    In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called `drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

  18. Reconstruction of pressure sores with perforator-based propeller flaps.

    PubMed

    Jakubietz, Rafael G; Jakubietz, Danni F; Zahn, Robert; Schmidt, Karsten; Meffert, Rainer H; Jakubietz, Michael G

    2011-03-01

    Perforator flaps have been successfully used for reconstruction of pressure sores. Although V-Y advancement flaps approximate debrided wound edges, perforator-based propeller flaps allow rotation of healthy tissue into the defect. Perforator-based propeller flaps were planned in 13 patients. Seven pressure sores were over the sacrum, five over the ischial tuberosity, and one on the tip of the scapula. Three patients were paraplegic, six were bedridden, and five were ambulatory. In three patients, no perforators were found. In 10 patients, propeller flaps were transferred. In two patients, total flap necrosis occurred, which was reconstructed with local advancement flaps. In two cases, a wound dehiscence occurred and had to be revised. One hematoma required evacuation. No further complications were noted. No recurrence at the flap site occurred. Local perforator flaps allow closure of pressure sores without harvesting muscle. The propeller version has the added benefit of transferring tissue from a distant site, avoiding reapproximation of original wound edges. Twisting of the pedicle may cause torsion and venous obstruction. This can be avoided by dissecting a pedicle of at least 3 cm. Propeller flaps are a safe option for soft tissue reconstruction of pressure sores.

  19. Propellers: Theory and observation

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.

    2007-12-01

    The question on the origin and evolution of planetary rings is one of the prominent unsolved problems of planetary sciences with direct implications for planet-forming processes in preplanetary disks. The recent detection of four propeller-shaped features in Saturn's A ring (Tiscareno et al., 2006) proved the presence of large boulder-sized moonlets in the rings (Spahn & Sremcevic, 2000). Their very existence favors a ring creation in a catastrophic disruption of an icy satellite (Sremcevic et al., 2007) rather than a co-genetic origin with Saturn, since bodies of this size can hardly have accreted inside the rings. Here we will review the current state of theoretical modeling and Cassini observations.

  20. Micarta propellers I : materials

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Clay, N S

    1924-01-01

    Here, values for tension, compression edgewise of laminations, and transverse flatwise of laminations are given for Micarta made with various kinds of sheet material. The corresponding values for white oak are given for comparison. It was found by destructive and service tests that Micarta made with a good grade of cotton duck will give satisfactory service with most designs. In propellers having detachable blades, it is desirable that the root of the blade be of a small cross section to decrease the weight of the metal hub. Here the use of the special fabric or wood veneer offers advantages due to greater tensile strength. These materials, especially the wood veneer, produce stiffer blades than duck. This is also a value in controllable and reversible pitch designs where it is desirable that the plan form of the blades be symmetrical.

  1. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  2. Investigation of Pneumatic Inlet and Diffuser Blowing on a Ducted Fan Propulsor in Static Thrust Operation

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne; Englar, Robert J.; Lee, Warren J.

    2003-01-01

    Tilting ducted fans present a solution for the lifting and forward flight propulsion requirements of VTOL aircraft. However, the geometry of the duct enshrouding the propeller has great a effect on the efficiency of the fan in various flight modes. Shroud geometry controls the velocity and pressure at the face of the fan, while maintaining a finite loading out at the tips of the fan blades. A duct tailored for most efficient generation of static lifting thrust will generally suffer from performance deficiencies in forward flight. The converse is true as well, leaving the designer with a difficult trade affecting the overall performance and sizing of the aircraft. Ideally, the shroud of a vertical lifting fan features a generous bell mouth inlet promoting acceleration of flow into the face of the fan, and terminating in a converging nozzle at the exit. Flow entering the inlet is accelerated into the fan by the circulation about the shroud, resulting in an overall increase in thrust compared to an open propeller operating under the same conditions . The accelerating shroud design is often employed in lifting ducted fans to benefit from the thrust augmentation; however, such shroud designs produce significant drag penalties in axial flight, thus are unsuitable for efficient forward flight applications. Decelerating, or diffusing, duct designs are employed for higher speed forward flight configurations. The lower circulation on the shroud tends to decelerate the flow into the face of the fan, which is detrimental to static thrust development; however, net thrust is developed on the shroud while the benefits of finite blade loading are retained. With judicious shroud design for intended flight speeds, a net increase in efficiency can be obtained over an open propeller. In this experiment, conducted under contract to NASA LaRC (contract NAG-1-02093) circulation control is being applied to a mildly diffusing shroud design, intended for improved forward flight performance

  3. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  4. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  5. Optimization and performance calculation of dual-rotation propellers

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1981-01-01

    An analysis is given which enables the design of dual-rotation propellers. It relies on the use of a new tip loss factor deduced from T. Theodorsen's measurements coupled with the general methodology of C. N. H. Lock. In addition, it includes the effect of drag in optimizing. Some values for the tip loss factor are calculated for one advance ratio.

  6. General Information about Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... Bile Duct Cancer Treatment (PDQ®)–Patient Version General Information About Bile Duct Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  7. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  8. The Source of Propeller Noise

    NASA Technical Reports Server (NTRS)

    Ernsthausen, W

    1937-01-01

    A two blade propeller of 40 cm diameter and zero pitch was explored for its noise development; it could be whirled up to 17,000 rpm - i.e., a tip speed of 355 meters/second. To obtain the power loss N(sub m) of the propeller for comparison with the produced acoustical power N(sub A) the engine performance characteristics were measured with and without propeller. The result is the sought-for relation c, that is, curve c' after correction with the engine efficiency.

  9. Aerodynamic Characteristics of a Two-blade NACA 10-(3)(062)-045 Propeller and of a Two-blade NACA 10-(3)(08)-045 Propeller

    NASA Technical Reports Server (NTRS)

    Solomon, William

    1953-01-01

    Characteristics are given for the two-blade NACA 10-(3)(062)-045 propeller and for the two-blade NACA 10-(3)(08)-045 propeller over a range of advance ratio from 0.5 to 3.8, through a blade-angle range from 20 degrees to 55 degrees measured at the 0.75 radius. Maximum efficiencies of the order of 91.5 to 92 percent were obtained for the propellers. The propeller with the thinner airfoil sections over the outboard portion of the blades, the NACA 10-(3)(062)-045 propeller, had lower losses at high tip speeds, the difference amounting to about 5 percent at a helical tip Mach number of 1.10.

  10. Influence of fuselage on propeller design

    NASA Technical Reports Server (NTRS)

    Troller, Theodor

    1928-01-01

    In the present paper I shall not consider the problem of the best arrangement of airplane and propeller, but only a simple method for designing a propeller for a given arrangement of airplane parts. The inflow to the propeller and hence the efficiency of the propeller is affected most by the fuselage.

  11. Application of theory to propeller design

    NASA Technical Reports Server (NTRS)

    Cox, G. G.; Morgan, W. B.

    1974-01-01

    The various theories concerning propeller design are discussed. The use of digital computers to obtain specific blade shapes to meet appropriate flow conditions is emphasized. The development of lifting-line and lifting surface configurations is analyzed. Ship propulsive performance and basic propeller design considerations are investigated. The characteristics of supercavitating propellers are compared with those of subcavitating propellers.

  12. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter....

  13. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter....

  14. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 25.905 Section 25.905... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the...

  15. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 25.905 Section 25.905... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the...

  16. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 25.905 Section 25.905... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the...

  17. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter....

  18. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 25.905 Section 25.905... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the...

  19. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person manufacturing propellers under a type certificate must give each variable pitch propeller an...

  20. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 25.905 Section 25.905... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the...

  1. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter....

  2. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.129 Tests: propellers. Each person manufacturing propellers under a type certificate only shall give each variable pitch propeller...

  3. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter....

  4. Vitellointestinal Duct Anomalies in Infancy

    PubMed Central

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448

  5. Arc Reflector For Welding Ducts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1990-01-01

    Arc-light reflector for through-the-torch welding vision system designed expressly for use in welding ducts of small diameter. Cylindrical reflector positioned to reflect light diffusely from welding arc onto nearby surface of workpiece for most advantageous viewing along axis of welding torch.

  6. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  7. Technology and benefits of aircraft counter rotation propellers

    NASA Technical Reports Server (NTRS)

    Strack, W. C.; Knip, G.; Weisbrich, A. L.; Godston, J.; Bradley, E.

    1981-01-01

    Results are reported of a NASA sponsored analytical investigation into the merits of advanced counter rotation propellers for Mach 0.80 commercial transport application. Propeller and gearbox performance, acoustics, vibration characteristics, weight, cost and maintenance requirements for a variety of design parameters and special features were considered. Fuel savings in the neighborhood of 8 percent relative to single rotation configurations are feasible through swirl recovery and lighter gearboxes. This is the net gain which includes a 5 percent acoustic treatment weight penalty to offset the broader frequency spectrum noise produced by counter rotation blading.

  8. Extrahepatic Bile Duct Obstruction and Erosive Disruption by Cavitating Porta Hepatis Nodal Metastasis, Treated by Uncovered Wallstent

    SciTech Connect

    Trambert, Jonathan J. Frost, Andrei; Malasky, Charlotte

    2004-08-15

    A 45-year-old woman with advanced gastric carcinoma presented with obstructive jaundice. Percutaneous transhepatic cholangiography (PTC) revealed erosive disruption of the extrahepatic bile ducts by a cavitating metastasis in the porta hepatis, as well as a biliary-duodenal fistula. External-internal biliary drainage via the fistula was plagued by recurrent drain occlusion by necrotic debris. This was ultimately alleviated by successful catheterization of the distal common bile duct (CBD) through the cavity, and linking the common hepatic duct (CHD) and CBD with a Wallstent, across the cavity. This succeeded in improving internal biliary drainage and isolating the exfoliating debris of the cavity from the bile ducts.

  9. Propellant gaging for geostationary satellites

    NASA Astrophysics Data System (ADS)

    Orazietti, A. J.; Orton, G. F.; Schreib, R.

    1986-06-01

    Evaluations were performed to select four gaging concepts for ground tests and low-g tests in the NASA KC-135 aircraft. The selected concepts were an ultrasonic point sensor system, a nucleonic gaging system, an ultrasonic torsional wave guide, and an ultrasonic flowmeter. The first three systems provide a direct measurement of propellant quantity remaining, while the fourth system integrates (totalizes) the propellant flow to the engines and infers propellant remaining based on a known initial propellant load. As a result of successful ground and KC-135 tests, two concepts (the ultrasonic point sensor and nucleonic systems) were selected for orbital test in a Shuttle Get-Away-Special experiment. These systems offer high end-of-life accuracy potential, are nonintrusive (external to the tanks and feedlines), and are low in risk because of their good technology base. The Shuttle Get-Away-Special experiment has been assembled and passed flight certification testing in late April 1986.

  10. Generic Propellants Transfer Unit (GPTU)

    NASA Technical Reports Server (NTRS)

    Cook, Christopher A.

