Science.gov

Sample records for advanced earth observing

  1. Advanced Earth Observation System Instrumentation Study (aeosis)

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.; Malchow, H.; Walker, B.

    1975-01-01

    Various types of measurements were studied for estimating the orbit and/or attitude of an Earth Observation Satellite. An investigation was made into the use of known ground targets in the earth sensor imagery, in combination with onboard star sightings and/or range and range rate measurements by ground tracking stations or tracking satellites (TDRSS), to estimate satellite attitude, orbital ephemeris, and gyro bias drift. Generalized measurement equations were derived for star measurements with a particular type of star tracker, and for landmark measurements with a multispectral scanner being proposed for an advanced Earth Observation Satellite. The use of infra-red horizon measurements to estimate the attitude and gyro bias drift of a geosynchronous satellite was explored.

  2. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  3. Earth Observing System (EOS) advanced altimetry

    NASA Astrophysics Data System (ADS)

    Parsons, C. L.; Walsh, E. J.

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  4. Development of Advanced Earth Observing Satellite (ADEOS)

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Toshiyuki; Iwasaki, Nobuo; Hara, Norikazu

    ADEOS ia a large satellite which could be called a polar orbiting platform. The weight is 3.5 tons and power is 4.5 KW at the end of three years of mission life. It is scheduled to be launched in early 1995 by the H-II launch vehicle from Tanegashima Space Center. ADEOS carries two core sensors and six Announcement Opportunity (AO) sensors. The core sensors are called the Ocean Color and Temperature Scanner (OCTS) and the Advanced Visible and Near Infrared Radiometer (ANVIR), which are being developed by NASDA. The AO sensors are the NASA Scatterometer (NSCAT), the NASA Total Ozone Mapping Spectrometer (TOMS), the Polarization and Directionality of Earth's Reflectances of CNES, the Interferometric Monitor for Greenhouse gases of MITI, the Improved Limb Atmospheric Spectrometer of Environment Agency (EA) of the Japanese government, and the EA Retroreflector In Space. This paper discusses the present status of the design and development of ADEOS putting emphasis on several features incorporated in the ADEOS bus system and several issues imposed at the system Preliminary Design Review.

  5. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  6. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  7. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  8. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  9. Earth Observing System(EOS). Advanced Microwave Sounding Unit-A: Firmware Test Report

    NASA Technical Reports Server (NTRS)

    Schwantje, R.

    1998-01-01

    This document is the Firmware Test Report for the firmware to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) instrument. It describes the firmware results of the Formal Qualification Test (FQT)/Demonstrations conducted on Mar. 21, 1997, Apr. 8, 1998, and July 14, 1998, for the EOS/AMSU-A instrument.

  10. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  11. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  12. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  13. NASA's Earth observation programs

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Hammer, Theodore F.

    2006-09-01

    The purpose of NASA's Science Mission Directorate's Earth Science Division (ESD) is to develop a scientific understanding of Earth's system and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. ESD conducts and sponsors research, collects new observations from space, develops technologies and extends science and technology education to learners of all ages. We work closely with our global partners in government, industry, and the public to enhance economic security, and environmental stewardship, benefiting society in many tangible ways. We conduct and sponsor research to answer fundamental science questions about the changes we see in climate, weather, and natural hazards, and deliver sound science that helps decision-makers make informed decisions. Using the view from space to study the Earth, researchers can better predict critical changes to Earth and its space environment. ESD has a critical role in implementing three major national directives: •Climate Change Research through the Climate Change Science Program •Global Earth Observation System of Systems through the Interagency Working Group on Earth Observations (IWGEO) •U.S Ocean Action Plan. NASA's ESD currently has a system of spacecraft collecting observations of the Earth system and in the months and years ahead will deploy new satellites and constellations with advanced measurement capabilities.

  14. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    Mullooly, William

    1995-01-01

    This is the thirty-first monthly report for the Earth Observing System (EOS)/Advanced Microwave Sounding Unit- A (AMSU-A), Contract NAS5-32314, and covers the period from 1 July 1995 through 31 July 1995. This period is the nineteenth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. Included in this report is the Master Program Schedule (Section 2), a report from the Product Team Leaders on the status of all major program elements (Section 3), Drawing status (Section 4), Weight and Power Budgets (CDRL) 503 (Section 5), Performance Assurance (CDRL 204) (Section 6), Configuration Management Status Report (CDRL 203) (Section 7), Documentation/Data Management Status Report (Section 8), and Contract Status (Section 9).

  15. Classification of leafy spurge with earth observing-1 advanced land imager

    USGS Publications Warehouse

    Stitt, S.; Root, R.; Brown, K.; Hager, S.; Mladinich, C.; Anderson, G.L.; Dudek, K.; Bustos, M.R.; Kokaly, R.

    2006-01-01

    Leafy spurge (Euphorbia esula L.) is an invasive exotic plant that can completely displace native plant communities. Automated techniques for monitoring the location and extent of leafy spurge, especially if available on a seasonal basis, could add greatly to the effectiveness of control measures. As part of a larger study including multiple sensors, this study examines the utility of mapping the location and extent of leafy spurge in Theodore Roosevelt National Park using Earth Observing-1 satellite Advanced Land Imager (ALI) scanner data. An unsupervised classification methodology was used producing accuracies in the range of 59% to 66%. Existing field studies, with their associated limitations, were used for identifying class membership and accuracy assessment. This sensor could be useful for broad landscape scale mapping of leafy spurge, from which control measures could be based.

  16. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  17. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  18. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the twentieth monthly report for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A), Contract NAS5-32314, and covers the period from 1 August 1994 through 31 August 1994. This period is the eighth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. During this period the number one priority for the program continued to be the issuance of Requests for Quotations (RFQ) to suppliers and the procurement of the long-lead receiver components. Significant effort was also dedicated to preparation and conduct of internal design reviews and preparation for the PDR scheduled in September. An overview of the program status, including key events, action items, and documentation submittals, is provided in Section 2 of this report. The Program Manager's 'Priority Issues' are defined in Section 3. Section 4 through 7 provide detailed progress reports for the system engineering effort, each subsystem, performance assurance, and configuration/data management. Contractual matters are discussed in Section 8.

  19. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  20. Earth Observing System (EOS) Advanced Microwave Sounding Unit: A (EOS/AMSU-A) Firmware Version Description Document

    NASA Technical Reports Server (NTRS)

    Cisneros, A.

    1998-01-01

    This is the final submittal of the Earth Observing System/Advanced Microwave Sounding Unit-A Firmware Version Description Document. Its purpose is to provide a precise description of the particular version of the firmware being released. This description also defines the version of the requirements and design applicable to this version.

  1. Earth Observing System/Advanced Microwave SoundingUnit-A (EOS/AMSU-A): Acquisition activities plan

    NASA Technical Reports Server (NTRS)

    Schwantje, Robert

    1994-01-01

    This is the acquisition activities plan for the software to be used in the Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) system. This document is submitted in response to Contract NAS5-323 14 as CDRL 508. The procurement activities required to acquire software for the EOS/AMSU-A program are defined.

  2. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Instrument logic diagrams

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report contains all of the block diagrams and internal logic diagrams for the Earth Observation System Advanced Microwave Sounding Unit-A (AMSU-A). These diagrams show the signal inputs, outputs, and internal signal flow for the AMSU-A.

  3. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  4. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  5. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  6. Advancing the Vision of the Global Earth Observation System of Systems: a European Perspective

    NASA Astrophysics Data System (ADS)

    Edwards, A. W.; Craglia, M.; Nativi, S.

    2012-12-01

    The purpose of the Global Earth Observation System of Systems (GEOSS), a network of Earth observation and information systems, contributed on a voluntary basis by Members and Participating Organisations of the intergovernmental Group on Earth Observations (GEO), is to achieve comprehensive, coordinated and sustained observations of the Earth system, in order to improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behaviour of the Earth system. Such a global research effort requires an integrated multi-disciplinary effort that is underpinned by a cyber-infrastructure which is able to discover and access vast quantities of data across heterogeneous information systems and many disciplines. As GEO develops and the implementation of the GEOSS gathers pace, it is becoming common practice for groups to be organised at national, regional and international level to address critical issues. In many cases these groups evolve to become "communities", organising themselves to carry out tasks of interest to that community. In most cases, communities develop their own "community portal" to provide a focal point on the web for their activities. The data and information held by the members of a specific community can normally be discovered via their particular "community portal". There is now a clear recognition that the many thematic community initiatives, each with their own information system and portal, need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomes possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to

  7. Observing earth from Skylab

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Skylab technology and observations of earth resources are discussed. Special attention was given to application of Skylab data to mapmaking, geology/geodesy, water resources, oceanography, meteorology, and geography/ecology.

  8. Skylab Earth Observation Studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  9. Recent Observational Advances in our Understanding of Magnetic Reconnection in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.

    2014-12-01

    The availability of multi-point observations through the ion diffusion region has provided a wealth of information on the workings of magnetic reconnection at the dayside magnetopause and at the nightside plasma sheet. Ion inertia and finite gyroradius result in clear Hall effects on ion inertial length scales that have been observed by single and multi-point spacecraft resulting in a fairly detailed understanding of that physics. The role of Hall dynamics on establishing the reconnection rate, and the outflow conditions is well understood. Electron violation of the frozen-in condition is much more subtle and rarely observed at the X-point; indirect evidence has been more frequently observed in parallel electric fields. The waves responsible for this violation and for resultant energy conversion are at the forefront of observational studies. The contraction of islands centered at multiple O-points could provide for rapid energy conversion. However, observations of in vivo FTEs at the dayside and classical plasmoids at the nightside, are rare even near the expected most probable location of reconnection. Rather, asymmetric proto-plasmoids and dipolarization (a.k.a reconnection) fronts at the nightside signify distinctly different evolution of the reconnection geometry from that of X and O points. Operating within meso-scale (1-3Re) flows the inherently kinetic (at electron inertial scales embeded in ion inertial scale current systems) processes at such fronts play a significant role in the dynamics and drive global magnetospheric energy conversion and flux transport. Recent studies suggest that the entire magnetosphere is, in fact, connected front-to-back by reconnection pulses resulting in meso-scale flows. The upcoming Heliophysics System Observatory, motivated by the launch of MMS and the coordinated observations of THEMIS, ARTEMIS, Van Allen probes and other space and ground assets will answer key questions on this subject locally, regionally and globally.

  10. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  11. Comparison of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Earth Observing One (EO-1) Advanced Land Imager

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.

    2004-01-01

    We compare images from the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 and the Advanced Land Imager (ALI) instrument on Earth Observing One (EO-1) over a test site in Rochester, New York. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, and grass fields, to urban areas. Nearly coincident cloud-free images were collected one minute apart on 25 August 2001. We also compare images of a forest site near Howland, Maine, that were collected on 7 September, 2001. We atmospherically corrected each pair of images with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmosphere model, using aerosol optical thickness and water vapor column density measured by in situ Cimel sun photometers within the Aerosol Robotic Network (AERONET), along with ozone density derived from the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. We present true-color composites from each instrument that show excellent qualitative agreement between the multispectral sensors, along with grey-scale images that demonstrate a significantly improved ALI panchromatic band. We quantitatively compare ALI and ETM+ reflectance spectra of a grassy field in Rochester and find < or equal to 6% differences in the visible/near infrared and approx. 2% differences in the short wave infrared. Spectral comparisons of forest sites in Rochester and Howland yield similar percentage agreement except for band 1, which has very low reflectance. Principal component analyses and comparison of normalized difference vegetation index histograms for each sensor indicate that the ALI is able to reproduce the information content in the ETM+ but with superior signal-to-noise performance due to its increased 12-bit quantization.

  12. ESA's Earth Observation in Support of Geoscience

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  13. Earth observations - STS-7

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Earth observations - STS-7. North part of Western Australia province, Dampier Land, Fitzroy and Lennard Rivers and the Buccaneer Archipelago (35792); Lake Titicaca, on the Peru-Bolivia border. The Bolivian capital city La Paz is also visible (35793); Denham Sound and Shark Bay in Western Australia are easily recognizable (35794); The Mona Loa Volcano, on the island of Hawaii can be seen in this view. A close look reveals lava flows from the active volcano (35795); Africa; Namibia, Grandberg and Cape Cross, Atlantic Ocean as photographed from the Challenger (35796); View of Venezuela, Aruba, Curacao, and Peninsula de Paraguana (35797).

  14. Earth Observing System, Introduction

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Much is known about the Earth, but the unifying concepts are still only beginning to be established. An exposition of the key issues in Earth science is neither simple or concise. From the scientific questions at hand there are many interconnections among them and the view of the Earth as a system is essential to their solution. The Earth science goals for the 1990's are presented for the following areas: hydrologic cycle; biogeochemical cycles; climatological processes; geophysical processes; oceanography; and solid earth.

  15. Copernicus Earth observation programme

    NASA Astrophysics Data System (ADS)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  16. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  17. Destiny's Earth Observation Window

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. Digital Elevation Models of the Earth derived from space-based observations: Advances and potential for geomorphological studies

    NASA Astrophysics Data System (ADS)

    Mouratidis, Antonios

    2013-04-01

    Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further

  19. Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Flynn, Luke P.

    2004-07-01

    In 1991, the U.S. National Aeronautics and Space Administration (NASA) launched a comprehensive program to study the Earth as one environmental system. Now called the Earth Science Enterprise (ESE), this coordinated monitoring effort was initially comprised of free-flying satellites and Space Shuttle missions, as well as airborne and ground-based studies. The satellite component of the ESE is known as the Earth Observing System (EOS), which has now entered a planned long-term global monitoring phase. The first EOS satellite, Terra, was launched in December of 1999 and offers integrated measurements of numerous solid earth and atmospheric processes, including volcanic activity. There are currently 10 NASA EOS-designated satellites carrying over thirty instruments, all of which are providing integrated measurements of the interactions between the Earth's global cycles. Included in this effort are science investigations that examine the solid earth cycle and the natural hazards that are an inevitable result of that cycle. For volcanologists, the new higher spatial, spectral, and temporal resolution EOS data have spawned a variety of new algorithms and methodologies to monitor changes in volcanic activity, map volcanic surfaces, and investigate volcanic processes. Thermal anomaly detection, plume chemistry and mass flux, lava composition and textural properties, interaction of ash with the natural and human environment, and mitigation of hazards are but a few of the topics being addressed with these data sets. In this paper, we summarize the current state of volcanic remote sensing in the new EOS era and introduce the more detailed papers that follow in this special issue. This work stems from a special session at the Fall 2001 American Geophysical Union (AGU) meeting that was convened to showcase the current research in volcanic systems and processes using the new EOS satellite data sets. That session was also intended to provide a forum for field, aircraft, and other

  20. Earth observing scanning polarimeter

    NASA Technical Reports Server (NTRS)

    Travis, Larry

    1993-01-01

    Climate forcing by tropospheric aerosols is receiving increased attention because of the realization that the climate effects may be large, while our knowledge of global aerosol characteristics and temporal changes is very poor. Tropospheric aerosols cause a direct radiative forcing due simply to their scattering and absorption of solar radiation, as well as an indirect effect as cloud condensation nuclei which can modify the shortwave reflectivity of clouds. Sulfate aerosols tend to increase planetary albedo through both the direct and indirect effects; a cooling due to anthropogenic sulfate aerosols has been estimated of order 1 W/sq m, noting that this is similar in magnitude to the present anthropogenic greenhouse gas warming. Other aerosols, including those from biomass burning and wind-blown desert dust are also of potential climatic importance. At present, the only global monitoring of tropospheric aerosols is a NOAA operational product, aerosol optical thickness, obtained using channel-1 (0.58-0.68 mu m) radiances from the AVHRR. With this single channel radiance data, one must use an approach which is based on the inferred excess of reflected radiance owing to scattering by the aerosols over that expected from theoretical calculations. This approach is suited only for situations where the surface has a low albedo that is well known a priori. Thus, the NOAA operational product is restricted to coverage over the ocean at AVHRR scan angles well away from sun glint, and aerosol changes are subject to confusion with changes caused by either optically thin or subpixel clouds. Because optically thin aerosols have only a small effect on the radiance, accurate measurements for optical thickness less than 0.1 (which is a typical background level) are precluded. Moreover, some of the largest and most important aerosol changes are expected over land. The Earth Observing Scanning Polarimeter (EOSP) instrument, based upon design heritage and analysis techniques

  1. Advancements in the calibration and validation of Earth-observation satellite sensors using automated ground-based measurements

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.; Anderson, N. J.; Thome, K.; McCorkel, J.; Wenny, B. N.

    2015-12-01

    Vicarious radiometric calibration is an independent process that is used to monitor the health of Earth-observing systems. This includes both the sensor itself, as well as any onboard radiometric calibration systems. Typical methods include ground-based in situ measurements, cross calibration, lunar observations, and pseudo-invariant sites. The Remote Sensing Group at the University of Arizona has traditionally used the reflectance-based approach for the in-flight calibration of Earth-observing sensors. This requires personnel to be at a test site for a given overpass, and the increasing number of satellites on orbit make it difficult and expensive to deploy teams to collect field data. In response to this, an automated site has been developed to collect data during all clear-sky conditions. The Radiometric Calibration Test Site (RadCaTS) is located at Railroad Valley, Nevada, and it is currently being used to calibrate and validate the surface reflectance products of such sensors as Landsat 7 ETM+, Landsat 8 OLI, Terra and Aqua MODIS, Suomi NPP VIIRS, the RapidEye constellation of satellites, and more recently, Sentinel-2A MSI. An effort is also underway to create a network of instrumented test sites, and RadCaTS is currently one of four sites used in the Radiometric Calibration Network (RadCalNet) working group. This work presents the evolution of RadCaTS, current vicarious calibration results, and insight into the efforts to create a global network of instrumented sites.

  2. Use of advanced earth observation tools for the analyses of recent surface changes in Kalahari pans and Namibian coastal lagoons

    NASA Astrophysics Data System (ADS)

    Behling, Robert; Milewski, Robert; Chabrillat, Sabine; Völkel, Jörg

    2016-04-01

    The remote sensing analyses in the BMBF-SPACES collaborative project Geoarchives - Signals of Climate and Landscape Change preserved in Southern African Geoarchives - focuses on the use of recent and upcoming Earth Observation Tools for the study of climate and land use changes and its impact on the ecosystem. It aims at demonstrating the potential of recently available advanced optical remote sensing imagery with its extended spectral coverage and temporal resolution for the identification and mapping of sediment features associated with paleo-environmental archives as well as their recent dynamic. In this study we focus on the analyses of two ecosystems of major interest, the Kalahari salt pans as well as the lagoons at Namibia's west coast, that present high dynamic caused by combined hydrological and surface processes linked to climatic events. Multitemporal remote sensing techniques allow us to derive the recent surface dynamic of the salt pans and also provide opportunities to get a detailed understanding of the spatiotemporal development of the coastal lagoons. Furthermore spaceborne hyperspectral analysis can give insight to the current surface mineralogy of the salt pans on a physical basis and provide the intra pan distribution of evaporites. The soils and sediments of the Kalahari salt pans such as the Omongwa pan are a potentially significant storage of global carbon and also function as an important terrestrial climate archive. Thus far the surface distribution of evaporites have been only assessed mono-temporally and on a coarse regional scale, but the dynamic of the salt pans, especially the formation of evaporites, is still uncertain and poorly understood. For the salt pan analyses a change detection is applied using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD) method to identify and investigate surface changes based on a Landsat time-series covering the period 1984-2015. Furthermore the current spatial distribution of

  3. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  4. Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Noise and Dark Current Stability During the First Year on Orbit

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Gibbs, M. D.

    2002-01-01

    The noise and dark current stability of the Advanced Land Imager during the first year on orbit (November 21, 2000 - November 21, 2001) are presented. Data have been separated into short-term and long-term periods. The analysis of short-term data indicate some SWIR detectors may drift up to ten digital numbers between the pre and post dark observations of a given data collection event. Analysis of long-term data suggest the SWIR dark current has deviated by less than ten digital numbers and some SCA SWIR dark Current have increased by up to 200 digital numbers during the first year on orbit.

  5. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) worst-case analysis: Antenna beam pointing

    NASA Technical Reports Server (NTRS)

    Ely, Wayne

    1994-01-01

    This report presents a worst-case analysis of the EOS/AMSU-A (Earth Observing System/Advanced Microwave Sounding Unit-A) Antenna beam-pointing accuracy. There are three sources of beam pointing error. These are mechanical tolerances in the manufacture and assembly of the parts, allowable axial displacement of the reflector relative to the motor shaft, and on-orbit thermal distortions. For the worst-case analysis, each will be assumed to act independently and thus each contribution is additive.

  6. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  7. Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Absolute Radiometry and Stability During the First Year

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.

    2002-01-01

    The absolute radiometry of the Advanced Land Imager during the first year on orbit (November 21,2000 - November 21, 2001) is presented. Results derived from solar, lunar, ground truth, and internal reference lamp measurements are presented. An 18% drop in the radiometric response of the Band 1p data since preflight calibration at Lincoln Laboratory is observed using all techniques. This decrease cannot be accounted for by preflight calibration errors, stray light, or contamination of the focal plane. A slight drooping of the VNIR response toward the blue and a 5-12% increase in the Band 5 response is also apparent in all the data. Radiometric response correction factors have been calculated and preflight calibration coefficients have been updated in order to provide +/- 5% agreement between the measured solar, lunar, and ground truth data and the expected values. The radiometric stability of the ALI during the first year of operation is also presented for each spectral band. Internal reference lamp data indicate the focal plane has been stable to within 1% for bands 1p, 1, 2, 5p, 5, 7, pan and 3% for Bands 3,4, 4p since launch. Solar, lunar, and ground truth measurements indicate the optical train and solar diffuser of the instrument has been stable to within 1% since initial measurements on orbit in late December 2000.

  8. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report

    NASA Technical Reports Server (NTRS)

    Heffner, Robert

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.

  9. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  10. International program for Earth observations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail.

  11. ISS Update: Earth Observations From Space Station

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

  12. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  13. Spanish Earth Observation Satellite System

    NASA Astrophysics Data System (ADS)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  14. Earth Observing System Data Gateway

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark

    2006-01-01

    The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.

  15. On the progress of the nano-satellite SAR based mission TOPMEX-9 and specification of potential applications advancing the Earth Observation Programme of the Mexican Space Agency.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Gutiérrez-Nava, Antonio; Ponce, Octavio; Vicente-Vivas, Esaú; Pacheco, Enrique

    2013-04-01

    TOPMEX-9 is put forward in this paper, advancing a mission for the Earth Observation Programme of the Mexican Space Agency, a distributed Micro-SAR concept within a Master and Slaves flight formation. International collaboration is essential and a start project is being developed between the Microwaves and Radar Institute of the German Aerospace Centre (DLR), the Mexican Space Agency (AEM). While the basic idea is making use of the transmitting component of a SAR on a microsatellite and the receiving component on a nano-satellites cluster, only a brief illustration is given here. The objective of this work is mainly to present some SAR characteristics and the most important potential applications. Special attention is given to the capabilities and limitations of SAR systems to properly detect ocean surface waves. We do take into account the nonlinear nature of the ocean surface imaging porcesses, mainly based upon the SAR and the waves characteristics, and certainly considering the K band SAR being proposed. Some other ocean applications are also overview, regarding coastal erosion-deposition estimation, as well as ship detection and monitoring. International co-operation is also addressed as an essential component of TOPMEX-9 Mission. This work represents a DOT Project (CONACYT-SRE 186144) contribution.

  16. Mission to Planet Earth - The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Lee, Robert B., III

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth.

  17. Mission to Planet Earth - The Earth Observing System

    SciTech Connect

    Carruthers, G.R.; Lee, R.B. III NASA, Langley Research Center, Hampton, VA )

    1989-01-01

    The Earth Observing System (EOS) is a major component of NASA's Mission to Planet Earth initiative. It seeks to achieve a comprehensive understanding of the earth as a system, including its various components (solid earth, atmosphere, hydrosphere, and biosphere) and its various processes (hydrologic cycle, biogeochemical cycles, and climatic processes). This is to be achieved by space-based remote sensing, using a variety of instrumentation and observing techniques, operating simultaneously, and providing continuous and complete global coverage over a long time period. A few of the investigations to be carried out with EOS, in areas of (1) imagery of the earth from space, and (2) investigations of the earth's radiation budget are described. EOS is expected to make major contributions to the basic earth sciences (geology, meteorology, etc.), but its results also will have important immediate or near-term practical applications which will improve the quality of life on earth. 18 refs.

  18. ASTER, a multinational Earth observing concept

    NASA Technical Reports Server (NTRS)

    Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.

    1993-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.

  19. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  20. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  1. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2014-10-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as TRMM and GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2016 and GOSAT-2 will be launched on 2017. Another project is EarthCare. It is a joint project with ESA

  2. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2015-10-01

    Six programs, i.e. AMSR-E, ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2016 and GOSAT-2 will be launched on 2017. Another project is EarthCare. It is a joint project with ESA and JAXA is

  3. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  4. The ESA earth observation polar platform programme

    NASA Astrophysics Data System (ADS)

    Rast, M.; Readings, C. J.

    1991-08-01

    The overall scenario of ESA earth observation polar platform program is reviewed with particular attention given to instruments currently being considered for flight on the first European polar platforms. The major objectives of the mission include monitoring the earth's environment on various scales; management and monitoring of the earth's resources; improvement of the service provided to the worldwide operational meteorological community, investigation of the structure and dynamics of the earth's crust and interior. The program encompasses four main elements: an ERS-1 follow-on mission (ERS-2), a solid earth gravity mission (Aristoteles), a Meteosat Second Generation, and a series of polar orbit earth observation missions.

  5. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  6. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    2013-10-01

    Five programs, i.e. TRMM, AMSR-E, ASTER, GOSAT and GCOM-W1 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as TRMM and GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSOFTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Super-conducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2012-2015 timeframe. They are, GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). GCOM-C1 will be launched on fiscal 2016, GPM core satellite will be launched on 2014 and EarthCare will be launched on 2015. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2

  7. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  8. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of "Big Data" in Earth observation. Because of the "Big Data" issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  9. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  10. Earth Observation Services (Forest Imaging)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Two university professors used EOCAP funding to demonstrate that satellite data can generate forest classifications with equal or better accuracy than traditional aerial photography techniques. This comparison had not been previously available. CALFIRST, the resulting processing package, will be marketed to forest companies and government agencies. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of, NASA- developed technology for analyzing information about Earth and ocean resources.

  11. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  12. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  13. Harnessing Earth Observations for Disaster Application Science

    NASA Astrophysics Data System (ADS)

    Green, D. S.

    2015-12-01

    Earth observations have made substantive contributions to the understanding of natural hazards, answering key science questions on the mechanisms, processes and dynamics of changes in the land, air and water. This has been achieved through the ability to advance models and interpret the results through maps and assessments. Disaster application science is focused on the two-way flow of data and information between hazard understanding and the knowledge required for disaster response, relief and recovery. This presentation will examine the integration of results from mature science and technology development in areas including optical imagery, synthetic-aperture radar and geodetic sensors, which together provide new levels of situational awareness. Specific examples will be highlighted from the recent Nepal "Gorkha" earthquake. Optical imagery from a host of satellite missions was used to create a comprehensive mosaic across the region, which when analyzed by a global network of volunteer scientists yielded insight into the extent of induced hazards and impacts. In some cases unique day/night band images provided guidance on areas where energy-dependent infrastructure of livelihoods were disrupted. Earthquake modeling and historical trend analysis revealed areas of potential vulnerability and combined with aftershock analysis to guide areas for urgent analysis and action. The combination of SAR and GPS data, innovative integration and processing approaches and nontraditional data integration approaches resulted in damage proxy maps or where combination with airborne photography, field sightings and crowd sourced reports to assess susceptibility to induced hazards (floods and landslides). Opportunities and challenges to build the science and community relationships, harness the earth observations from multiple agencies and institutions and co-develop timely applications to users will be areas for ongoing collaboration and study.Earth observations have made

  14. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  15. NPP: Why Another Earth-Observing Satellite?

    NASA Video Gallery

    NPP will soon be NASA's newest Earth-observing satellite. To showcase how NPP will be used for both understanding the health of our planet now -- as well as how things might change in the future --...

  16. A Grid portal for Earth Observation community

    NASA Astrophysics Data System (ADS)

    Aloisio, G.; Cafaro, M.; Cartenì, G.; Epicoco, I.; Quarta, G.

    2005-03-01

    Earth Observation techniques offer many powerful instruments for Earth planet study, urban development planning, military intelligence helping and so on. Terabytes of EO and geospatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to solve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases over high-speed networks, etc. In this paper we present the Italian Grid for Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations.

  17. Advanced Cyberinfrastructure Investments Addressing Earth Science Challenges

    NASA Astrophysics Data System (ADS)

    Walton, A. L.; Spengler, S. J.; Zanzerkia, E. E.

    2014-12-01

    The National Science Foundation supports infrastructure development and research into Big Data challenges as part of its long-term cyberinfrastructure strategy. This strategy highlights the critical need to leverage and partner with other agencies, resources and service providers to the U.S. research community. The current cyberinfrastructure and research activities within NSF support advanced technology development, pilot demonstrations of new capabilities for the scientific community in general, and integration and interoperability of data resources across the Geoscience community. These activities include the Data Infrastructure Building Blocks, Big Data and EarthCube programs, among others. Investments are competitively solicited; the resulting portfolio of high performance computing, advanced information systems, new software capabilities, analytics and modeling supports a range of science disciplines. This presentation provides an overview of these research programs, highlighting some of the key investments in advanced analytics, coupled modeling, and seamless collaboration. Examples related to the geosciences, computer-aided discovery and hypothesis generation are highlighted.

  18. Earth Observing-1 Advanced Imager Flight Performance Assessment: Investigating Dark Current Stability Over One-Half Orbit Period during the First 60 Days

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.

  19. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  20. COMS normal operation for Earth Observation mission

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  1. Status of future ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Ginati, A.; Meynart, R.; Tobias, A.

    2005-10-01

    The European Space Agency is pursuing the development of innovative Earth Observation missions to foster better scientific understanding of the system Earth and to respond to the requirements of the operational users. Six Earth Explorer missions (CRYOSAT, GOCE, SMOS, AEOLUS, SWARM, EarthCARE) are under development for launch between 2005 and 2012. They will provide to provide new critical information in a wide range of Earth science disciplines: ocean circulation, Earth's gravity and magnetic fields, the cryosphere, ocean salinity and soil moisture, magnetic field, aerosol-radiation-cloud interactions and the demonstration of the measurement of tropospheric wind fields. Application-oriented missions of the Earth Watch class are continuing with the METEOSAT series of geostationary meteorological satellites, the preliminary studies of the next-generation METEOSAT spacecraft and the forthcoming launch of the first spacecraft of the EPS/METOP series. Preparatory activities are underway for the series of operational missions, to provide data and services for Earth monitoring, in the frame of the GMES programme.