    1992-01-01

    The Generic Propellants Transfer Unit (GPTU) is being designed to support spacecraft liquid propellant operations at the Kennedy Space Center (KSC) and Eastern Test Range (ETR). The GPTU will have a 500 gallon capacity and be Department Of Transportation (DOT) approved for over-the-road transportation of hypergolic propellants. The use of these containers will allow the users to increase efficiency and reduce the following costs: design/construction, transportation (to/from the launch site), propellant transfer operations, and decontamination operations. The user also acquires the flexibility of transporting to an offsite location for processing or storage without obtaining special exemptions or permits. These containers will incorporate their own quantity gaging and temperature sensing systems, and be integrated onto a transport trailer which contains work platforms and a fluid transfer system.

  11. Propeller speed and phase sensor

    NASA Technical Reports Server (NTRS)

    Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)

    1992-01-01

    A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.

  12. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  13. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  14. Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt; Hedayat, Ali

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  15. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  16. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  17. Solid propellant environmental issues

    SciTech Connect

    Le, M.D.

    1998-07-01

    The objective of the Solid Propellant Environmental Issues (SPEI) project is to demonstrate environmentally acceptable technologies that will enhance the continued production of solid rocket motors (SRMs) by complying with current and anticipated environmental regulations. Phase 1 of the project identifies current and anticipated environmental regulations that may affect SRMs manufacturing in the future and identify emerging process technologies which comply with these regulations. Phase 2 of the project established a baseline database by fabricating a 363 kg motor using the current manufacturing process. In Phase 3, environmentally acceptable process technologies were evaluated, ranked, and selected for demonstration using criteria developed by the team. The results for Phase 1--3 have previously been presented. This paper will present data obtained to date on Phase 4. In Phase 4, the alternate process technologies were evaluated for compatibility, cleaning effectiveness, and waste minimization/pollution prevention. The best performing candidate for each application area was selected for demonstration. The selected process technologies will be inserted into the baseline manufacturing process from Phase 2. The new manufacturing process will be demonstrated and evaluated through the scale-up and fabrication of two 363 kg solid rocket motors.

  18. Aircraft Propeller Hub Repair

    SciTech Connect

    Muth, Thomas R.; Peter, William H.

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  19. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  20. Aerodynamic characteristics of a propeller powered high lift semispan wing

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Gentry, G. L., Jr.

    1992-01-01

    An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

  1. Coexistence of multiple omphalomesenteric duct anomalies.

    PubMed

    Ioannidis, Orestis; Paraskevas, George; Kakoutis, Emmanouil; Kotronis, Anastasios; Papadimitriou, Nikos; Chatzopoulos, Stavros; Makrantonakis, Apostolos

    2012-08-01

    The omphalomesenteric duct is an embryonic structure which connects the yolk sac to the midgut. The omphalomesenteric duct attenuates between the 5th and 9th week of gestation. Failure of the omphalomesenteric duct involution, either partial or complete, results in various omphalomesenteric duct remnants including Meckel's diverticulum, patent vitelline duct, fibrous band, sinus tract, umbilical polyp and cyst. Omphalomesenteric duct remnants are present in 2% of the population but related diseases have seldom been reported in adults. The simultaneous presence of sinus tract, omphalomesenteric cyst, fibrous ligament and Meckel's diverticulum has, according to authors' knowledge, never been reported. We present a case of a 23 years old male with persisting umbilical discharge for 2 years in whom there was coexistence of the above mentioned anomalies of the omphalomesenteric duct.

  2. Tear-ducts in wine

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    1999-11-01

    We examine the radial spoke pattern evident in the meniscus region in glasses of strong alcoholic beverages exhibiting the `tears-in-wine' phenomenon. We demonstrate that the pattern results from ridge-like elevations of the free surface which are supported by evaporatively-driven Marangoni convection in the meniscus region. Vortices associated with the convective motions are aligned in the radial direction by the surface tension gradient responsible for the generation of tears. The radial flow is focussed into the ridges, which thus serve as the principal conduits of fluid for the tears; consequently, we refer to the ridges as `tear-ducts'. The phenomenon is examined experimentally, and a numerical model of evaporatively-driven Marangoni convection is developed which reproduces the salient features of the tear-duct phenomenon.

  3. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  4. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  5. Small duct primary sclerosing cholangitis without inflammatory bowel disease is genetically different from large duct disease

    PubMed Central

    Næss, Sigrid; Björnsson, Einar; Anmarkrud, Jarl A.; Al Mamari, Said; Juran, Brian D.; Lazaridis, Konstantinos N.; Chapman, Roger; Bergquist, Annika; Melum, Espen; Marsh, Steven G. E.; Schrumpf, Erik; Lie, Benedicte A.; Boberg, Kirsten Muri; Karlsen, Tom H.; Hov, Johannes R.

    2014-01-01

    Background & aims Small duct primary sclerosing cholangitis (PSC) is phenotypically a mild version of large duct PSC, but it is unknown whether these phenotypes share aetiology. We aimed to characterize their relationship by investigating genetic associations in the HLA complex, which represent the strongest genetic risk factors in large duct PSC. Methods Four classical HLA loci (HLA-A, HLA-B, HLA-C, HLA-DRB1) were genotyped in 87 small duct PSC patients, 485 large duct PSC patients and 1117 controls across three geographical regions. Results HLA-DRB1*13:01 (OR=2.0, 95% CI 1.2–3.4, P=0.01) and HLA-B*08 (OR=1.6, 95% CI 1.1–2.4, P=0.02) were significantly associated with small duct PSC compared with healthy controls. Based on the observed frequency of HLA-B*08 in small duct PSC, the strongest risk factor in large duct PSC, an estimated 32% (95% CI 4%–65%) of this population can be hypothesized to represent early stages or mild variants of large duct PSC. This subgroup may be constituted by small duct PSC patients with inflammatory bowel disease (IBD), which greatly resembled large duct PSC in its HLA association. In contrast, small duct PSC without IBD was only associated with HLA-DRB1*13:01(P=0.03) and was otherwise distinctly dissimilar from large duct PSC. Conclusions Small duct PSC with IBD resembles large duct PSC in its HLA association and may represent early stages or mild variants of large duct disease. Different HLA associations in small duct PSC without IBD could indicate that this subgroup is a different entity. HLA-DRB1*13:01 may represent a specific risk factor for inflammatory bile duct disease. PMID:24517468

  6. Effect of solidity and inclination on propeller-nacelle force coefficients

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Dunham, Dana Morris; Takallu, M. A.

    1991-01-01

    A series of wind tunnel experiments were conducted to study the effect of propeller solidity and thrust axis inclination on the propeller normal force coefficient. Experiments were conducted in the Langley 14 by 22 foot Subsonic Tunnel with a sting mounted, counterrotation, scale model propeller and nacelle. Configurations had two rows of blades with combinations of 4 and 8 blades per hub. The solidity was varied by changing the number of blades on both rows. Tests were conducted for blade pitch setting of 31.34 deg, 36.34 deg, and 41.34 deg over a range of angle of attack from -10 deg to 90 deg and range of advance ratio from 0.8 to 1.4. The increase in propeller normal force with angle of attack is greater for propellers with higher solidity.

  7. Modeling particle loss in ventilation ducts

    SciTech Connect

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  8. Erosive burning of solid propellants

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1993-01-01

    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  9. Assay of potentially contaminated propellant

    SciTech Connect

    Koster, J.E.; Williams, H.E. III; Scott, W.S.

    1995-02-01

    One of the decontamination and decommissioning projects within DOD is demilitarization of an aging stockpile of munitions. A large portion of the stockpile contains depleted uranium (DU) as an armor piercing core and so these munitions must be assayed for the presence of uranium in other components. The assay method must be fast and preferably easy to implement. Presence of DU is indicated by its alpha decay. The alpha particles in turn produce ions in the ambient air. If a significant fraction of these ions can escape the quantity of propellant, the ions can be detected instead of the alpha particles. As a test of the feasibility of detecting alpha emissions from DU somewhere within a cartridge of propellant, the transmission of ions through layers of real propellant was measured. The propellant is in the form of graphite-coated cylindrical pellets. A 105nun cartridge was modified for use as a pellet chamber. A check source served as an ion source. The ion detector consisted of a grid held at 300V coupled to an ammeter. Results confirm that this is a promising technique for testing the propellant for the presence of DU quickly yet with sensitivity.

  10. Combustion chemistry of solid propellants

    NASA Technical Reports Server (NTRS)

    Baer, A. D.; Ryan, N. W.

    1974-01-01

    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process.

  11. Wave energy propelling marine ship

    SciTech Connect

    Kitabayashi, S.

    1982-06-29

    A wave energy propelling marine ship comprises a cylindrical ship body having a hollow space therein for transporting fluid material therewithin, a ship body disposed in or on the sea; a propeller attached to the ship body for the purpose of propelling the marine ship for sailing; a rudder for controlling the moving direction of the marine ship; at least one rotary device which includes a plurality of compartments which are each partitioned into a plurality of water chambers by a plurality of radial plates, and a plurality of water charge and/or discharge ports, wherein wave energy is converted into mechanical energy; and device for adjusting buoyancy of the marine ship so that the rotary device is positioned advantageously on the sea surface.

  12. High Power Flex-Propellant Arcjet Performance

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2011-01-01

    A MW-class electrothermal arcjet based on a water-cooled, wall-stabilized, constricted arc discharge configuration was subjected to extensive performance testing using hydrogen and simulated ammonia propellants with the deliberate aim of advancing technology readiness level for potential space propulsion applications. The breadboard design incorporates alternating conductor/insulator wafers to form a discharge barrel enclosure with a 2.5-cm internal bore diameter and an overall length of approximately 1 meter. Swirling propellant flow is introduced into the barrel, and a DC arc discharge mode is established between a backplate tungsten cathode button and a downstream ringanode/ spin-coil assembly. The arc-heated propellant then enters a short mixing plenum and is accelerated through a converging-diverging graphite nozzle. This innovative design configuration differs substantially from conventional arcjet thrusters, in which the throat functions as constrictor and the expansion nozzle serves as the anode, and permits the attainment of an equilibrium sonic throat (EST) condition. During the test program, applied electrical input power was varied between 0.5-1 MW with hydrogen and simulated ammonia flow rates in the range of 4-12 g/s and 15-35 g/s, respectively. The ranges of investigated specific input energy therefore fell between 50-250 MJ/kg for hydrogen and 10-60 MJ/kg for ammonia. In both cases, observed arc efficiencies were between 40-60 percent as determined via a simple heat balance method based on electrical input power and coolant water calorimeter measurements. These experimental results were found to be in excellent agreement with theoretical chemical equilibrium predictions, thereby validating the EST assumption and enabling the utilization of standard TDK nozzle expansion analyses to reliably infer baseline thruster performance characteristics. Inferred specific impulse performance accounting for recombination kinetics during the expansion process

  13. RSRM Propellant Grain Geometry Modification

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Endicott, Joni B.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is composed of viewgraphs about the RSRM propellant grain geometry modification project, which hopes to improve personnel and system safety by modifying propellant grain geometry to improve structural factors of safety. Using techniques such as Finite Element Analysis to determine blend radii required to reduce localized stresses, and ballistic predictions to ensure that the ballistics, ignition transient and Block Model have not been adversely affected, the project hopes to build and test FSM-10 with a new design, and determine flight effectivity pending successful test evaluation.

  14. Characteristics of Five Propellers in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Mixson, R E

    1928-01-01

    This investigation was made for the purpose of determining the characteristics of five full-scale propellers in flight. The equipment consisted of five propellers in conjunction with a VE-7 airplane and a Wright E-2 engine. The propellers were of the same diameter and aspect ratio. Four of them differed uniformly in thickness and pitch and the fifth propeller was identical with one of the other four with exception of a change of the airfoil section. The propeller efficiencies measured in flight are found to be consistently lower than those obtained in model tests. It is probable that this is mainly a result of the higher tip speeds used in the full-scale tests. The results show also that because of differences in propeller deflections it is difficult to obtain accurate comparisons of propeller characteristics. From this it is concluded that for accurate comparisons it is necessary to know the propeller pitch angles under actual operating conditions. (author)

  15. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  16. Ramjet bypass duct and preburner configuration

    NASA Technical Reports Server (NTRS)

    Orlando, Robert J. (Inventor)

    1994-01-01

    A combined turbofan and ramjet aircraft engine includes a forward bypass duct which allows the engine to operate more efficiently during the turbofan mode of operation. By mounting a ramjet preburner in the forward duct and isolating this duct from the turbofan bypass air, a transition from turbofan operation to ramjet operation can take place at lower flight Mach numbers without incurring pressure losses or blockage in the turbofan bypass air.

  17. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... units must be fireproof within the auxiliary power unit fire zone. (c) Each duct connected to components... induction system duct must be fireproof for a sufficient distance upstream of the auxiliary power...

  18. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... units must be fireproof within the auxiliary power unit fire zone. (c) Each duct connected to components... induction system duct must be fireproof for a sufficient distance upstream of the auxiliary power...

  19. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... units must be fireproof within the auxiliary power unit fire zone. (c) Each duct connected to components... induction system duct must be fireproof for a sufficient distance upstream of the auxiliary power...

  20. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... units must be fireproof within the auxiliary power unit fire zone. (c) Each duct connected to components... induction system duct must be fireproof for a sufficient distance upstream of the auxiliary power...

  1. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... units must be fireproof within the auxiliary power unit fire zone. (c) Each duct connected to components... induction system duct must be fireproof for a sufficient distance upstream of the auxiliary power...

  2. 78 FR 45052 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... considered the comment received. Hartzell Propeller, Inc. supports the NPRM (78 FR 18255, dated March 26... specified products. The NPRM published in the Federal Register on March 26, 2013 (78 FR 18255). The NPRM... ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will...

  3. Circumportal pancreas with retroportal main pancreatic duct.

    PubMed

    Hashimoto, Yasushi; Ross, Andrew S; Traverso, L William

    2009-08-01

    There have been 6 cases of circumportal pancreas reported, and 2 of them had the main pancreatic duct in a retroportal dorsal portion. This extremely uncommon anomaly is asymptomatic and therefore incidentally discovered. For the surgeon, it is important to discover this during pancreatic resection so the pancreatic duct can be closed and fistula is avoided. We describe the third case where a circumportal pancreas had its main pancreatic duct passing under the portal vein. The duct was identified and ligated. A fistula did not occur.

  4. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  5. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  6. Note on the Effects of First-Order Aerodynamic Loads on Propeller Shaft Loads with Emphasis on Counterrotating Propellers

    NASA Technical Reports Server (NTRS)

    Rogallo, Vernon L.; McCloud, John L., III; Yaggy, Paul F.

    1954-01-01

    An investigation of the 1XP excitation of inclined single-rotation propellers has indicated a new concept for determining propeller shaft forces and moments of an inclined propeller. This report presents preliminary results, in particular to the counterrotating propeller.

  7. Fatal propeller injuries: three autopsy case reports.

    PubMed

    Ihama, Yoko; Ninomiya, Kenji; Noguchi, Masamichi; Fuke, Chiaki; Miyazaki, Tetsuji

    2009-10-01

    Most propeller injuries occur at water recreational facilities such as those with provision for water skiing, boat racing, skin and scuba diving. Propeller injuries resulting from nautical accidents can be fatal. The sharp blades of propellers rotating at high speeds cause multiple and serious injuries such as deep laceration, chop wounds, bone fractures and mutilation of extremities. We present the autopsy reports of three people who died after colliding with boat propellers.

  8. Micarta propellers IV : technical methods of design

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Clay, N S

    1924-01-01

    A description is given of the methods used in design of Micarta propellers. The most direct method for working out the design of a Micarta propeller is to start with the diameter and blade angles of a wooden propeller suited for a particular installation and then to apply one of the plan forms suitable for Micarta propellers. This allows one to obtain the corresponding blade widths and to then use these angles and blade widths for an aerodynamic analysis.

  9. Current State-of-the-Art of HNF Based Composite Propellants

    NASA Astrophysics Data System (ADS)

    Ciucci, A.; Frota, O.; Welland, W.; van der Heijden, A.; Leeming, B.; Bellerby, J.; Brotzu, A.

    2004-10-01

    In this frame Vega, with its first three solid stages, will include a number of advanced technological solutions. Further improvements are being considered for evolutions of Ariane 5 in the medium term. The main activities currently performed for the development of HNF-based propellants are presented. The objectives and approach adopted are described. The results obtained on the HNF decomposition mechanism and on the re- and co-crystallisation of HNF with potential propellant ingredients are presented. The experimental activities for the screening of a number of HNF-based propellant candidates are discussed. Current limitations and open points are identified, and the future steps for consolidating the interest and feasibility of an HNF-based propellant development are indicated. For the long term, possible improvements could be achieved through the use of high energetic materials, including oxidiser and/or binders, in advanced propellant formulations. While still paying attention to the cost of the raw material, these formulations offer the advantage of an increased specific impulse, which has a positive impact on the cost of the loaded motor case. The European Space Agency has been pursuing research and technology development activities on HNF and HNF-based propellants to investigate their interest and feasibility for possible future space applications. These propellants seem to offer the potential for performance improvements, and for providing clean exhaust gases.

  10. Flow through rotating rectangular ducts

    NASA Astrophysics Data System (ADS)

    Nandakumar, K.; Raszillier, H.; Durst, F.

    1991-05-01

    The bifurcation structure of two-dimensional, pressure-driven flows through a rectangular duct that is rotating about an axis perpendicular to its own is examined at a fixed Ekman number (Ek=ν/b2Ω) of 0.01. The solution structure for flow through a square duct (aspect ratio γ=1) is determined for Rossby numbers (Ro=U/bΩ) in the range of 0-5 using a computational scheme based on the arclength continuation method. The structure is much more complicated than reported earlier by Kheshgi and Scriven [Phys. Fluids 28, 2968 (1985)]. The primary branch with two limit points in Rossby number and a hysteresis behavior between the two- and four-cell flow structure that was computed by Kheshgi and Scriven is confirmed. An additional symmetric solution branch, which is disconnected from the primary branch (or rather connected via an asymmetric solution branch), is found. This has a two-cell flow structure at one end, a four-cell flow structure at the other and three limit points are located on the path. Two asymmetric solution branches emanating from symmetry breaking bifurcation points are also found for a square duct. Thus even within a Rossby number range of 0-5 a much richer solutions structure is found with up to five solutions at Ro=5. An eigenvalue calculation indicates that all two-dimensional solutions develop some form of unstable mode by the time Ro is increased to 5.0. In particular, the four-cell solution becomes unstable to asymmetric perturbations as found in a related problem of flow through a curved duct. The paths of the singular points are tracked with respect to variation in the aspect ratio using the fold following algorithm. A transcritical point is found at an aspect ratio of 0.815 and below which the four-cell solution is no longer on the primary branch. When the channel cross section is tilted even slightly (1°) with respect to the axis of rotation, the bifurcation points unfold and the two-cell solution evolves smoothly as Rossby number is

  11. Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.

    2010-01-01

    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.

  12. Evaluation of panel code predictions with experimental results of inlet performance for a 17-inch ducted prop/fab simulator operating at Mach 0.2

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Jeracki, R. J.; Larkin, M.; Sorin, G.

    1991-01-01

    An axisymmetric panel code was used to evaluate a series of ducted propeller inlets. The inlets were tested in the Lewis 9 by 15 Foot Low Speed Wind Tunnel. Three basic inlets having ratios of shroud length to propeller diameter of 0.2, 0.4, and 0.5 were tested with the Pratt and Whitney ducted prop/fan simulator. A fourth hybrid inlet consisting of the shroud from the shortest basic inlet coupled with the spinner from the largest basic inlet was also tested. This later configuration represented the shortest overall inlet. The simulator duct diameter at the propeller face was 17.25 inches. The short and long spinners provided hub-to-tip ratios of 0.44 at the propeller face. The four inlets were tested at a nominal free stream Mach number of 0.2 and at angles of attack from 0 degrees to 35 degrees. The panel code method incorporated a simple two-part separation model which yielded conservative estimates of inlet separation.

  13. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  14. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, Martin S.

    1993-01-01

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  15. Aerosol propellant interference with clinical mass spectrometers.

    PubMed

    Kharasch, E D; Sivarajan, M

    1991-04-01

    Metered dose inhalers containing halogenated propellants may interfere with mass spectrometer quantitation of halogenated inhalation anesthetics. We identify the propellant(s) in a commercially available metered dose inhaler that caused erroneous mass spectrometer readings. In addition, we identify the causes of different types of interference in different mass spectrometers. PMID:2072131

  16. 21 CFR 801.417 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chlorofluorocarbon propellants. 801.417 Section... (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.417 Chlorofluorocarbon propellants. The use of chlorofluorocarbon in devices as propellants in self-pressurized containers...

  17. 21 CFR 801.417 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chlorofluorocarbon propellants. 801.417 Section... (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.417 Chlorofluorocarbon propellants. The use of chlorofluorocarbon in devices as propellants in self-pressurized containers...

  18. 21 CFR 801.417 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chlorofluorocarbon propellants. 801.417 Section... (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.417 Chlorofluorocarbon propellants. The use of chlorofluorocarbon in devices as propellants in self-pressurized containers...

  19. 21 CFR 300.100 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Chlorofluorocarbon propellants. 300.100 Section 300.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human drugs as propellants in...

  20. 21 CFR 189.191 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorofluorocarbon propellants. 189.191 Section... Generally Prohibited From Direct Addition or Use as Human Food § 189.191 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human food as propellants in self-pressurized containers is...

  1. 21 CFR 801.417 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chlorofluorocarbon propellants. 801.417 Section... (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.417 Chlorofluorocarbon propellants. The use of chlorofluorocarbon in devices as propellants in self-pressurized containers...

  2. 21 CFR 300.100 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Chlorofluorocarbon propellants. 300.100 Section 300.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human drugs as propellants in...

  3. 21 CFR 300.100 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Chlorofluorocarbon propellants. 300.100 Section 300.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human drugs as propellants in...

  4. 21 CFR 801.417 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chlorofluorocarbon propellants. 801.417 Section... (CONTINUED) MEDICAL DEVICES LABELING Special Requirements for Specific Devices § 801.417 Chlorofluorocarbon propellants. The use of chlorofluorocarbon in devices as propellants in self-pressurized containers...

  5. 21 CFR 300.100 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Chlorofluorocarbon propellants. 300.100 Section 300.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human drugs as propellants in...

  6. 21 CFR 300.100 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Chlorofluorocarbon propellants. 300.100 Section 300.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human drugs as propellants in...

  7. 21 CFR 189.191 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorofluorocarbon propellants. 189.191 Section 189... Generally Prohibited From Direct Addition or Use as Human Food § 189.191 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human food as propellants in self-pressurized containers is...