  2. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  3. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  4. Camcorders in Space Shuttle earth observations

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A project to evaluate the use of commercially available camcorder systems during Shuttle flights is discussed, focusing on the use of an 8-mm camcorder for earth observations during the STS-30 mission in May, 1989. The camcorder with a 2/3-inch CCD is described, noting the modifications to prepare the camcorder for use on the Shuttle. The results of the camcorder project are summarized, listing the types of earth-viewing video images that were aquired with the camcorder.

  5. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  6. Earth Observation Services (Oil Spill Mapping)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An EOCAP project led Research Planning, Inc. to the development of advanced techniques for "environmental sensitivity" oil spill mapping. The new method incorporates satellite remote sensing and GIS technologies and was utilized to assess the damage potential of the Gulf war oil spill. EOCAP provides government co-funding to encourage private investment in, and to broaden the, use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  7. Earth observations and photography experiment MA-136

    NASA Technical Reports Server (NTRS)

    El-Baz, F.; Mitchell, D. A.

    1976-01-01

    The primary objectives of the earth observations and photography experiment of the Apollo Soyuz Test Project were to photograph various terrestrial structures and to use the capabilities of man as a trained observer in visually studying earth features and phenomena. Man's special capabilities include the sensitivity of the eye to subtle color variations and the speed with which the eye/brain system can interpret what is seen and select targets for photography. Real time astronaut observations constitute a useful complement to orbital photographs and greatly aid in their interpretation. Targets for mapping and hand held photography were selected on the basis of their value to specialists in the earth sciences including geology, oceanography, desert study, hydrology, meteorology, and environmental science.

  8. Satellite earth observations for energy resource development and environmental management

    SciTech Connect

    Henderson, F.B. )

    1990-06-01

    Global change and growing needs for energy and other resources and their impact on the environment will be major international issues for the 1990s. Advanced international satellite earth observation systems during the 1990s will include systems for Japan (JERS, ADEOS), France (SPOT), Canada (Radarsat), Europe (ERS), India (IRS), and the U.S. (Landsat, NOAA, and N-POP). NASA's proposed advanced Earth Observing System (EOS/N-POP) will provide extensive satellite earth observations for resource development and global change studies for better environmental management. These satellites will produce tremendous volumes of digital electro-optical, microwave, and radar data creating a massive database for basic scientific and applied research for geology, agriculture, oceanography, meteorology, and environmental sciences. Database management and data access are major NASA and international issues under current review. Use of earth observations in energy and mineral resource exploration and development has become established during the last 20 years and will continue to expand with new information derived from these new satellite systems. US government environment global change research is being coordinated by the new interagency Committee on Earth Sciences (C.E.S.). The Geosat Committee, supported by resource industries who contribute to man's environmental impact and have a major stake in the C.E.S. research plan, is working with the C.E.S. to establish industry-government-academia linkages for research in the broad global resource and environmental studies from space.

  9. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  10. Catalogs of Space Shuttle earth observations photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael

    1990-01-01

    A review is presented of postflight cataloging and indexing activities of mission data obtained from Space Shuttle earth observations photography. Each Space Shuttle mission acquires 1300-4400 photographs of the earth that are reviewed and interpreted by a team of photointerpreters and cataloging specialists. Every photograph's manual and electronic set of plots is compared for accuracy of its locational coordinates. This cataloging activity is a critical and principal part of postflight activity and ensures that the database is accurate, updated and consequently made meaningful for further utilization in the applications and research communities. A final product in the form of a Catalog of Space Shuttle Earth Observations Handheld Photography is published for users of this database.

  11. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  12. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  13. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    NASA Astrophysics Data System (ADS)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  14. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  15. Earth observation Water Cycle Multi-Mission Observation Strategy (WACMOS)

    NASA Astrophysics Data System (ADS)

    Su, Z.; Dorigo, W.; Fernández-Prieto, D.; van Helvoirt, M.; Hungershoefer, K.; de Jeu, R.; Parinussa, R.; Timmermans, J.; Roebeling, R.; Schröder, M.; Schulz, J.; van der Tol, C.; Stammes, P.; Wagner, W.; Wang, L.; Wang, P.; Wolters, E.

    2010-10-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is a unique tool to provide a global understanding of many of the essential variables governing the water cycle and monitor their evolution over time from global to basin scales. In the coming years an increasing number of Earth observation missions will provide an unprecedented capacity to quantify several of these variables on a routine basis. In this context, the European Space Agency (ESA), in collaboration with the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP), launched the Water Cycle Multi-Mission Observation Strategy (WACMOS) project in 2009. The project aims at developing and validating a novel set of geo-information products relevant to the water cycle covering the following thematic areas: evapotranspiration, soil moisture, cloud characterization and water vapour. The generation of these products is based on a number of innovative techniques and methods aiming at exploiting the synergies of different types of Earth observation data available today to the science community. This paper provides an overview of the major findings of the project with the ultimate goal of demonstrating the potential of innovative multi-mission based strategies to improve current observations by maximizing the synergistic use of the different types of information provided by the currently available observation systems.

  16. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  17. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  18. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  19. Earth observing data and methods for advancing water harvesting technologies in the semi-arid rain-fed environments of India

    USGS Publications Warehouse

    Sharma, C.; Thenkabail, P.; Sharma, R. R.

    2011-01-01

    The paper develops approaches and methods of modeling and mapping land and water productivity of rain-fed crops in semi-arid environments of India using hyperspectral, hyperspatial, and advanced multispectral remote sensing data and linking the same to field-plot data and climate station data. The overarching goal is to provide information to advance water harvesting technologies in the agricultural croplands of the semi-arid environments of India by conducting research in a representative pilot site in Jodhpur, Rajasthan, India. ?? 2011 IEEE.

  20. Earth Observing Scanning Polarimeter (EOSP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations performed during a Phase B study directed towards defining an optimal design for the Earth Observing Scanning Polarimeter (EOSP) instrument is summarized. An overview of the experiment approach is included which provides a summary of the scientific objectives, the background of the measurement approach, and the measurement method. In the instrumentation section, details of the design are discussed starting with the key instrument features required to accomplish the scientific objectives and a system characterization in terms of the Stokes vector/Mueller matrix formalism. This is followed by a detailing of the instrument design concept, the design of the individual elements of the system, the predicted performance, and a summary of appropriate instrument testing and calibration. The selected design makes use of key features of predecessor polarimeters and is fully compatible with the Earth Observing System spacecraft requirements.

  1. International Space Station Earth Observations Working Group

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  2. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy; Wellnitz, Dennis D.

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  4. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  5. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  6. Recent Changes in Earth's Energy Budget As Observed By CERES

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.

    2014-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term climate data record of Earth's radiation budget at the top-of-atmosphere, within-atmosphere and surface together with coincident cloud, aerosol and surface properties. CERES relies on a number of data sources, including broadband CERES radiometers on Terra, Aqua, and Suomi-NPP, high-resolution spectral imagers (MODIS and VIIRS), geostationary visible/infrared imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. The many input data sets are integrated and cross-calibrated to provide a consistent climate data record that accurately captures variations in Earth's radiation budget and associated cloud, aerosol and surface properties over a range of time and space scales. The CERES datasets are primarily used for climate model evaluation, process studies and climate monitoring. This presentation will review some of the ways in which the CERES record along with other datasets have been used to improve our understanding Earth's energy budget. At the top-of-atmosphere, we will show how Earth's energy imbalance, a critical indictor of climate change, has varied during the past 15 years relative to what is observed by in-situ observations of ocean heat content by the Argo observing system. We will use these results to place the so-called global warming hiatus into a larger context that takes Earth's energy budget into account. We will also discuss how recent advances in surface radiation budget estimation by the CERES group is reshaping the debate on why the surface energy budget cannot be closed to better than 15 Wm-2 using state-of-the-art observations. Finally, we will highlight the dramatic changes that have been observed by CERES over the Arctic Ocean, and discuss some of the yet unresolved observational challenges that limit our ability document change in this unique part of the planet.

  7. The Group on Earth Observations (GEO) through 2025

    NASA Astrophysics Data System (ADS)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  8. Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A): Reliability prediction report for module A1 (channels 3 through 15) and module A2 (channels 1 and 2)

    NASA Technical Reports Server (NTRS)

    Geimer, W.

    1995-01-01

    This report documents the final reliability prediction performed on the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A). The A1 Module contains Channels 3 through 15, and is referred to herein as 'EOS/AMSU-A1'. The A2 Module contains Channels 1 and 2, and is referred herein as 'EOS/AMSU-A2'. The 'specified' figures were obtained from Aerojet Reports 8897-1 and 9116-1. The predicted reliability figure for the EOS/AMSU-A1 meets the specified value and provides a Mean Time Between Failures (MTBF) of 74,390 hours. The predicted reliability figure for the EOS/AMSU-A2 meets the specified value and provides a MTBF of 193,110 hours.

  9. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  10. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  11. Technologies for global change earth observations

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1990-01-01

    Advances in the areas of space-based observations, data/information analysis, and spacecraft/operations for the studying of global changes are discussed. Research involving systems analysis, observation technologies, information technologies, and spacecraft technologies is examined. Consideration is given to cryogenic coolers, IR arrays, laser and submillimeter sensing, large array CCD, information visualization, design knowledge capture, optical communications, multiinstrument pointing, propulsion, space environmental effects, and platform thermal systems.

  12. Advances in Sun-Earth Connection Modeling

    NASA Astrophysics Data System (ADS)

    Ganguli, S. B.; Gavrishchaka, V. V.

    2003-06-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed.

  13. Near-Earth asteroids: Observer alert network and physical observations

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1992-01-01

    This project strives to obtain physical observations on newly discovered Near-Earth Objects (NEO's) in order to provide fundamental data needed to assess the resources available in the population. The goal is acquiring data on all objects brighter than magnitude V= 17.0. To accomplish this, an electronic mail alert and observer information service that informs observers around the world as to the status of physical observations on currently observable NEO's was established. Such data is also acquired ourselves through a cooperative program with European colleagues that uses telescopes on La Palma to obtain spectra of NEO's and through observations made from a local telescope on Tumamoc Hill. This latter telescope has the advantage that large amounts of observing time are available, so that whenever a new NEO's discovered, we can be assured of getting time to observe it.

  14. Chemical Data Assimilation &Optimized Earth Observation

    NASA Astrophysics Data System (ADS)

    Lary, D.

    2003-04-01

    Issues such as ozone depletion, acid rain, and photochemical smog are all of considerable environmental importance. These issues are studied using the dual approach of observations and numerical modelling. In making balanced assessments of these issues it is vital to make the best use of all the information available to us, both theoretical and observational. This is a non-trivial task. The technique of "data assimilation" is a powerful tool which allows us to address this issue. It is revolutionising the way we can study atmospheric chemistry. Data assimilation allows us to simultaneously make good use of however many observations are available to us, our theoretical understanding, and any apriori information we have, within a mathematical framework. It even allows us to infer information about chemical constituents which are not observed. It is a technique which is set to grow in importance. It is also applicable to any system for which we have both observations, a deterministic model, and estimates of uncertainty. Such applications could be from laboratory kinetics to metabolic pathways. Looking ahead we can envision Data assimilation as part of a Optimized Earth Observation System by developing a dynamic data retrieval control system. The dynamic data retrieval control system will dynamically adapt the what, where, and when for the observations made in an online fashion to maximize information content, minimize uncertainty in characterizing the system’s state vector, and minimize both the required storage and data processing time for a given observation capability (with the possibility of even directing unmanned sub-orbital platforms, drones, to make additional observations). This is particularly desirable to facilitate the dynamic tracking of evolving sharp gradients, for example, those in chemical tracer fields often located at the polar vortex edge, the tropopause and the day-night division. The basic idea is the desire for symbiotic communication to

  15. Earth Observations for Global Water Security

    NASA Technical Reports Server (NTRS)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  16. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  17. Earth Observation Research for GMES Initial Operations

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  18. Sharing Earth Observation Data When Health Management

    NASA Astrophysics Data System (ADS)

    Cox, E. L., Jr.

    2015-12-01

    While the global community is struck by pandemics and epidemics from time to time the ability to fully utilize earth observations and integrate environmental information has been limited - until recently. Mature science understanding is allowing new levels of situational awareness be possible when and if the relevant data is available and shared in a timely and useable manner. Satellite and other remote sensing tools have been used to observe, monitor, assess and predict weather and water impacts for decades. In the last few years much of this has included a focus on the ability to monitor changes on climate scales that suggest changes in quantity and quality of ecosystem resources or the "one-health" approach where trans-disciplinary links between environment, animal and vegetative health may provide indications of best ways to manage susceptibility to infectious disease or outbreaks. But the scale of impacts and availability of information from earth observing satellites, airborne platforms, health tracking systems and surveillance networks offer new integrated tools. This presentation will describe several recent events, such as Superstorm Sandy in the United States and the Ebola outbreak in Africa, where public health and health infrastructure have been exposed to environmental hazards and lessons learned from disaster response in the ability to share data have been effective in risk reduction.

  19. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  20. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  1. Earth observation archive activities at DRA Farnborough

    NASA Technical Reports Server (NTRS)

    Palmer, M. D.; Williams, J. M.

    1993-01-01

    Space Sector, Defence Research Agency (DRA), Farnborough have been actively involved in the acquisition and processing of Earth Observation data for over 15 years. During that time an archive of over 20,000 items has been built up. This paper describes the major archive activities, including: operation and maintenance of the main DRA Archive, the development of a prototype Optical Disc Archive System (ODAS), the catalog systems in use at DRA, the UK Processing and Archive Facility for ERS-1 data, and future plans for archiving activities.

  2. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; Van de water, Peter K.; Levetin, Estelle; Crimmins, Theresa

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  3. Heuristics for scheduling Earth observing satellites

    NASA Astrophysics Data System (ADS)

    Wolfe, William J.; Sorensen, Stephen E.

    1999-09-01

    This paper describes several methods for assigning tasks to Earth Observing Systems Satellites (EOS). We present empirical results for three heuristics, called: Priority Dispatch (PD), Look Ahead (LA), and Genetic Algorithm (GA). These heuristics progress from simple to complex, from less accurate to more accurate, and from fast to slow. We present empirical results as applied to the Window-Constrained Packing problem (WCP). The WCP is a simplified version of the EOS scheduling problem. We discuss the problem of having more than one optimization criteria. We will also discuss the relationship between the WCP and the more traditional Knapsack and Weighted Early/Tardy problems.

  4. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  5. Clouds and the Earth`s radiant energy system (CERES): An Earth observing system experiment

    SciTech Connect

    Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.

    1996-05-01

    Clouds and the Earth`s Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback on the Earth`s climate system. The CERES broadband scanning radiometers are an improved version of the Earth`s Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes. CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data. Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities. 62 refs., 10 figs., 3 tabs.

  6. Who Uses Earth Observations? User Types in Group on Earth Observations

    NASA Astrophysics Data System (ADS)

    Fontaine, K. S.

    2011-12-01

    How can we communicate concepts in the physical sciences unless we know our audience? The Group on Earth Observations (GEO) User Interface Committee (UIC) has a responsibility within GEO to support and advocate for the user community in the development of Global Earth Observations System of Systems (GEOSS) and related work. As part of its efforts, the UIC has been working on developing a taxonomy that can be used to characterize the broad spectrum of users of GEOSS and its data, services, and applications. The user type taxonomy is designed to be broad and flexible but aims at describing the needs of the users GEOSS is going to serve. These user types represent a continuum of users of Earth observations from research through to decision support activities, and it includes organizations that use GEOSS as a tool to provide data and services for customers and consumers of the information. The classification scheme includes factors about skills and capacity for using Earth observations, sophistication level, spatial resolution, latency, and frequency of data. As part of the effort to develop a set of User Types, the GEO UIC foresees that those inside and outside GEO can use the typologies to understand how to engage users at a more effective level. This talk presents the GEOSS User Type taxonomy, explaining the development and highlights of key feedback. The talk will highlight possible ways to use the User Type taxonomy to communicate concepts and promote the use of Earth observations to a wide variety of users.

  7. Waste Management with Earth Observation Technologies

    NASA Astrophysics Data System (ADS)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (< 1 m). The main product of InSAR is Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that

  8. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  9. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  10. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  11. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  12. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  13. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  14. Earth Observation Research for GMES Initial Operations

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Balzter, Heiko; Nicolas-Perea, Virginia

    2013-04-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: * Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). * Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centres and market leaders in the private sector. * Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. * Developing a collaborative training network, through the placement of researchers for short periods in other GIONET organizations. Reliable, thorough and up-to-date environmental information is essential for understanding climate change the impacts it has on people's lives and ways to adapt to them. The GIONET researchers are being trained to understand the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers have been placed in industry and universities across Europe, as

  15. A spacecraft for the Earth observing system

    NASA Astrophysics Data System (ADS)

    Taylor, Raynor L.; Bordi, Francesco

    1995-04-01

    The space segment of NASA's Earth observing system (EOS) includes three series of intermediate-sized spacecraft, plus two smaller spacecraft. The EOS-AM spacecraft is the first of the intermediate-sized spacecraft. EOS-AM accommodates sensors that measure cloud and aerosol radiative properties, and that provide data to study the water and energy cycles. Scheduled for launch in the late 1990s, the EOS-AM spacecraft is designed for a 5-year mission. The spacecraft will be launched from the Western Space and Missile Center (California) into a polar, Sun-synchronous, low-Earth orbit with a 16-day repeat cycle. In its flight configuration, the spacecraft is almost 20 ft long (including instruments mounted at the fore end of the spacecraft) and 6 ft wide (in its widest dimension), has a mass of about 13,000 Ibs and uses about 3000 W of electrical power. The spacecraft is compatible with the Atlas IIAS launch vehicle. EOS-AM has on-board storage for at least two orbits of science data. These data will be transmitted to the ground via the tracking and data relay satellite system (using data structures and protocols in compliance with the recommendations of the Consultative Committee for Space Data Systems). A direct downlink system to support distributed users will also be available.

  16. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  17. Development of NASA Earth Observing System Simulator Suite (NEOS3)

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Tanelli, S.; Johnson, M. P.; Jacob, J. C.

    2012-12-01

    NASA Earth Observing System Simulator Suite (NEOS3) is a web-based integrated simulator for Earth remote sensing applications. Initially developed for atmospheric remote sensing instruments, NEOS3 is equipped with start-of-the-art modules to enable the realistic simulation of satellite observables. The main objective of the development is to provide an advanced, sophisticated, and user-friendly simulator package that can be used by both scientists for research-oriented applications and by system engineers for an instrument design purpose. This system is accessible via a web interface and capable of distributing computationally intensive tasks to remote servers such as those at the NASA Advanced Supercomputing (NAS) Division. Among other advanced models, the propagation models integrated in NEOS3 include DOMUS (DOppler MUltiple-Scattering simulator) and SHDOM (Spherical Harmonic Discrete Ordinate Method) for simulation of radars and radiometers, respectively. These two models enable 3D simulation of wave propagation through the atmosphere. The electromagnetic scattering properties of snow and cloud ice particles can be obtained from the Snowfake database (built upon a realistic snow growth model and the Discrete Dipole Approximation technique). Alternatively, different libraries of models can be selected for individual components of the simulation procedure. The presentation will cover an overview of 3 distinct perspectives of the NEOS3 system: capabilities, architecture and basic workflow. It will serve as an introduction for prospective users as well as contributors who desire to further enhance this simulator suite by providing an improved model.

  18. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  19. Atmospheric Infrared Sounder on the Earth Observing System

    SciTech Connect

    Aumann, H.H.; Pagano, R.J. . Jet Propulsion Lab.)

    1994-03-01

    Recent breakthroughs in IR detector array and cryocooler technology have made it possible to convert the concepts of optimum, passive, IR sounding to a practical satellite-borne instrument: the Atmospheric infrared Sounder (AIRS), a grating array IR spectrometer temperature sounder. AIRS, together with the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder, will form a complementary sounding system for the Earth Observing System to be launched in the year 2000. The three instruments are expected to become the new operational sounding system for the National Oceanic and Atmospheric Administration.

  20. ARISE - Advanced Radio Interferometry Between Space and Earth

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Linfield, R. P.; Wannier, P. G.; Preston, R. A.; Hirabayashi, H.; Zensus, J. A.; Veal, G. R.

    1995-01-01

    A mission is described called ARISE, Advanced Radio Interferometry between Space and Earth. ARISE will will provide affordable very long baseline interferometry (VLBI) using second- generation VLBI and one or more inflatable space radio telescopes.

  1. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  2. Large deployable reflectors for telecom and earth observation applications

    NASA Astrophysics Data System (ADS)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; 't Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  3. Unmanned servicing of Earth observation systems in sunsynchronous orbits

    NASA Astrophysics Data System (ADS)

    Sliney, Jack; Robertson, Bill; Misencik, Tom; Lee, Jeannie

    This paper addresses the feasibility of servicing or reboosting Earth observation spacecraft that are in or near sunsynchronous orbits through the use of an unmanned servicing vehicle. The term sunsynchronous (SS) as used here pertains to any retrograde orbit which exhibits a nodal regression rate of 360° per year, so that the orbit plane maintains a constant angle to the sun. The paper addresses both quantitatively and qualitatively how future Earth observation systems in inclinations between 96 and 100° may be periodically serviced using a transfer vehicle and other components needed to carry out the support mission. Two operational concepts are considered for the employment of the transfer vehicle. In one case, the vehicle is based at a Space Based Support Platform (SBSP) which remains at a lower altitude and higher inclination than the assets to be serviced. Consideration is also given to servicing from a transfer vehicle which is a free flyer (i.e. not based at an SBSP). The design requirements of the servicer are discussed quantitiatively and sample calculations of ΔV and propellant expenditure are given. Consideration is given to the NASA developed Orbital Maneuvering Vehicle (OMV), and other transfer vehicles which use electrical or other advanced propulsion. In addition, a quantitative assessment is made of the subsystem redundancy requirements in the design for an Earth observation satellite that is periodically serviced as compared with design requirements for an unserviceable spacecraft. The benefits of servicing with respect to Pre-planned Product Improvements (P 3I) are discussed.

  4. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  5. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  6. Spacewatch Observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    McMillan, Robert S.; Bressi, T. H.; Scotti, J. V.; Larsen, J. A.; Perry, M. L.

    2012-10-01

    We have enhanced Spacewatch's (McMillan et al. 2007 IAU Symp. 236) astrometry and photometry of Near-Earth Objects (NEOs). We specialize in follow-up of the Congressionally-mandated "large" NEOs (absolute mag H≤22) as they recede from Earth after discovery and become fainter, as well as NEOs on impact risk pages, Potentially Hazardous Asteroids, and NEOs observed by WISE (Mainzer et al. 2012 ApJ 752, id 110). Spacewatch was the pre-eminent follower-up of NEOs discovered by WISE within 2 weeks of their discovery. We have observed at elongations as small as 46°. Follow-up on longer orbital arcs improves understanding of the statistics of the orbits and absolute magnitudes of the population as well as the recoverability of individual objects. The new CCD which we began operating on our 1.8-m telescope on 2011 Oct 16 makes 23rd mag asteroids more frequently accessible. Faster readout and smaller pixels yield 67% more observations of NEOs per year and astrometric residuals of ±0.3 arcsec, vs. ±0.6 arcsec on NEOs with the old CCD. To reach more distant objects with H≤22, we now also use the Bok 2.3-meter telescope of Steward Observatory and the Kitt Peak National Observatory (KPNO) 4-m Mayall telescope. About 2800 tracklets of NEOs were accepted by the MPC from Spacewatch in the interval 2011 Jul 1 - 2012 Jun 30. The archive of images collected with our mosaic of CCDs on the 0.9-m telescope of Steward Observatory now approaches 15 TB in size and spans almost 10 years of uniformly conducted surveying. It contributes incidental followup astrometry and precoveries of NEOs. This work is funded by NASA/NEOO grants NNX11AB52G and NNX12AG11G, the Brinson Foundation of Chicago, IL, the estates of R. S. Vail and R. L. Waland, and other private donors. Spacewatch uses facilities of KPNO and services of the IAU’s Minor Planet Center.

  7. Noaa's Jpss Program: the Next Generation of Operational Earth Observations

    NASA Astrophysics Data System (ADS)

    Goldberg, M.

    2012-12-01

    The Joint Polar Satellite System is NOAA's new operational satellite program and includes the SUOMI National Polar-orbiting Partnership (NPP) as a bridge between NOAA's operational Polar Orbiting Environmental Satellite (POES) series, which began in 1978, and the first JPSS operational satellite scheduled for launch in 2017. The NPP was completed as originally planned and launched on October 28, 2011 and carries the following five sensors: - Visible/Infrared Imager Radiometer Suite (VIIRS) that provides advanced imaging and radiometric capabilities. - Cross-track Infrared Sounder (CrIS) that provides improved atmospheric moisture and temperature profiles in clear conditions. - Advanced Technology Microwave Sounder (ATMS) that provides improved atmospheric moisture and temperature profiles in cloudy conditions. - Ozone Mapping and Profiler Suite (OMPS) that provides improved vertical and horizontal measurements of the distribution of ozone in the Earth's atmosphere. - Clouds and the Earth's Radiant Energy System (CERES) sensor that continues precise, calibrated global measurements of the earth's radiation budget JPSS provides critical data for key NOAA product and services, which the Nation depends on. These products and services include: Weather forecasting - data from the CRIS and the ATMS are needed to forecast weather events out to 7 days. Nearly 85% of all data used in weather forecasting are from polar orbiting satellites. Environmental monitoring - data from the VIIRS are used to monitor the environment including the health of coastal ecosystems, drought conditions, hydrology, fire, smoke, dust, snow and ice, and the state of oceans, including sea surface temperature and ocean color. Climate monitoring - data from JPSS instruments, including OMPS, CERES and TSIS will provide continuity to climate data records established using NOAA POES and NASA Earth Observing System (EOS) satellite observations. These data records provide a unified and coherent long

  8. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case

  9. Recent sensor designs for Earth observation

    NASA Astrophysics Data System (ADS)

    Jerram, Paul; Morris, David

    2016-05-01

    The large number of missions associated with ESA's Copernicus program has necessitated several new image sensor designs for earth observation (or living planet) applications as each instrument needs to be highly optimized. Whilst the majority of these sensors have utilised CCD technology, the use of CMOS is starting to increase. New CCD designs and technology trends for hyperspectral applications such as Sentinel 4, Sentinel 5, Sentinel 5 precursor (TropOMI), Flex and 3MI are described. In these the sensor design has been optimized to provide highest possible signal levels with lowest possible noise in combination with higher frame rates and reduced image smear. CMOS sensors for MTG (Meteosat Third Generation) and METImage are then described. Both use extremely large pixels, up to 250μm square, at high line rates. Radiation test data and key performance measurements are shown for MTG and for a test device that has been made for METImage. Finally, newer developments including back-illumination and means for achieving a TDI function in standard-processed CMOS are briefly described.

  10. STS-42 Earth observation of Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, with an electronic still camera (ESC) is of Kamchatka Peninsula in Russia. Mid-afternoon sun projects long shadows from volcanoes on the Kamchatka Peninsula. This flat-topped volcano with the sharp summit crater is Tobachinsky, over 3,085 kilometers high. Its last major eruption was in 1975 and 1976, but it has been very active since the middle of the Sixteenth Century. The shadows cast by the low sunlight brings out the dramatic relief of the volcano as well as the smaller morphologic features. Electronic still photography is a relatively new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital images from STS-42 were stored on a disk and brought home with the flight crewmembers for processing. ESC was developed by the JSC Man-Systems Division and this mission's application of it is part of a continuing evolutionary development le

  11. STS-42 Earth observation of Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, with an electronic still camera (ESC) is of Kamchatka Peninsula in Russia. Mid-afternoon sun projects long shadows from volcanoes on the Kamchatka Peninsula. This flat-topped volcano with the sharp summit crater is Tobachinsky, over 3,085 kilometers high. Its last major eruption was in 1975 and 1976, but it has been very active since the middle of the Sixteenth Century. The shadows cast by the low sunlight brings out the dramatic relief of the volcano as well as the smaller morphologic features. For example, the small hills in the foreground and behind the central volcano are cinder cones, approximately only 200 meters high. Note the sharp triangular shadow from the conical volcano at right. Electronic still photography is a relatively new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital images from STS-42 were stored on a disk

  12. Parameters Describing Earth Observing Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim

    2003-01-01

    The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the

  13. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  14. NASA ESTO: Preparing the Future of Earth Science Observation Technology

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Johnson, D. G.; Hogue, H. H.

    2007-12-01

    NASA's Earth-Sun System Technology Office (ESTO) is investing in passive remote sensing technologies that will provide revolutionary advances in our knowledge of the Earth system. We will focus specifically on two Instrument Incubator Program (IIP) projects, the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument already developed and the In-situ Net Flux within the Atmosphere of the Earth (INFLAME) instruments presently in development. Both of these sensors provide measurements of the Earth's radiation balance presently not available in any other sensors. ESTO is also investing in detector technologies for future Earth science missions through the Far-Infrared Detector Technology Advancement Partnership (FIDTAP), a joint effort concurrently supported by NASA Langley and DRS Technologies, Inc. These sensors and technologies will position NASA to implement missions spelled out in the recent National Research Council's Decadal Survey for Earth Sciences.

  15. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  16. Observations and Effects of Dipolarization Fronts Observed in Earth's Magnetotail

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    Dipolarization fronts in Earth's magnetotail are characterized by sharp jumps in magnetic field, a drop in density, and often follow earthward fast plasma flow. They are commonly detected near the equatorial plane of Earth s tail plasma sheet. Sometimes, but not always, dipolarization fronts are associated with global substorms and auroral brightenings. Both Cluster, THEMIS, and other spacecraft have detected dipolarization fronts in a variety of locations in the magnetotail. Using multi-spacecraft analyses together with simulations, we have investigated the propagation and evolution of some dipolarization events. We have also investigated the acceleration of electrons and ions that results from such magnetic-field changes. In some situations, the velocities of fast earthward flows are comparable to the Alfven speed, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multi-spacecraft timing analysis, dipolarization fronts are found to propagate mainly earthward at 160-335 km/s and have thicknesses of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Following the passage of dipolarization fronts, significant fluctuations are observed in the x and y components of the magnetic field. These peaks in the magnetic field come approximately 1-2 minutes after passage of the dipolarization front. These Bx and By fluctuations propagate primarily dawnward and earthward. Field-aligned electron beams are observed coincident with those magnetic field fluctuations. Non-Maxwellian electron and ion distributions are observed that are associated with the dipolarization that may be unstable to a range of electrostatic and/or whistler instabilities. Enhanced electrostatic broadband noise at frequencies below and near the lower-hybrid frequency is also observed at or very close to these fronts. This broadband noise is thought to play a role in further energizing the particles

  17. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  18. Earth observing satellite plans in India

    NASA Astrophysics Data System (ADS)

    Rajan, Y. S.; Behera, G.; Gupta, A. K.; Manikiam, B.

    One of the major objectives of the Indian Space Programme is to develop, launch and operate earth observing satellites to cater to the data needs of the remote sensing user community. Towards this, development of suitable multispectral sensors through satellites and aircraft have played a crucial role. The Rohini and Bhaskara satellites launched during early 1980's provided the base for further development. Presently the first of a series of Remote Sensing satellites, IRS-1A is in orbit and is providing data. The necessary expertise to utilise the remotely sensed data was developed through a set of application projects under Indian Remote Sensing Satellite - Utilisation Programme (IRS-UP) and Remote Sensing Application Mission (RSAM) being carried out with active collaboration of several Central/State user departments/agencies. The application projects cover several themes such as agriculture, water resources, forestry, soil, marine resources etc. in addition to natural calamities such as flood and drought. The IRS-UP projects initiated in 1983, has helped in developing several methodology packages for operational utilisation of remote sensing for natural resources monitoring. Nationwide projects such as Wasteland Mapping, Drinking Water Technology Mission etc. have remote sensing as a major input. Towards ensuring requisite infrastructure and facility, 5 Regional Remote Sensing Service Centres are being operationalised with VAX-11/780 computer based image processing system, in addition to setting up of remote sensing centres in each State/Union Territory. The training of adequate manpower has been another area of attention. The country is poised to reap the advantages of remote sensing technology towards its development.

  19. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  20. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  1. Project Copernicus: An Earth observing system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  2. Earth Observation Plan Focuses on User Needs and Measurements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    The White House's new U.S. National Plan for Civil Earth Observations focuses on user needs and measurements while defining a framework for constructing a balanced portfolio of Earth observations and observing systems, officials with the White House Office of Science and Technology Policy (OSTP) said at a 4 September forum about the plan.

  3. EarthScope's Transportable Array: Advancing Eastward

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

    2006-12-01

    EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and

  4. NASA Facts, Observing Earth from Skylab.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    The process of high-altitude photography and its uses are the topics of this publication. The advantages of color infrared photography over black and white images are discussed, using as evidence a series of skylab photographs. The major portion of this work is devoted to the detection of natural resources of the earth from the analysis of…

  5. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  6. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  7. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  8. Earth Observation Training and Education with ESA LearnEO!

    NASA Astrophysics Data System (ADS)

    Byfield, Valborg; Mathieu, Pierre-Philippe; Dobson, Malcolm; Rosmorduc, Vinca; Del Frate, Fabio; Banks, Chris; Picchiani, Matteo

    2013-04-01

    For society to benefit fully from its investment in Earth observation, EO data must be accessible and familiar to a global community of users who have the skills, knowledge and understanding to use the observations appropriately in their work. Achieving this requires considerable education effort. LearnEO! (www.learn-eo.org) is a new ESA education project that contributes towards making this a reality. LearnEO! has two main aims: to develop new training resources that use data from sensors on ESA satellites to explore a variety of environmental topics, and to stimulate and support members of the EO and education communities who may be willing to develop and share new education resources in the future. The project builds on the UNESCO Bilko project, which currently supplies free software, tutorials, and example data to users in 175 countries. Most of these users are in academic education or research, but the training resources are also of interest to a growing number of professionals in government, NGOs and private enterprise. Typical users are not remote sensing experts, but see satellite data as one of many observational tools. They want an easy, low-cost means to process, display and analyse data from different satellite sensors as part of their work in environmental research, monitoring and policy development. Many of the software improvements and training materials developed in LearnEO! are in response to requests from this user community. The LearnEO! tutorial and peer-reviewed lessons are designed to teach satellite data processing and analysis skills at different levels, from beginner to advanced - where advanced lessons requires some previous experience with Earth observation techniques. The materials are aimed at students and professionals in various branches of Earth sciences who have not yet specialised in specific EO technologies. The lessons are suitable for self-study, university courses at undergraduate to MSc level, or for continued professional

  9. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  10. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum. PMID:19516335

  11. Key Provenance of Earth Science Observational Data Products

    NASA Astrophysics Data System (ADS)

    Conover, H.; Plale, B.; Aktas, M.; Ramachandran, R.; Purohit, P.; Jensen, S.; Graves, S. J.

    2011-12-01

    As the sheer volume of data increases, particularly evidenced in the earth and environmental sciences, local arrangements for sharing data need to be replaced with reliable records about the what, who, how, and where of a data set or collection. This is frequently called the provenance of a data set. While observational data processing systems in the earth sciences have a long history of capturing metadata about the processing pipeline, current processes are limited in both what is captured and how it is disseminated to the science community. Provenance capture plays a role in scientific data preservation and stewardship precisely because it can automatically capture and represent a coherent picture of the what, how and who of a particular scientific collection. It reflects the transformations that a data collection underwent prior to its current form and the sequence of tasks that were executed and data products applied to generate a new product. In the NASA-funded Instant Karma project, we examine provenance capture in earth science applications, specifically the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) Science Investigator-led Processing system (SIPS). The project is integrating the Karma provenance collection and representation tool into the AMSR-E SIPS production environment, with an initial focus on Sea Ice. This presentation will describe capture and representation of provenance that is guided by the Open Provenance Model (OPM). Several things have become clear during the course of the project to date. One is that core OPM entities and relationships are not adequate for expressing the kinds of provenance that is of interest in the science domain. OPM supports name-value pair annotations that can be used to augment what is known about the provenance entities and relationships, but in Karma, annotations cannot be added during capture, but only after the fact. This limits the capture system's ability to record something it

  12. Operational evapotranspiration based on Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  13. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  14. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    scientists. These courses include relevant theoretical lectures on the specific themes and extensive hands-on exercises using remote sensing and GIS tools and techniques. A one-day policy workshop has been designed to raise awareness among managers and decision-makers. Within the framework of SERVIR-Himalaya, a specialized training and awareness course has been initiated targeting to the youth. This course focuses on utilizing earth observation to sensitize youth and help them better understand climate change in the Himalayas. Furthermore, ICIMOD is strengthening existing partnerships and developing new partnerships to keep pace with rapidly changing technological advancements in order to customize the capacity building needs for the region. ICIMOD is promoting the Himalayan University consortium to extend its capacity building efforts for a longer-term continuity and sustainability. Through the SERVIR-Himalaya initiative, it is aiming to build new capacity building components such as - NASA DEVELOP to engage student research, MYCOE programs for youth, and small grants programs for young researchers and professionals. As a regional center, ICIMOD wants to continue to build regional capacity with the ultimate goal to leverage geospatial information services for the societal benefits to the mountain communities and relevant stakeholders.

  15. The U.S. National Plan for Civil Earth Observations

    NASA Astrophysics Data System (ADS)

    Stryker, T.; Clavin, C.; Gallo, J.

    2014-12-01

    Globally, the United Sates Government is one of the largest providers of environmental and Earth-system data. As the nation's Earth observation capacity has grown, so have the complexity and challenges associated with managing Earth observation systems and related data holdings. In July 2014, the White House Office of Science and Technology Policy released the first-ever National Plan for Civil Earth Observations to address these challenges. The Plan provides a portfolio management-based framework for maximizing the value of Federal Earth observations. The Plan identifies Federal priorities for Earth observations and improved management of their data. Through routine assessments, expanding data management efforts, interagency planning, and international collaboration, OSTP and its partner agencies will seek ensure the continued provision of and access to key Earth observation data, which support a broad range of public services and research programs. The presenters will provide a detailed review of the components of the National Plan, its impacts across the Federal agencies involved in Earth observations, and associated efforts to enable interagency coordination.

  16. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  17. From Observation to Impacts: Provenance for Earth Science Resources

    NASA Astrophysics Data System (ADS)

    Hua, H.; Tilmes, C.; Fox, P. A.; Zednik, S.; Duggan, B.; Aulenbach, S.; Wilson, B. D.; Manipon, G. J. M.; Privette, A. P.

    2014-12-01

    NASA's Earth Science Data Systems Working Group (ESDSWG) on Provenance is working on a provenance specification for use in Earth science data systems to capture, consume, and interpret the end-to-end data life cycle information. Based on W3C PROV, this Earth Science extension can be used as an interoperable specification for representing Earth science resources that includes observations by instruments, data producers, data processing systems, data archive centers, data users, analysis findings, and societal impacts. NASA is participating in the Big Earth Data Initiative (BEDI) and also leading a related Climate Data Initiative (CDI) effort. Under CDI, NASA is also working with the U.S. Global Change Research Program (USGCRP) and the U.S. Group on Earth Observations (USGEO) to identify and make interoperable relevant data from multiple interagency sources. These interagency efforts will improve the discoverability, accessibility, and usability of Federal data and information products derived from civil Earth observations. We will present our progress to develop a provenance specification for representing Earth science resources from observation to impacts and how it can be used to support these initiatives. We will show how it can be used in earth science data systems to automatically capture, consume, and interpret provenance information using semantic technologies.

  18. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  19. Deuterium on Venus - Observations from earth

    NASA Technical Reports Server (NTRS)

    De Bergh, Catherine; Bezard, Bruno; Owen, Tobias; Crisp, David; Maillard, Jean-Pierre

    1991-01-01

    Absorption lines of HDO and H2O have been detected in a 0.23-wave number resolution spectrum of the dark side of Venus in the interval 2.34 to 2.43 microns, where the atmosphere is sounded in the altitude range from 32 to 42 kilometers (8 to 3 bars). The resulting value of the D/H ratio is 120 + or - 40 times the telluric ratio, providing unequivocal confirmation of in situ Pioneer Venus mass spectrometer measurements that were in apparent conflict with an upper limit set from International UIltraviolet Explorer spectra. The 100-fold enrichment of the D/H ratio on Venus compared to earth is thus a fundamental constraint on models for its atmospheric evolution.

  20. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  1. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  2. An Evolving Model for Capacity Building with Earth Observation Imagery

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  3. First optical observations of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Rykhlova, L. V.

    2008-08-01

    A review of the first optical observations of the artificial satellites in the USSR as well as in former communist countries (DDR, Romania,Poland) is given. The role by Alla G. Masevich, I.D. Zhongolovich and Yu.V. Batrakov is underlined in the organization of observations.

  4. USGEO National Earth Observation Assessment Methods for Evaluating the Relative Contributions of Earth Observing Systems to Societal Benefit

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Stryker, T.

    2015-12-01

    The second National Civil Earth Observation Assessment identifies the inputs and relative contributions of the portfolio of observing systems currently relied upon by Federal agencies to meet key Earth observing objectives. The Assessment employs a hierarchical value-tree framework that traces the pathways through which Earth observing systems contribute value across 13 societal benefit areas, utilizing multiple levels to provide logical traceability. This presentation describes the methods used to construct societal benefit area value-trees that include key objectives and the information products, services, and research derived from Earth observations that help satisfy them. It describes the methods for weighting nodes at multiple levels of each value-tree and the expert elicitation process for assessing the relative contributions of Earth observing systems to the development of information products, services, and research. The methodology employed in the Assessment is especially useful at assessing the interdependence and relative contributions of multiple Earth observing systems on the development of blended information products and tracing information pathways from direct observations through intermediate products, such as models, to end-products used to improve decision-making. This presentation will highlight case study examples from the 13 societal benefit areas (agriculture and forestry, biodiversity, climate, disasters, ecosystems, energy and mineral resources, human health, ocean and costal resources, space weather, transportation, water resources weather, and reference measurements) to demonstrate tractability from Earth observing systems, through information products and research that satisfy key objectives, to societal benefit.

  5. The Operations Security Concept for Future ESA Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bargellini, P.; Merri, M.

    2008-08-01

    Next-generation European earth observation missions will play a critical role in public safety and security infrastructures. This makes it necessary for ESA to protect the communication infrastructure of these missions in order to guarantee their service availability. In this paper, we discuss the development process for a generic earth observation security concept. This concept has been developed as part of a GMES Flight Operation Segment security study with the objective to analyse and select a number of high level security requirements for the missions. Further, we studied the impact of an implementation for these requirements on the operational infrastructure of current earth observation missions.

  6. Combined Analysis and Validation of Earth Rotation Models and Observations

    NASA Astrophysics Data System (ADS)

    Kutterer, Hansjoerg; Göttl, Franziska; Heiker, Andrea; Kirschner, Stephanie; Schmidt, Michael; Seitz, Florian

    2010-05-01

    Global dynamic processes cause changes in the Earth's rotation, gravity field and geometry. Thus, they can be traced in geodetic observations of these quantities. However, the sensitivity of the various geodetic observation techniques to specific processes in the Earth system differs. More meaningful conclusions with respect to contributions from individual Earth subsystems can be drawn from the combined analysis of highly precise and consistent parameter time series from heterogeneous observation types which carry partially redundant and partially complementary information. For the sake of a coordinated research in this field, the Research Unit FOR 584 "Earth Rotation and Global Dynamic Processes" is funded at present by the German Research Foundation (DFG). It is concerned with the refined and consistent modeling and data analysis. One of the projects (P9) within this Research Unit addresses the combined analysis and validation of Earth rotation models and observations. In P9 three main topics are addressed: (1) the determination and mutual validation of reliable consistent time series for Earth rotation parameters and gravity field coefficients due to the consideration of their physical connection by the Earth's tensor of inertia, (2) the separation of individual Earth rotation excitation mechanisms by merging all available relevant data from recent satellite missions (GRACE, Jason-1, …) and geodetic space techniques (GNSS, SLR, VLBI, …) in a highly consistent way, (3) the estimation of fundamental physical Earth parameters (Love numbers, …) by an inverse model using the improved geodetic observation time series as constraints. Hence, this project provides significant and unique contributions to the field of Earth system science in general; it corresponds with the goals of the Global Geodetic Observing System (GGOS). In this paper project P9 is introduced, the goals are summarized and a status report including a presentation and discussion of intermediate

  7. LDCM: A New Era in Earth Observation

    NASA Video Gallery

    NASA's Landsat Data Continuity Mission (LDCM) is the eighth satellite in the Landsat series, which began in 1972. The mission will extend more than 40 years of global land observations that are cri...

  8. Spacewatch Observations of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    McMillan, Robert S.; Larsen, Jeffrey A.; Bressi, Terrence H.; Scotti, James V.; Mastaler, Ronald A.; Tubbiolo, Andrew F.

    2015-08-01

    Spacewatch specializes in followup of NEOs of high priority while they are faint, producing an annual average of ~8500 lines of astrometry of ~1,000 different NEOs. We contribute to the removal of half of the objects that were retired from impact risk lists. Our observations at elongations as small as 46 deg support followup of hazardous NEOs and NEOs discovered by the NEOWISE spacecraft. Per year we observe about 35 radar targets, 50 NEOs that were measured by NEOWISE, and 100 potential rendezvous destinations. In the last 3 years we have observed 50% of all NEOs observed in that time and 54% of all PHAs observed in that time. We lead in followup of provisionally designated PHAs while faint (V>= 22); contributing 41% of all such observations. With the Steward Obs. 0.9-m telescope, site code 691, we survey with a mosaic of CCDs near opposition and at low elongation in the east. Coverage is 1400 sq. deg per lunation; V mag limit ~20.5-21.7. The 12 yrs of uniform surveying will go live on the web in 2015 to support incidental astrometry & precoveries of NEOs. On the Spacewatch 1.8-m telescope, site code 291, the FOV = 20x20 arcmin and the pixel scale = 0.6 arcsec/pixel. V mag limit=23 and the astrometric residuals are +/-0.3 arcsec. Our output with the Bok 2.3-m & Mayall 4-m telescopes from 2010-2014 was 1316 lines of astrometry on 207 different NEOs, including 84 different PHAs. 343 observations were made of PHAs with V>=22. Our average calendar span extension on large PHAs is 6 mo, 2x longer than the next most effective observing station. We extend the span of calendar time coverage on PHAs an average of 3.8x. For 38 of 72 PHAs we added another observed opposition. With the Bok & Mayall we reduce uncertainties of orbital elements an average of a factor of 6 and the uncertainty of the time of perihelion passage an average of a factor of 19 (G. Williams 2014 private communication). We gratefully acknowledge NASA's NEO Observation Program, The IAU's Minor Planet

  9. Observations from the NASA multisatellite Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.

    1990-01-01

    Satellite measurements from the Earth Radiation Budget Experiment (ERBE) are providing new insights into the earth radiation balance. The ERBE results indicate that clouds have more of a cooling effect than a greenhouse warming effect on the earth-atmosphere system. The largest net-radiation cooling appears over the midlatitude oceans in the summer hemisphere where maximum sunlight and maximum cloud cover occur. The ERBE data also have shown that many areas of the earth exhibit significant diurnal variations in both longwave and shortwave radiation. In order to assess future global climatic changes, a follow-on experiment to ERBE, called Clouds and Earth's Radiant Energy System (CERES), has been selected to fly on the Earth Observing System in the the 1990's.

  10. Earth observations during Space Shuttle Flight STS-46: Atlantis' Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Amsbury, David; Wilkinson, M. Justin; Evans, Cynthia; Ackleson, Steve; Shriver, Loren J.; Allen, Andrew M.; Hoffman, Jeffrey A.; Chang-Diaz, Franklin R.; Nicollier, Claude

    1993-01-01

    The photographic and videographic documentation of the Earth during STS-46 mission has enhanced the Space Shuttle Earth Observations Project (SSEOP) database. Increasing numbers of scientists are using this database; many are downloading the imagery from our electronic database for specific scientific analyses. We believe the scientific returns of the Earth Observations photography from this mission will add to the global change databases and will contribute to the better understanding of our home planet. The use of manned space flights in understanding the global process first hand is a vital component in NASA's Mission to Planet Earth. The following are discussed along with photographs from the mission: landforms and geologic observation; environmental observations; meteorological/atmospheric observation; and oceanographic observations.

  11. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  12. Imaging spectrometer technologies for advanced earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from earth orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s. Previously announced in STAR as N83-28542

  13. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  14. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  15. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  16. Plasma observations at the earth's magnetic equator

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Shawhan, S. D.; Gallagher, D. L.; Chappell, C. R.; Green, J. L.

    1987-01-01

    New observations of particle and wave data from the magnetic equator from the DE 1 spacecraft are reported. The results demonstrate that the equatorial plasma population is predominantly hydrogen and that the enhanced ion fluxes observed at the equator occur without an increase in the total plasma density. Helium is occasionally found heated along with the protons, and forms about 10 percent of the equatorially trapped population at such times. The heated H(+) ions can be characterized by a bi-Maxwellian with kT(parallel) = 0.5-1.0 eV and kT = 5-50 eV, with a density of 10-100/cu cm. The total plasma density is relatively constant with latitude. First measurements of the equatorially trapped plasma and coincident UHR measurements show that the trapped plasma is found in conjunction with equatorial noise.

  17. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  18. Constellations: A New Paradigm for Earth Observations

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have

  19. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  20. Earth observations and photography experiment: Summary of significant results

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    Observation and photographic data from the Apollo Soyuz Test Project are analyzed. The discussion is structured according to the fields of investigation including: geology, desert studies, oceanography, hydrology, and meteorology. The data were obtained by: (1) visual observations of selected Earth features, (2) hand-held camera photography to document observations, and (3) stereo mapping photography of areas of significant scientific interest.

  1. A Synergy Framework for the integration of Earth Observation technologies into Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Gaetani, Francesco; Petiteville, Ivan; Pisano, Francesco; Rudari, Roberto; St Pierre, Luc

    2015-04-01

    Earth observations and space-based applications have seen a considerable advance in the last decade, and such advances should find their way in applications related to DRR, climate change and sustainable development, including in the indicators to monitor advances in these areas. The post-2015 framework for disaster risk reduction, as adopted by the 3rd WCDRR is a action-oriented framework for disaster risk reduction that builds on modalities of cooperation linking local, national, regional and global efforts. Earth observations from ground and space platforms and related applications will play a key role in facilitating the implementation of the HFA2 and represent a unique platform to observe and assess how risks have changed in recent years, as well as to track the reduction in the level of exposure of communities. The proposed white paper focuses mainly on Earth Observation from space but it also addresses the use of other sources of data ( airborne, marine, in-situ, socio-economic and model outputs) in combination to remote sensing data. Earth observations (EO) and Space-based technologies can play a crucial role in contributing to the generation of relevant information to support informed decision-making regarding risk and vulnerability reduction and to address the underlying factors of disaster risk. For example, long series of Earth observation data collected over more than 30 years already contribute to track changes in the environment and in particular, environmental degradation around the world. Earth observation data is key to the work of the scientific community. Whether due to inadequate land-use policies, lack of awareness or understanding regarding such degradation, or inadequate use of natural resources including water and the oceans; Earth observation technologies are now routinely employed by many Ministries of Environment and Natural Resources worldwide to monitor the extent of degradation and a basis to design and enact new environmental

  2. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; McConaughy, G.; Lynnes, C.; Morse, S.; Isaac, D.

    2004-12-01

    The last decade's influx of raw data and derived geophysical parameters from several Earth observing satellites to NASA data centers has created a data-rich environment for Earth science research and applications. For example, the Distributed Active Archive Centers of NASA's Earth Observing System Data and Information System held over 2.8 petabytes of data at the end of 2003, growing at a rate of about 3 terabytes per day. The data products are distributed to a large community of scientific researchers, educators and operational government agencies. With advances in computational hardware, networks, information management and software technologies, much progress has been made over the last decade in data archiving and providing data access for a broad, diverse user community. However, to realize the full potential of the growing archives of valuable scientific data, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. The set of providers of data and services pertaining to archiving and distribution of Earth science data is quite heterogeneous and distributed today and is likely to be even more so in the future. This is due to the diversity of Earth Science disciplines and the distribution of expertise needed to provide data and services in those disciplines. Thus, in typical real world applications scenarios, the data and services will be obtained through service chains involving multiple data archive sites or systems. It is in this context that the development of technologies to improve data utilization must occur. Sponsored by NASA's Intelligent Systems Project within the Computing, Information and Communication Technology Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization by adding intelligence into the archives in the context of an overall knowledge building system. Potential Intelligent Archive concepts

  3. The Earth's ULF Wave Foreshock: Cluster Observations

    NASA Astrophysics Data System (ADS)

    Andres, N.; Meziane, K.; Mazelle, C. X.; Gomez, D. O.; Bertucci, C.

    2014-12-01

    The interaction between backstreaming ions and the incoming solar wind in the upstream region of the bow shock, gives rise to a number of plasma instabilities from which ultra-low frequency (ULF) waves can grow. The region of ULF wave activity is spatially localized in the ion foreshock. Observational evidence of the ULF wave foreshock boundary has accumulated over the last three decades. In particular, it has been shown that the geometrical characteristics of the boundary are very sensitive to the interplanetary magnetic field (IMF) cone angle. In the present work, we aim at investigating the statistical properties of the ULF wave foreshock boundary. For this purpose, we make use of the first three years of magnetic field data from the flux gate magnetometer (FGM), and the plasma densities and velocities from the Hot Ion Analyzer (HIA) on board Cluster (SC-1). A new identification of the ULF wave foreshock boundary is presented, using specific and accurate criteria for a correct determination of boundary crossings. In particular, the criteria are based on the degree of IMF rotation as Cluster crosses the boundary. To reconstruct the foreshock geometry, we use two different 3-D gas dynamic bow shock models. The ULF wave foreshock boundary is compared with previous results reported in the literature as well as with theoretical predictions.

  4. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  5. Observations of Double Layers in Earth's Plasma Sheet

    SciTech Connect

    Ergun, R. E.; Tao, J.; Andersson, L.; Eriksson, S.; Johansson, T.; Angelopoulos, V.; Bonnell, J.; McFadden, J. P.; Larson, D. E.; Cully, C. M.; Newman, D. N.; Goldman, M. V.; Roux, A.; LeContel, O.; Glassmeier, K.-H.; Baumjohann, W.

    2009-04-17

    We report the first direct observations of parallel electric fields (E{sub parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E{sub parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.

  6. Observations of double layers in earth's plasma sheet.

    PubMed

    Ergun, R E; Andersson, L; Tao, J; Angelopoulos, V; Bonnell, J; McFadden, J P; Larson, D E; Eriksson, S; Johansson, T; Cully, C M; Newman, D N; Goldman, M V; Roux, A; LeContel, O; Glassmeier, K-H; Baumjohann, W

    2009-04-17

    We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet. PMID:19518640

  7. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  8. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1988-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the earth's rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.

  9. Observed tidal braking in the earth/moon/sun system

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  10. GIONET (GMES Initial Operations Network for Earth Observation Research Training)

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Balzter, H.

    2013-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. Copernicus (previously known as GMES (Global Monitoring for Environment and Security) is a joint undertaking of the European Space Agency and the European Commission. It develops fully operational Earth Observation monitoring services for a community of end users from the public and private sector. The first services that are considered fully operational are the land monitoring and emergency monitoring core services. In GIONET, 14 early stage researchers are being trained at PhD level in understanding the complex physical processes that determine how electromagnetic radiation interacts with the atmosphere and the land surface ultimately form the signal received by a satellite. In order to achieve this, the researchers are based in industry and universities across Europe, as well as receiving the best technical training and scientific education. The training programme through supervised research focuses on 14 research topics. Each topic is carried out by an Early Stage Researcher based in one of the partner organisations and is expected to lead to a PhD degree. The 14 topics are grouped in 5 research themes: Forest monitoring Land cover and change Coastal zone and freshwater monitoring Geohazards and emergency response Climate adaptation and emergency response The methods developed and used in GIONET are as diverse as its research topics. GIONET has already held two summer schools; one at Friedrich Schiller University in Jena (Germany), on 'New operational radar satellite applications: Introduction to SAR, Interferometry and Polarimetry for Land Surface Mapping'. The 2nd summer school took place last September at the University of Leicester (UK )on 'Remote sensing of land cover and forest in GMES'. The next Summer School in September 2013

  11. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  12. STS-55 Earth observation of agricultural development in northern Argentina

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of agricultural development in northern Argentina. This photograph is from a mapping strip of photographs acquired by the STS-55 crew. This mapping strip runs from the 'eyelash forests' of the Bolivian Andes, southeast across the Chaco Plains, and into the upper Parana River Basin of north-central Argentina. The formerly densely forested areas between the upper Rio Pilcomayo and the Rio Teuco of NW Argentina rest on deep, rich alluvial and loess deposits. These modern soils were carried into the region by rivers from the Andes and by dust storms from large playa areas of the Altiplano (high plains) of Peru and Boliva. In this scene, representative of the long mapping strip, the process of converting forests to agriculture is far advanced. The original road network, a series of grids laid out in the forest, has nearly coalesced into a farm and ranch landscape. Some few relict forests are still visible as distin

  13. Design and benefits of a multibeam Earth Observing Radar

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.; Beck, F. B.

    1985-01-01

    The oceanographic rationale is described for continuing to advance the state of the art in satellite radar altimetry, and the expected capabilities of a multibeam Earth Observing Radar are noted. At the end of this decade, there is the possibility that altimeters may be in orbit aboard the American TOPEX, the ESA ERS-1, and the French SPOT satellites at the same time. The TOPEX version will be the most precise altimeter yet built. Global ocean circulation will be measured by using TOPEX to monitor the elevation changes across the ocean basins due to oceanic currents. It will then be possible to monitor the 'mean' circulation patterns in the oceans. The multiple beams of EOR might be used to measure the curvature of the topographic surface. The use of curvature is especially beneficial because it is directly related to ocean circulation, which is a function only of the Laplacian of the topographic height field in a given area. With the EOR, that height field will be known and ocean circulation can be immediately computed.

  14. Small satellite's role in future hyperspectral Earth observation missions

    NASA Astrophysics Data System (ADS)

    Guelman, M.; Ortenberg, F.

    2009-06-01

    Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.

  15. United States manned observations of earth before the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.

    1989-01-01

    From the beginning of manned United States spaceflight, astronauts viewed earth with intense interest, and photographed as many scenes as possible to record their experience for those who can only participate vicariously. Training in earth sciences and photography became more formal, and more thorough, from Mercury through Gemini to Skylab and Apollo-Soyuz. Equipment became bulkier, heavier, and more capable as the manned program matured and larger spacecraft were possible. And some scientists learned to interact with observers in orbit. The result is a legacy of some 35,000 pre-Space Shuttle publicly-available photographs, showing the lands, oceans, and atmosphere of earth from an unusual perspective.

  16. NASA's Earth Observation Program: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Hasler, Arthur F.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this electronic theater presentation I will illustrate how scientists can learn about the Earth's atmosphere, land, oceans, and cryosphere from the vantage point of space-based global observations. This presentation will emphasize, but will not be limited to, Earth observations from space that highlight the ecosystem and environment of southern Africa, including: (i) dynamic geosynchronous satellite observations of southern Africa and nearby Indian Ocean, (ii) vegetation dynamics (normalized difference vegetation index and leaf area index), (iii) sea surface temperature, ocean topography, and surface winds over the Benguela and Agulhas Currents, (iv) Landsat 7 imagery of Cape Town, Etosha Pan, and other regions of southern Africa (v) fire distribution and dynamics in the Miombo woodland of Zambia, Angola, and Malawi, (vi) aerosol and cloud properties in southern Africa, and (vii) ice sheet distribution in and around Antarctica. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  17. Onboard Autonomy on the Earth Observing One Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert L.; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    The Earth Observing One Spacecraft is currently flying The Autonomous Sciencecraft Experiment (ASE) - onboard autonomy software to improve science return. The ASE software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. ASE includes software systems that perform science data analysis, mission planning, and run-time robust execution. In this article we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations.

  18. Solar and lunar observation planning for Earth-observing sensor

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.