  8. 21 CFR 189.191 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chlorofluorocarbon propellants. 189.191 Section... Generally Prohibited From Direct Addition or Use as Human Food § 189.191 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human food as propellants in self-pressurized containers is...

  9. 21 CFR 189.191 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chlorofluorocarbon propellants. 189.191 Section... Generally Prohibited From Direct Addition or Use as Human Food § 189.191 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in human food as propellants in self-pressurized containers is...

  10. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the...

  11. 14 CFR 25.929 - Propeller deicing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller deicing. 25.929 Section 25.929... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.929 Propeller deicing. (a) For airplanes... accumulation on propellers or on accessories where ice accumulation would jeopardize engine performance. (b)...

  12. 14 CFR 25.929 - Propeller deicing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller deicing. 25.929 Section 25.929... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.929 Propeller deicing. (a) For airplanes... accumulation on propellers or on accessories where ice accumulation would jeopardize engine performance. (b)...

  13. 14 CFR 25.929 - Propeller deicing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller deicing. 25.929 Section 25.929... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.929 Propeller deicing. (a) For airplanes... accumulation on propellers or on accessories where ice accumulation would jeopardize engine performance. (b)...

  14. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most...

  15. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the...

  16. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most...

  17. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most...

  18. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the...

  19. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the...

  20. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most...

  1. 14 CFR 25.929 - Propeller deicing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller deicing. 25.929 Section 25.929... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.929 Propeller deicing. (a) For airplanes... accumulation on propellers or on accessories where ice accumulation would jeopardize engine performance. (b)...

  2. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most...

  3. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the...

  4. 14 CFR 25.929 - Propeller deicing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller deicing. 25.929 Section 25.929... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.929 Propeller deicing. (a) For airplanes... accumulation on propellers or on accessories where ice accumulation would jeopardize engine performance. (b)...

  5. Micarta Propellers II : Method of Construction

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Clay, N S

    1924-01-01

    The methods used in manufacturing Micarta propellers differ considerably from those employed with wood propellers on account of the hardness of the materials. The propellers must be formed accurately to size in a mold and afterwards balanced without the customary trimming of the material from the tips. Described here are the pressing and molding processes, filing, boring, balancing, and curing.

  6. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-extinguishing system is required must be at least— (1) Fireproof, if it passes through any firewall; or (2) Fire resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within the auxiliary power unit fire zone. (e) Each auxiliary power unit induction system duct must be fireproof for...

  7. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-extinguishing system is required must be at least— (1) Fireproof, if it passes through any firewall; or (2) Fire resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within the auxiliary power unit fire zone. (e) Each auxiliary power unit induction system duct must be fireproof for...

  8. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-extinguishing system is required must be at least— (1) Fireproof, if it passes through any firewall; or (2) Fire resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within the auxiliary power unit fire zone. (e) Each auxiliary power unit induction system duct must be fireproof for...

  9. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-extinguishing system is required must be at least— (1) Fireproof, if it passes through any firewall; or (2) Fire resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within the auxiliary power unit fire zone. (e) Each auxiliary power unit induction system duct must be fireproof for...

  10. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-extinguishing system is required must be at least— (1) Fireproof, if it passes through any firewall; or (2) Fire resistant, for other ducts, except that ducts for auxiliary power units must be fireproof within the auxiliary power unit fire zone. (e) Each auxiliary power unit induction system duct must be fireproof for...

  11. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  12. The Propeller and the Frog

    NASA Astrophysics Data System (ADS)

    Pan, Margaret; Chiang, Eugene

    2010-10-01

    "Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  13. Novel sequences propel familiar folds.

    PubMed

    Jawad, Zahra; Paoli, Massimo

    2002-04-01

    Recent structure determinations have made new additions to a set of strikingly different sequences that give rise to the same topology. Proteins with a beta propeller fold are characterized by extreme sequence diversity despite the similarity in their three-dimensional structures. Several fold predictions, based in part on sequence repeats thought to match modular beta sheets, have been proved correct.

  14. THE PROPELLER AND THE FROG

    SciTech Connect

    Pan, Margaret; Chiang, Eugene

    2010-10-20

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of {approx}4 years, similar to the {approx}3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  15. Optimization of the mechanical performance of a two-duct semicircular duct system--part 1: dynamics and duct dimensions.

    PubMed

    Muller, M; Verhagen, J H G

    2002-06-21

    The classical representation of the semicircular duct system consists of three separate duct circuits. The ducts are, however, in reality, hydrodynamically interconnected. Muller & Verhagen (1988a,b) derived equations for the mechanical behaviour of an interconnected system with three ducts (anterior, posterior and horizontal). An analytical solution of these equations would, however, be too complex to provide surveyable formulae. A system of two interconnected ducts avoids this complexity whilst keeping the essentials of the coupling of ducts intact. The solution of the equation of motion leads to expressions for time constants and maximal endolymph excursions which are functions of morphological parameters, viz. the ratios of radii (gamma) and lengths (lambda) of the common vestibular part (crus commune or utriculus) and the ducts. The system possesses two short time constants which are shown to have similar values. The maximum endolymph displacements in the two ducts after a steplike stimulus are the products of the respective initial velocities and combinations of time constants. The initial velocities depend strongly on the position of the labyrinth with respect to the excitating rotation vector. Measured data of gamma and lambda are compared with the theoretical results. For gamma, excellent agreement was found. lambda is treated elsewhere. PMID:12151258

  16. Liquid Bismuth Propellant Flow Sensor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  17. Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Bassett, C. E.; Merino, F.; Siden, L. E.; Bradley, R. E.; Carr, E. J.; Parker, R. E.

    1980-01-01

    The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is $56.7 M, of which approximately $31.8 M is for shuttle user costs.

  18. Pancreatographic investigation of pancreatic duct system and pancreaticobiliary malformation

    PubMed Central

    Kamisawa, Terumi; Okamoto, Atsutake

    2008-01-01

    To clarify the anatomy of the pancreatic duct system and to investigate its embryology, we reviewed 256 pancreatograms with normal pancreatic head, 81 with pancreas divisum and 74 with pancreaticobiliary maljunction. Accessory pancreatograms were divided into two patterns. The long-type accessory pancreatic duct forms a straight line and joins the main pancreatic duct at the neck portion of the pancreas. The short-type accessory pancreatic duct joins the main pancreatic duct near its first inferior branch. The short-type accessory pancreatic duct is less likely to have a long inferior branch arising from the accessory pancreatic duct. The length of the accessory pancreatic duct from the orifice to the first long inferior branch was similar in the short- and long-type accessory pancreatic ducts. The first long inferior branch from the long-type accessory pancreatic duct passes though the main pancreatic duct near the origin of the inferior branch from the main pancreatic duct. Immunohistochemically, in the short-type accessory pancreatic duct, the main pancreatic duct between the junction with the short-type accessory pancreatic duct and the neck portion was located in the ventral pancreas. The long-type accessory pancreatic duct represents a continuation of the main duct of the dorsal pancreatic bud. The short-type accessory pancreatic duct is probably formed by the proximal main duct of the dorsal pancreatic bud and its long inferior branch. PMID:18194203

  19. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.

  20. The Theory of Propellers III : the Slipstream Contraction with Numerical Values for Two-Blade and Four-Blade Propellers

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    As the conditions of the ultimate wake are concerned both theoretically and practically, the magnitude of the slipstream contraction has been calculated. It will be noted that the contraction in a representative case is of the order of only 1 percent of the propeller diameter. In consequence, all calculations need involve only first-order effects. Curves and tables are given for the contraction coefficient of two-blade and four-blade propellers for various values of the advance ratio; the contraction coefficient is defined as the contraction in the diameter of the wake helix in terms of the wake diameter at infinity. The contour lines of the wake helix are also shown at four values of the advance ratio in comparison with the contour lines for an infinite number of blades.

  1. What's New in Bile Duct Cancer Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for bile duct cancer What’s new in bile duct cancer research and treatment? Bile ... is tumor blood vessels. Bile duct tumors need new blood vessels to grow beyond a certain size. ...

  2. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  3. Measure Guideline. Sealing and Insulating Ducts in Existing Homes

    SciTech Connect

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  4. Do We Know What Causes Bile Duct Cancer?

    MedlinePlus

    ... duct cancer be prevented? Do we know what causes bile duct cancer? We don’t know the exact cause of ... to top » Guide Topics What Is Bile Duct Cancer? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and ...

  5. Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.

    1947-01-01

    Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.

  6. Extracorporeal shockwave lithotripsy of pancreatic duct stones.

    PubMed

    Rawat, B; Fache, J S; Burhenne, H J

    1992-01-01

    Encouraging results with extracorporeal shockwave lithotripsy (ESWL) for pancreatic duct stones have been reported from Europe. We present our experience with the first two North American patients, treated with excellent results in one and limited clinical improvement in the other patient at 1 year follow-up. Targeting of pancreatic duct stones was achieved with either fluoroscopy or ultrasound.

  7. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  8. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  9. 46 CFR 116.610 - Ventilation ducts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... materials are not allowed within ventilation ducts. However, metal piping and electrical wiring installed in a metal protective enclosure may be installed within ventilation ducts, provided that the piping or... prevent corrosion; (4) Fire dampers must be capable of manual operation from outside the space served,...

  10. Borescope Device Takes Impressions In Ducts

    NASA Technical Reports Server (NTRS)

    Walter, Richard F.; Turner, Laura J.

    1990-01-01

    Maneuverable device built around borescope equipped to make impression molds of welded joints in interior surfaces of ducts. Molds then examined to determine degress of mismatch in welds. Inserted in duct, and color-coded handles on ends of cables used to articulate head to maneuver around corners. Use of device fairly easy and requires little training.

  11. Spectral analysis of unsteady surface pressure on a pusher propeller

    NASA Technical Reports Server (NTRS)

    Farokhi, Saeed

    1992-01-01

    A propeller of an advanced turboprop testbed aircraft in pusher configuration is instrumented with 22 miniature blade-mounted transducers (BMTs) at two radii. Upstream pylon wake interaction with the propeller is the source of a one-per-cycle excitation for the blades in flight. The time history of fluctuating pressure signals over 26 flight conditions is statistically analyzed in the frequency domain. The rms amplitude of fluctuating pressure signals measured by suction surface BMTs indicates a very strong presence of the fundamental frequency over most of the upper surface. The pylon wake pressure signature on the propeller trailing edge, i.e., x/c not less than 0.80, shows predominantly random turbulence; hence, the amplitude of the fundamental frequency wave is fairly small. The resurgence of a large amplitude fundamental harmonic with coherent pylon wake signature further downstream, say at 90 percent chord, is unexpected behavior. The appearance of a dominating second propeller shaft order in the spectra of the rms pressure in transonic flight conditions identifies the presence of a two-per-cycle excitation source in the azimuthal direction. This is due to the presence of a shock wave, as evidenced by the pressure-time history plots.

  12. Effects of Proplet on Propeller Efficiency

    NASA Astrophysics Data System (ADS)

    Xu, J. H.; Song, W. P.; Yang, X. D.