    2011-11-01

    MODIS on-orbit calibration activities include the use of the on-board solar diffuser (SD), SD stability monitor (SDSM) and regularly scheduled lunar observations for the Reflective Solar Bands (RSB) radiometric calibration. Normally, the SD door is closed when there is no SD/SDSM observation to avoid the unnecessary illumination of the sunlight on the SD, which causes the SD degradation. The SD is illuminated over a very short period of time when the spacecraft crosses from the night side to the day side. To implement a SD/SDSM calibration, the SD door needs to be open and the SDSM needs to be turned on during the short period of time when the SD is illuminated. A planning tool is needed to predict the exact times for the opening and closing of SD door and SDSM on/off operations of SDSM for each SD/SDSM calibration. The tool is also needed for MODIS yaw maneuvers implemented for SD bi-direction reflectance factor (BRF) validation and SD screen vignetting function (VF) derivation. MODIS observes the Moon through its space view (SV) port. To increase the opportunity for more lunar observations and to keep the lunar phase angle in a selected narrow range that minimizes the view geometric effect on the observed lunar irradiance, a spacecraft roll maneuver is allowed and implemented for MODIS lunar observations. A lunar observation planning tool is required to predict the time and roll angle needed for each lunar observation in the selected phase angle range. The tool is also needed to determine the phase angle range such that the MODIS can view the Moon in as many months as possible each year with the phase angle in the range. The MODIS Characterization Support Team (MCST) is responsible for MODIS instrument operation and calibration. We have developed a set of tools to address these needs and have successfully applied them to both Terra and Aqua MODIS. In this paper, we describe the design methodologies and the implementation of the tools. The tools have also been

  19. Present status and future plans of the Japanese earth observation satellite program

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  20. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  1. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  2. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  3. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  4. Planning for the Global Earth Observation System of Systems (GEOSS)

    USGS Publications Warehouse

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  5. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  6. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  7. Analysis of Critical Earth Observation Priorities for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  8. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  9. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  10. STS-56 ESC Earth observation of Darwin, Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image taken aboard Discovery, Orbiter Vehicle (OV) 103, is of Darwin, Australia. The image was recorded with a 180mm lens on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they just point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. In this observation, the center coordinates are 12.433 degrees south latitude and 130.939 degrees east longitude. Geolocation accuracy on this image is 2.3 nautical miles. Digital file name is ESC01037.IMG.

  11. Cloud Computing Test Bed for NASA Earth Observation

    NASA Astrophysics Data System (ADS)

    Klene, S. A.; Murphy, K. J.; Fertetta, M.; Law, E.; Wilson, B. D.; Hua, H.; Huang, T.

    2014-12-01

    In order to develop a deeper understanding of utilizing cloud computing technologies for using earth observation data processing a test bed was created to ease access to the technology. Users had expressed concerns about accruing large compute bills by accident while they are learning to use the technology. The test bed is to support NASA efforts such as: Developing a Science Data Service platform to handle big earth data for supporting scalable time and space searches, on-the-fly climatologies, data extraction and data transformation such as data re-gridding. Multi-sensor climate data fusion where users can select, merge and cache variables from multiple sensors to compare data over multiple years. Facilitate rapid prototype efforts to provide an infrastructure so that new development efforts do not need to spend time and effort obtaining a platform. Once successful development is done the application could then scale to very large platform on larger or commercial clouds. Goals of the test bed are: To provide a greater understanding of cloud computing so informed choices can be made on future efforts to handle the over 15 Petabytes of NASA earth science data. Provide an environment where a set of science tools can be developed and reused by multiple earth science disciplines. Develop a Platform as a Service (PaaS) capability for general earth science use. This talk will present the lessons learned from building a community cloud for earth science data.

  12. Near-Earth asteroids: Observer alert network and database analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Chapman, Clark R.

    1991-01-01

    The Planetary Science Institute (PSI) was funded by SERCulpr to develop a communication network to alert observers of newly discovered near-earth asteroids (NEA's). This network is intended to encourage observers to obtain physical observations of NEA's, which are needed in order to characterize and assess the resource potential of these bodies. This network was declared operational in October 1990 via an announcement to the asteroid observing community. The PSI is also supported to develop the Near-Earth Asteroid Database (NEAD), a comprehensive database of physical and dynamical data on NEA's. In the past year, the database was updated on newly discovered NEA's during 1990, and new data on radar observations and dynamical classifications were added.

  13. STS-44 Earth observation of a cloud-covered area of China and the Earth's limb

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, is of China and the Earth's limb. OV-104 was flying over a point near Canton, China. View is to the west-northwest. It was taken near mid afternoon, local time. OV-104's vertical tail points to the Earth's surface below. The empty airborne support equipment (ASE) is visible in the aft payload bay (PLB). STS-44 crewmembers who had flown on Space Shuttle missions which were previous to the Mount Pinatubo eruption reported that the limb of the Earth showed a more bluish tint compared to the purple seen during this mission. The clouds in the foreground, according to NASA scientists studying STS-44 photography, are associated with a mid-latitude cyclone, and a pattern of jet-stream cirrus clouds also entends across the center of the image.

  14. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    NASA Astrophysics Data System (ADS)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  15. Digital Object Identifiers for NASA's Earth Observing System Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; James, N.

    2012-12-01

    The science community has long recognized the importance of citing data in published literature to encourage replication of experiments and verification of results. Authors that try to cite their data often find that publishers will not accept Internet addresses because they are viewed as transient references, frequently changed by the data provider after the paper is published. Digital Object Identifiers (DOIs) and the DOI® System were created to avoid this problem by providing a unique and persistent identifier scheme and an online resolution service. DOIs and the Internet service provided by the DOI System have emerged as the most acceptable scheme for publishers. NASA's Earth Science Data and Information System (ESDIS) Project, in cooperation with several Earth Observing System (EOS) instrument teams and data providers, has developed methods for assigning DOIs to EOS products. By assigning DOIs we are enabling authors and publishers to find it easier and more compelling to cite EOS data products. DOIs are unique alphanumeric strings that consist of a prefix and suffix. The prefix is assigned by a registration agency for the DOI System. The suffix must be unique, but is otherwise free to be constructed by the publisher, in this case NASA ESDIS Project. A strategy was needed for constructing DOI suffix names that corresponds to each EOS product. Since the onset of the DOI System, publishers have developed conventions to suit their own purposes. These range from random generation to complex, formally controlled vocabularies. An overarching ESDIS goal has been for the DOI names to be attractive for researchers to use in publication applications. Keeping them short and simple is paramount. When adding meaning to the string, it is also important that the name only refer to the data and not to the publisher, so that the DOI can be accepted as persistent even if the data is moved to a new publisher. Most users download EOS product files to their local facilities when

  16. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  17. Higher Education in Balkan Region and its Contribution to the Earth Observation

    NASA Astrophysics Data System (ADS)

    Lisec, A.; Fras, M. K.

    2012-07-01

    The needs for spatial data as well as techniques of Earth Observation are changing, and new professional areas are developing very rapidly. In addition, scientific work and its connection with the teaching process have influenced the introduction of new cognitions into the higher education programs in general. Considering these facts, in the period shorter than one decade, the higher education institutions in the Balkan region, which have study programs in the fields of spatial data acquisition, analysis and spatial decisions, have made significant changes of the curricula. In our research, we have analyzed the current higher education programs in the Balkan region having focused on curricula related to the Earth Observation. Due to historical reasons, these curricula have its roots in surveying study programs in the most Balkan countries. The competences of classical surveying higher educational programs have been changing and nowadays include the wider area of spatial data acquisition, geoinformatics. In parallel, we present the current Earth Observation activities in the selected countries from the Balkan region. Based on the results of our research in the framework of the European program Observe, which aims to establish a new Balkan Earth Observation (EO) community of multilevel stakeholders that will make use of state of the art technological developments, products and knowhow from the existing European EO community and industry, we estimate the contribution of advanced higher educational programs to the Earth Observation activities in the selected countries.

  18. Global Earth Observation System of Systems - GEOSS and USGEO

    NASA Astrophysics Data System (ADS)

    Withee, G. W.

    2008-05-01

    The vision of the Global Earth Observation System of Systems (GEOSS) is to enable a healthy public, economy, and planet through an integrated, comprehensive, and sustained Earth observation system of systems. GEOSS is a global effort to meet the need for timely, quality, long-term information as a basis for sound decision making and enhanced delivery of benefits to society. Benefits are foreseen in a broad range of important societal- economic issues, including understanding health and the environment, water management, ecosystems and biodiversity, weather forecasting, disaster preparation and recovery, ocean monitoring and prediction, climate change and sustainable growth, and agriculture sustainability. GEOSS is coordinated by an international Group on Earth Observations (GEO) established in 2005 and involving 72 countries, the European Commission, and 46 participating organizations. As a Ministerial-level organization, GEO represents a two-way dialog with policy makers on the importance of Earth observations to science and societal benefits. This talk will provide an update of recent GEOSS activities and progress.

  19. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  20. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  1. Advancing an Information Model for Environmental Observations

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Hooper, R. P.; Lehnert, K. A.; Schreuders, K.; Tarboton, D. G.; Valentine, D. W.; Zaslavsky, I.

    2011-12-01

    have been modified to support data management for the Critical Zone Observatories (CZOs). This paper will present limitations of the existing information model used by the CUAHSI HIS that have been uncovered through its deployment and use, as well as new advances to the information model, including: better representation of both in situ observations from field sensors and observations derived from environmental samples, extensibility in attributes used to describe observations, and observation provenance. These advances have been developed by the HIS team and the broader scientific community and will enable the information model to accommodate and better describe wider classes of environmental observations and to better meet the needs of the hydrologic science and CZO communities.

  2. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  3. CEOS Committee on Earth Observations Satellites Consolidated Report, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A concise overview of the committee on Earth Observations Satellites (CEOS) and its Working Groups, covering the history and purpose of the Committee and its accomplishments to date are provided. The report will be updated annually before each Plenary meeting, and as developments in the Working Groups warrant. The committee on Earth Observations Satellites (originally named the International Earth Observations Satellite committee, IEOS) was treated in 1984, in response to a recommendation from the Economic Summit of Industrialized Nations Working Group on Growth, Technology, and Employment's Panel of Experts on Satellite Remote Sensing. This group recognized the multidisciplinary nature of satellite Earth observations, and the value of coordinating across all proposed missions. Thus, CEOS combined the previously existing groups for coordination on Ocean Remote-Sensing Satellites (CORSS) and coordination on Land Remote-Sensing Satellites (CLRSS), and established a broad framework for coordination across all spaceborne Earth observations missions. The first three LEOS Plenary meetings focused on treating and guiding the Working Groups deemed necessary to carry out the objectives of the CEOS members. After the third meeting, it was agreed that a more active orientation was required by the Plenary, and additional issues were brought before the group at the fourth meeting. At the fifth Plenary, international scientific programs and relevant intergovernmental organizations accepted invitations and participated as affiliate members of CEOS. This enabled progress toward integrating satellite data users' requirements into the CEOS process. Data exchange principles for global change research were also adopted. An interim CEOS Plenary meeting was held in April 1992, in preparation for the United Nations Conference on Environment and Development (UNCED). Brief encapsulations of the Plenary sessions immediately follow the Terms of Reference that govern the activities of CEOS as

  4. Nations Adopt Framework Document for Earth Observation System

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-05-01

    Forty-seven countries and the European Commission adopted a framework document to develop a 10-year implementation plan for a Global Earth Observation System of Systems (GEOSS) .It was signed at a 25 April summit in Tokyo. The framework document envisions the GEOSS as a comprehensive, coordinated, and sustained system that will help to better understand Earth systems, including weather, climate, oceans, geology, and ecosystems. An improved understanding could help to enhance human and environmental well-being, improve the management of energy, water, and other natural resources, and mitigate the impacts of natural disasters and of climate variability and change, according to the document.

  5. Earth observations from space: History, promise, and reality. Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  6. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  7. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  8. STS-56 ESC Earth observation of Lansing, Michigan at night

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows Lansing, Michigan at night as photographed during orbit 33 from Discovery, Orbiter Vehicle (OV) 103. The image was recorded with an image intensifier on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates of this frame are 42.7 degrees north latitude and 84.5 degrees west longitude. The image was acquired at 1/60-second shutter speed and -2/3 exposure compensation. Digital file name is ESC03033.IMG.

  9. STS-56 ESC Earth observation of Chicago, Illinois at night

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows Chicago, Illinois with part of the shoreline of Lake Michigan at night as photographed during orbit 33 from Discovery, Orbiter Vehicle (OV) 103. The image was recorded with an image intensifier on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates of this frame are 41.8 degrees north latitude and 87.7 degrees west longitude. The image was acquired at 1/60-second shutter speed and -2/3 exposure compensation. Digital file name is ESC03032.IMG.

  10. STS-56 ESC Earth observation of New Zealand (South Island)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows New Zealand (South Island) as recorded on the 45th orbit of Discovery, Orbiter Vehicle (OV) 103. Westport is easily delineated in the image, which was recorded by the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates are 41.836 degrees south latitude and 171.641 degrees east longitude. (300mm lens, no filter). Digital file name is ESC07007.IMG.

  11. STS-56 ESC Earth observation of Chicago, Illinois at night

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows Chicago, Illinois with part of the shoreline of Lake Michigan at night as photographed during orbit 33 from Discovery, Orbiter Vehicle (OV) 103. The image was recorded with an image intensifier on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates of this frame are 41.8 degrees north latitude and 87.7 degrees west longitude. The image was acquired at 1/60-second shutter speed and -2/3 exposure compensation. Digital file name is ESC03031.IMG.

  12. STS-56 ESC Earth observation of Nagoya, Japan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows Nagoya, Japan as recorded on the 44th orbit of Discovery, Orbiter Vehicle (OV) 103. Lomas Point and the town of Yuaca are visible in the frame. The image was recorded by the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates are 34.991 degrees north latitude and 136.870 degrees east longitude. (180mm lens, no filter). Digital file name is ESC06023.IMG.

  13. STS-56 ESC Earth observation of Atlanta, Georgia at night

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows metropolitan Atlanta, Georgia at night as recorded on the 64th orbit of Discovery, Orbiter Vehicle (OV) 103. The image was recorded using an image intensifier on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates on this image are 33.738 degrees north latitude and 84.414 degrees west longitude. Digital file name is ESC04030.IMG.

  14. STS-56 ESC Earth observation of Melbourne, Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image is of Melbourne, Australia and was photographed from Discovery, Orbiter Vehicle (OV) 103. The image was recorded with a 300mm lens on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates of this frame are 37.49 degrees south latitude and 144.58 degrees east longitude. North will be at the top if the picture is held with the thin trail of clouds at left edge, moving over Port Phillip Bay into Hobsons Bay. Digital file name is ESC07020.

  15. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  16. Advancing Water and Water-Energy-Food Cluster Activities within Future Earth

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Bhaduri, A.; Pahl-Wostl, C.

    2014-12-01

    In building its emerging program, Future Earth has encouraged former Earth System Science Partnership (ESSP) projects to redefine their objectives, priorities and problem approaches so they are aligned with those of Future Earth. These new projects will be characterized by more integrated applications of natural and social sciences as well as dialogue and science integrated across disciplinary boundaries to address a wide range of environmental and social issues. The Global Water System Project (GWSP) has had a heritage of integrating natural and social sciences, and recently started to also look at issues within the Water-Energy-Food (WEF) cluster using similar integrated approaches. As part of the growth of the scientific elements of this cluster, GWSP has approached Future Earth opportunities by addressing the sustainability for Water, Energy, and Food through integrated water information and improved governance.In this presentation the approaches being considered for promoting integration in both water and the WEF cluster will be discussed. In particular, potential contributions of Future Earth to research related to the use and management of water and to issues and science underpinning the W-E-F nexus deliberations will be identified. In both cases the increasing ability to utilize Earth observations and big data will advance this research agenda. In addition, the better understanding of the implications of governance structures in addressing these issues and the options for harmonizing the use of scientific knowledge and technological advances will be explored. For example, insights gained from water management studies undertaken within the GWSP are helping to focus plans for a "sustainable water futures" project and a WEF cluster within Future Earth. The potential role of the Sustainable Development Goals in bringing together the monitoring and science capabilities, and understanding of governance approaches, will be discussed as a framework for facilitating

  17. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  18. Observing atmospheric tides in Earth rotation parameters with VLBI

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  19. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  20. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  1. Earth Observing System - The earth research system of the 1990's

    NASA Technical Reports Server (NTRS)

    Graf, James E.

    1987-01-01

    The Earth Observing Systems' objective of comprehensively studying the earth's change leads to an array of technological and implementational challenges. Included in those challenges are in the in-orbit maintenance of fifty instruments through periodic servicing and the development of an international ground information system which permits rapid access to high quality data. The paper describes these challenges and also discusses potential contributions from international and USA agencies, mission design and payload groupings strategies, as well as design approaches to the spacecraft itself.

  2. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  3. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  4. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.

  5. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  6. Big Data in the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark

    2016-01-01

    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  7. Space technology in support of Earth observational satellites

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    With the sucessful launch of the remote sensing satellite ERS-1 in July 1991, the Earth Observation Commmunity in Europe came of age. The United Kingdom (UK) is guaranteed a leading role in this, the newest of the Space industries, because of its sustained commitment to support and development of related technologies. The Royal Aerospace Establishment (RAE) acts as the focus for these efforts and serves as the platform on which allied and complementary technology programs can be built in a coordinated and strategic manner. This paper presents a summary of the work carried out at the RAE and shows how this has evolved to support the technological requirements of Earth Observation activities in the UK.

  8. Earth observations during Space Shuttle mission STS-30

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.; Whitehead, Victor S.; Amsbury, David L.; Evans, Cynthia A.

    1990-01-01

    The earth observations that were conducted during the STS-30 mission in May, 1989 are examined. An overview of the STS-30 mission is given, noting the launch of the Magellan spacecraft. The major positions of STS-30 photographs are illustrated and the sun elevation angles of the photographs and the types of films used during the mission are listed. Photographs of various regions are described, focusing on North Africa and the Middle East, South and Southeast Asia, Central America, the Caribbean, and the Southern U.S. The use of the photographs for various research purposes is discussed, including oceanography, meteorology, and polarization experiments. Also, consideration is given to the use of video/camcorders for earth observations.

  9. US data policy for Earth observation from space

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    Distribution of data from U.S. Earth observations satellites is subject to different data policies and regulations depending on whether the systems in question are operational or experimental. Specific laws, regulations, and policies are in place for the distribution of satellite data from the National Oceanic and Atmospheric Administration (NOAA) operational environmental satellites and from NASA experimental systems. There is a government wide policy for exchange of data for global change research. For the Earth Observing System (EOS) and its international partner programs, a set of data exchange principles is nearing completion. The debate over the future of the LANDSAT program in the U.S. will impact policy for the programs, but the outcome of the debate is not yet known.

  10. Coordinated Cassini and Earth-based Observations of Saturn's Aurora During the 2013 Opposition

    NASA Astrophysics Data System (ADS)

    Crary, F.; Badman, S.; Bunce, E.; Hansen, K.; Kurth, W.; Nichols, J.; Stallard, T.; Pryor, W.

    2013-09-01

    During April and May, 2013, coordinated observations of Saturn's aurora were made by the Cassini spacecraft and several Earth-based telescopes. Here we report on the measurements, geometry and timing of these observations and introduce additional presentations of the results. The observations were made between April 18-23, April 29, May 7 and May 16-22. To the greatest extent possible, times were selected to allow simultaneous observations from Cassini and from Earth. While the Earth-based telescopes had a view of Saturn's north pole, Cassini made observations of both the north and south poles. This permits stereo studies of auroral structure when Cassini viewed the northern hemisphere and investigations of conjugate aurora when Cassini viewed the southern hemisphere. The Cassini remote sensing measurements were made primarily by the Ultraviolet Imaging Spectrometer (UVIS) and the Visible and Infrared Mapping Spectrometer (VIMS) although the Imaging Science Subsystem (ISS) also collected data. In situ measurements of the magnetosphere were also the magnetometer, the Radio and Plasma Wave Science (RPWS) instrument and the Magnetospheric Imaging Instrument (MIMI.) During this campaign the spacecraft was typically between 10 and 23 Saturn radii from the planet, at latitudes up to 61 degrees and in the late afternoon to dusk side of the magnetosphere. Earth-based observations were made in the ultraviolet by the Hubble Space Telescope's Advanced Camera for Survey and in the infrared by the Keck observatory and Infrared Telescope Facility and by the European Southern Observatory's Very Large Telescope.

  11. Observation of near earth asteroids with using of combined method

    NASA Astrophysics Data System (ADS)

    Sybiryakova, Yevgeniya; Shulga, Alexandr; Vovk, Vasyl; Kulichenko, Mykola

    2016-07-01

    Observation of many near earth asteroids (NEAs) especially small diameters (less than 140m) are possible only during close approach with Earth when their magnitude and apparent motion increasing. The combined method of observation is used in RI NAO for observation of NEAs with high apparent motion. Combined method consists in separation of processes of observation of reference stars and NEA and using of the short time delay and integration mode (TDI). The main condition of TDI mode using is the fixing the column of CCD in the direction of NEA motion, for this goal the special device camera rotator was developed and applied. Camera rotator rotates the CCD camera around the optical axis of lens. All observations in RI NAO were carried out with using of KT-50 telescope (D=0.5m, F=3.0m). The telescope equipped with CCD-camera Apogee Alta U9000 (3k×3k) and camera rotator. Field of view of the telescope is 0.7°×0.7°. Limiting magnitude is 18.5. Since 2008, 5300 positions of 325 NEAs have been obtained on KT-50 telescope. RI NAO has an experience in the follow-up NEA observation and small size and low elongation (with solar elongation less then 45°) NEA observation. (O-C) of position are within ±1˝.

  12. Mission Operations of Earth Observing-1 with Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Tran, Daniel Q.; Chien, Steve; Cichy, Benjamin; Sherwood, Rob; Mandl, Dan; Frye, Stuart; Shulman, Seth; Szwaczkowski, Joseph; Boyer, Darrell; VanGaasbeck, Jim

    2006-01-01

    Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the past mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the more autonomous operations to which we transferred as part of the Autonomous Sciencecraft Experiment (ASE).

  13. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  14. Space Shuttle earth observations photography - Data listing process

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1992-01-01

    The data listing process of the electronic data base of the Catalogs of Space Shuttle Earth Observations Photography is described. Similar data are recorded for each frame in each role from the mission. At the end of each roll, a computer printout is checked for mistakes, glitches, and typographical errors. After the roll and frames have been corrected, the data listings are ready for transfer to the data base and for development of the catalog.

  15. Ames Research Center SR&T program and earth observations

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.

    1972-01-01

    An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.

  16. Digital image processing of earth observation sensor data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.

    1976-01-01

    This paper describes digital image processing techniques that were developed to precisely correct Landsat multispectral earth observation data and gives illustrations of the results achieved, e.g., geometric corrections with an error of less than one picture element, a relative error of one-fourth picture element, and no radiometric error effect. Techniques for enhancing the sensor data, digitally mosaicking multiple scenes, and extracting information are also illustrated.

  17. Earth observation data systems in the 1980's

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.

    1980-01-01

    The requirements for future data systems for earth resource observation data are examined. Estimates are made for both expected data volumes and data delivery requirements. Research and development activities presently underway are described, including (1) high-speed processors such as the massively parallel processor; (2) data storage systems, including optical disk configurations and (3) distributed data systems such as high-speed local networks and the applications data service system.

  18. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  19. Earth's colour unchanged since 1967: results from earthshine observations

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Flynn, Chris; Gleisner, Hans; Schwarz, Henriette

    2014-05-01

    The colour of Earthlight is a function of atmospheric, surface and ocean conditions because each scatters light in a characteristic way. The colour of Earth can in principle be determined and monitored from satellites - but geostationary satellites do not observe in multiple visual bands, and low Earth orbit platforms do not provide instantaneous colour pictures of the terrestrial disc. Observations of the dark side of the Moon - illuminated by earthlight - can be used to determine the terrestrial colour, and was done accurately in 1967 with astronomical photometric techniques. Until now, such techniques have not been re-applied. We report on multi-band visual photometry of the earthshine in 2011/2012. Scattered light in the atmosphere and the equipment is a difficult issue to circumvent - but for a unique pair of observations in the Johnson B and V bands we have a situation where scattered light cancels closely and thus we can estimate the Johnson B-V colours of the earthshine itself. By arguing on the basis of changes in reflected sunlight we can estimate the colour of the earthlight striking the Moon - and hence the colour of the Earth at that particular time. We find good agreement with the a measurement performed 47 years previously, and broad agreement with historic measurements from the 1920s and 30s. This similarity has fundamental consequences for the climate system feedback mechanisms, discussed in this poster.

  20. Earth Observation from Space - The Issue of Environmental Sustainability

    NASA Technical Reports Server (NTRS)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  1. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  2. An improved proton magnetometer for Earth's magnetic field observation

    NASA Astrophysics Data System (ADS)

    Xiao, Chengyu; Zhang, Shuang; Guo, Xin; Fu, Haoyang

    2015-09-01

    As a precision instrument to measure the earth magnetic field, proton magnetometer is widely used in different fields such as geological survey, buried objects detection and earth field variations. Due to poor signal to noise ratio (SNR) of the system, proton magnetometer suffers from low sensitivity which directly affects the performance. In order to increase the sensitivity, we present an improved proton magnetometer. First, the effect of matching resistance on Q value is discussed to enhance SNR, and high matching resistance has been chosen to improve the Q value of the resonant circuit. Second, noise induced by pre-amplifier is investigated in order to obtain low noise signal, and we adopt the JFET with noise figure less than 0.5dB as the pre-amplifier. Third, by using band-pass filter, low-noise output signal is obtained. Fourth, the method of period measurement based on CPLD is employed to measure frequency of the square wave shaped from the output sinusoidal signal. High precision temperature compensate crystal oscillator (TCXO) has been used to improve the frequency measurement accuracy. Last, experimental data is obtained through field measurements. By calculating the standard deviation, the sensitivity of the improved proton magnetometer is 0.15nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  3. New Advances in Observations Around the Turbopause

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Yuan, T.; Woods, T. N.; Eparvier, F. G.; Sulzer, M. P.; Aponte, N.; Gonzalez, S. A.; Nicolls, M. J.

    2013-12-01

    The aeronomy of the turbopause is rich in both chemistry and physics, but has avoided detailed exploration. In this regime, both neutral and plasma processes coexist and interact but this region, centered around 100 km altitude, is almost unreachable from below or above. Our observational knowledge depends upon remote sensing from either below or above augmented by a smattering of in situ measurements from sounding rockets. A comparison of almost any parameter measured in situ from these sounding rocket flights attests to the complexity, the variability, and above all unexplained aeronomy of the turbopause. In this presentation, three complimentary improvements in remote sensing observations will be discussed focusing on how they contribute to new insights on the aeronomy of the turbopause and its dynamics. The first is the improvement in observation of the solar irradiance obtained from the EVE instrument on the NASA SDO satellite. This measurement, with a cadence of at least 10 seconds, has enabled the E-region's response to solar dynamics to be studied for a first time. Note the E-region lies at or just above the turbopause. A second advancement in experimental technique is the coordination between incoherent scatter radars to observe with altitude resolution of better than 2 km the ionosphere straddling the turbopause--upper D-region and E-region. A third development is the coordination between collocated sodium Lidar and ionosondes to study the dynamics and longer term variability of the metal neutral and metal ion layers that are prevalent around the turbopause.

  4. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  5. Observation of Anomalous Phonons in Orthorhombic Rare-earth Manganites

    SciTech Connect

    P Gao; H Chen; T Tyson; Z Liu; J Bai; L Wang; Y Chio; S Cheong

    2011-12-31

    We observe the appearance of a phonon near the lock-in temperature in orthorhombic REMnO{sub 3} (RE denotes rare earth) (RE: Lu and Ho) and anomalous phonon hardening in orthorhombic LuMnO{sub 3}. The anomalous phonon occurs at the onset of spontaneous polarization. No such changes were found in incommensurate orthorhombic DyMnO{sub 3}. These observations directly reveal different electric polarization mechanisms in the E-type and incommensurate-type orthorhombic REMnO{sub 3}.

  6. Experimenting with Sensor Webs Using Earth Observing 1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2004-01-01

    The New Millennium Program (NMP) Earth Observing 1 ( EO-1) satellite was launched November 21, 2000 as a one year technology validation mission. After an almost flawless first year of operations, EO-1 continued to operate in a test bed d e to validate additional technologies and concepts that will be applicable to future sensor webs. A sensor web is a group of sensors, whether space-based, ground-based or air plane-based which act in a collaborative autonomous manner to produce more value than would otherwise result from the individual observations.

  7. Grid-based platform for training in Earth Observation

    NASA Astrophysics Data System (ADS)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  8. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  9. Observations of nonadiabatic acceleration of ions in Earth`s magnetotail

    SciTech Connect

    Frank, L.A.; Paterson, W.R.; Kivelson, M.G.

    1994-08-01

    The authors present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth`s magnetotail at geocentric radial distances 35 to 87 R{sub E}. These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the `lima bean` shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, {open_quotes}lima bean{close_quotes} shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. 31 refs., 13 figs.

  10. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  11. Earth observations during Space Shuttle Flight STS-49: Endeavor's Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.; Evans, Cynthia; Ackleson, Steven; Brumbaugh, Frederick R.; Helms, David R.; Lulla, Kamlesh P.; Wilkinson, M. Justin; Brandenstein, Daniel C.; Chilton, Kevin P.; Hieb, Richard J.

    1994-01-01

    A brief mission overview of STS-49 is given, and some of the pictorially outstanding and scientifically interesting photographs obtained during the mission are presented. The Earth observations are described and include the following: the Southwestern Pacific Ocean -- wind and water; the Southwestern Pacific Ocean -- coasts and volcanoes; the US; Cuba and the Bahamas; South America; Africa; the Red Sea and Western Indian Ocean; and the Indian Subcontinent.

  12. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  13. The NASA Environment Remote Sensing Analysis Facility (ERSAF) support for Space Shuttle earth observations

    NASA Technical Reports Server (NTRS)

    Helms, David R.; Jaklitch, Patricia A.; Chambers, Mark A.; Whitehead, Victor S.

    1990-01-01

    It is shown that dedicated premission, real-time, and postmission support for planning, acquiring, and interpreting remotely sensed data of specific sites in terms of illumination geometry, atmospheric transmissivity, and preferred viewing is required in order to acquire the best possible earth-viewing photography for each Shuttle mission. Mission support has resulted in significant advances for the earth observation activities and other experiments carried out by astronauts. Scientific and mission support are described and equipment and capabilities are reviewed. Future advances listed include improvement of existing data bases, expanding access to climatological databases of atmospheric constituents and aerosols, and expanding access to image data such as the DMSP, while Space Station Freedom will require 24-hour operational support.

  14. Calibration support for the Earth Observing System Project

    NASA Technical Reports Server (NTRS)

    Guenther, B. W.

    1988-01-01

    The Earth Observing System Project (EOS) program guidelines establishes significantly more stringent requirements on calibrations of instruments. This requirement is driven by the need for long-term continuity of acquired data sets and the use of measurements in interdisciplinary investigations. Personnel from the Standards and Calibration Office have been supporting the Program and Project in interpreting these goals into specific requirements. Contributions to EOS have included participation in the Panel of Experts which produced a list of consensus items necessary for accomplishing an accurate calibration and suggested EOS Project Calibration Policy, and drafting the announcement of opportunity and bidders information package positions on instrument calibration and data product validation. Technical staffing was provided to the NASA delegates to the Committee on Earth Orbiting Satellites (club of space-faring nations) for the standing working group on Calibration and Data Validation.

  15. The I4 Online Query Tool for Earth Observations Data

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.

    2015-01-01

    The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or

  16. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III; Smith, G. Louis; Cooper, John E.

    1996-01-01

    Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.

  17. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  18. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  19. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  20. Earth observational research using multistage EOS-like data

    NASA Technical Reports Server (NTRS)

    Johannsen, C. J.; Landgrebe, D. A.

    1994-01-01

    This grant was funded as a part of a program in which both research and educational impact were intended. Research work under this grant is directed at the understanding and use of future hyperspectral data such as that from imaging spectrometers. Specifically, the objectives of the work were: to prepare suitable means for analyzing data from sensors which have large numbers of spectral bands, to advance the fundamental understanding of the manner in which soils and vegetative materials reflect high spectral resolution optical wavelength radiation, and to maximize the impact of the results on the educational community. Over the life of the grant, the work has thus involved basic earth science research and information system technique understanding and development in a mutually supportive way. However, during the later years it became necessary to focus the work primarily on the first and last areas, due to a steadily decreasing level of effort.

  1. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  2. Developing Earth Observations Requirements for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Becker-Reshef, I.; Vermote, E.; Justice, C. O.

    2013-12-01

    Recognizing the dynamic nature of agricultural cultivation both within and between years and across the globe, the Group on Earth Observations (GEO) is developing an agricultural monitoring (GEO-GLAM) system with the goal of enhancing the availability and use of satellite and in situ Earth observations (EO) for the generation of timely and accurate information on national, regional, and global food supply. One of the key components of the GEO-GLAM system is the coordination of satellite observations so as to ensure sufficient and appropriate data volume and quality for agricultural monitoring. Therefore, it is essential that we develop EO requirements which articulate in a spatially explicit way where, when, how frequently, and at what spatial resolution satellite imagery must be acquired to meet the needs of a variety of agricultural monitoring applications. Accordingly, best-available cropland location information ('where?') in conjunction with ten years of MODIS surface reflectance data have been used to characterize the timing and duration of the agricultural growing season ('when?') in the form of agricultural growing season calendars (GSCs) for all major agricultural areas of the Earth. With respect to temporal resolution, we must first identify the frequency with which we require imagery inputs for monitoring applications such as crop condition, crop type, crop yield estimation, and planted and harvested area estimation. Members of the GEO Agriculture Monitoring Community of Practice - a group of international scientists - have combined their knowledge and expertise to articulate these general requirements. Second, we must determine how cloud cover impacts the ability of optical sensing systems to meet these established temporal resolution requirements. To this end, MODIS Terra (morning; 2000-2011) and Aqua (afternoon; 2002-2011) observations have been analyzed to derive probabilities of a cloud free clear view at different times of day throughout the

  3. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  4. Earth Observations and the Water-Energy-Food Security Nexus

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Marx, S.

    2013-12-01

    The Water-Energy-Food (W-E-F) Security Nexus has received a great deal of attention internationally since 2011 when the World Economic Forum identified it as one of the three largest threats to the global economy. Since then several international conferences and research initiatives have focused on the linkages and synergies between these sectors. In addition, it has been recognized that land and/or ecosystems must also be considered as part of this nexus to fully understand the linkages between the sectors. The Global Water System Project carried out a preliminary assessment of the role of basin management on W-E-F security in a number of transboundary basins to determine the factors that drive this nexus, to understand how W-E-F security is perceived; to evaluate the degree to which data are used in making decisions related to this nexus; and to identify opportunities for enhancing the role of Earth Observations in making decisions relevant to W-E-F security. This assessment which relied on expert surveys is supplemented by a more in-depth case study in the Lake Winnipeg Basin which includes the basin of the Red River of the North. This paper provides a summary of the results of this assessment with an emphasis on the actual and potential roles of Earth Observations. In particular, their possible role is discussed in both national and transboundary basin contexts. Recommendations arising from the study deal with data sets and information systems, the need for targets related to the W-E-F Nexus, and possible new approaches for enhancing W-E-F resilience through the use Earth Observations to better plan and monitor the movement of water on the landscape.

  5. Neoproterozoic Earth System change: Observations of the rock record

    NASA Astrophysics Data System (ADS)

    Prave, A. R.; Fallick, A. E.; Hoffmann, K. H.; Benn, D.

    2003-04-01

    Radically nonuniformitarian modes of Earth System behaviour have been hypothesized as hallmarks of Neoproterozoic Earth history. In particular, severe climatic extremes (worldwide glaciations marked by globally frozen oceans to ultra-greenhouses) are envisaged to have occurred at least twice; these inferred harsh climates are invoked as a potential driving mechanism for biospheric evolution. Such hypotheses are intellectually elegant and their vividness grabs public attention, but how strictly do they adhere to the observational facts of the rock record? Here we show examples of Neoproterozoic glacigenic successions that imply severe, but not catastrophic climate change. The first example is the Port Askaig Tillite of Scotland. This unit was deposited in low latitudes (<30^o) and records the older ("Sturtian") glacial episode. Importantly, it contains evidence for freeze-thaw cycles on a number of time scales and, when combined with similar features observed in glacial rocks elsewhere (from both the younger and older glacial episodes), indicates that low-latitude climate does not record a simple unidirectional, long-term refrigeration of Earth. The second example is δ13C datasets associated with the older and younger glacial episodes in Namibia and California, USA. When combined with detailed stratigraphic data, these show: (1) that presumed coeval carbonates that cap the glacigenic successions display a wide range in δ13C values but share similar long-term trends; and (2) carbonates units below the erosive base of the glacigenic rocks record a decline in δ13C (as noted by previous workers) but in several cases a recovery towards heavier values is preserved in the topmost carbonate strata. These data imply that biogeochemically mediated conditions were regionally variable, both before and in the immediate aftermath of Neoproterozoic glaciations. Thus, any attempts to infer or model the nature, magnitude and potential significance of Neoproterozoic climate change

  6. Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases

    PubMed Central

    Hamm, Nicholas A. S.; Soares Magalhães, Ricardo J.; Clements, Archie C. A.

    2015-01-01

    Earth observation (EO) is the use of remote sensing and in situ observations to gather data on the environment. It finds increasing application in the study of environmentally modulated neglected tropical diseases (NTDs). Obtaining and assuring the quality of the relevant spatially and temporally indexed EO data remain challenges. Our objective was to review the Earth observation products currently used in studies of NTD epidemiology and to discuss fundamental issues relating to spatial data quality (SDQ), which limit the utilization of EO and pose challenges for its more effective use. We searched Web of Science and PubMed for studies related to EO and echinococossis, leptospirosis, schistosomiasis, and soil-transmitted helminth infections. Relevant literature was also identified from the bibliographies of those papers. We found that extensive use is made of EO products in the study of NTD epidemiology; however, the quality of these products is usually given little explicit attention. We review key issues in SDQ concerning spatial and temporal scale, uncertainty, and the documentation and use of quality information. We give examples of how these issues may interact with uncertainty in NTD data to affect the output of an epidemiological analysis. We conclude that researchers should give careful attention to SDQ when designing NTD spatial-epidemiological studies. This should be used to inform uncertainty analysis in the epidemiological study. SDQ should be documented and made available to other researchers. PMID:26678393

  7. Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases.

    PubMed

    Hamm, Nicholas A S; Soares Magalhães, Ricardo J; Clements, Archie C A

    2015-12-01

    Earth observation (EO) is the use of remote sensing and in situ observations to gather data on the environment. It finds increasing application in the study of environmentally modulated neglected tropical diseases (NTDs). Obtaining and assuring the quality of the relevant spatially and temporally indexed EO data remain challenges. Our objective was to review the Earth observation products currently used in studies of NTD epidemiology and to discuss fundamental issues relating to spatial data quality (SDQ), which limit the utilization of EO and pose challenges for its more effective use. We searched Web of Science and PubMed for studies related to EO and echinococossis, leptospirosis, schistosomiasis, and soil-transmitted helminth infections. Relevant literature was also identified from the bibliographies of those papers. We found that extensive use is made of EO products in the study of NTD epidemiology; however, the quality of these products is usually given little explicit attention. We review key issues in SDQ concerning spatial and temporal scale, uncertainty, and the documentation and use of quality information. We give examples of how these issues may interact with uncertainty in NTD data to affect the output of an epidemiological analysis. We conclude that researchers should give careful attention to SDQ when designing NTD spatial-epidemiological studies. This should be used to inform uncertainty analysis in the epidemiological study. SDQ should be documented and made available to other researchers. PMID:26678393

  8. Optical MEMS in space instruments for Earth observation and astronomy

    NASA Astrophysics Data System (ADS)

    Zamkotsian, F.; Liotard, A.; Lanzoni, P.; Viard, T.

    2013-03-01

    Optical MEMS could be major candidates for designing future generation of space instruments. In addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. We have listed new functions associated with several types of MEMS. Instrumental applications are derived and we propose two promising concepts using object selection and spectral tailoring techniques. In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and obtain a field of view (FOV) with an optically enhanced SNR. Our concept consists in replacing the plain slit in classical designs by an active row of MOEMS. Experimental demonstration of this concept has been conducted on a dedicated bench: a scene with a contiguous bright area has been focused on a micromirror array and imaged on a CCD detector. After the programmable slit, the straylight issued from the bright zone is polluting the scene; the micromirrors located on the bright area are switched off, removing almost completely the straylight in the instrument. In Astronomy and Earth Observation, we propose an innovative reconfigurable instrument: a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array. The FOV is linear and each point spectrum could be modified dynamically along the second direction. A demonstrator has been designed and its realization is under way for testing the unique performances of this instrument.

  9. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Astrophysics Data System (ADS)

    Roberts, Y.; Pilewskie, P.; Kindel, B. C.; Feldman, D.; Collins, W.

    2012-12-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth's climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  10. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  11. Altimetric system: Earth observing system. Volume 2h: Panel report

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Born, George; Chase, Robert R. P.; Fu, Lee-Lueng; Mouginis-Mark, Peter; Parsons, Chester; Tapley, Byron

    1987-01-01

    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements.

  12. STS-55 Earth observation shows a sunset over South America

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows a spectacular sunset view over South America and the cleanest atmosphere since before the volcanic eruptions of 1991, according to NASA scientists studying the STS-55 photography. A dark cloud layer is evident at an altitude of 7 to 9 kilometers. Five kilometers higher, a pink layer of sulfuric acid droplets and ammonium sulfate particles begins at the tropopause and extends upward into the stratosphere to 19 kilometers. Above that, blue scattering by the atmosphere diminishes until, at an altitude of 60 kilometers, the blackness of space is predominant.

  13. Program on Earth Observation Data Management Systems (EODMS), appendixes

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Bay, S. M.; Foutch, T. K.; Hays, T. R.; Ballard, R. J.; Makin, K. P.; Power, M. A.

    1976-01-01

    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users.

  14. NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS

    SciTech Connect

    Mainzer, A.; Bauer, J.; Masiero, J.; Eisenhardt, P.; Grav, T.; Mo, W.; McMillan, R. S.; Cutri, R. M.; Walker, R.; Wright, E.; Tholen, D. J.; Jedicke, R.; Denneau, L.; Spahr, T.; DeBaun, E.; Elsbury, D.; Gautier, T.; Gomillion, S.; Hand, E.; Watkins, J.; and others

    2011-12-20

    With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 {mu}m, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981 {+-} 19 NEAs larger than 1 km and 20,500 {+-} 3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32 {+-} 0.14 below 1.5 km. This power-law slope produces {approx}13, 200 {+-} 1900 NEAs with D > 140 m. Although previous studies predict another break in the cumulative size distribution below D {approx} 50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100 and 1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.

  15. The value of earth observations: methods and findings on the value of Landsat imagery

    USGS Publications Warehouse

    Miller, Holly; Serbina, Larisa O.; Richardson, Leslie A.; Ryker, Sarah J.; Newman, Timothy R.

    2016-01-01

    Data from Earth observation systems are used extensively in managing and monitoring natural resources, natural hazards, and the impacts of climate change, but the value of such data can be difficult to estimate, particularly when it is available at no cost. Assessing the socioeconomic and scientific value of these data provides a better understanding of the existing and emerging research, science, and applications related to this information and contributes to the decision making process regarding current and future Earth observation systems. Recent USGS research on Landsat data has advanced the literature in this area by using a variety of methods to estimate value. The results of a 2012 survey of Landsat users, a 2013 requirements assessment, and 2013 case studies of applications of Landsat imagery are discussed.

  16. San Francisco Bay Area Fault Observations Displayed in Google Earth

    NASA Astrophysics Data System (ADS)

    Lackey, H.; Hernandez, M.; Nayak, P.; Zapata, I.; Schumaker, D.

    2006-12-01

    According to the United States Geological Survey (USGS), the San Francisco Bay Area has a 62% probability of experiencing a major earthquake in the next 30 years. The Hayward fault and the San Andreas fault are the two main faults in the Bay Area that are capable of producing earthquakes of magnitude 6.7 or larger - a size that could profoundly affect many of the 7 million people who live in the Bay Area. The Hayward fault has a 27% probability of producing a major earthquake in next 30 years, and the San Andreas fault has a 21% probability. Our research group, which is part of the SF-ROCKS high school outreach program, studied the Hayward and San Andreas faults. The goal of our project was to observe these faults at various locations, measure the effects of creep, and to present the data in Google Earth, a freeware tool for the public to easily view and interact with these and other seismic-hazard data. We examined the Hayward and San Andreas faults (as mapped by USGS scientists) in Google Earth to identify various sites where we could possibly find evidence of fault creep. We next visited these sites in the field where we mapped the location using a hand- held Global Positioning System, identified and photographed fault evidence, and measured offset features with a ruler or tape measure. Fault evidence included en echelon shears in pavement, warped buildings, and offset features such as sidewalks. Fault creep offset measurements range from 1.5 19 cm. We also identified possible evidence of fault creep along the San Andreas fault in South San Francisco where it had not been previously described. In Google Earth, we plotted our field sites, linked photographs showing evidence of faulting, and included detailed captions to explain the photographs. We will design a webpage containing the data in a Keyhole Markup Language (KML) file format for display in Google Earth. Any interested person needs only to download the free version of Google Earth software and visit our

  17. Remote Sensing of Tolkien's Middle Earth: A Unique Interactive Application of Earth System Observational Tools

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Dean, K.; Foster, R.; Kalbfleisch, D.; Peirce, M.; Simmons, T.

    2004-12-01

    The power of remote sensing tools were combined with the creativity of bright young minds and the magic of J.R.R. Tolkien's Middle Earth to provide a unique educational opportunity. Four students, age 12 to 15, were introduced to the basics of space-based Earth observation tools and aerial photography interpretation during the 10-day Alaska Summer Research Academy at the University of Alaska Fairbanks June 9-18, 2004. The students created an interactive map of Tolkein's Middle Earth by selecting aerial photographs, Landsat and FLIR images to represent areas of the Hobbits' journey as described in the popular Lord of the Rings books and films. Ground truthing excursions were made in the Alaskan interior to determine if the regions selected from the images and photographs indeed fit with Tolkein's descriptions. The students presented their final results to their peers in a morning news format, following the flight of the Hobbits across the landscape in their quest to destroy the One Ring.

  18. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  19. NASA's Earth Observations Program: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    A presentation will be given at the Annual National Awards and President's Invited Lecture. The event is sponsored by the Associated Scientific and Technical Societies, an organization which serves the interests of 40,000 scientists and engineers all over South Africa. A general presentation will be given on the topic of NASA's Earth Observation Program and will be supplemented with visualizations using the NASA/NOAA Earth Science Electronic theater. Included will be space observations with an eye on southern Africa, including Etosha National Park, Namibia, Okavanga Delta, Botswana, Victoria Falls, Zimbabwe, and Cape Town, the Highveld around Johannesburg, Blyde River Canyon, and the Lowveld of Kruger National Park in South Africa; also included will be some AVHRR imagery of fire occurrence during the dry season, mostly the Miombo woodland of Zambia, Angola, Malawi, and northern Mozambique, supplemented with SeaWiFS imagery for VI, aerosols, clouds, AVHRR fire time series, Landsat TM (and possibly ETM+, if available), and other global data sets. Would also like to include some Terra animations from SVS, including perhaps the launch sequence. The presentation would conclude with some of the ER-2 MAS imagery from Brazil that highlights the capability that we plan to bring to Africa in August 2000.

  20. Dream project: Applications of earth observations to disaster risk management

    NASA Astrophysics Data System (ADS)

    Dyke, G.; Gill, S.; Davies, R.; Betorz, F.; Andalsvik, Y.; Cackler, J.; Dos Santos, W.; Dunlop, K.; Ferreira, I.; Kebe, F.; Lamboglia, E.; Matsubara, Y.; Nikolaidis, V.; Ostoja-Starzewski, S.; Sakita, M.; Verstappen, N.

    2011-01-01

    The field of disaster risk management is relatively new and takes a structured approach to managing uncertainty related to the threat of natural and man-made disasters. Disaster risk management consists primarily of risk assessment and the development of strategies to mitigate disaster risk. This paper will discuss how increasing both Earth observation data and information technology capabilities can contribute to disaster risk management, particularly in Belize. The paper presents the results and recommendations of a project conducted by an international and interdisciplinary team of experts at the 2009 session of the International Space University in NASA Ames Research Center (California, USA). The aim is to explore the combination of current, planned and potential space-aided, airborne, and ground-based Earth observation tools, the emergence of powerful new web-based and mobile data management tools, and how this combination can support and improve the emerging field of disaster risk management. The starting point of the project was the World Bank's Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) program, focused in Central America. This program was used as a test bed to analyze current space technologies used in risk management and develop new strategies and tools to be applied in other regions around the world.

  1. GMES Initial Operations - Network for Earth Observation Research Training (GIONET)

    NASA Astrophysics Data System (ADS)

    Nicolas-Perea, V.; Balzter, H.

    2012-12-01

    GMES Initial Operations - Network for Earth Observation Research Training (GIONET) is a Marie Curie funded project that aims to establish the first of a kind European Centre of Excellence for Earth Observation Research Training. GIONET is a partnership of leading Universities, research institutes and private companies from across Europe aiming to cultivate a community of early stage researchers in the areas of optical and radar remote sensing skilled for the emerging GMES land monitoring services during the GMES Initial Operations period (2011-2013) and beyond. GIONET is expected to satisfy the demand for highly skilled researchers and provide personnel for operational phase of the GMES and monitoring and emergency services. It will achieve this by: -Providing postgraduate training in Earth Observation Science that exposes students to different research disciplines and complementary skills, providing work experiences in the private and academic sectors, and leading to a recognized qualification (Doctorate). -Enabling access to first class training in both fundamental and applied research skills to early-stage researchers at world-class academic centers and market leaders in the private sector. -Building on the experience from previous GMES research and development projects in the land monitoring and emergency information services. The training program through supervised research focuses on 14 research topics (each carried out by an Early Stage Researchers based in one of the partner organization) divided in 5 main areas: Forest monitoring: Global biomass information systems Forest Monitoring of the Congo Basin using Synthetic Aperture radar (SAR) Multi-concept Earth Observation Capabilities for Biomass Mapping and Change Detection: Synergy of Multi-temporal and Multi-frequency Interferometric Radar and Optical Satellite Data Land cover and change: Multi-scale Remote Sensing Synergy for Land Process Studies: from field Spectrometry to Airborne Hyperspectral and

  2. Probing Geomagnetic Jerks combining Geomagnetic and Earth Rotation Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Holme, R. T.; de Viron, O.

    2013-12-01

    Geomagnetic jerks, first observed in the late 1970s, are the most rapid variations in the observed geomagnetic field that are believed to be of internal origin. Their occurence has been correlated with a number of different geophysical phenomena. Here we consider simultaneous features in variations in Earth's length of day. Recently, we have provided a simple description of non-atmospheric variations in length of day (LOD), consisting of 3 components: a slowly varying decadal trend, a 5.9-year oscillation, and occasional sudden jumps. Both of the shorter period parts of this correlate with geomagnetic jerks, with peaks in the LOD oscillation being contemporaneous with well-known jerk occurances (for example in 1969, 1972, 1978 and 1982), and jumps in the LOD fitting a jerk observed in satellite data in 2003.5. The simultaneous observation of these two features constrains Earth structure, in particular limiting the electric conductivity of the deep mantle. However, the nature of the LOD changes also may change the paradigm for the study of jerk timings. it is customarily assumed that the jerks represent features in the geomagnetic field that are continuous in the secular variation, but discontinuous in its derivative, the secular acceleration. However, a jump in LOD suggested by the modelling of the data would correspond also to a jump in SV, thus invalidating standard methods for temporal location of a jerk (which will consider the intersection of best-fit straight lines to the secular variation before and after). Olsen and Mandea have localised a jerk in satellite virtual observatory data using flow modelling; this seems the most promising method to investigate whether jerks could have discontinuous secular variation. We apply similar methods to time series of virtual geomagnetic obseratories from satellite data to further explore geomagnetic jerks and their rotational links in the geomagnetic satellite era.

  3. Integrating research infrastructures for solid Earth science in Europe: the European Plate Observing System

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Giardini, D.; EPOS-PP Consortium

    2011-12-01

    The European Plate Observing System (EPOS) coordinates and integrates the research infrastructures in the European-Mediterranean region, to promote innovative approaches for a better understanding of the physical processes controlling earthquakes, volcanic eruptions, tsunamis as well as those driving tectonics and Earth surface dynamics. The EPOS 30-year plan aims at integrating the currently scattered, but highly advanced European facilities into one distributed, coherent multidisciplinary Research Infrastructure allowing sustainable long-term Earth science research strategies and an effective coordinated European-scale monitoring facility for solid Earth dynamics taking full advantage of new e-science opportunities. EPOS has been approved by ESFRI (the European Scientific Forum for Research Infrastructures) as one of the critical European Research Infrastructures, and the EPOS Preparatory Phase is supported by the European Commission FP7 program. The cooperation between EPOS and similar US infrastructures (i.e. Earthscope) will be ensured by dedicated NSF-EC funding. EPOS is integrating data from permanent national and regional geophysical monitoring networks (seismological, GPS), with the observations from "in-situ" observatories (volcano observatories, in-situ fault zone test sites) and temporary-monitoring and laboratory experiments through a cyber-infrastructure for data mining and processing, and facilities for data integration, archiving and exchange. The vision is to integrate these existing research infrastructures in order to increase the accessibility and usability of multidisciplinary data from monitoring networks, laboratory experiments and computational simulations enhancing worldwide interoperability in Earth Science by establishing a leading integrated European infrastructure and services. More recently the EPOS and the satellite Earth Observation communities are collaborating in order to promote the integration of data from in-situ monitoring

  4. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  5. Satellite soil moisture for advancing our understanding of earth system processes and climate change

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; de Jeu, Richard

    2016-06-01

    Soil moisture products obtained from active and passive microwave satellites have reached maturity during the last decade (De Jeu and Dorigo, 2016): On the one hand, research algorithms that were initially applied to sensors designed for other purposes, e.g., for measuring wind speed (e.g. the Advanced Scatterometer (ASCAT)), sea ice, or atmospheric parameters (e.g. the TRMM Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometer - Earth Observing System AMSR-E), have developed into fully operational products. On the other hand, dedicated soil moisture satellite missions were designed and launched by ESA (the Soil Moisture Ocean Salinity (SMOS) mission) and NASA (the Soil Moisture Active Passive (SMAP) mission).

  6. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  7. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  8. STS-56 Earth observation of the northeastern Nile Delta

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation of the northeastern Nile Delta was photographed from the Earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The branch of the Nile featured in the frame is Daimietta. The Suez Canal marks the boundary of the Nile Delta agriculture and the Sinai Desert to the right. Lake Masada, the dark waterlogged area to the west (left) of Port Said is becoming more saline as the Aswan Dam has reduced sediment downstream. This sediment reduction, according to NASA scientists studying the STS-56 photography, has resulted in increased coastal erosion and the intrusion of a salt-water lens to the ground water, particularly in the northeastern portions of the delta. Center pivot irrigation fields are located along either side of the Ramses Canal, which connects the Daimietta Nile with Great Bitter Lake. This canal has been re-dug three or four times in the past 3,000 years. Historians note that the canal's most famous use was as the departure point of the fleet of Pharaoh Necho.

  9. A CMOS TDI image sensor for Earth observation

    NASA Astrophysics Data System (ADS)

    Rushton, Joseph E.; Stefanov, Konstantin D.; Holland, Andrew D.; Endicott, James; Mayer, Frederic; Barbier, Frederic

    2015-09-01

    Time Delay and Integration (TDI) is used to increase the Signal to Noise Ratio (SNR) in image sensors when imaging fast moving objects. One important TDI application is in Earth observation from space. In order to operate in the space radiation environment, the effect that radiation damage has on the performance of the image sensors must be understood. This work looks at prototype TDI sensor pixel designs, produced by e2v technologies. The sensor is a CCD-like charge transfer device, allowing in-pixel charge summation, produced on a CMOS process. The use of a CMOS process allows potential advantages such as lower power consumption, smaller pixels, higher line rate and extra on-chip functionality which can simplify system design. CMOS also allows a dedicated output amplifier per column allowing fewer charge transfers and helping to facilitate higher line rates than CCDs. In this work the effect on the pixels of radiation damage from high energy protons, at doses relevant to a low Earth orbit mission, is presented. This includes the resulting changes in Charge Transfer inefficiency (CTI) and dark signal.

  10. STS-57 Earth observation of King Sound in northwest Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of King Sound in northwest Australia. Roebuck Bay with the city of Broom on its northern shore is south of King Sound. Sediment in the sound is deposited by the Fitzroy River, which is the major body draining the Kimberley Plateau about 200 miles to the west. The extent of the tidal flats around the Sound is indicated by the large white areas covered with a salty residue. According to NASA scientists studying the STS-57 Earth photos, northwest wind gusts are ruffling areas of the water's surface at the mouth of King Sound and in neighboring Collier Bay. Therefore the water is less reflective and dark. The higher reflectance on the brightest areas is caused by biological oils floating on the surface and reducing the capillary wave action. The scientists point out that the oils take the forms of the currents and eddies in the picture. These eddies indicate that the water offshore is moving at a different speed

  11. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  12. STS-57 Earth observation of Lake Victoria, Africa

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of Africa's Lake Victoria, which sits in the middle of the East African Rift Valley System.Lake Victoria is a major resource in eastern Africa, especially to the countries bordering the lake -- Uganda, Kenya and Tanzania. Typical summer indicators in equatorial Africa -- puffy clouds over land mass and clear skies over the lakes -- are in the view. Lake Albert in the western section of the Rift Valley and Lake Turkana in the eastern section can be seen to the west and east of Lake Victoria, respectively. Most of the other features on the right are obscured by clouds. NASA scientists studying the STS-57 Earth photography point out that the wide perspective of this scene gives a sense of the three-dimensional profile of the whole rift system. The scientists cite the way in which the component valleys of the rift system ramp up to Lake Victoria on either side.

  13. Telescope Formation at L2 for Observing Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Behcet; Breckenridge, William; Macenka, Steven; Hein, Randall; Tubbs, Eldred

    2007-01-01

    Two documents describe a proposed Earth-atmosphere observatory to orbit the Sun at the Sun-Earth L2 Lagrange point -- a point of unstable equilibrium in the shadow of the Earth, about 1.5 million km from the Earth along an outward projection of the Earth-Sun axis. The observatory would comprise two spacecraft flying in precision formation: (1) a primary-aperture spacecraft, from which would be deployed a 25-m diameter membrane primary mirror aimed at the Earth, and (2) a secondary-telescope spacecraft at the focal plane of the primary mirror, 125-m distant along the axis towards the Earth. The secondary telescope would be aimed at the primary mirror and slowly rotated to scan the focused annular image of the visible illuminated portion of the Earth's atmosphere during continuous occultation of the Sun.

  14. Earth observational research using multistage EOS-like data

    NASA Technical Reports Server (NTRS)

    Johannsen, C. J.; Landgrebe, D. A.

    1993-01-01

    This grant is funded as a part of a program in which both research and educational impact are intended. Research work under this grant is directed at the understanding and use of future hyperspectral data such as that from imaging spectrometers. Specifically, the objectives of the work are (1) to prepare suitable means for analyzing data from sensors which have large numbers of spectral bands, (2) to advance the fundamental understanding of the manner in which soils and vegetative materials reflect high spectral resolution optical wavelength radiation, and (3) to maximize the impact of the results on the educational community. Over the life of the grant, the work has thus involved basic Earth science research and information system technique understanding and development in a mutually supportive way, however, more recently it has become necessary to focus the work primarily on areas (1) and (3). During the last year, the level of effort on this grant has been reduced to half its previous value. We have also been advised that this grant will end with the current year, thus this will be the penultimate semiannual progress summary.

  15. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  16. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  17. Exploiting Dragon Envisat Times Series and Other Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Marie, Tiphanie; Lai, Xijun; Huber, Claire; Chen, Xiaoling; Uribe, Carlos; Huang, Shifeng; Lafaye, Murielle; Yesou, Herve

    2010-10-01

    Earth Observation data were used for mapping potential Schistosomiasis japonica distribution, within Poyang Lake (Jiangxi Province, PR China). In the first of two steps, areas suitable for the development of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, were derived from submersion time parameters and vegetation community indicators. Y early maps from 2003 to 2008 indicate five principally potential endemic areas: Poyang Lake National Nature Reserve, Dalianzi Hu, Gan Delta, Po Jiang and Xi He. Monthly maps showing the annual dynamic of potential O. hupensis presence areas were obtained from December 2005 to December 2008. In a second step human potential transmission risk was handled through the mapping of settlements and the identification of some human activities. The urban areas and settlements were mapped all around the lake and fishing net locations in the central part of Poyang Lake were identified. Finally, data crossing of the different parameters highlight the potential risk of transmission in most of the fishing nets areas.