    2011-09-01

    Many studies have proved the validation of winglets on improving aerodynamic efficiency. Similar to winglet, a suitable proplet can improve the efficiency of a propeller. The effect of proplet on propeller performance is investigated in this paper. With a cell-centered finite-volume scheme, Reynolds-Averaged Navier-Stokes (RANS) equations are solved on a chimera grid system to simulate the flow around propeller to obtain the aerodynamic performance. A propeller designed for high altitude at 20 km with a diameter of 6.8 m is used as a baseline propeller. The effect of chord length and incidence angle of proplet tip on 8the efficiency of the propeller are also considered. The simulation results demonstrate that a proper proplet leads to weaker blade tip vortex, which is helpful to improve the efficiency of the propeller.

  13. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models

  14. Cholangiographic evaluation of bile duct carcinoma

    SciTech Connect

    Nichols, D.A.; MacCarty, R.L.; Gaffey, T.A.

    1983-12-01

    Cholangiograms and clinical histories of 82 patients with biopsy-proved bile duct carcinoma were reviewed. The carcinomas were classified according to morphologic findings and clinical outcome. Ulcerative colitis and antecedent inflammatory disease of the biliary tree, particularly primary sclerosing cholangitis, seem to predispose to the development of bile duct carcinoma. Focal stenotic lesions were the most common morphologic type (62/82). Polypoid carcinomas and diffuse sclerosing carcinomas were less common and of about equal frequency. Prognosis was best for patients with polypoid carcinomas and worst for those with diffuse sclerosing carcinomas. In 69 cases (84%), the tumors involved the intrahepatic or proximal extrahepatic ducts, makin curative resection difficult or impossible. Patients with carcinomas limited to the more distal extrahepatic bile ducts had a longer average survival and a higher probability of surgical cure. Proper management of patients with bile duct carcinoma requires a complete and accurate cholangiographic evaluation of the morphology, location, and extent of the disease.

  15. Aeroacoustic diffraction and dissipation by a short propeller cowl in subsonic flight

    NASA Technical Reports Server (NTRS)

    Martinez, Rudolph

    1993-01-01

    This report develops and applies an aeroacoustic diffraction theory for a duct, or cowl, placed around modelled sources of propeller noise. The regime of flight speed is high subsonic. The modelled cowl's inner wall contains a liner with axially variable properties. Its exterior is rigid. The analysis replaces both sides with an unsteady lifting surface coupled to a dynamic thickness problem. The resulting pair of aeroacoustic governing equations for a lined 'ring wing' is valid both for a passive and for an active liner. Their numerical solution yields the effective dipole and monopole distributions of the shrouding system and thereby determines the cowl-diffracted component of the total radiated field. The sample calculations here include a preliminary parametric search for that liner layout which maximizes the cowl's shielding effectiveness. The main conclusion of the study is that a short cowl, passively lined, should provide moderate reductions in propeller noise.

  16. Experimental research on air propellers

    NASA Technical Reports Server (NTRS)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  17. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  18. Processing solid propellants for recycling

    SciTech Connect

    Whinnery, L.L.; Griffiths, S.K.; Handrock, J.L.; Lipkin, J.

    1994-05-01

    Rapid evolution in the structure of military forces worldwide is resulting in the retirement of numerous weapon systems. Many of these systems include rocket motors containing highly energetic propellants based on hazardous nitrocellulose/nitroglycerin (NC/NG) mixtures. Even as the surplus quantities of such material increases, however, current disposal methods -- principally open burning and open detonation (OB/OD) -- are coming under close scrutiny from environmental regulators. Environmentally conscious alternatives to disposal of propellant and explosives are thus receiving renewed interest. Recycle and reuse alternatives to OB/OD appear particularly attractive because some of the energetic materials in the inventories of surplus weapon systems represent potentially valuable resources to the commercial explosives and chemical industries. The ability to reclaim such resources is therefore likely to be a key requirement of any successful technology of the future in rocket motor demilitarization. This document consists of view graphs from the poster session.

  19. Propellant resupply of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Bloznalis, P. J.; Lupien, R.; Sudbay, M.; Dangelo, M.; Perry, B.; Vidal, M.

    1989-01-01

    The technology to transfer safely and easily fluids in microgravity is necessary to extend the duration of future space missions. The absence of gravity in space causes fluids to behave much differently than on Earth, making propellant resupply extremely difficult. The Gamma Ray Observatory (GRO) is one of the satellites being designed for refueling. The GRO's thrusters are fueled by the monopropellant hydrazine that as a vapor is unstable above 200 F. This has a major impact on refueling system design and operation. A system using high pressure gas and flexible diaphragms to transfer propellant from a supply vehicle to the GRO was proposed and designed. A ground-based system utilizing the transfer technique of ullage recompression was built to investigate the process.

  20. Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Wang, Zhanzhi; Qi, Wanjiang

    2013-03-01

    Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.

  1. Propeller Study. Part 2: the Design of Propellers for Minimum Noise

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.

  2. Alternate propellant program, phase 1

    NASA Technical Reports Server (NTRS)

    Anderson, F. A.; West, W. R.

    1979-01-01

    Candidate propellant systems for the shuttle booster solid rocket motor (SRM), which would eliminate, or greatly reduce, the amount of HCl produced in the exhaust of the shuttle SRM were investigated. Ammonium nitrate was selected for consideration as the main oxidizer, with ammonium perchlorate and the nitramine, cyclo-tetramethylene-tetranitramine as secondary oxidizers. The amount of ammonium perchlorate used was limited to an amount which would produce an exhaust containing no more than 3% HCl.

  3. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  4. Self-propelled Leidenfrost droplets.

    PubMed

    Linke, H; Alemán, B J; Melling, L D; Taormina, M J; Francis, M J; Dow-Hygelund, C C; Narayanan, V; Taylor, R P; Stout, A

    2006-04-21

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchetlike) topology. The pumping effect is observed when the liquid is in the Leidenfrost regime (the film-boiling regime), for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid. PMID:16712160

  5. Self-Propelled Leidenfrost Droplets

    NASA Astrophysics Data System (ADS)

    Linke, H.; Alemán, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A.

    2006-04-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchetlike) topology. The pumping effect is observed when the liquid is in the Leidenfrost regime (the film-boiling regime), for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  6. Technology Solutions Case Study: Ducts Sealing Using Injected Spray Sealant

    SciTech Connect

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative to determine the most cost-effective ways to reduce duct leakage in its low-rise housing units.Two retrofit duct sealing techniques—manually-applied sealants and injecting a spray sealant—were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. Ihe cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  7. Reusable Hybrid Propellant Modules for Outer-Space Transport

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Mankins, John C.

    2005-01-01

    A report summarizes the concept of reusable hybrid propellant modules (HPMs), which would be used in outer space for long-term cryogenic storage of liquefied spacecraft-propellant gases, including for example, oxygen and hydrogen for combustion-based chemical rocket engines and xenon for electric thrusters. The HPM concept would provide the fundamental building block for an efficient, reusable in-space transportation system for both crewed and uncrewed missions. Each HPM would be equipped to implement an advanced zero-boil-off method of managing cryogenic fluids, and would include a fluid-transfer interface comprising standardized fittings that would be compatible with fittings on all supply facilities and on spacecraft to be supplied. The HPM, combined with a chemical or electric orbital transfer spacecraft, would provide an integrated propulsion system. HPMs would supply chemical propellant for time-critical transfers such as crewed missions, and utilize the more efficient electric-propulsion transfer vehicles to transport filled HPMs to the destinations and to return empty HPMs back to near-Earth orbits or other intermediate locations for replenishment and reuse. The HPM prepositioned using electric propulsion would provide the chemical propellant for the crew s return trip in a much more efficient manner than a chemical-only approach. The propellants to fill the HPMs would be delivered from the Earth or other initial supply locations to the intermediate locations by use of automated, compatible spacecraft designed specifically for that purpose. Additionally, multiple HPMs could be aggregated and positioned in orbits and on planets, moons, and asteroids to supply fluids to orbiting and interplanetary spacecraft.

  8. Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy

    PubMed Central

    Kono, Yoshiharu; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Kaneko, Junichi; Saiura, Akio; Bandai, Yasutsugu; Kokudo, Norihiro

    2015-01-01

    Abstract To evaluate the clinical and technical factors affecting the ability of fluorescence cholangiography (FC) using indocyanine green (ICG) to delineate the bile duct anatomy during laparoscopic cholecystectomy (LC). Application of FC during LC began after laparoscopic fluorescence imaging systems became commercially available. In 108 patients undergoing LC, FC was performed by preoperative intravenous injection of ICG (2.5 mg) during dissection of Calot's triangle, and clinical factors affecting the ability of FC to delineate the extrahepatic bile ducts were evaluated. Equipment-related factors associated with bile duct detectability were also assessed among 5 laparoscopic systems and 1 open fluorescence imaging system in ex vivo studies. FC delineated the confluence between the cystic duct and common hepatic duct (CyD–CHD) before and after dissection of Calot's triangle in 80 patients (74%) and 99 patients (92%), respectively. The interval between ICG injection and FC before dissection of Calot's triangle was significantly longer in the 80 patients in whom the CyD–CHD confluence was detected by fluorescence imaging before dissection (median, 90 min; range, 15–165 min) than in the remaining 28 patients in whom the confluence was undetectable (median, 47 min; range, 21–205 min; P < 0.01). The signal contrast on the fluorescence images of the bile duct samples was significantly different among the laparoscopic imaging systems and tended to decrease more steeply than those of the open imaging system as the target-laparoscope distance increased and porcine tissues covering the samples became thicker. FC is a simple navigation tool for obtaining a biliary roadmap to reach the “critical view of safety” during LC. Key factors for better bile duct identification by FC are administration of ICG as far in advance as possible before surgery, sufficient extension of connective tissues around the bile ducts, and placement of the tip of

  9. Duct Remediation Program: Remediation operations and implementation

    SciTech Connect

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  10. Magnetospheric whistler ducts observed by ISIS satellites

    NASA Technical Reports Server (NTRS)

    Ondoh, T.

    1976-01-01

    The latitudinal width of the magnetospheric whistler duct has been estimated by the first and final invariant latitudes of whistler echoes and the conservation of the magnetic flux for the centered dipole field, using 105 whistler echoes in ISIS VLF data received at Kashima, Japan for 1972-1973. The latitudinal distribution of whistler duct occurrence shows a maximum at invariant latitudes of 40-45 degrees near the maximum occurrence latitude of ground whistlers. The radial width of magnetospheric whistler duct in the geomagnetically equatorial plane increases with invariant latitude of the geomagnetic flux tube in which whistlers propagate.

  11. [Degenerated papillomatosis of the bile duct].

    PubMed

    De Castro Gutiérrez, J; Armengol Carrasco, M; Oller Sales, B; Fdez-Llamazares Rodríguez, J; Julián Ibáñez, J F; Broggi Trías, M A; Salvá Lacombe, J A

    1989-07-01

    Papillomatosis of the biliary ducts is exceptional. It is defined by the presence of multiple, benign, papillary type, epithelial tumors on the choledochus and hepatic ducts, and can also effect the gallbladder and intrahepatic bile ducts. It courses with a tendency to recurrence and secondary degeneration, and its prognosis is uncertain and sometimes grave. The treatment is surgical and depends on the extension of the lesions, often being only palliative. The techniques of choice are curettage and biliodigestive derivation. A case is presented of degenerated papillomatosis treated by cephalic duodenopancreatectomy and cholecystectomy.

  12. Users' manual for the Langley high speed propeller noise prediction program (DFP-ATP)

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1989-01-01

    The use of the Dunn-Farassat-Padula Advanced Technology Propeller (DFP-ATP) noise prediction program which computes the periodic acoustic pressure signature and spectrum generated by propellers moving with supersonic helical tip speeds is described. The program has the capacity of predicting noise produced by a single-rotation propeller (SRP) or a counter-rotation propeller (CRP) system with steady or unsteady blade loading. The computational method is based on two theoretical formulations developed by Farassat. One formulation is appropriate for subsonic sources, and the other for transonic or supersonic sources. Detailed descriptions of user input, program output, and two test cases are presented, as well as brief discussions of the theoretical formulations and computational algorithms employed.

  13. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  14. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reinforcement near propellers. 25.875....875 Reinforcement near propellers. (a) Each part of the airplane near the propeller tips must be... propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice...

  15. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  16. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  17. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reinforcement near propellers. 25.875....875 Reinforcement near propellers. (a) Each part of the airplane near the propeller tips must be... propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice...

  18. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reinforcement near propellers. 25.875....875 Reinforcement near propellers. (a) Each part of the airplane near the propeller tips must be... propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice...

  19. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reinforcement near propellers. 25.875....875 Reinforcement near propellers. (a) Each part of the airplane near the propeller tips must be... propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice...

  20. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  1. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready...

  2. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reinforcement near propellers. 25.875....875 Reinforcement near propellers. (a) Each part of the airplane near the propeller tips must be... propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice...

  3. Mission demonstration concept for the long-duration storage and transfer of cryogenic propellants

    NASA Astrophysics Data System (ADS)

    McLean, C.; Deininger, W.; Ingram, K.; Schweickart, R.; Unruh, B.

    This paper describes an experimental platform that will demonstrate the major technologies required for the handling and storage of cryogenic propellants in a low-to-zero-g environment. In order to develop a cost-effective, high value-added demonstration mission, a review of the complete mission concept of operations (CONOPS) was performed. The overall cost of such a mission is driven not only by the spacecraft platform and on-orbit experiments themselves, but also by the complexities of handling cryogenic propellants during ground-processing operations. On-orbit storage methodologies were looked at for both passive and active systems. Passive systems rely purely on isolation of the stored propellant from environmental thermal loads, while active cooling employs cryocooler technologies. The benefit trade between active and passive systems is mission-dependent due to the mass, power, and system-level penalties associated with active cooling systems. The experimental platform described in this paper is capable of demonstrating multiple advanced micro-g cryogenic propellant management technologies. In addition to the requirements of demonstrating these technologies, the methodology of propellant transfer must be evaluated. The handling of multiphase liquids in micro-g is discussed using flight-heritage micro-g propellant management device technologies as well as accelerated tank stratification for access to vapor-free or liquid-free propellants. The mission concept presented shows the extensibility of the experimental platform to demonstrate advanced cryogenic components and technologies, propellant transfer methodologies, as well as the validation of thermal and fluidic models, from subscale tankage to an operational architecture.

  4. Wet air oxidation of propellant wastewaters

    SciTech Connect

    Randall, T.L.; Copa, W.M.; Deitrich, M.J.

    1985-01-01

    Wet Air Oxidation studies have been conducted on a number of propellant wastewaters, to assess destruction levels of specific propellant components. OTTO fuel, used as a torpedo propellant, and hydrazine based rocket fuels were propellants of interest. OTTO fuel wastewaters contain substantial amounts of propylene glycol dinitrate. Hydrazine based rocket fuel wastewaters contain hydrazine and unsymmetrical dimethyl hydrazine. Laboratory Wet Air Oxidation studies on OTTO fuel wastewaters indicated that a 99+ percent destruction of propylene glycol dinitrate can be achieved at an oxidation temperature of 280/sup 0/C.

  5. Catalytic ignitor for regenerative propellant gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1994-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the ignitor and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  6. Catalytic Ignitor for Regenerative Propellant Gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1997-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the igniter and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  7. The design of propeller blade roots

    NASA Technical Reports Server (NTRS)

    Cordes, G

    1942-01-01

    Predicated on the assumption of certain normal conditions for engine and propeller, simple expressions for the static and dynamic stresses of propeller blade roots are evolved. They, in combination with the fatigue strength diagram of the employed material, afford for each engine power one certain operating point by which the state of stress serving as a basis for the design of the root is defined. Different stress cases must be analyzed, depending on the vibration tendency of engine and use of propeller. The solution affords an insight into the possible introduction of different size classes of propeller.

  8. Combustion of Gas-Permeable Gun Propellants

    NASA Astrophysics Data System (ADS)

    Li, Yuxiang; Yang, Weitao; Ying, Sanjiu; Peng, Jinhua

    2015-07-01

    Foamed propellants prepared by supercritical fluid foaming show considerably high burning rates due to their porous structures. To further investigate combustion of foamed propellants, quenched combustion experiments and closed-vessel experiments were carried out, Scanning electron microscopy (SEM) was also used to observe their porous morphology. The SEM images show that foamed propellant grains exhibit a porous core and compact skin. The research results show that the porous core is first burned out and the compact skin is burned out at the later burning stage. The results also demonstrate that pore size exerts an important effect on the burning behaviors of foamed propellants.

  9. How Is Bile Duct Cancer Diagnosed?

    MedlinePlus

    ... line through which a different kind of contrast dye (IV contrast) is injected. This helps better outline ... common bile duct. A small amount of contrast dye is injected through the tube to help outline ...

  10. Spontaneous rupture of the common bile duct.

    PubMed

    Kyzer, S; Bayer, I; Chaimoff, C

    1986-01-01

    Spontaneous rupture of the common bile duct in adults is very rare. The authors report only the 14th case in the Western literature. A 25-year-old woman had signs of peritonitis suggestive of a perforated appendix, but at operation the appendix appeared normal and a large amount of bile was found in the peritoneal cavity. A 2-mm tear was found on the anterior wall of the common bile duct. The patient recovered without complications after T-tube drainage and cholecystectomy. In this patient none of the factors thought to cause spontaneous rupture of the common bile duct were present, so the authors conclude that the case may be classified as idiopathic spontaneous rupture of the common bile duct. PMID:3940592

  11. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  12. Investigation of heat transfer in porous duct

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Khan, T. M. Yunus

    2016-05-01

    Investigation of heat transfer in a square porous duct is carried out. The porous medium is sandwiched between inner and outer surface of a square duct. The flow is assumed to follow the Darcy law. The governing momentum and energy equations are non-dimensionalised and then converted to algebraic form of equations using finite element method. Galerkin method is used to transform the partial differential equations into simpler algebraic equations then solved in a iterative manner to arrive at the solution. The results are presented with respect to various geometric and physical parameters such as depth of porous medium, Rayleigh number etc. It is found that the isotherms and the streamlines take symmetrical position along the vertical central line of square duct. The isotherms are penetrated into deeper area at upper half of duct as compared to lower half.

  13. Treatment Options for Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  14. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  15. Stages of Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... checked to measure the amounts of bilirubin and alkaline phosphatase released into the blood by the liver. ... which a stent (a thin, flexible tube or metal tube) is placed in the bile duct to ...

  16. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  17. INTERIOR DUCT SYSTEM DESIGN, CONSTRUCTION, AND PERFORMANCE

    SciTech Connect

    Janet E.R. Mcllvaine; David Beal; Philip Fairey

    2001-10-10

    By removing air distribution and conditioning equipment from unconditioned spaces, homeowners stand to benefit substantially with respect to both energy savings and indoor air quality. Duct leakage introduces: Greater heating and cooling loads from air at extreme temperatures and humidity levels; Outside air and air from unconditioned spaces that may contain air borne contaminants, combustion gases, pollen, mold spores, and/or particles of building materials; and Higher whole-house infiltration/exfiltration rates. Exemplary studies conducted since 1990 have demonstrated the prevalence of duct leakage throughout the United States and measured energy savings of approximately 20% during both heating and cooling seasons from leakage reduction. These all dealt with duct leakage to and/or from unconditioned spaces. In the building science community, leakage within the conditioned space is generally presumed to eliminate the negative consequences of duct leakage with the exception of possibly creating pressure imbalances in the house which relates to higher infiltration and/or exfiltration. The practical challenges of isolating ducts and air handlers from unconditioned spaces require builders to construct an air-tight environment for the ducts. Florida Solar Energy Center researchers worked with four builders in Texas, North Carolina, and Florida who build a furred-down chase located either in a central hallway or at the edges of rooms as an architectural detail. Some comparison homes with duct systems in attics and crawl spaces were included in the test group of more than 20 homes. Test data reveals that all of the duct/AHU systems built inside the conditioned space had lower duct leakage to unconditioned spaces than their conventional counterparts; however, none of the homes was completely free of duct leakage to unconditioned spaces. Common problems included wiring and plumbing penetrations of the chase, failure to treat the chase as an air tight space, and misguided

  18. Transition duct assembly with modified trailing edge in turbine system

    DOEpatents

    McMahan, Kevin Weston; Schott, Carl Gerard; Ingram, Clint Luigie; Siden, Gunnar Leif; Pierre, Sylvain

    2016-10-04

    Transition duct assemblies for turbine systems and turbomachines are provided. In one embodiment, a transition duct assembly includes a plurality of transition ducts disposed in a generally annular array and comprising a first transition duct and a second transition duct. Each of the plurality of transition ducts includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of each transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct assembly further includes an aerodynamic structure defined by the passages of the first transition duct and the second transition duct. The aerodynamic structure includes a pressure side, a suction side, and a trailing edge, the trailing edge having a modified aerodynamic contour.

  19. [Extracorporeal shockwave lithotripsy of bile duct calculi].

    PubMed

    Greiner, L; Jakobeit, C

    1993-08-01

    Shockwave therapy of bile duct stones is not dependent on difficult preconditions concerning stone-volume and -composition or subsequent lythic therapy. Its main indication is failure of endoscopic sphincterotomy (EST). Shockwave lithotripsy of bile duct stones--which may even be carried out even instead of EST in specific cases--is with a success rate of 80 to 95% as effective as shockwave lithotripsy in urology.

  20. Measurement of insertion loss of ducted silencers

    NASA Astrophysics Data System (ADS)

    Iho, L.; Jonasson, H.

    1980-05-01

    Measurements were carried out with different sound sources, with and without terminating transmission element, with and without vibration isolation, with different duct lengths and with different transition elements at different positions. Testing was done in the 1/3 octave band in a reverberation room. The Based on the conclusions, a revised method for measuring the transmission loss of ducted silencers without air flow is proposed.

  1. Lapatinib in Treating Patients With Locally Advanced or Metastatic Biliary Tract or Liver Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2014-12-18

    Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  2. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  3. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Durham, M.D.; Ebner, T.G.; Holstein, D.B.