  18. Interoperability And Value Added To Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Gasperi, J.

    2012-04-01

    Geospatial web services technology has provided a new means for geospatial data interoperability. Open Geospatial Consortium (OGC) services such as Web Map Service (WMS) to request maps on the Internet, Web Feature Service (WFS) to exchange vectors or Catalog Service for the Web (CSW) to search for geospatialized data have been widely adopted in the Geosciences community in general and in the remote sensing community in particular. These services make Earth Observation data available to a wider range of public users than ever before. The mapshup web client offers an innovative and efficient user interface that takes advantage of the power of interoperability. This presentation will demonstrate how mapshup can be effectively used in the context of natural disasters management.

  19. STS-35 Earth observation of the Persian Gulf area

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of the Persian Gulf area. Major cities and oilfields of the countries of Saudi Arabia (foreground), Iraq (top left), Iran (top center and top right), Kuwait, Bahrain, Qatar, and a portion of the United Arab Emirates are visible in this scene. The cities are the large whitish areas of city lights. Flares characteristic of the Mid-East oil field practices are visible both onshore and offshore throughout the scene. Major cities identifiable are in Iraq - Baghdad, Basra, and Faw; in Qatar - Ab Dawhah; in Kuwait - Kuwait City; in Saudi Arabia - Riyadh, Al Jubayl, Dharan, Al Huf, Ad Dilam and Al Hariq; and Bahrain and its associated causeway to the mainland.

  20. STS-42 Earth observation of Lake Van in Turkey

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of Lake Van in Turkey, near the Iranian border (38.5N, 43.0E). Lake Van sits in the middle of a large fault and volcanic zone, the details of which are barely known. Earthquakes, sometimes severe, are frequent in this area. The lake is surrounded by many volcanic cones, calderas and lava plains. Because the climate is semi-arid and the lake has no apparent outlet, scientists say, the lake is relatively alkaline. Lake Van sits at an elevation of 5,400 feet with surrounding mountains completely snow-covered, reaching elevations in excess of 13,000 feet. The city of Van on the eastern edge of the lake shows up well because of the wintertime reflectance contrast between urban development and the snowy countryside.

  1. STS-56 Earth observation of Karakorum Range of north India

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation shows of some of the highest mountain peaks in the world taken from Discovery, Orbiter Vehicle (OV) 103, as it passed over India and China. The top of the view shows one of the snow and ice-covered massifs in the great Karakorum Range of north India. A star-shaped peak at top left reaches 23,850 feet. Glaciers can be seen in valleys at these high elevations. The international border between India to the south (top) and China (bottom) snakes left to right along a river near the top of the scene, then veers into the muntains at top left. Larger valleys, despite their elevation (all in excess of 14,000 feet), are occupied by transport routes joining points in India, China and the southern republics of the CIS. The ancient Silk Route between China and the Middle East lies not far to the north (outside the bottom of the frame).

  2. STS-56 Earth observation of the Strait of Gibraltar

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the Strait of Gibraltar. A small bank of clouds marks the passage between Spain and Morocco at the western edge of the Mediterranean Sea. This passage, one of the two Pilars of Hercules of the Ancient Greeks, is now known as the Strait of Gibraltar. The cities of Cadiz on the Atlantic Coast of Spain and Malaga on the Mediterranean coast, as well as Tangier, Morocco (facing the strait), can be seen. According to NASA scientists studying the STS-56 photos, a subtle difference in the water color on the Atlantic side suggests that a pulse of surface water had recently flowed out of the Mediterranean into the Atlantic.

  3. STS-55 Earth observation of Lake Natron, Tanzania, East Africa

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Lake Natron in Tansania, in the 35-mile-wide East African Rift Valley. This lake is surrounded by sodium carbonate volcanoes. Through erosion, these salts of volcanic origin are transported into the rift valley lakes. The various shades of bright red reflecting from the lake result from the water chemistry and biotic blooms. The white spots in the lakebed are drying soda salts. The depth and circulation of the water in the southern end of the lake cause it to appear dark blue rather than bright red. In the repeated photographs of this lake from orbit, we have seen the extent and intensity of its colors fluctuate seasonally. In this photograph, the biotic activity appears to be at a peak. Such a large extent of red-colored water was not present in the photos taken from STS-56, just a few days before (04-10-93).

  4. Earth observations satellite data policy: Process and outcome

    SciTech Connect

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reach the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.

  5. Earth Observations and the Role of UAVs: A Capabilities Assessment

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.

    2006-01-01

    This three-volume document, based on the draft document located on the website given on page 6, presents the findings of a NASA-led capabilities assessment of Uninhabited Aerial Vehicles (UAVs) for civil (defined as non-DoD) use in Earth observations. Volume 1 is the report that presents the overall assessment and summarizes the data. The second volume contains the appendices and references to address the technologies and capabilities required for viable UAV missions. The third volume is the living portion of this effort and contains the outputs from each of the Technology Working Groups (TWGs) along with the reviews conducted by the Universities Space Research Association (USRA). The focus of this report, intended to complement the Office of the Secretary of Defense UAV Roadmap, is four-fold: 1) To determine and document desired future Earth observation missions for all UAVs based on user-defined needs; 2) To determine and document the technologies necessary to support those missions; 3) To discuss the present state of the art platform capabilities and required technologies, including identifying those in progress, those planned, and those for which no current plans exist; 4) Provide the foundations for development of a comprehensive civil UAV roadmap. It is expected that the content of this report will be updated periodically and used to assess the feasibility of future missions. In addition, this report will provide the foundation to help influence funding decisions to develop those technologies that are considered enabling or necessary but are not contained within approved funding plans. This document is written such that each section will be supported by an Appendix that will give the reader a more detailed discussion of that section's topical materials.

  6. Probing the Earth's core with magnetic field observations from Swarm

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide a unique means of probing the dynamics taking place in the deepest reaches of the Earth. In this contribution we present a new high resolution model of the core-generated magnetic field, and its recent time changes, derived from a dataset that includes more two years of observations from the Swarm mission. Resulting inferences regarding the underlying core flow, its dynamics, and the nature of the geodynamo process will be discussed. The CHAOS-6 geomagnetic field model, covering the interval 1999-2016, is derived from magnetic data collected by the three Swarm missions, as well as the earlier CHAMP and Oersted satellites, and monthly means data collected from 160 ground observatories. Advantage is taken of the constellation aspect of the Swarm mission by ingesting both scalar and vector field differences along-track and across track between the lower pair of Swarm satellites. The internal part of the model consists of a spherical harmonic (SH) expansion, time-dependent for degrees 20 and below. The model coefficients are estimated using a regularized, iteratively reweighted, least squares scheme involving Huber weights. At Earth's surface, CHAOS-6 shows evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90deg E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the secular variation (linear trend in the magnetic field) up to SH degree 16. The radial field acceleration at the core surface in 2015 is found be largest at low latitudes under the India-South East Asia region and under the region of northern South America, as well as at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for some acceleration in the central Pacific region, for example

  7. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis

  8. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data

  9. Toroidal quarter waves in the Earth's magnetosphere: observational perspective

    NASA Astrophysics Data System (ADS)

    Bulusu, Jayashree; Sinha, A. K.; Vichare, Geeta

    2015-05-01

    Quarter waves in the Earth's magnetosphere are standing Alfvén waves excited on geomagnetic field lines when the conjugate ionospheres display strong asymmetry in conductivity. In this paper, we have examined the characteristics of these waves by analyzing two years (2007-2008) of magnetometer data from the geostationary satellite GOES-11. These waves are predominantly identified during quiet geomagnetic conditions based on interhemispheric conductivity contrast and opposite signs of wave reflection coefficients at the conjugate ionospheres. The observed frequencies are used in a numerical model to compute the equatorial ion density by assuming that the plasma consists only of protons at geostationary height during quiet conditions. The number density of protons thus obtained is compared with an empirical model. The phase difference between the waves observed at the satellite and northern conjugate ground station is in accord with model expectations for quarter mode waves. We also for the first time report the occurrence of an event depicting harmonically structured quarter wave oscillations. Statistical analysis of the seasonal and MLT (Magnetic local time) dependence of these oscillations shows that they mostly occur during solstices and around terminators (i.e. dawn and dusk time). In addition, it is observed that occurrence is more prevalent during dawn in the June solstice and dusk during the December solstice.

  10. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  11. Stellar Source Selections for Image Validation of Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Yu, Jiwoong; Park, Sang-Young; Lim, Dongwook; Lee, Dong-Han; Sohn, Young-Jong

    2011-12-01

    A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  12. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  13. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted

  14. Mapping of satellite Earth observations using moving window block kriging

    NASA Astrophysics Data System (ADS)

    Tadić, J. M.; Qiu, X.; Yadav, V.; Michalak, A. M.

    2015-10-01

    Global gridded maps (a.k.a. Level 3 products) of Earth system properties observed by satellites are central to understanding the spatiotemporal variability of these properties. They also typically serve either as inputs into biogeochemical models or as independent data for evaluating such models. Spatial binning is a common method for generating contiguous maps, but this approach results in a loss of information, especially when the measurement noise is low relative to the degree of spatiotemporal variability. Such "binned" fields typically also lack a quantitative measure of uncertainty. Geostatistical mapping has previously been shown to make higher spatiotemporal resolution maps possible, and also provides a measure uncertainty associated with the gridded products. This study proposes a flexible moving window block kriging method that can be used as a tool for creating high spatiotemporal resolution maps from satellite data. It relies only on the assumption that the observed physical quantity exhibits spatial correlation that can be inferred from the observations. The method has several innovations relative to previously applied methods: (1) it provides flexibility in the spatial resolution of the contiguous maps, (2) it is applicable for physical quantities with varying spatiotemporal coverage (i.e., density of measurements) by utilizing a more general and versatile data sampling approach, and (3) it provides rigorous assessments of the uncertainty associated with the gridded products. The method is demonstrated by creating Level 3 products from observations of column-integrated carbon dioxide (XCO2) from the GOSAT (Greenhouse Gases Observing Satellite) satellite, and solar induced fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring Experiment-2) instrument.

  15. Grid-based platform for training in Earth Observation

    NASA Astrophysics Data System (ADS)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  16. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  17. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    ERIC Educational Resources Information Center

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  18. Observations of Plasma Waves at the Earth's Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Tang, Xiangwei

    propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler-mode waves. Another study was the identification of large amplitude electrostatic ion cyclotron waves near the Earth's dayside magnetopause at MLT of ˜ 14. The electrostatic ion cyclotron waves were identified in a boundary layer in the magnetosphere adjacent to the magnetopause where reconnection was occurring. The electrostatic ion cyclotron wave power was primarily at 2f cH (where fcH is the hydrogen cyclotron frequency) and simultaneously observed with perpendicular ion heating. The electrostatic ion cyclotron waves had electric field amplitudes as large as 30 mV/m peak-to-peak with significant power both perpendicular and parallel to the magnetic field. These amplitudes were greater than those of previously observed ion cyclotron harmonics at the nightside magnetopause. The electrostatic ion cyclotron waves occurred during an interval of enhancements in the quasi-static electric field and fluctuations in the background magnetic field, plasma density and temperatures. The observations indicate that a plasma density gradient is a possible source of free energy for the electrostatic ion cyclotron waves. The observed flow shears are not large enough to drive the waves. Whistler-mode waves were identified near the electrostatic ion cyclotron wave region but closer to the magnetopause in a region with slightly higher ion and electron temperatures. Further investigation was on simultaneous observations of these waves at the low-latitude boundary layer of the Earth's magnetopause. The waves were identified through auditory analysis in the high resolution (16384 samples/s) electric field burst data and occurred at the same time as large fluctuations of plasma density and temperature (at time scales of ˜3 to 4 minutes) at a location of 9.3 Re, 14.4 magnetic local time, and 5.8 degrees magnetic latitude. Large

  19. Application of earth observation products for hydrological modeling of the Oum Er Rbia river basin

    NASA Astrophysics Data System (ADS)

    López López, Patricia; Strohmeier, Stefan; Haddad, Mira; Sutanudjaja, Edwin; Karrou, Mohammed; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc

    2016-04-01

    The increasing water demand over recent decades together with the climate change impacts on water resources lead to a growing shortage of water availability. Investigating and developing novel strategies to assess and manage water resources have turned into a key issue, leading to increasing efforts to enhance and improve hydrological models and datasets. Despite campaigns to increase the quality and the temporal and spatial availability of ground-based hydro-meteorological data, many river basins around the world still have a limited number of in-situ observations. This in turn limits the application of hydrological models. Recently developed global earth observation products may unlock a greater capability of basin scale hydrological modeling for advanced water management. This study aims to evaluate the applicability of earth observation products for hydrological model simulation in comparison with in-situ data for water resources management and water allocation of the Moroccan Oum Er Rbia river basin. Two different hydrological models (SWAT and PCR-GLOBWB) were applied to inter-compare various combinations of in-situ and global earth observation data. Global earth observation products were obtained from various sources including meteorological data from the WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, remotely sensed ESA CCI surface soil moisture Soil Water Index combined product and evapotranspiration data from the FLUXNET global monitoring network. The daily data were provided for the time period from 1979 to 2012. Due to the insufficient in-situ discharge observations available in the basin, local calibration of both hydrological models was based on global evapotranspiration and soil moisture data, covering additional aspects of the hydrological cycle to further reduce modeling uncertainty. Preliminary results indicate that even though significant differences in model estimates were found between SWAT and PCR-GLOBWB, the remotely

  20. Some recent advances in understanding the mineralogy of Earth's deep mantle

    SciTech Connect

    Duffy, T S

    2008-12-09

    Understanding planetary structure and evolution requires a detailed knowledge of the properties of geological materials under the conditions of deep planetary interiors. Experiments under the extreme pressure-temperature conditions of the deep mantle are challenging, and many fundamental properties remain poorly constrained or are inferred only through uncertain extrapolations from lower pressure-temperature states. Nevertheless, the last several years have witnessed a number of new developments in this area, and a broad overview of the current understanding of the Earth's lower mantle is presented here. Some recent experimental and theoretical advances related to the lowermost mantle are highlighted. Measurements of the equation of state and deformation behaviour of (Mg,Fe)SiO{sub 3} in the CaIrO{sub 3}-type (post-perovskite) structure yield insights into the nature of the core-mantle boundary region. Theoretical studies of the behaviour of MgSiO3 liquids under high pressure-temperature conditions provide constraints on melt volumes, diffusivities and viscosities that are relevant to understanding both the early Earth (e.g. deep magma oceans) and seismic structure observed in the present Earth (e.g. ultra-low-velocity zones).

  1. Economic Value of an Advanced Climate Observing System

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  2. First results of the earth observation Water Cycle Multi-mission Observation Strategy (WACMOS)

    NASA Astrophysics Data System (ADS)

    Su, Z.; Fernández-Prieto, D.; Timmermans, J.; Chen, X.; Hungershoefer, K.; Roebeling, R.; Schröder, M.; Schulz, J.; Stammes, P.; Wang, P.; Wolters, E.

    2014-02-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is a unique tool to provide a global understanding of many of the essential variables governing the water cycle and monitor their evolution from global to basin scales. In the coming years, an increasing number of Earth observation missions will provide an unprecedented capacity to quantify several of these variables on a routine basis. However, this growing observational capacity is also increasing the need for dedicated research efforts aimed at exploring the potential offered by the synergies among different and complementary EO data records. In this context, the European Space Agency (ESA) launched the Water Cycle Multi-mission Observation Strategy (WACMOS) in 2009 aiming at enhancing, developing and validating a novel set of multi-mission based methods and algorithms to retrieve a number of key variables relevant to the water cycle. In particular the project addressed four major scientific challenges associated to a number of key variables governing the water cycle: evapotranspiration, soil moisture, cloud properties related to surface solar irradiance and precipitation, and water vapour. This paper provides an overview of the scientific results and findings with the ultimate goal of demonstrating the potential of strategies based on utilizing multi-mission observations in maximizing the synergistic use of the different types of information provided by the currently available observation systems and establish the basis for further work.

  3. Gap analysis of the European Earth Observation Networks

    NASA Astrophysics Data System (ADS)

    Closa, Guillem; Serral, Ivette; Maso, Joan

    2016-04-01

    Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on

  4. Copernicus benefits the Norwegian Satellite Earth Observation Database for Marine and Polar Research

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Johannessen, Johnny

    2014-05-01

    The Norwegian Satellite Earth Observation Database for Marine and Polar Research (NORMAP) is developed for creating and maintaining a repository of Earth Observation data over the high latitude and Arctic regions to facilitate, stimulate and strengthen high quality and original multidisciplinary Earth System research, application, exploitation and education in marine, polar and climate sciences. As such it is complementing and supporting the Norwegian strategy for advancing these science disciplines in the high latitude and Arctic regions. In the international arena, NORMAP benefits and complements the EU GMES MyOcean project, and other previous GMES downstream services such as AQUAMAR, MONARCH-A, SIDARUS, etc. With the launch of the first Sentinel-1 mission NORMAP will be reinforced by the new data flow from the Copernicus Space Component. NORMAP is also acquiring data from a multitude of other satellites through the unified Copernicus system and will become one of the national thematic information services designed to benefit the environmental monitoring and support effective policy-making.

  5. Radar Observations of Near-Earth and Main-Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Benner, L. A. M.; Busch, M. W.; Giorgini, J. D.; Taylor, P. A.; Margot, J.-L.

    Radar is a very powerful technique for characterizing near-Earth and main-belt asteroids and for improving their orbits. This results from radar's ability to spatially resolve objects that often cannot be resolved at comparable resolutions by other groundbased techniques. Radar has revealed binary and contact binary objects, at least two triple systems, non-principal-axis rotators, objects whose radar reflectivity and circular polarization ratio have longitudinal variation, irregularly shaped near-Earth asteroids, objects with metallic compositions, objects with rubble-pile structures, and detailed radar images of main-belt asteroids that reveal complicated surfaces and substantial topographic relief. This chapter concentrates on the most significant advances in the field since publication of the radar chapter by Ostro et al. (2002) in Asteroids III. Detailed descriptions of asteroid radar observing techniques and terminology have appeared in Ostro (1993) and Ostro et al. (2002) (Asteroids III), so we refer readers to those papers for background information. This chapter emphasizes the first ground-truth tests of asteroid shape models by spacecraft encounters, population trends among near-Earth and main-belt asteroids, results for selected objects, new observing techniques, improved capabilities at radar telescopes, and improvements in three-dimensional shape modeling. We conclude with a discussion of future prospects.

  6. Extending the Interoperability of Sensor and Sample Based Earth Observations using a Community Information Model (Invited)

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Tarboton, D. G.; Zaslavsky, I.; Valentine, D. W.; Whitenack, T.

    2013-12-01

    With recent initiatives within many scientific communities toward trans-disciplinary, synthetic research using both new and existing data resources, our ability to manage, share, discover, interpret, and integrate data is paramount to scientific progress. Indeed, many new scientific advances are dependent on the synthesis of observations from multiple measurements, at multiple scales, across scientific disciplines, across environmental observatory or other experimental sites, and from multiple sources. We are at a point where the inadequacy of tools available for describing and sharing data leads to heterogeneity in the way data are organized, annotated, and encoded that hinders its discovery and interpretation. Several systems have emerged within geoscience communities for sharing earth observations, including the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), EarthChem, the Integrated Ocean Observing System (IOOS), and, more recently, the Critical Zone Observatory (CZO) Integrated Data Management System (CZOData). These systems focus on publishing or sharing data using web services in domain specific encodings or markup languages. While these systems have made considerable progress in making data available, it still takes a knowledgeable investigator considerable effort to discover, access, and integrate datasets from multiple domain-specific repositories because of inconsistencies in the way the different domain systems describe, encode, and share data. These inconsistencies also limit the ability of scientists from outside the domain to unambiguously interpret the data. With input from the broad geoscience community, we are developing a community information model ('ODM2') to extend interoperability of earth observations and improve the capture, management, sharing, and archival these data. We have focused on the domain of spatially discrete, feature-based earth observations resulting

  7. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the

  8. EKOSAT/DIAMANT - The Earth Observation Programme at OHB- System

    NASA Astrophysics Data System (ADS)

    Penne, B.; Tobehn, C.; Kassebom, M.; Luebberstedt

    This paper covers the EKOSAT / DIAMANT programme heading for superspectral geo-information products. The EKOSAT / DIAMANT programme is based on a commercial strategy just before the realization of the first step - the EKOSAT launch in 2004. Further, we give an overview on OHB-System earth observation prime activities especially for infrared and radar. The EKOSAT/ DIAMANT is based on the MSRS sensor featuring 12 user dedicated spectral bands in the VIS/NIR with 5m spatial resolution and 26 km swath at an orbit of 670 km. The operational demonstrator mission EKOSAT is a Korean-Israelean-German-Russian initiative that aims in utilizing the existing proto-flight model of the KOMPSAT-1 spacecraft for the MSRS sensor, which development is finished. The EKOSAT pointing capability will allow a revisit time of 3 days. DIAMANT stands for the future full operational system based on dedicated small satellites. The basic constellation relying on 2-3 satellites with about one day revisit is extendend on market demand. EKOSAT/ DIAMANT is designed to fill the gap between modern high spatial resolution multispectral (MS) systems and hyperspectral systems with moderate spatial resolution. On European level, there is currently no remote sensing system operational with comparable features and capabilities concerning applications especially in the field of environmental issues, vegetation, agriculture and water bodies. The Space Segment has been designed to satisfy the user requirements based on a balance between commercial aspects and scientific approaches. For example eight spectral bands have been identified to cover almost the entire product range for the current market. Additional four bands have been implemented to be prepared for future applications as for example the improved red edge detection, which give better results regarding environmental conditions. The spacecraft design and its subsystems are still reasonable small in order to keep the mass below 200 kg. This is an

  9. Advances in Remote Sensing: Imaging the Earth by Moonlight

    NASA Astrophysics Data System (ADS)

    Solbrig, Jeremy E.; Lee, Thomas E.; Miller, Steven D.

    2013-10-01

    Earth's nighttime environment is being revealed in unprecedented detail by the new satellite-mounted Visible/Infrared Imaging Radiometer Suite (VIIRS). VIIRS' Day/Night Band (DNB) is a highly sensitive broadband visible channel capable of detecting light from cities and other terrestrial emission sources.

  10. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  11. Al Gore attends Fall Meeting session on Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    2011-12-01

    Former U.S. vice president Al Gore, making unscheduled remarks at an AGU Fall Meeting session, said, "The reason you see so many pictures" of the Deep Space Climate Observatory (DSCOVR) satellite at this session is "that it already has been built." However, "because one of its primary missions was to help document global warming, it was canceled. So for those who are interested in struggling against political influence," Gore said, "the benefits have been documented well here." Gore made his comments after the third oral presentation at the 8 December session entitled "Earth Observations From the L1 (Lagrangian Point No. 1)," which focused on the capabilities of and progress on refurbishing DSCOVR. The satellite, formerly called Triana, had been proposed by Gore in 1998 to collect climate data. Although Triana was built, it was never launched: Congress mandated that before the satellite could be sent into space the National Academies of Science needed to confirm that the science it would be doing was worthwhile. By the time the scientific validation was complete, the satellite "was no longer compatible with the space shuttle manifest," Robert C. Smith, program manager for strategic integration at the NASA Goddard Space Flight Center, told Eos.

  12. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  13. Earth observation data payload ground segments at DLR for GMES

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan; Diedrich, Erhard; Maass, Holger; Mikusch, Eberhard

    2008-07-01

    The European Global Monitoring of Environment and Security (GMES) programme involves missions of the European Space Agency (ESA), EUMETSAT and also missions, originating from European national space agencies and private operators. These missions will be complemented by further missions from non-European operators to close gaps in data provision. The German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) is involved in national and private missions contributing to the fleet of GMES satellites. Apart from operating as one of the major Processing and Archiving Centers (PAC) for the ESA EO Missions, DFD is developing the data payload ground segment for the German national missions TerraSAR-X, TanDEM-X and EnMAP. DFD is also operations partner of European Space Imaging, receiving, processing and distributing submetric Ikonos data. Likewise, it is partner of EUROMAP, ensuring the European coverage for Indian Earth Observation satellites such as ResouceSat and CartoSat. A brief description of the missions, its ground segment and significance for GMES is given. Harmonizing the availability of data and products for European GMES users and managing the various data and information flows within a heterogeneous and distributed data payload ground segment is a challenging task.

  14. An integrated view of data quality in Earth observation

    PubMed Central

    Yang, X.; Blower, J. D.; Bastin, L.; Lush, V.; Zabala, A.; Masó, J.; Cornford, D.; Díaz, P.; Lumsden, J.

    2013-01-01

    Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research. PMID:23230156

  15. STS-56 Earth observation of Perth in Western Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is probably the best view of Perth in Western Australia. (For orientation purposes, note that the coastline runs north and south). The major feature on the coast is the large estuary of the Swan River. The large port city of Perth is situated on the north bank and the smaller city of Freemantle on the south bank by the sea. Smaller seaside towns trail off north and south of this center of urban life. Inland lies a prominent escarpment, more than 600 feet high, seen running down the middle of the view and dividing the lighter-colored coastal lowlands from the highlands where dark-colored tree savanna and desert scrub dominates the land. The Moore River can be seen entering the sea at the top of the frame. Rottnest Island is visible in the sea and Garden Island near bottom edge of the frame. Perth is the largest economic center in Western Australia. It receives natural gas from an offshore field hundreds of miles

  16. Program on Earth Observation Data Management Systems (EODMS)

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gohagan, J. K.; Hill, C. T.; Morgan, R. P.; Hays, T. R.; Ballard, R. J.; Crnkovick, G. R.; Schaeffer, M. A.

    1976-01-01

    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products.

  17. STS-55 Earth observation of the Timor Sea

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level

  18. Enhanced Formation Flying for the Earth Observing-1 (EO-1) New Millennium Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Quinn, David

    1997-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for new technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation, an example of which is shown in the figure below, to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation proposed by GSFC Codes 550 and 712 allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this analysis is to develop the fundamentals of formation flying mechanics, concepts for understanding the relative motion of free flying spacecraft, and an operational control theory for formation maintenance of the Earth Observing-1 (EO-l) spacecraft that is part of the New Millennium. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as the operational impacts. Applications to the Mission to Planet Earth (MTPE) Earth Observing System (EOS) and New Millennium (NM) were highly considered in analysis and applications. This paper presents the proposed methods for the guidance and control of the EO-1 spacecraft to formation fly with the Landsat-7 spacecraft using an autonomous closed loop three axis navigation control, GPS, and Cross link navigation support. Simulation results using various fidelity levels of modeling, algorithms developed and implemented in MATLAB, and autonomous 'fuzzy logic' control using AutoCon will be presented. The results of these

  19. Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

  20. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  1. Monitoring water quality in Lake Atitlan, Guatemala using Earth Observations

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Griffin, R.; Limaye, A. S.; Irwin, D.

    2014-12-01

    Frequent and spatially continuous water quality monitoring is either unattainable or challenging for developing nations if only standard methods are used. Such standard methods rely on in situ water sampling, which is expensive, time-consuming and point specific. Through the Regional Visualization and Monitoring System (SERVIR), Lake Atitlan's water quality was first monitored in 2009 using Earth observation satellites. Lake Atitlan is a source of drinking water for the towns located nearby and a major touristic attraction for the country. Several multispectral sensors were used to monitor the largest algal bloom known to date for the lake, which covered 40% of the lake's 137 square kilometer surface. Red and Near-Infrared bands were used to isolate superficial algae from clean water. Local authorities, media, universities and local communities, broadly used the information provided by SERVIR for this event. It allowed estimating the real extent of the algal bloom and prompted immediate response for the government to address the event. However, algal blooms have been very rare in this lake. The lake is considered oligotrophic given its relatively high transparency levels that can reach 15 m in the dry season. To continue the support provided by SERVIR in the algal bloom event, an algorithm to monitor chlorophyll a (Chl a) concentration under normal conditions was developed with the support of local institutions. Hyperspectral data from Hyperion on board EO-1 and in situ water quality observations were used to develop a semi-empirical algorithm for the lake. A blue to green band ratio successfully modeled Chl a concentration in Lake Atitlan with a relative error of 33%. This presentation will explain the process involved from providing an emergency response to developing a tailored tool for monitoring water quality in Lake Atitlan, Guatemala.

  2. Earth observation photography: Looking back 20 years after Skylab

    NASA Technical Reports Server (NTRS)

    Nicholson, James H.

    1992-01-01

    A committee of trained classroom teachers, backed by a volunteer team of technical experts and academic advisors has developed a program for earth science based on photographs obtained from low earth orbit. In selecting targeting objectives, immediate note was made of the fact nearly one generation (20 years) has passed since the United States' ambitious SKYLAB program was conducted. A critical part of those missions was the acquisition of earth photography using a six camera, multi-spectral camera system. This objective was systematically furthered through the term of three separate crew visits to the Space Station. Not merely an exercise in randomly photographing the Earth below, the purpose of the Earth Resource Experiment Package (EREP) was to determine what kind, and how much, photographic data could be acquired of the broad variety of Earth features witnessed on the mission's ground track. The collection of 35,000 photos produced by EREP represents the most complete coverage of Earth. However, it remains under used. GAS 324 intends to revisit, and to add a tier of relevancy to this inventory. The photography of GAS 324 should allow a direct examination and comparison of the changes in the globe in the last 20 years. format in both coverage and quality. The photogra phy acquired by CAN DO should allow a direct examination and comparison of the changes that have occured to the Globe in the last twenty years.