    1991-03-07

    This report describes the results of pilot plant tests to characterize the performance of an electrostatic precipitation (ESP) operating downstream of an in-duct scrubbing system. The test program was conducted at a 1.7 MW duct injection/ESP pilot plant that was located at the Central Illinois Public Service Company's Meredosia Station. The pilot plant was installed during the summer of 1989 and testing was conducted from September, 1989 to October, 1990. In addition to the tests to characterize the ESPs, a parametric evaluation of sulfur dioxide removal by duct sorbent injection was conducted concurrently. Another aspect of this program related to ESP performance was the development of a mathematical model to predict ESP performance at duct injection conditions. Air load and gas load tests were conducted to demonstrate that the ESP was functioning properly. The ESP was then evaluated at flyash conditions to establish baseline operation. A series of tests were than conducted at duct injection conditions. Different humidification configurations were investigated and both lime only and lime with recycle injection were tested. A final set of tests were directed at evaluating different ESP upgrade technologies that could improve performance under duct injection conditions. In addition to the Meredosia pilot plant tests, tests were conducted to characterize the performance of the ESP operating as part of the demonstration of the Coolside Process at the Edgewater plant in Lorrain, Ohio. 41 refs., 97 figs., 43 tabs.

  4. A Comparison of Simulation Capabilities for Ducts

    SciTech Connect

    Miller, William A.; Smith, Matt K.; Gu, Lixing; New, Joshua Ryan

    2014-11-01

    Typically, the cheapest way to install a central air conditioning system in residential buildings is to place the ductwork in the attic. Energy losses due to duct-attic interactions can be great, but current whole-house models are unable to capture the dynamic multi-mode physics of the interactions. The building industry is notoriously fragmented and unable to devote adequate research resources to solve this problem. Builders are going to continue to put ducts in the attic because floor space is too expensive to closet them within living space, and there are both construction and aesthetic issues with other approaches such as dropped ceilings. Thus, there is a substantial need to publicly document duct losses and the cost of energy used by ducts in attics so that practitioners, builders, homeowners and state and federal code officials can make informed decisions leading to changes in new construction and additional retrofit actions. Thus, the goal of this study is to conduct a comparison of AtticSim and EnergyPlus simulation algorithms to identify specific features for potential inclusion in EnergyPlus that would allow higher-fidelity modeling of HVAC operation and duct transport of conditioned air. It is anticipated that the resulting analysis from these simulation tools will inform energy decisions relating to the role of ducts in future building energy codes and standards.

  5. Sound radiation from a flanged inclined duct.

    PubMed

    McAlpine, Alan; Daymond-King, Alex P; Kempton, Andrew J

    2012-12-01

    A simple method to calculate sound radiation from a flanged inclined duct is presented. An inclined annular duct is terminated by a rigid vertical plane. The duct termination is representative of a scarfed exit. The concept of a scarfed duct has been examined in turbofan aero-engines as a means to, potentially, shield a portion of the radiated sound from being transmitted directly to the ground. The sound field inside the annular duct is expressed in terms of spinning modes. Exterior to the duct, the radiated sound field owing to each mode can be expressed in terms of its directivity pattern, which is found by evaluating an appropriate form of Rayleigh's integral. The asymmetry is shown to affect the amplitude of the principal lobe of the directivity pattern, and to alter the proportion of the sound power radiated up or down. The methodology detailed in this article provides a simple engineering approach to investigate the sound radiation for a three-dimensional problem.

  6. Intraductal carcinoma of the prostate in the ejaculatory duct.

    PubMed

    Sanchez-Salazar, Alma J; Basler, Joseph W; Nicolas, Marlo M

    2010-08-01

    Intraductal carcinoma of the prostate (IDCP) involving prostatic ducts and acini is a well-known phenomenon typically seen in a background of high-grade invasive prostatic adenocarcinoma. The current case of prostatic adenocarcinoma with Gleason score of 9 (4 + 5) invades the ejaculatory ducts, left seminal vesicle, and extraprostatic tissue. The tumor involving the left ejaculatory duct spans the lumen with preservation of native duct architecture, including basal cells, similar features described in IDCP involving prostatic ducts and acini. PMID:20444733

  7. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  8. Low-g propellant gaging

    NASA Astrophysics Data System (ADS)

    Orton, George

    1987-09-01

    A program to develop and demonstrate technology for low gravity propellant gaging on future geostationary satellites is described. Evaluations were performed to select four gaging concepts for ground tests and low gravity tests in the NASA KC-135 aircraft. The selected concepts were: (1) an ultrasonic point sensor system, (2) a nucleonic gaging system, (3) an ultrasonic torsional wave guide, and (4) an ultrasonic flowmeter. As a result of successful ground and KC-135 tests, two concepts (the ultrasonic point sensor and the nucleonic systems) were selected for orbital test in a shuttle Get-Away-Special experiment.

  9. Constitutive equations for solid propellants

    SciTech Connect

    Oezuepek, S.; Becker, E.B.

    1997-04-01

    Mechanical behavior of the Space Shuttle redesigned solid rocket motor (RSRM) propellant is studied from a phenomenological point of view. Motivated by the study of the experimental data three initially isotropic constitutive models have been developed. All models represent the effect of strain rate, superimposed hydrostatic pressure, and cyclic loading on the stress and dilatation response of the material. A particular emphasis is given to the prediction of volume dilatation. The model resulting in the best representation of the available data is calibrated using only a few tests. The predictions of the model are compared with experiments for several loading conditions not used in the calibration.

  10. Analysis of propellant feedline dynamics

    NASA Technical Reports Server (NTRS)

    Holster, J. L.; Astleford, W. J.; Gerlach, C. R.

    1973-01-01

    An analytical model and corresponding computer program for studying disturbances of liquid propellants in typical engine feedline systems were developed. The model includes the effects of steady turbulent mean flow, the influence of distributed compliances, the effects of local compliances, and various factors causing structural-hydraulic coupling. The computer program was set up such that the amplitude and phase of the terminal pressure/input excitation is calculated over any desired frequency range for an arbitrary assembly of various feedline components. A user's manual is included.

  11. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  12. Effects of propellant composition variables on acceleration-induced burning-rate augmentation of solid propellants

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    This work was conducted to define further the effects of propellant composition variables on the acceleration-induced burning rate augmentation of solid propellants. The rate augmentation at a given acceleration was found to be a nonlinear inverse function of the reference burning rate and not controlled by binder or catalyst type at a given reference rate. A nonaluminized propellant and a low rate double-base propellant exhibited strong transient rate augmentation due to surface pitting resulting from the retention of hot particles on the propellant surface.

  13. Materials characterization of propellants using ultrasonics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Jones, David

    1993-01-01

    Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.

  14. Recovery of aluminum from composite propellants

    NASA Technical Reports Server (NTRS)

    Shaw, G. C. (Inventor)

    1980-01-01

    Aluminum was recovered from solid rocket propellant containing a small amount of oxidizer by depolymerizing and dissolving propellant binders (containing functional or hydrolyzable groups in a solution of sodium methoxide) in an alcohol solvent optionally containing an aliphatic or aromatic hydrocarbon co-solvent. The solution was filtered to recover substantially all the aluminum in active form.

  15. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.129 Tests: propellers. Each... acceptable functional test to determine if it operates properly throughout the normal range of operation....

  16. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person... functional test to determine if it operates properly throughout the normal range of operation....

  17. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person... functional test to determine if it operates properly throughout the normal range of operation....

  18. 21 CFR 189.191 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chlorofluorocarbon propellants. 189.191 Section 189.191 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... or Use as Human Food § 189.191 Chlorofluorocarbon propellants. The use of chlorofluorocarbons...

  19. Preventing Growth Of Barnacles On Propellers

    NASA Technical Reports Server (NTRS)

    Parrish, Kemp L.

    1993-01-01

    Possible to prevent barnacles and other marine life from obtaining firm bonds on propellers and other metal parts by coating parts with NEDOX (or equivalent) cavitation-resistant material. Available in several forms; one that works best is mold-release coating. Also provides improved surface hardness, protection against electrolysis, better resistance to abrasion, and less friction between propellers and water.

  20. Composite Solid Propellant Predictability and Quality Assurance

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Reports are presented at the meeting at the University of Arizona on the study of predictable and reliable solid rocket motors. The following subject areas were covered: present state and trends in the research of solid propellants; the University of Arizona program in solid propellants, particularly in mixing (experimental and analytical results are presented).

  1. Destruction of propellant magazine, November 1982

    NASA Astrophysics Data System (ADS)

    Tozer, N. H.

    1984-08-01

    Details on the destruction of a propellant magazine are given. The properties of single base propellants are discussed. Although single base propellants have been around for one hundred years, production of this type of propellant in Australia only commenced during World War 2 when appropriate plant and know how were provided under the Lend Lease Scheme. Most of the single base propellants made at Mulwala Explosives Factory have been of the IMR type i.e., single perforated tubular granules with their surface coated with DNT for use in small to medium calibre ammunition. Since production started at Mulwala Explosives Factory in 1944 some fourteen different versions of style of propellant have been manufactured. Four versions only were made up until 1957 and these were identified with an IMR type number matching the US propellants from which they were copied. New varieties introduced since 1957 have been identified with an AR aeries number commencing with AR2001 - the original Australian 7.62 mm rifle propellant.

  2. Duct injection technology prototype development: Nozzle development Subtask 4. 1, Atomizer specifications for duct injection technology

    SciTech Connect

    Not Available

    1992-02-01

    Babcock Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  3. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  4. Periodic blade loads of a high speed propeller at small angle of attack

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Lessard, V. R.

    1991-01-01

    A code has been developed to predict the periodic aerodynamic loads of an advanced turboprop propeller. The analytical formulation accounts for flow three-dimensionality and flow periodicity due to the propeller inclination. The flow past the blade sections is computed using a thin layer Navier-Stokes solver. An iterative procedure is used to account for the induced axial and rotational velocities. The viscous periodic results are obtained for an eight-bladed Hamilton Standard SR-7L advanced propeller at a cruise Mach number of 0.813 and 35,000 ft. altitude. The results are shown for flow field quantities and performance parameters during the blade passage in the plane of rotation illustrating the periodic nature of blade flow separation and shocks. The time averaged coefficients of thrust and power are computed and compared with available flight test data. The results obtained show excellent agreement at cruise conditions for small nacelle angles of attack.

  5. SRM propellant, friction/ESD testing

    NASA Technical Reports Server (NTRS)

    Campbell, L. A.

    1989-01-01

    Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.

  6. Handbook on Hypergolic Propellant Discharges and Disposal

    NASA Technical Reports Server (NTRS)

    Bowman, T. E.; Sivik, H. E.; Thomas, J. J.

    1977-01-01

    The efficiency of all treatment methods formerly or currently used in treating chemical wastes is assessed with emphasis on the disposal of hypergolic propellants. Maximum focus is on the space shuttle propellants MMH and N2O4. Except for hydrogen peroxide oxidizers, all the propellants are nitrogen based and can be potentially reduced to valuable plant nutrients. In theory, all the propellants can be reduced to carbon, hydrogen, nitrogen, and oxygen, except of fuming nitric acid which contains a small amount of fluorine. Appendices cover: (1) a general design criteria for disposal ponds; (2) thermal aspects of reaction in dilute solution; (3) gas bubble growth, detachment, and rise (4) absorption scrubber fundamentals and descriptions; (5) separation of a propellant vapor from a helium stream by permeation; and (6) atmospheric emission limits.

  7. Storage of solid propellants in space

    NASA Technical Reports Server (NTRS)

    Udlock, D. E.