  3. Observations of Plasma Waves at the Earth's Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Tang, Xiangwei

    propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler-mode waves. Another study was the identification of large amplitude electrostatic ion cyclotron waves near the Earth's dayside magnetopause at MLT of ˜ 14. The electrostatic ion cyclotron waves were identified in a boundary layer in the magnetosphere adjacent to the magnetopause where reconnection was occurring. The electrostatic ion cyclotron wave power was primarily at 2f cH (where fcH is the hydrogen cyclotron frequency) and simultaneously observed with perpendicular ion heating. The electrostatic ion cyclotron waves had electric field amplitudes as large as 30 mV/m peak-to-peak with significant power both perpendicular and parallel to the magnetic field. These amplitudes were greater than those of previously observed ion cyclotron harmonics at the nightside magnetopause. The electrostatic ion cyclotron waves occurred during an interval of enhancements in the quasi-static electric field and fluctuations in the background magnetic field, plasma density and temperatures. The observations indicate that a plasma density gradient is a possible source of free energy for the electrostatic ion cyclotron waves. The observed flow shears are not large enough to drive the waves. Whistler-mode waves were identified near the electrostatic ion cyclotron wave region but closer to the magnetopause in a region with slightly higher ion and electron temperatures. Further investigation was on simultaneous observations of these waves at the low-latitude boundary layer of the Earth's magnetopause. The waves were identified through auditory analysis in the high resolution (16384 samples/s) electric field burst data and occurred at the same time as large fluctuations of plasma density and temperature (at time scales of ˜3 to 4 minutes) at a location of 9.3 Re, 14.4 magnetic local time, and 5.8 degrees magnetic latitude. Large

  4. Observation of Parametric Instability in Advanced LIGO.

    PubMed

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress. PMID:25955042

  5. Future Earth: Advancing Civic Understanding of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-08-01

    The Anthropocene, a term first coined in the 1980s by biologist Eugene Stoermer, is a word that encapsulates a powerful idea—that the world is now in the throes of a novel geological epoch, a period of time in which human activity, not natural cycles, dominates many of Earth's chemical, geological, and biological systems. The growing realization of our importance has caused a reanalysis, both scientifically and ethically, of our relationship with the natural world.

  6. Simulation for the design of next-generation global Earth observing systems

    NASA Astrophysics Data System (ADS)

    Seablom, Michael S.; Talabac, Stephen J.; Higgins, Glenn J.; Womack, Brice T.

    2007-09-01

    Under a recently-funded NASA Earth Science Technology Office (ESTO) award we are now designing, and will eventually implement, a sensor web architecture that couples future Earth observing systems with atmospheric, chemical, and oceanographic models and data assimilation systems. The end product will be a "sensor web simulator" (SWS), based upon the proposed architecture, that would objectively quantify the scientific return of a fully functional modeldriven meteorological sensor web. Our proposed work is based upon two previously-funded ESTO studies that have yielded a sensor web-based 2025 weather observing system architecture, and a preliminary SWS software architecture that had been funded by NASA's Revolutionary Aerospace Systems Concept (RASC) and other technology awards. Sensor Web observing systems have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable meteorological features and events. A revolutionary architectural characteristic that could substantially reduce meteorological forecast uncertainty is the use of targeted observations guided by advanced analytical techniques (e.g., prediction of ensemble variance). Simulation is essential: investing in the design and implementation of such a complex observing system would be very costly and almost certainly involve significant risk. A SWS would provide information systems engineers and Earth scientists with the ability to define and model candidate designs, and to quantitatively measure predictive forecast skill improvements. The SWS will serve as a necessary trade studies tool to: evaluate the impact of selecting different types and quantities of remote sensing and in situ sensors; characterize alternative platform vantage points and measurement modes; and to explore potential rules of interaction between sensors and weather forecast/data assimilation components to reduce model error growth and forecast

  7. Improving the Transition of Earth Satellite Observations from Research to Operations

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  8. Free Oscillations of the Earth Observed by Closed Borehole Wells

    NASA Astrophysics Data System (ADS)

    Yanagidani, T.; Kano, Y.

    2007-12-01

    We have made observations of pore pressure under undrained condition by an airtight borehole penetrating an artesian, or a confined aquifer in the Atotsu tunnel excavated in the Kamioka Mine, central Japan. We confirmed that the relation between pore pressure change and stress change is a zero-order system for a wide range of frequency and that stress change, strictly speaking strain change, induced within the rock mass shared by the skeletal framework of rock and pore fluid. Examining the pore pressure measured using closed borehole wells, we detected free oscillations of the Earth excited by earthquakes such as the 26 December 2004 Mw = 9.1 Sumatra-Andaman Islands earthquake (epicentral distance Δ= 51.1°) and other M7 to 8 events. We made a Fourier analysis of the pore pressure record produced by the earthquakes. We examined (1) whether the closed borehole has sufficient sensitivity to identify free oscillations, and (2) how the closed borehole responds to spheroidal modes and troidal modes. The poroelastic theory predicts that pore pressure should respond only to spheroidal modes since pore pressure change is proportional to volumetric strain change. No pore pressure response is expected from shear strain that is produced by troidal modes. However, it is controversial whether pore pressure responds to shear strain, since phases corresponding S- and Love waves have been usually detected on hydroseismograms. We calculated the spectrum of the 24 hours time windows (86400 points) with shifting the time window by 1 hour from 24 hours before the origin time of the event to 24 hours after that. The spectrum peaks correspond to entire fundamental spheroidal modes were clearly observed. The Q of each mode is calculated by fitting the decay of the amplitude of each peak. The peaks whose eigenfrequencies are less than 1 mHz (0S0, 0S2, 0S3, 0S4, and 0S5) clearly appear 5 hours after the event. On the other hand, no spectrum peak corresponding troidal modes was observed

  9. New developments in the coordination of Earth observation from space activities: The role of the Committee on Earth Observations Satellites (CEOS)

    NASA Technical Reports Server (NTRS)

    Smith, B.; Moodie, L.; Shaffer, L.; Williams, D.; Revah, I.

    1992-01-01

    The Committee on Earth Observations Satellites (CEOS) is outlined and the dynamics of the expanded CEOS with its increased focus on activities related to global climate change are examined. The participation of affiliate organizations at the Dec. 1991 Plenary is highlighted. The roles and current activities of constituted CEOS Working Groups on Data and on Sensor Calibration and Performance Validation are examined. The status of CEOS deliberations in Earth observation data policy is examined. The expanded CEOS is believed to be well suited to carry forward and help further the legacy already well established in the myriad of Earth observation activities associated with the 1992 International Space Year.

  10. Policy Document on Earth Observation for Urban Planning and Management: State of the Art and Recommendations for Application of Earth Observation in Urban Planning

    NASA Technical Reports Server (NTRS)

    Nichol, Janet; King, Bruce; Xiaoli, Ding; Dowman, Ian; Quattrochi, Dale; Ehlers, Manfred

    2007-01-01

    A policy document on earth observation for urban planning and management resulting from a workshop held in Hong Kong in November 2006 is presented. The aim of the workshop was to provide a forum for researchers and scientists specializing in earth observation to interact with practitioners working in different aspects of city planning, in a complex and dynamic city, Hong Kong. A summary of the current state of the art, limitations, and recommendations for the use of earth observation in urban areas is presented here as a policy document.

  11. The Role of NASA Observations in Understanding Earth System Change

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  12. Towards An Oceanographic Component Of A Global Earth Observation System Of Systems: Progress And Challenges

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.

    2012-12-01

    Ocean observatories (systems of coordinated sensors and platforms providing real-time in situ observations across multiple temporal and spatial scales) have advanced rapidly during the past several decades with the integration of novel hardware, development of advanced cyber-infrastructures and data management software, and the formation of researcher networks employing fixed, drifting, and mobile assets. These advances have provided persistent, real-time, multi-disciplinary observations representing even the most extreme environmental conditions, enabled unique and informative views of complicated ocean processes, and aided in the development of more accurate and higher fidelity ocean models. Combined with traditional ship-based and remotely sensed observations, ocean observatories have yielded new knowledge across a broad spectrum of earth-ocean scales that would likely not exist otherwise. These developments come at a critical time in human history when the demands of global population growth are creating unprecedented societal challenges associated with rapid climatic change and unsustainable consumption of key ocean resources. Successfully meeting and overcoming these challenges and avoiding the ultimate tragedy of the commons will require greater knowledge of environmental processes than currently exists, including interactions between the ocean, the overlying atmosphere, and the adjacent land and synthesizing new knowledge into effective policy and management structures. To achieve this, researchers must have free and ready access to comprehensive data streams (oceanic, atmospheric, and terrestrial), regardless of location and collection system. While the precedent for the concept of free and open access to environmental data is not new (it traces back to the International Geophysical Year, 1957), implementing procedures and standards on a global scale is proving to be difficult, both logistically and politically. Observatories have been implemented in many

  13. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    NASA Technical Reports Server (NTRS)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  14. AIRS Infrared Radiance Validation Concept Using Earth Scene Observations

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Aumann, H. H.; Pagano, T. S.; Strow, L. L.

    2001-05-01

    The Atmospheric Infrared Sounder (AIRS) will fly onboard the NASA Earth Observing Satellite (EOS)polar-orbiting Aqua spacecraft. AIRS, a high resolution infrared spectrometer with visible and near-infrared spectral channels, has been designed to provide atmospheric temperature and moisture profiles at least as accurate as those measured by standard radiosondes. Calibration studies of the response of each of the AIRS 4000+ detectors will begin as soon as the spacecraft orbit and instrument have stabilized. These studies are needed to help assess the contribution of instrument measurement errors to the spectral radiance determination. Some of the uncertainties will be determined from measurements of the onboard calibrators. Other sources of measurement uncertainty, such as scan mirror polarization and spectral response functions, require views of Earth at nadir and at oblique viewing angles, in cloud-free conditions. During early operation of the instrument, the blackbody radiance determination will rely on pre-launch measurements and models of the spectral response functions. During this phase of the operation, we have chosen an approach for initial assessment of the accuracy of the measured radiance that is not dependent on an exact knowledge of the spectral position of the detectors. Radiances will be evaluated in narrow regions that are well removed from spectral line features. There are potentially hundreds of detectors that can be used for this purpose. Our work to date has focused on a subset of these detectors located in atmospheric window regions between 2500-2700 cm-1 and 800-1200 cm-1. Pre-launch thermal-vacuum blackbody calibration results indicate that, using a reasonable cross-section of detectors, it should be possible to extrapolate the performance of a sparse set of detectors to the general state of the instrument calibration. In this paper we describe some initial results using a simple statistical methodology that compares outgoing radiances in

  15. An Earth Observation Land Data Assimilation System (EO-LDAS)

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Lewis, Philip; Quaife, Tristan; Kaminski, Tomas; Styles, Jon

    2013-04-01

    In order to monitor the land surface, EO data provides the means of achieving global coverage in a timely fashion. Different sensors orbit the Earth acquiring data at different times and with different spectral and spatial properties. Blending all these observations presents a considerable challenge. Purely statistical methods based on machine learning techniques require accurate and extensive ground truth for "training" models. The complexities of the processes that take place in the scene result in limited usefulness of these models outside their training region or period. Models that describe the physical processes that give rise to the measurements, based on radiative transfer theory, offer a more robust way of interpreting the recorded data and relating it to surface properties such as leaf area index, chlorophyll concentration, etc. Unfortunately, the information content in the signals is rarely sufficient to unambigously determine the many parameters that are required in typical radiative transfer models. To improve on this, the use of prior information is required. Typically, this information is given as parameter ranges, or maybe even distributions, which can have a positive effect in the so-called "inverse problem". Data assimilation techniques allow one to use models of the land surface as priors, to constrain the inverse problem. These models can be very useful in improving the ability of inverting the observations, as the models can give very valuable information on the dynamics of some parameters, like LAI. However, some parameters that have a strong bearing on the observations (some pigments, leaf angle distributions...) have no analogues in typical DGVMs. In this work, we introduce and demonstrate the use of weak constraint 4DVAR data assimilation to the problem of inverting optical RT models. We demonstrate that the use of this technique results in important gains in parameter uncertainty reduction for a typical satellite mission, including

  16. Data Dissemination System Status and Plan for Jaxa's Earth Observation Satellite Data

    NASA Astrophysics Data System (ADS)

    Fuda, M.; Miura, S.

    2012-12-01

    1. INTRODUCTION JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit, and is involved in many more advanced missions, such as asteroid exploration and possible manned exploration of the Moon. Since 1978, JAXA started to disseminate earth observation data acquired by satellites to researchers and those data scene became more than two Million scenes in 2011. This paper focuses on the status and future plan for JAXA's Data Dissemination System for those data. 2. STATUS JAXA is Japan's national aerospace agency and responsible for research, technology development and the launch of satellites into orbit. In October 1978, JAXA opened the Earth Observation Center (EOC) and started to archive and disseminate earth observation data acquired by multiple satellites. 2.1. Target data Currently, the disseminated data includes "JAXA's satellite/sensor data" and "non-JAXA's satellite/sensor data", as shown in Table 2-1. In 2011, the total disseminated data scene became more than two Million scenes. 2.2. Data Dissemination Guideline The JAXA basic data dissemination guideline is a free for researchers and specific agencies. JAXA has two approaches for dissemination. One is that the data is distributed for specific agencies by Mission Operation Systems (MOS). Each project has its own MOS, for example, GCOM-W1 has a GCOM-W1 MOS. Another is that the data is disseminated for many researchers by Data Distribution Systems. Now JAXA has three Data Distribution systems, EOIS, AUIG and GCOM-W1DPSS. Table 2-1 : Disseminated earth observation data from JAXA's facility Satellite Sensor Processing Level ALOS AVNIR-2 Level 1 PRISM Level 1 PALSAR Level 1 TRMM PR Level 1, 2, 3 CMB Level 1, 2, 3 TMI Level 1, 2, 3 VIR Level 1, 2, 3 Aqua AMSR-E Level 1, 2, 3 ADEOS-II AMSR Level 1, 2, 3 GLI-1km Level 1, 2, 3 GLI-250m Level 1, 2, 3 JERS-1 OSW Level 0, 1, 2 OVN Level 0, 1, 2, 5 SAR Level 1, 2 ADEOS AVNIR Level 1 OCTS

  17. Earth Observations Capabilities of the International Space Station

    NASA Astrophysics Data System (ADS)

    Eppler, Dean B.; Scott, Karen P.

    The International Space Station (ISS) is presently being assembled through the joint efforts of the United States, Russia, Canada, Japan, the European Space Agency and Brazil, and will be an orbiting, multi-use facility expected to remain on-orbit into the next decade. The orbital inclination of 51.6 degrees allows the ISS to overfly approximately 75% of the Earth's land area and approximately 95% of the Earth's population. Due to the westward precession of orbit tracks, the ISS will overfly the same location approximately every three days, with the identical lighting conditions being repeated every three months. The ISS has two basic capabilities for Earth observations: a fused silica window in the Destiny laboratory, and sites on the external truss and partner modules that accommodate external payloads. The Destiny laboratory has a window port built into its nadir facing side. The window consists of 3 panes of Corning 7940 fused silica which are approximately 56 cm in diameter, providing an approximately 51 cm clear aperture. In 1996, the ISS Program agreed to upgrade the glass in the Destiny window to a set of stringent optical performance requirements. The window has a wavefront error of 1/15 wavelength peak-to-valley over a 15.2 cm aperture relative to a reference wavelength of 632.8 nm, which will allow up to a 30 cm telescope to be flown. The flight article window was radiometrically calibrated in May of 2000, indicating that the window had better than 95% transmittance in the visible region, with a steep drop-off in the ultraviolet and a gradual drop-off in the infrared from the visible through the near and short wave infrared spectra. Utilization of the optical performance of the Destiny window requires the use of the Window Observational Research Facility (WORF). The WORF is essentially an Express rack with a 0.8 m^3 payload volume centered on the Destiny window. The payload volume provides mounting surfaces for window payload hardware, including a stiff

  18. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  19. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    NASA Astrophysics Data System (ADS)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  20. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  1. Where on Earth can we observe pristine aerosol?

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas; Carslaw, Ken; Spracklen, Dominick; Lee, Lindsay; Pringle, Kirsty; Reddington, Carly

    2014-05-01

    To understand how sensitive the climate is to greenhouse gas and aerosol emissions it is important to define the baseline from which the aerosol forcings are calculated [Carslaw et al., 2013]; but if no regions in the world are anthropogenically unaltered, where on Earth can we observe and learn about the behaviour of pristine environments? This question is relevant to both future modelling and long-term observational studies in climate science. Identification of such regions is also important if we are to fully understand climate response to natural aerosol changes [Spracklen and Rap, 2013]. Here we use a combination of model simulations and statistical emulation of the Global Model of Aerosol Processes (GLOMAP) to identify regions which are most pristine in today's atmosphere. The simulations are used to identify present day (PD) regions which have daily mean cloud condensation nuclei (CCN) concentration similar to pre-industrial (PI) levels. The emulation of an ensemble of perturbed parameter runs [Lee et al., 2013] for the PI and PD allows a full Monte Carlo variance-based sensitivity analysis of CCN to 28 different parameters, covering both natural and anthropogenic emissions and their processes, which affect the uncertainty in CCN concentrations. We use this information to assess which regions exhibit little change in the sensitivity the 28 parameters between the PI and PD. Potentially pristine environments are defined based on where both the CCN number concentration and its sensitivity to the 28 parameters have remained constant through the industrial period. Our results indicate that the low to mid-latitude maritime southern hemisphere is the most pristine region in the PD atmosphere, especially during the austral summer. Other pristine regions include Alaska and Yukon, the Melanesian islands and the Antarctic Peninsula. Simulated anthropogenic influence on CCN has high seasonality in the southern hemisphere but low seasonality in the northern hemisphere

  2. Statistical Treatment of Earth Observing System Pyroshock Separation Test Data

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    1998-01-01

    The Earth Observing System (EOS) AM-1 spacecraft for NASA's Mission to Planet Earth is scheduled to be launched on an Atlas IIAS vehicle in June of 1998. One concern is that the instruments on the EOS spacecraft are sensitive to the shock-induced vibration produced when the spacecraft separates from the launch vehicle. By employing unique statistical analysis to the available ground test shock data, the NASA Lewis Research Center found that shock-induced vibrations would not be as great as the previously specified levels of Lockheed Martin. The EOS pyroshock separation testing, which was completed in 1997, produced a large quantity of accelerometer data to characterize the shock response levels at the launch vehicle/spacecraft interface. Thirteen pyroshock separation firings of the EOS and payload adapter configuration yielded 78 total measurements at the interface. The multiple firings were necessary to qualify the newly developed Lockheed Martin six-hardpoint separation system. Because of the unusually large amount of data acquired, Lewis developed a statistical methodology to predict the maximum expected shock levels at the interface between the EOS spacecraft and the launch vehicle. Then, this methodology, which is based on six shear plate accelerometer measurements per test firing at the spacecraft/launch vehicle interface, was used to determine the shock endurance specification for EOS. Each pyroshock separation test of the EOS spacecraft simulator produced its own set of interface accelerometer data. Probability distributions, histograms, the median, and higher order moments (skew and kurtosis) were analyzed. The data were found to be lognormally distributed, which is consistent with NASA pyroshock standards. Each set of lognormally transformed test data produced was analyzed to determine if the data should be combined statistically. Statistical testing of the data's standard deviations and means (F and t testing, respectively) determined if data sets were

  3. 3D Printing of Advanced Biocomposites on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Gentry, Diana; Micks, Ashley

    2015-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing could make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. Image what new products can be enabled by such a technology, on earth or beyond!

  4. Advances in Lunar Science and Observational Opportunities

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer

    2012-01-01

    Lunar science is currently undergoing a renaissance as our understanding of our Moon continues to evolve given new data from multiple lunar mission and new analyses. This talk will overview NASA's recent and future lunar missions to explain the scientific questions addressed by missions such as the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (Grail), Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS), and the Lunar Atmosphere and Dust Environment Explorer (LADEE). The talk will also overview opportunities for participatory exploration whereby professional and amateur astronomers are encouraged to participate in lunar exploration in conjunction with NASA.

  5. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  6. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  7. Earth observation for regional scale environmental and natural resources management

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet

  8. 3D Printing of Advanced Biocomposites on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology can greatly enhance and expand life's evolved repertoire. Using natural and synthetically altered organisms as the feedstock for additive manufacturing could one day make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. To this end our lab has produced a proof-of-concept bioprinter with nearly one-cell resolution. Genetically engineering yeast cells to secrete bioproducts subsequent to printing allows the potential to make biomaterials with a fine microstructure. Imagine a production system that, at a few micron scale resolution, can add mollusk shell for compressive strength per unit mass, spider silk or collagen for tensile strength per unit mass, and potentially biologically-deposited wires. Now imagine what new products can be enabled by such a technology, on earth or beyond

  9. Sun-, Earth- and Moon-integrated simulation ray tracing for observation from space using ASAP

    NASA Astrophysics Data System (ADS)

    Breault, Robert P.; Kim, Sug-Whan; Yang, Seul-Ki; Ryu, Dongok

    2014-09-01

    The Space Optics Laboratory at Yonsei University, Korea, in cooperation with Breault Research Organization (BRO) in Tucson, Arizona, have invested significant research and development efforts into creating large scale ray tracing techniques for simulating "reflected" light from the earth with an artificial satellite. This presentation describes a complex model that combines the sun, the earth and an orbiting optical instrument combined into a real scale nonsequential ray tracing computation using BRO's Advanced Systems Analysis Program, ASAP®. The Sun is simulated as a spherically emitting light source of 695,500 km in diameter. The earth also is simulated as a sphere with its characteristics defined as target objects to be observed and defined with appropriate optical properties. They include the atmosphere, land and ocean elements, each having distinctive optical properties expressed by single or combined characteristics of refraction, reflection and scattering. The current embodiment has an atmospheric model consisting of 33 optical layers, a land model with 6 different albedos and the ocean simulated with sun glint characteristics. A space-based optical instrument, with an actual opto-mechanical prescription, is defined in an orbit of several hundreds to thousands of miles in altitude above the earth's surface. The model allows for almost simultaneous evaluations of the imaging and radiometric performances of the instrument. Several real-life application results are reported suggesting that this simulation approach not only provides valuable information that can greatly improve the space optical instrument performance but also provides a simulation tool for scientists to evaluate all phases of a space mission.

  10. Earth observations during Space Shuttle flight STS-35 - Columbia's Mission to Planet Earth, December 2-10, 1990

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Evans, Cynthia A.; Helfert, Michael R.; Brand, Vance D.; Gardner, Guy S.; Lounge, John M.; Hoffman, Jeffery A.; Parker, Robert A.; Durrance, Samuel T.; Parise, Ronald A.

    1991-01-01

    Some of the most significant earth-viewing imagery obtained during Space Shuttle Columbia's flight STS-35, December 2-10, 1990, is reviewed with emphasis on observations of the Southern Hemisphere. In particular, attention is given to environmental observations in areas of Madagascar, Brazil, and Persian Gulf; observation of land resources (Namibia, offshore Australia); and observations of ocean islands (Phillipines, Indonesia, and Reunion). Some of the photographs are included.

  11. Project to Interface Climate Modeling on Global and Regional Scales with Earth Observing (EOS) Observations

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    2002-01-01

    This ten-year NASA IDS project began in 1990. Its initial work plan adopted the NASA provided timeline that data would become available for new Earth Observing System (EOS) platforms beginning in 1995. Over its first phase, it was based at NCAR, which had submitted the original proposal and involved activities of a substantial number of co-investigators at NCAR who engaged in research over several areas related to the observations expected to be received from the EOS platforms. Their focus was the theme of use of EOS data for improving climate models for projecting global change. From the climate system viewpoint, the IDS addressed land, clouds-hydrological cycle, radiative fluxes and especially aerosol impacts, ocean and sea-ice, and stratosphere. Other research addressed issues of data assimilation, diagnostic analyses, and data set development from current satellite systems, especially use of SAR data for climate models.

  12. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  13. Earth Observations from Space: The First 50 Years of Scientific Achievements

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  14. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  15. Earth observation sensor calibration using a global instrumented and automated network of test sites (GIANTS)

    NASA Astrophysics Data System (ADS)

    Teillet, Phil M.; Thome, Kurtis J.; Fox, Nigel P.; Morisette, Jeffrey T.

    2001-12-01

    Calibration is critical for useful long-term data records, as well as independent data quality control. However, in the context of Earth observation sensors, post-launch calibration and the associated quality assurance perspective are far from operational. This paper explores the possibility of establishing a global instrumented and automated network of test sites (GIANTS) for post-launch radiometric calibration of Earth observation sensors. It is proposed that a small number of well-instrumented benchmark test sites and data sets for calibration be supported. A core set of sensors, measurements, and protocols would be standardized across all participating test sites and the measurement data sets would undergo identical processing at a central secretariat. The network would provide calibration information to supplement or substitute for on-board calibration, would reduce the effort required by individual agencies, and would provide consistency for cross-platform studies. Central to the GIANTS concept is the use of automation, communication, coordination, visibility, and education, all of which can be facilitated by greater use of advanced in-situ sensor and telecommunication technologies. The goal is to help ensure that the resources devoted to remote sensing calibration benefit the intended user community and facilitate the development of new calibration methodologies (research and development) and future specialists (education and training).

  16. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  17. Earth observations during Space Shuttle flight STS-29 - Discovery's voyage to the earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh; Helfert, Michael; Whitehead, Victor; Amsbury, David; Coats, Michael; Blaha, John; Buchli, James; Springer, Robert; Bagian, James

    1989-01-01

    The environmental, geologic, meteorologic, and oceanographic phenomena documented by earth photography during the Space Shuttle STS-29 mission are reviewed. A map of the nadir point positions of earth-viewing photographs from the mission is given and color photographs of various regions are presented. The mission photographs include atmospheric dust and smoke over parts of Africa and Asia, Sahelian water sites, center pivot irrigation fields in the Middle East, urban smog over Mexico City, isolated burning in the Bolivian Amazon, and various ocean features and cloud formations.

  18. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  19. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  20. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  1. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  2. Snow studies using thermal infrared observations from earth satellites

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.

    1972-01-01

    The application of satellite high resolution infrared data was studied for mapping snow cover. The study has two objectives: (1) to determine whether existing radiometers onboard the Nimbus and ITOS satellites can provide hydrologically useful snow information, and (2) to develop analysis techniques applicable to future IR sensor systems on earth satellites. The IR measurements are being analyzed in conjunction with concurrent satellite photographs and conventional snow cover data.

  3. Observations of molecular ions in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Chappell, C. R.; Kakani, L.; Olsen, R. C.

    1985-01-01

    The retarding ion mass spectrometer on Dynamics Explorer 1 operating over the polar cap during a large magnetic storm has measured fluxes of up to 10 to the 6th ions/sq cm s of the molecular ions N2(+), NO(+), and O2(+). These ions were measured beginning low in the satellite orbit (1.1 earth radii) and extending to about 3 earth radii geocentric altitude. Near perigee, the ions have a rammed distribution indicating a cold Maxwellian plasma (1000-2000 K). The molecular ions gradually shift to a field-aligned distribution at the higher alitudes. An upward flow of 5-10 km/s is found in these field-aligned measurements. The density of the molecular ions is on the order of 2/cu cm at all altitudes, and the energy of the ions generally increases as the satellite moves sunward across the southern polar cap. Kinetic energies of at least 20 eV were found at 2.5 earth-radii geocentric distance.

  4. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  5. Fine scale heterogeneity in the Earth's mantle - observation and interpretation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2012-12-01

    High resolution seismic data has over the last decade provided significant evidence for pronounced fine scale heterogeneity in the Earth's mantle at an unprecedented detail. Seismic tomography developed tremendously during the last 20-30 years. The results show overall structure in the mantle which can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense station spacing and at high frequency, e.g. from the Russian Peaceful Nuclear Explosion (PNE) data set and array recordings of waves from natural seismic sources. Mantle body waves indicate pronounced heterogeneity at three depth levels whereas other depth intervals appear transparent, at least in the frequency band of 0.5-15 Hz: (1) The Mantle Low-Velocity Zone (LVZ) is a global feature which has been detected in more than 50 long-range seismic profiles (Thybo and Perchuc, Science, 1997). Since then numerous studies based on receiver functions, surface waves, and controlled source seismology have confirmed the presence of this zone. The data demonstrates that the top of the LVZ everywhere is at a depth of 100±20 km. A pronounced coda shows that the zone is highly heterogeneous at characteristic scale lengths of 5-15 by 2-6 km. We interpret that the rocks in the LVZ have a temperature close to the solidus or even may contain small fractions of partial melt. The solidus of mantle rocks is very low below a depth of ca. 90 km if volatiles are present due to a characteristic kink in the solidus which is much lower than for dry mantle rocks. We suggest that the rocks are in a totally solid state below the LVZ and that the depth to the interface to fully solid rocks is an indicator of the thermal state of the upper mantle. (2) Significant scattering from around the top of the

  6. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  7. Integrating EarthScope seismic, GPS, and other active Earth observations into informal education programs in parks and museums

    NASA Astrophysics Data System (ADS)

    Lillie, R. J.; Goddard, C.; Braunmiller, J.; Trehu, A. M.

    2008-12-01

    EarthScope is a National Science Foundation program that uses seismic, GPS, and other geophysical devices to explore the structure and evolution of the North American continent and to understand the physical processes that cause earthquakes and volcanic eruptions. Two challenges facing the EarthScope community include providing the public with access to timely science results and presenting complex data and related principles in language and formats accessible to varied audiences. A series of workshops for park and museum educators combines scientific observations with interpretive methods to convey stories of the dynamic landscape of the western United States. The initial workshop, held at the Mt. Rainier National Park Education Center, focused on how EarthScope data and scientific results enhance the "sense of place" represented by the coastlines, valleys, and mountains of the Cascadia Subduction Zone. Participants learned how seismic and GPS instruments monitor earthquakes, volcanoes, and tsunamis that reveal the power of Earth's forces in the Pacific Northwest. A second workshop, held at the University of Nevada-Reno, related EarthScope observations to active continental rifting in the Basin and Range Province. Future workshops will focus on the San Andreas Fault, Colorado Plateau, Rio Grande Rift, and other regions. The workshops are helping interpretive professionals learn how observations of dynamic landscapes can be used to connect various audiences to many of the physical, historical, and cultural aspects of a park or museum site.

  8. Photometric Observations of Near-Earth Asteroid (348400) 2005 JF1

    NASA Astrophysics Data System (ADS)

    Oey, Julian; Groom, Roger

    2016-07-01

    The near-Earth asteroid (348400) 2005 JF21 made a close pass to Earth in 2015 August. CCD photometric observations of the asteroid were made from 2015 August through November. Analysis of the data derived the primary period. However, an attempt to constrain the orbital period of the satellite reported by radar observations had limited success.

  9. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  10. Small Satellite Constellations: The Future for Operational Earth Observation

    NASA Technical Reports Server (NTRS)

    Stephens, J. Paul

    2007-01-01

    Nanosat, microsat and minisat are low-cost, rapid-response small-satellites built from advanced terrestrial technology. SSTL delivers the benefits of affordable access to space through low-cost, rapid response, small satellites designed and built with state-of-the-art COTS technologies by: a) reducing the cost of entry into space; b) Achieving more missions within fixed budgets; c) making constellations and formation flying financially viable; d) responding rapidly from initial concept to orbital operation; and e) bringing the latest industrial COTS component advances to space. Growth has been stimulated in constellations for high temporal revisit&persistent monitoring and military responsive space assets.

  11. European Space Agency Campaign Activities in Support of Earth Observation Projects: Examples for Snow and Ice

    NASA Astrophysics Data System (ADS)

    Schüttemeyer, D.; Davidson, M.; Casal, T.; Perrera, A.; Bianchi, R.; Kern, M.; Scipal, K.

    2012-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out groundbased and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. Campaigns in support of future mission development have technological, geophysical and simulation objectives while exploitation projects need validation for the assessment of the quality of the earth observation products and of the service provision. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the EOPI web portal [http://eopi.esa.int]. In 2005, ESA released a call for the next Earth Explorer Core Mission Ideas with the aim to select a 7th Earth Explorer (EE7) mission to be launched in the next decade. Twenty-four proposals were received and subject to detailed scientific and technical assessment. During the so-called Phase 0, six concepts were selected and further investigated. A down-selection was made after the User Consultation Meeting held in Lisbon, Portugal in January 2009. Three candidate mission concepts were selected for further feasibility phase (phase A) investigation. Each of the candidate missions are being elaborated through two parallel industrial

  12. Focusing the EarthScope for a broader audience: Advancing geoscience education with interactive kiosks

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B. R.; Solis, T.

    2012-12-01

    A primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. One of the most challenging milestones of scientific research, however, is often the translation of a technical result into a clear teachable moment that is accessible to a broader audience. As 4D multimedia now dominate most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), we have made a major effort to construct and install customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. We are also developing new kiosk content that reflect career stories showcasing the personal journeys of EarthScope scientists. To truly bring the interactive aspect of our EarthScope kiosk media into the classroom, we have collaborated with local teachers to develop a one-page EarthScope TerraMap activity worksheet that guides students through kiosk content. These activities are shaping a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.

  13. The space shuttle payload planning working groups. Volume 7: Earth observations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Earth Observations working group of the space shuttle payload planning activity are presented. The objectives of the Earth Observation experiments are: (1) establishment of quantitative relationships between observable parameters and geophysical variables, (2) development, test, calibration, and evaluation of eventual flight instruments in experimental space flight missions, (3) demonstration of the operational utility of specific observation concepts or techniques as information inputs needed for taking actions, and (4) deployment of prototype and follow-on operational Earth Observation systems. The basic payload capability, mission duration, launch sites, inclinations, and payload limitations are defined.

  14. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  15. An observationally based energy balance for the Earth since 1950

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Solomon, S.; Portmann, R. W.; Rosenlof, K. H.; Forster, P. M.; Wong, T.

    2009-09-01

    We examine the Earth's energy balance since 1950, identifying results that can be obtained without using global climate models. Important terms that can be constrained using only measurements and radiative transfer models are ocean heat content, radiative forcing by long-lived trace gases, and radiative forcing from volcanic eruptions. We explicitly consider the emission of energy by a warming Earth by using correlations between surface temperature and satellite radiant flux data and show that this term is already quite significant. About 20% of the integrated positive forcing by greenhouse gases and solar radiation since 1950 has been radiated to space. Only about 10% of the positive forcing (about 1/3 of the net forcing) has gone into heating the Earth, almost all into the oceans. About 20% of the positive forcing has been balanced by volcanic aerosols, and the remaining 50% is mainly attributable to tropospheric aerosols. After accounting for the measured terms, the residual forcing between 1970 and 2000 due to direct and indirect forcing by aerosols as well as semidirect forcing from greenhouse gases and any unknown mechanism can be estimated as -1.1 ± 0.4 W m-2 (1σ). This is consistent with the Intergovernmental Panel on Climate Change's best estimates but rules out very large negative forcings from aerosol indirect effects. Further, the data imply an increase from the 1950s to the 1980s followed by constant or slightly declining aerosol forcing into the 1990s, consistent with estimates of trends in global sulfate emissions. An apparent increase in residual forcing in the late 1990s is discussed.

  16. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  17. The tropospheric emission spectrometer (TES) for the Earth Observing System (EOS)

    NASA Astrophysics Data System (ADS)

    Beer, R.

    In recent years, increasing concern has been expressed about Global Change - the natural and anthropogenic alteration of the Earth's environment involving global greenhouse warming and the associated climate change, urban and regional atmospheric pollution, acid deposition, regional increases in tropospheric zone, and the decrease in stratospheric ozone. A common theme among these problems is that they all involve those tropospheric trace gases which are fundamental to the biosphere-troposphere interaction, the chemistry of the free troposphere itself, and troposphere-stratosphere exchange. The chemical species involved all have spectral signatures within the near and mid infrared that can now be measured by advanced techniques of remote-sensing infrared spectroradiometry. Such a system is the Tropospheric Emission Spectrometer (TES), now in Phase B definition for the Earth Observing System (EOS) polar platforms. TES addresses these objectives by obtaining radiometrically calibrated, linewidth-limited spectral resolution, infrared spectra of the lower atmosphere using both natural thermal emission and reflected sunlight (where appropriate) in three different, but fully programmable, modes: a gobal mode, a pointed mode, and a limb-viewing mode. The goals of TES, its instrumentation, operational modes, sensitivity and data handling are discussed.

  18. Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER

    NASA Technical Reports Server (NTRS)

    McCorkel, J.

    2014-01-01

    The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.

  19. The tropospheric emission spectrometer (TES) for the Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1992-01-01

    In recent years, increasing concern has been expressed about Global Change - the natural and anthropogenic alteration of the Earth's environment involving global greenhouse warming and the associated climate change, urban and regional atmospheric pollution, acid deposition, regional increases in tropospheric zone, and the decrease in stratospheric ozone. A common theme among these problems is that they all involve those tropospheric trace gases which are fundamental to the biosphere-troposphere interaction, the chemistry of the free troposphere itself, and troposphere-stratosphere exchange. The chemical species involved all have spectral signatures within the near and mid infrared that can now be measured by advanced techniques of remote-sensing infrared spectroradiometry. Such a system is the Tropospheric Emission Spectrometer (TES), now in Phase B definition for the Earth Observing System (EOS) polar platforms. TES addresses these objectives by obtaining radiometrically calibrated, linewidth-limited spectral resolution, infrared spectra of the lower atmosphere using both natural thermal emission and reflected sunlight (where appropriate) in three different, but fully programmable, modes: a gobal mode, a pointed mode, and a limb-viewing mode. The goals of TES, its instrumentation, operational modes, sensitivity and data handling are discussed.

  20. Assessing multi-disciplinary Earth observation impacts on societal benefits

    NASA Astrophysics Data System (ADS)

    Pearlman, J.

    2011-12-01

    Multi-disciplinary interactions are becoming more important as demands for science-driven information needed for decision-making are increasing. Further development of systems to improve the scientific understanding of Earth's system and its response to natural or human-induced changes are required to meet this need. These would facilitate modeling and analyses in many critical areas such as climate prediction, food security, water availability and ecosystem sustainability among others. It is intuitive that better information will have a positive impact on decision outcomes. Yet this is difficult to quantitate. The impacts of multi-disciplinary work are particularly difficult to assess, yet it is hard to predict climate change without considering oceans, land use and many other Earth system characteristics. There are several steps that are important to quantitate the benefits. Some of these have been discussed at IIASA, RFI and other centers of excellence in this area. The key is to establish a program with metrics, a community of practice to propagate the metrics and clear case studies that will demonstrate effectiveness. A workshop was held to set the foundations for this approach and recommendations from a team of global experts are evolving into a program. This presentation discusses the indicators and metrics, examines their efficacy and looks at a case study to assess and validate the development.

  1. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  2. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  3. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  4. Advancing Solid Earth Science through Improved Atmosphere Modeling

    NASA Technical Reports Server (NTRS)

    Niell, A. E.

    2004-01-01

    We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.

  5. Astrophysical Implications Drawn from Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki; Nelemans, Gijs; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Following a major instrumentation upgrade, the Advanced LIGO detectors recently completed the first observing run. In this talk I will highlight constraints expected to be drawn from the analysis of this observational data set, in the context of astrophysical models for the formation and eventual mergers of binary compact objects in a wide range of stellar environments.

  6. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  7. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  8. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances

    NASA Astrophysics Data System (ADS)

    Lin, H. S.

    2009-04-01

    The Critical Zone (CZ) is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in terrestrial environments. This is consistent with the recognition of water as a unifying theme for research on complex environmental systems. The CZ ranges from the top of the vegetation down to the bottom of the aquifer, with a highly variable thickness (from <0.001 to >10 km). The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere to create a life-sustaining environment. Hydropedology - the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ - is an important contributor to CZ research. This article reviews and discusses the basic ideas and fundamental features of the CZ and hydropedology, and suggests ways for their advances. An "outward" growth model, instead of an "inward" contraction, is suggested for propelling soil science forward. The CZ is the right platform for synergistic collaborations across disciplines. The reconciliation of the geological (or "big") cycle and the biological (or "small") cycle that are orders of magnitude different in space and time is a key to understanding and predicting complex CZ processes. Because of the layered nature of the CZ and the general trend of increasing density with depth, response and feedback to climate change take longer from the above-ground zone down to the soil zone and further to the groundwater zone. Interfaces between layers and cycles are critical controls of the landscape-soil-water-ecosystem dynamics, which present fertile grounds for interdisciplinary research. Ubiquitous heterogeneity in the CZ can be addressed by environmental gradients and landscape patterns, where hierarchical structures control the landscape complex of

  9. Microspacecraft and Earth observation: Electrical Field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    1990-01-01

    There is a need for an inexpensive, extensive, long-lasting global electric field measurement system (ELF). The primary performance driver of this mission is the need to measure the attitude of each spacecraft in the Earth's electric field very accurately. In addition, it is necessary to know the electric charge generated by the satellite as it crosses the magnetic field lines (E equals V times B). In order to achieve the desired global coverage, a constellation of about 50 satellites in at least 18 different orbits will be used. To reduce the cost of each satellite, off-the-shelf, proven technology will be used whenever possible. Researchers have set a limit of $500,000 per satellite. Researchers expect the program cost, including the deployment of the entire constellation, to be less than $100 million. The minimum projected mission life is five years.

  10. Space Shuttle Earth Observation sensors pointing and stabilization requirements study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The shuttle orbiter inertial measurement unit (IMU), located in the orbiter cabin, is used to supply inertial attitude reference signals; and, in conjunction with the onboard navigation system, can provide a pointing capability of the navigation base accurate to within plus or minus 0.5 deg for earth viewing missions. This pointing accuracy can degrade to approximately plus or minus 2.0 deg for payloads located in the aft bay due to structural flexure of the shuttle vehicle, payload structural and mounting misalignments, and calibration errors with respect to the navigation base. Drawbacks to obtaining pointing accuracy by using the orbiter RCS jets are discussed. Supplemental electromechanical pointing systems are developed to provide independent pointing for individual sensors, or sensor groupings. The missions considered and the sensors required for these missions and the parameters of each sensor are described. Assumptions made to derive pointing and stabilization requirements are delineated.

  11. NASA Earth Observations Track the Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren

    2010-01-01

    The NASA Applied Sciences Program created the Gulf of Mexico Initiative (GOMI) in 2007 "to enhance the region s ability to recover from the devastating hurricanes of 2005 and to address its coastal management issues going into the future." The GOMI utilizes NASA Earth science assets to address regional priorities defined by the Gulf of Mexico Alliance, a partnership formed by the states of Alabama, Florida, Louisiana, Mississippi, and Texas, along with 13 federal agencies and 4 regional organizations to promote regional collaboration and enhance the ecological and economic health of the Gulf of Mexico. NASA's GOMI is managed by the Applied Science and Technology Project Office at Stennis Space Center and has awarded over $18 million in Gulf of Mexico research since 2008. After the Deepwater Horizon oil spill, GOMI personnel assisted members of the Gulf of Mexico Alliance with obtaining NASA remote sensing data for use in their oil spill response efforts.

  12. The Impact of British Airways Wind Observations on the Goddard Earth Observing System Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)

    2001-01-01

    British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.

  13. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  14. Comparison of deep space and near-earth observations of plasma turbulence at solar wind discontinuities

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Green, I. M.

    1972-01-01

    Simultaneous observations of plasma waves from the electric field instruments on Pioneer 9 and OGO 5 are used to illustrate the difference between near-earth and deep space conditions. It is shown that the experimental study of true interplanetary wave-particle interactions is difficult to carry out from an earth orbiter because the earth provides significant fluxes of nonthermal particles that generate intense plasma turbulence in the upstream region.

  15. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  16. Observing Coronal Mass Ejections from the Sun-Earth L5 Point

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; St Cyr, O. C.

    2013-12-01

    Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere and are known to be responsible for severe space weather. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). The STEREO mission viewed CMEs from points away from the Sun-Earth line and demonstrated the importance of such observations in understanding the three-dimensional structure of CMEs and their true kinematics. In this paper, we show that it is advantageous to observe CMEs from the Sun-Earth L5 point in studying CMEs that affect Earth. In particular, these observations are important in identifying that part of the CME that is likely to arrive at Earth. L5 observations are critical for several aspects of CME studies such as: (i) they can also provide near-Sun space speed of CMEs, which is an important input for modeling Earth-arriving CMEs, (ii) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, and (iii) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, which may not be possible from the Sun-Earth line. We also discuss how the L5 vantage point compares with the Sun-Earth L4 point for observing Earth-affecting CMEs. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C., MacDowall, R. J., Maksimovic, M., Sittler, E., et al. (2011b), Earth-Affecting Solar Causes Observatory (EASCO): a mission at

  17. The low earth orbit environment observed using CREAM and CREDO.

    PubMed

    Watson, C J; Dyer, C S; Truscott, P R; Peerless, C L; Sims, A J; Barth, J L

    1998-01-01

    The Cosmic Radiation Environment and Dosimetry experiment (CREDO) has been operational on board the Advanced Photovoltaics & Electronics Experiment Spacecraft since August 1994. Extensive measurements of cosmic ray linear energy transfer spectra (using data to January 1996) and total dose (using data to November 1994) have been made, and compared with predictions of standard models. Detailed consideration of spacecraft shielding effects have been made. Predictions are shown to overestimate the measured linear energy transfer spectra. The CREAM experiment was flown on STS-63 in the SpaceHab module. Results show penetration of high energy electrons into the SpaceHab module. PMID:11542876

  18. Atmospheric Infrared Sounder on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1995-01-01

    The Atmospheric Infrared Sounder (AIRS) is a high spectral resolution IR spectrometer. AIRS, together with the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), is designed to meet the operational weather prediction requirements of the National Oceanic and Atmospheric Administration (NOAA) and the global change research objectives of the National Aeronautics and Space Administration (NASA). The three instruments will be launched in the year 2000 on the EOS-PM spacecraft. Testing of the AIRS engineering model will start in 1996.

  19. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  20. Observations on gender equality in a UK Earth Sciences department

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, p<0.01), and the time taken to achieve first promotion at Durham. Data for our promoted

  1. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  2. 3D exploitation system for operational applications of Earth observation data

    NASA Astrophysics Data System (ADS)

    Bonavenia, Roberto; Colaiacomo, Lucio; Dooley, Colin; Menu, Eric; Palumbo, Gianluca; Prisco, Giulio; Valero, Juan L.; Villemaud, Olivier

    1999-07-01

    The operational applicability of Earth Observation data to facilitate decision making is demonstrated with examples taken from the work of the Western European Union Satellite Center in Madrid. Analysis and reporting techniques based on 3D representations of the surface of the Earth and Virtual Reality are described.

  3. Using Earth Observation to Forecast Human and Animal Vector-Borne Disease Outbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earth observing technologies, including data from with earth-orbiting satellites, coupled with new investigations and a better understanding of the impact of environmental factors on transmission dynamics of mosquito-borne diseases permitted us to forecast Rift Valley fever (RVF) outbreaks in animal...

  4. What Shall We do With The Data We Are Expecting From Upcoming Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1998-01-01

    The community of researchers studying global climate change is preparing to launch the first Earth Observing System (EOS) satellite, EOS AM-1. The satellite will generate huge amounts of data, filling gaps in the information available to address critical questions about Earth's climate.

  5. Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.

    2004-01-01

    The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.

  6. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Astrophysics Data System (ADS)

    Estes, S. M.; Haynes, J. A.; Omar, A. H.

    2012-12-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  7. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  8. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  9. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  10. Conceptual radiometer design studies for Earth observations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  11. Earth observations from space: Outlook for the geological sciences

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.

    1973-01-01

    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.

  12. Vision of the Global Earth Observation System of Systems: a European Perspective

    NASA Astrophysics Data System (ADS)

    Ollier, G.; Craglia, M.; Nativi, S.

    2013-12-01

    The possibility of involving citizens in measuring and providing data is becoming a reality through the concept of "Citizen Observatories". This takes advantage of everybody's capacity to use mobile phone/tablet/laptop to monitor the environment and by trying to find cheap solutions to strengthen the in-situ network of observatories needed for a Global Earth Observation System. Further to the Citizen Observatories approach, the development of cheap sensors based on disposable technologies, nanotech and the piggy-back approach could also be applied to several Societal Challenges and contribute to the GEOSS. The involvement of citizens in the domain of Earth Observation implies dealing with many diverse communities that need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomesnow possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to extend the data resources available from a few hundred to over 28 million The vison which is discussed here is that with a more active participation of the Citizens one could imagine a world with instant information flow about the state and future evolution of the environment available, similar to what has been achieved in weather forecasting but covering fields such as climate, agriculture, water etc. and covering larger forecast time spans from months to years. Failure on crops for instance could be forecasted and measures to mitigate potential upcoming problems could be put in place well in advance. Obviously, the societal and economic benefits would be manifold and large

  13. Reviewing innovative Earth observation solutions for filling science-policy gaps in hydrology

    NASA Astrophysics Data System (ADS)

    Lehmann, Anthony; Giuliani, Gregory; Ray, Nicolas; Rahman, Kazi; Abbaspour, Karim C.; Nativi, Stefano; Craglia, Massimo; Cripe, Douglas; Quevauviller, Philippe; Beniston, Martin

    2014-10-01

    Improved data sharing is needed for hydrological modeling and water management that require better integration of data, information and models. Technological advances in Earth observation and Web technologies have allowed the development of Spatial Data Infrastructures (SDIs) for improved data sharing at various scales. International initiatives catalyze data sharing by promoting interoperability standards to maximize the use of data and by supporting easy access to and utilization of geospatial data. A series of recent European projects are contributing to the promotion of innovative Earth observation solutions and the uptake of scientific outcomes in policy. Several success stories involving different hydrologists' communities can be reported around the World. Gaps still exist in hydrological, agricultural, meteorological and climatological data access because of various issues. While many sources of data exists at all scales it remains difficult and time-consuming to assemble hydrological information for most projects. Furthermore, data and sharing formats remain very heterogeneous. Improvements require implementing/endorsing some commonly agreed standards and documenting data with adequate metadata. The brokering approach allows binding heterogeneous resources published by different data providers and adapting them to tools and interfaces commonly used by consumers of these resources. The challenge is to provide decision-makers with reliable information, based on integrated data and tools derived from both Earth observations and scientific models. Successful SDIs rely therefore on various aspects: a shared vision between all participants, necessity to solve a common problem, adequate data policies, incentives, and sufficient resources. New data streams from remote sensing or crowd sourcing are also producing valuable information to improve our understanding of the water cycle, while field sensors are developing rapidly and becoming less costly. More recent data

  14. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  15. Real-time data and communications services of NCAR's Earth Observing Laboratory

    NASA Astrophysics Data System (ADS)

    Webster, C. J.; Daniels, M.; Stossmeister, G.

    2011-12-01

    Near real-time information is critical for mission management of atmospheric observing systems. Advances in satellite communications and Internet distribution have allowed the Earth Observing Laboratory (EOL) of NCAR to provide data, information and imagery to the scientists during evolving weather situations. Real-time data are necessary for updating interactive displays that show products from forecast models and many disparate observation systems (e.g. satellite, soundings, surface radars and aircraft in-situ observations). At the same time, network-based collaborative tools such as chat and web conferencing facilitate interactive participation between remote groups of scientists, engineers, operations centers and the observing platforms. In the recent PREDICT deployment of the NSF/NCAR GV research aircraft, dropsondes were released from the aircraft at 45,000 ft over a 1000 km x 1000 km area to give profiles of pressure, temperature, humidity and wind below the aircraft. Real-time data from the sondes was collected by the aircraft and relayed by satcom into the Global Telecommunications System (GTS) and assimilated into forecast models. The model forecast results were then fed back into ground-based and airborne displays (along with a multitude of observations) for enhanced decision-making and mission guidance. This environment of streaming data in real-time also allows more experts to look at data and compare it with other measurements. One particular benefit is that it alerts instrument operators on the ground and in the air to instrument problems, which can then be addressed very rapidly. The resulting communications and collaborations infrastructure results in unprecedented improvements to our data quality and rapid targeting of mission resources to important weather events. Using several examples, this presentation will provide an overview of current tools and processes in use at EOL, and future needs will be discussed.

  16. Recent advances in land data assimilation for remote sensing observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For a number of decades, remote sensing observations have been used to define static model parameters and/or forcing inputs for a range of land surface models. However, recent advances in remote sensing theory have also enabled the remote retrieval of dynamic land model states (e.g. leaf area inde...

  17. Mission operations with autonomy: a preliminary report for Earth Observing-1

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Mandl, Dan; Frye, Stuart; Shulman, Seth; Bote, Robert; Szwaczkowski, Joseph; Boyer, Darrell; Vab Gaasbeck, Jim

    2004-01-01

    We describe the current mission operations flow for the Earth Observing-1 spacecraft as well as the more autonomous operations to which we are transitioning as part of the Autonomous Sciencecrat Experiment (ASE).

  18. A rightly balanced intellectual property rights regime as a mechanism to enhance commercial earth observation activities

    NASA Astrophysics Data System (ADS)

    Doldirina, Catherine

    2010-09-01

    Earth observation by satellites is one of the developing sectors of space activities with the growing involvement in private capital or actors. This leads to the question of how efficient legal rules governing this activity are. Copyright law is one of the key fields of law applicable to earth observation activities and is the subject of the present analysis. This paper describes the current state of copyright regulations in different jurisdictions. It also addresses the issue of defining earth observation data for the purpose of applying copyright protection to them. Finally, it analyses whether more or less copyright protection would be beneficial for the commercialisation of the earth observation activities, and the distribution and further use of data they produce. The paper is largely based on my current doctoral research. Draft chapter on file with the author.

  19. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  20. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992

    NASA Technical Reports Server (NTRS)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

    1992-01-01

    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  1. Observables and Goals for Coronagraphic Characterization of Earth Analogs

    NASA Technical Reports Server (NTRS)

    Stapelfelt, Karl R.

    2012-01-01

    On a suitably large and stable telescope, direct coronagraphic imaging can make numerous important measurements of terrestrial exoplanets. Astrometric time-series observations will be of primary importance: Only when the planet orbital elements are known can 1) the effects of the planet's illumination phase and asterocentric distance be accounted for in the observed planetary fluxes, and 2) the planet's location relative to the habitable zone be established. Planetary colors and spectra will allow characterization of the planet's atmosphere and possibly even its surface, while time-variable fluxes may indicate surface contrast features or seasonal changes. Imaging will also reveal the context of other planets and dust belts in the system, both of which can affect habitability. Requirements on astrometric precision, number of visits, and telescope aperture will be discussed.

  2. Enabling the transition towards Earth Observation Science 2.0

    NASA Astrophysics Data System (ADS)

    Mathieu, Pierre-Philippe; Desnos, Yves-Louis

    2015-04-01

    Science 2.0 refers to the rapid and systematic changes in doing Research and organising Science driven by the rapid advances in ICT and digital technologies combined with a growing demand to do Science for Society (actionable research) and in Society (co-design of knowledge). Nowadays, teams of researchers around the world can easily access a wide range of open data across disciplines and remotely process them on the Cloud, combining them with their own data to generate knowledge, develop information products for societal applications, and tackle complex integrative complex problems that could not be addressed a few years ago. Such rapid exchange of digital data is fostering a new world of data-intensive research, characterized by openness, transparency, and scrutiny and traceability of results, access to large volume of complex data, availability of community open tools, unprecedented level of computing power, and new collaboration among researchers and new actors such as citizen scientists. The EO scientific community is now facing the challenge of responding to this new paradigm in science 2.0 in order to make the most of the large volume of complex and diverse data delivered by the new generation of EO missions, and in particular the Sentinels. In this context, ESA - in particular within the framework of the Scientific Exploitation of Operational Missions (SEOM) element - is supporting a variety of activities in partnership with research communities to ease the transition and make the most of the data. These include the generation of new open tools and exploitation platforms, exploring new ways to exploit data on cloud-based platforms, dissiminate data, building new partnership with citizen scientists, and training the new generation of data scientists. The paper will give a brief overview of some of ESA activities aiming to facilitate the exploitation of large amount of data from EO missions in a collaborative, cross-disciplinary, and open way, from science to

  3. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  4. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  5. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  6. Visualizing Earth's Erupting Volcanoes and Wildfires: Seven Years of Data From the Earth Observing Mission

    NASA Astrophysics Data System (ADS)

    Wright, R.; Pilger, E.; Flynn, L. P.; Harris, A. J.

    2006-12-01

    Volcanic eruptions and wildfires are natural hazards that are truly global in their geographic scope, as well as being temporally very dynamic. As such, satellite remote sensing lends itself to their effective detection and monitoring. The results of such mapping can be communicated in the form of traditional static maps. However, most hazards have strong time-dependent forcing mechanisms (in the case of biomass burning, climate) and the dynamism of these geophysical phenomena requires a suitable method for their presentation. Here, we present visualizations of the amount of thermal energy radiated by all of Earth's sub-aerially erupting volcanoes, wildfires and industrial heat sources over a seven year period. These visualizations condense the results obtained from the near-real-time analysis of over 1.2 million MODIS (Moderate Resolution Imaging Spectro-radiometer) images, acquired from NASA's Terra and Aqua platforms. In the accompanying poster we will describe a) the raw data, b) how these data can be used to derive higher-order geophysical parameters, and c) how the visualization of these derived products adds scientific value to the raw data. The visualizations reveal spatio-temporal trends in fire radiated energy (and by proxy, biomass combustion rates and carbon emissions into the atmosphere), which are indiscernible in the static data set. Most notable are differences in biomass combustion between the North American and Eurasian Boreal forests. We also give examples relating to the development of lava flow-fields at Mount Etna (Italy) and Kilauea (USA), as well as variations in heat output from Iraqi oil fields, that span the onset of the 2003 Persian Gulf War. The raw data used to generate these visualizations are routinely made available via the Internet, as portable ASCII files. They can therefore be easily integrated with image datasets, by other researchers, to create their own visualizations.

  7. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  8. Building the EarthChem System for Advanced Data Management in Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Walker, J. D.; Carlson, R. W.; Hofmann, A. W.; Sarbas, B.

    2004-12-01

    Several mature databases of geochemical analyses for igneous rocks are now available over the Internet. The existence of these databases has revolutionized access to data for researchers and students allowing them to extract data sets customized to their specific problem from global data compilations with their desktop computer within a few minutes. Three of the database efforts - PetDB, GEOROC, and NAVDAT - have initiated a collaborative effort called EarthChem to create better and more advanced and integrated data management for igneous geochemistry. The EarthChem web site (http://www.earthchem.org/) serves as a portal to the three databases and information related to EarthChem activities. EarthChem participants agreed to establish a dialog to minimize duplication of effort and share useful tools and approaches. To initiate this dialog, a workshop was run by EarthChem in October, 2003 to discuss cyberinfrastructure needs in igneous geochemistry (workshop report available at the EarthChem site). EarthChem ran an information booth with database and visualization demonstrations at the Fall 2003 AGU meeting (and will have one in 2004) and participated in the May 2003 GERM meeting in Lyon, France where we provided the newly established Publishers' Round Table a list of minimum standards of data reporting to ease the assimilation of data into the databases. Aspects of these suggestions already have been incorporated into new data policies at Geochimica et Cosmochimica Acta and Chemical Geology (Goldstein et al. 2004), and are under study by the Geological Society of America. EarthChem presented its objectives and activities to the Solid Earth Sciences community at the Annual GSA Meeting 2003 (Lehnert et al, 2003). Future plans for EarthChem include expanding the types and amounts of data available from a single portal, giving researchers, faculty, students, and the general public the ability to search, visualize, and download geochemical and geochronological data for a

  9. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  10. Considerations on formation flying separations for earth observing satellite missions

    NASA Technical Reports Server (NTRS)

    Folta, David; Bordi, Francesco; Scolese, Christopher

    1992-01-01

    We assume that scientific requirements (or other mission requirements) call for simultaneous observations from sensors located on different formation-flying spacecraft, and assess how well various kinds of formations of two and three spacecraft can meet these simultaneity requirements. We simulate two types of formation, one where the slave spacecraft moves with respect to the reference spacecraft, and the other where the two spacecraft are kept at a constant time separation. For each type of formation we consider two attitudes: a perfect local vertical local horizontal (LVLH) and an attitude which represents the maximum allowable mission tolerance offset from the mission requirements for attitude determination. We simulate formations of multiple spacecraft and determine how well they can perform simultaneous observations. For each spacecraft we compute the instantaneous ground projection of the center of the imager's fieId of view and plot the movement of the instantaneous ground projection of one spacecraft in the formation relative to the other. The size and shape of this effective ground target parametrize the size and shape of the actual ground target as well as the size and shape of the imager's field of view and the percentage of overlap required.

  11. Multispacecraft observations of diffuse ions upstream of Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Kis, A.; Scholer, M.; Klecker, B.; Moebius, E.; Lucek, E.; Reme, H.

    We present observations of upstream ions at times of large separation distance between the Cluster spacecraft (~5000 km). On 18 February, 2003, during particulary quiet interplanetary conditions, the Cluster spacecraft were moving inbound through the foreshock region, where for more than 12 hours they simultaneously observed a continuous presence of a diffuse ion population. Using the HIA and CODIF sensors of the CIS plasma instrument onboard SC-1 and -3, we were able to directly measure the upstream ion density gradients in the energy range 10-32 keV in several energy bands. During this time period, the spacecraft distance from the bow shock parallel to the local magnetic field varies considerably (between 0 and 15 Re). The distance to the bow shock has been determined by using upstream magnetic field and plasma parameters and a bow shock model. We find up to 10 Re from the bow shock an exponential decrease of the upstream ion density, with an e-folding distance increasing from 3.1 to 5.6 Re at energies from 10 keV to 32 keV, respectively. From the e-folding distance the parallel diffusion coefficient and its energy dependence can be determined. At distances more than 10 Re the gradient is close to zero.