    1977-01-01

    A test program is described which determines the extent of physical property changes that result from extended space exposure. Primary emphasis was placed on determining the effects of space vacuum. Solid propellants were stored and their physical properties tested in a vacuum and in a dry environment. The storage caused significantly greater increases in the propellants' modulus and maximum tensile strength than occurred in parallel ambient stored samples. The data indicate that the loss of trace amounts of residual moisture from cured propellant is the apparent cause of the observed propellant property changes. Therefore, initial screening tests were carried out under dry storage conditions. Upon completion of the dry storage tests, appropriate propellant samples are exposed to an actual space environment using the Long Duration Exposure Facility (LDEF).

  8. AP reclamation and reuse in RSRM propellant

    NASA Technical Reports Server (NTRS)

    Miks, Kathryn F.; Harris, Stacey A.

    1995-01-01

    A solid propellant ingredient reclamation pilot plant has been evaluated at the Strategic Operations of Thiokol Corporation, located in Brigham City, Utah. The plant produces AP wet cake (95 percent AP, 5 percent water) for recycling at AP vendors. AP has been obtained from two standard propellant binder systems (PBAN and HTPB). Analytical work conducted at Thiokol indicates that the vendor-recrystallized AP meets Space Shuttle propellant specification requirements. Thiokol has processed 1-, 5-, and 600-gallon propellant mixes with the recrystallized AP. Processing, cast, cure, ballistic, mechanical, and safety properties have been evaluated. Phillips Laboratory static-test-fired 70-pound and 800-pound BATES motors. The data indicate that propellant processed with reclaimed AP has nominal properties.

  9. Thrust engine and propellant exhaust arrangement therefor

    SciTech Connect

    Retallick, F.D.

    1981-01-27

    A nuclear engine and nozzle arrangement are described for a nuclear rocket comprising a cluster of elongated fissile fuel bearing and high temperature capacity modules suitably supported in a pressure vessel. The modules have a plurality of coolant-propellant channels extending therethrough, a convergent - divergent nozzle structure of fixed cross-sectional dimensions secured to the end portion of each of said modules, a divergent-only unitary skirt member connected directly to the propellant exit end of said modular cluster in series with and diverging from the divergent ends of said convergent-divergent nozzle structures. The modules are formed to conduct a compressible propellant therethrough at sub-sonic velocities, said nozzle structures being formed to develop supersonic velocities of the propellant and said divergent-only skirt being formed to develop further the supersonic velocities of said propellant.

  10. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  11. The theory of the screw propeller

    NASA Technical Reports Server (NTRS)

    Betz, A

    1922-01-01

    Given here is a brief review of the fundamental principles of the propeller slip-stream theory and its further development through later researches, which demonstrate the connection between the propeller slip-stream theory and Frounde's so-called 'propeller blade theory.' The propeller slip-stream theory, especially in its improved form, now gives us the basis for determining the mutual influence of the parts of the blade, so that, in calculating the shape of the blade, we can get along with certain section characteristics, which have been determined once and for all. It is argued that new theories present the possibility of investigating the phenomena in the vicinity of the propeller, allowing us to calculate its action on the basis of fewer experimental values.

  12. MAST Propellant and Delivery System Design Methods

    NASA Technical Reports Server (NTRS)

    Nadeem, Uzair; Mc Cleskey, Carey M.

    2015-01-01

    A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.

  13. Space Resource Requirements for Future In-Space Propellant Production Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Fikes, John; Roy, Stephanie; Henley, Mark W.; Potter, Seth D.; Howell, Joe T. (Technical Monitor)

    2001-01-01

    In 2000 and 2001 studies were conducted at the NASA Marshall Space Flight Center on the technical requirements and commercial potential for propellant production depots in low Earth orbit (LEO) to support future commercial, NASA, and other Agency missions. Results indicate that propellant production depots appear to be technically feasible given continued technology development, and there is a substantial growing market that depots could support. Systems studies showed that the most expensive part of transferring payloads to geosynchronous orbit (GEO) is the fuel. A cryogenic propellant production and storage depot stationed in LEO could lower the cost of missions to GEO and beyond. Propellant production separates water into hydrogen and oxygen through electrolysis. This process utilizes large amounts of power, therefore a depot derived from advanced space solar power technology was defined. Results indicate that in the coming decades there could be a significant demand for water-based propellants from Earth, moon, or asteroid resources if in-space transfer vehicles (upper stages) transitioned to reusable systems using water based propellants. This type of strategic planning move could create a substantial commercial market for space resources development, and ultimately lead toward significant commercial infrastructure development within the Earth-Moon system.

  14. Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs

    NASA Technical Reports Server (NTRS)

    Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.

    2008-01-01

    As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.

  15. Manufacture and deflagration of an atomic hydrogen propellant

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1974-01-01

    It is observed that the use of very low temperatures (in the range from 0.1 to 1.5 K) produced by advanced cryogenic apparatus and the use of very strong magnetic fields (in the range from 50 to 100 kG) produced by superconducting magnets can yield a significant improvement in the atomic hydrogen trapping effectiveness of an H2 matrix. The use of a radioactive beta-ray emiter isotope may yield H-H2 propellants (with a specific impulse of about 740 sec) by secondary electron impact dissociations of H2 in an impregnated matrix maintained below 1 K in a strong magnetic field. Another method for manufacturing an H-H2 propellant involves bombardment of supercooled solid H2 with a cyclotron-produced beam of 10-MeV hydrogen atoms. The matrix-isolated atomic hydrogen must be used directly without prior melting as a solid propellant, and an analysis of the steady deflagration is presented.

  16. Duct-to-mucosa pancreatojejunostomy for small main pancreatic duct by the parachute technique after pancreatoduodenectomy.

    PubMed

    Okamoto, Kojun; Koyama, Isamu; Toshimitsu, Yasuko; Aikawa, Masayasu; Okada, Katsuya; Ueno, Yosuke; Miyazawa, Mitsuo

    2011-01-01

    A duct-to-mucosa pancreatojejunostomy is technically difficult to perform for a small main pancreatic duct after pancreatoduodenectomy. Our group applied the parachute technique to reconstruct and attach a small pancreatic duct to the jejunal mucosa. This method makes it very easy to position stitches on the posterior row of the anastomosis. It also allows a complete view of every stitch, both inside and outside the pancreatic duct and jejunal wall. Sixteen patients underwent pancreatoduodenectomy followed by duct-to-mucosa pancreatojejunostomy by the parachute technique. Pancreatic fistulae developed in 3 of the patients, but none of the fistulae were severe. The median postoperative hospital stay was 14.5 days, and there were no postoperative deaths during that time. In conclusion, pancreatojejunostomy by the parachute technique is a simple method with a very low risk of pancreatic fistula formation and a considerably shortened postoperative hospital stay. The method is also useful for reconstruction with pancreatojejunostomy after pancreatoduodenectomy.

  17. Computational modeling of magnetically actuated propellant orientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.

    1996-01-01

    Unlike terrestrial applications where gravity positions liquid at the 'bottom' of the tank, the location of liquid propellant in spacecraft tanks is uncertain unless specific actions are taken or special features are built into the tank. Some mission events require knowledge of liquid position prior to a particular action: liquid must be positioned over the tank outlet prior to starting the main engines and must be moved away from the tank vent before vapor can be released overboard to reduce pressure. It may also be desirable to positively position liquid to improve propulsion system performance: moving liquid away from the tank walls will dramatically decrease the rate of heat transfer to the propellant, suppressing the boil-off rate, thereby reducing overall mission propellant requirements. The process of moving propellant to a desired position is referred to as propellant orientation or reorientation. Several techniques have been developed to positively position propellant in spacecraft tanks and each technique imposes additional requirements on vehicle design. Propulsive reorientation relies on small auxiliary thrusters to accelerate the tank. The inertia of the liquid causes it to collect in the aft-end of the tank if the acceleration is forward. This technique requires that additional thrusters be added to the vehicle, that additional propellant be carried in the vehicle, and that an additional operational maneuver be executed. Another technique uses Liquid Acquisition Devices (LAD's) to positively position propellants. These devices rely on surface tension to hold the liquid within special geometries (i.e. vanes, wire-mesh channels, start-baskets). While avoiding some of the penalties of propulsive orientation, this technique requires the addition of complicated hardware inside the propellant tank and performance for long duration missions is uncertain. The subject of the present research is an alternate technique for positively positioning liquid within

  18. A case of adenosquamous carcinoma of the lower bile duct diagnosed preoperatively via transpapillary biopsy.

    PubMed

    Yokoyama, Yoshihiro; Iida, Tomoya; Kaneto, Hiroyuki; Yamamoto, Itaru; Murakami, Kayo; Satoh, Shuji; Shimizu, Haruo; Sasaki, Kenichi; Konishi, Yasuhiro; Kon, Shinichiro

    2016-08-01

    A 78-year-old man presented to our hospital with fever and brownish urine. Upon thorough examination, a diagnosis of obstructive jaundice and acute cholangitis associated with a lower bile duct tumor was made. Endoscopic retrograde cholangiopancreatography revealed entire circumferential stenosis of the lower bile duct. Examination of a transpapillary biopsy specimen of the lesion suggested adenosquamous carcinoma. The patient underwent subtotal stomach-preserving pancreaticoduodenectomy. Histopathological examination revealed adenocarcinoma of the lower bile duct and squamous cell carcinoma components;a case of adenosquamous carcinoma was accordingly diagnosed. The lower bile duct tumor directly extended into the pancreatic parenchyma for approximately 1mm. We performed radical surgery and administered adjuvant chemotherapy with gemcitabine because of advanced neural invasion after consulting with the patient. There was no sign of recurrence 46 months after surgery. As adenosquamous carcinoma of the extrahepatic bile duct is rare, it is difficult to preoperatively diagnose the condition. Only a few cases have been reported till date. PMID:27498940

  19. The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Bilen, Sven; Hoyt, Rob; Stone,Nobie; Vaughn, Jason; Fuhrhop, Keith; Krause, Linda; Khazanov, George; Johnson, Les

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA's Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: "Propulsion using Electrodynamics". The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques.

  20. Metallized Propellants for the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Advanced chemical propulsion using Metallized Propellants (MP) can lead to significant reductions in launch mass for piloted Mars missions. MP allow the propellant density or the specific impulse I(sub sp) of the propulsion system, or both, to increase. It can reduce the propellant mass and the propulsion system dry mass. Detailed mass-scaling equations and estimates of the I(sub sp) for several MP combinations are presented. The most significant savings with MP are derived from increasing the payload delivered to Mars. For the mass in low Earth orbit (LEO), a metallized Mars transfer vehicle can deliver 20 to 22 percent additional payload. This 20-percent payload increase reduces the total number of Mars flights and therefore significantly reduces the number of Space Transportation System-Cargo launches for the entire Mars architecture. Using MP to reduce the mass in LEO per flight is not as effective as increasing the payload delivery capacity. The mass saving per flight, while delivering the same payload with a higher I(sub sp) system, is much smaller. Using MP in all of the Mars propulsion systems would produce a modest 3.3 percent LEO mass saving. This translates into a saving of 38,000 kg over the mass required with O2/H2 propulsion. A Mars excursion vehicle using Earth- or space-storable propellants for the ascent can be an alternative to storing cryogenic H2 on Mars. A space-storable system using oxygen/monomethyl hydrazine/aluminum (O2/MMH/Al) would deliver the lowest mass penalty over O2/H2. For lower-energy expedition missions the LEO mass penalty for using metallized O2/MMH/Al would be only 3 to 5 percent.