Science.gov

Sample records for advanced earth orbital

  1. Advanced manned earth-to-orbit vehicle

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.

    1986-10-01

    Advanced manned launch vehicle concepts which are designed to meet the space transportation architecture and mission needs for the early 21st century are described. Concepts are described which are based both on modest (evolutionary) and revolutionary advancements in performance technologies but with emphasis on defining operations cost. Design options feature fully reusable, vertical-takeoff, horizontal-landing, rocket-powered concepts and include a variety of possible staging arrangements depending on the desired mission emphasis and the available technologies.

  2. Technology requirements for advanced earth-orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-stage-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability begining in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. Also evaluated was the technical and economic feasibility of this class of SSTO concepts and the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  3. Technology requirements for advanced earth-orbital transportation systems: Summary report. [single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-state-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability beginning in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. The technical and economic feasibility of this class of SSTO concepts were evaluated as well as the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  4. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  5. Technology requirements for advanced earth orbital transportation systems. Volume 2: Summary report

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The results of efforts to identify the technology requirements for advanced earth orbital transportation systems are reported. Topics discussed include: (1) design and definition of performance potential of vehicle systems, (2) advanced technology assessment, and (3) extended performance. It is concluded that the horizontal take-off concept is the most feasible system considered.

  6. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  7. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  8. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  9. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  10. Technology requirements for advanced earth orbital transportation systems. Volume 3: Summary report - dual mode propulsion

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Bangsund, E. L.

    1978-01-01

    The impact of dual-mode propulsion on cost-effective technology requirements for advanced earth-orbital transportation systems is considered. Additional objectives were to determine the advantages of the best dual mode concept relative to the LO2/LH2 concept of the basic study. Normal technology requirements applicable to horizontal take-off and landing single-stage-to-orbit systems utilizing dual mode rocket propulsion were projected to the 1985 time period. These technology projections were then incorporated in a vehicle parametric design analysis for two different operational concepts of a dual mode propulsion system. The resultant performance, weights and costs of each concept were compared. The selected propulsion concept was evaluated to confirm the parametric trending/scaling of weights and to optimize the configuration.

  11. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  12. Technologies Involved in Configuring an Advanced Earth-to-Orbit Transport for Low Structural Mass

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Klich, Phillip J.

    1980-01-01

    The current space shuttle is expected to adequately meet Government and industry needs for the transport of cargo to and from orbit well into the 1990's. However, continual study of potential follow-on shuttle systems is necessary and desirable in order to complement ongoing research in materials, structures, propulsion, aerodynamics, and other related areas. By studying alternate systems well in advance, it will be possible to explore the various technologies and develop those for which there is the greatest apparent payoff. In this paper a single-stage Earth-to-orbit transport designed for delivery of approximately 29,500 kg (65,000 lb) payload will be described. The vehicle, which takes off vertically and lands horizontally, is 60 m (197 feet) long and weighs approximately 1.8 Gg (4 M lb) at liftoff. In the interest of weight reduction, a simple body of revolution is utilized for the main body shell. In this design the main propulsion tanks serve as a primary load-carrying structure. Further, in order to minimize structural mass, the cargo bay is located between two of the main propellant tanks. The cargo volume, at 396 cu m (14,000 cu feet), exceeds that provided by the shuttle; but the bay itself is nonconforming in shape - being approximately 10 m (32 feet) in diameter by 5 m (17 feet) long. Dual-fuel propulsion is employed, since a number of studies have shown that (though lowering performance) the operation of hydrocarbon (RP) engines in parallel with LOX/LH2 engines results in a net reduction in the vehicle's physical size and structural mass. Other weight-saving features entail the extensive use of honeycomb sandwiches, advanced materials, and advanced fabrication techniques. The vehicle presented is utilized only as a means to study and identify various technologies needed in order to develop a low mass Earth-to-orbit transportation system for the future. The conclusion of this study is that vehicle geometry and structural/materials technology are

  13. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  14. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  15. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  16. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  17. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  18. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  19. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  20. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  1. Technologies involved in configuring an advanced earth-to-orbit transport for low structural mass

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Klich, P. J.

    1980-01-01

    A tradeoff study for a single-stage, earth-to-orbit transport spacecraft configured with low structural mass as the prime objective is presented. Among the major design elements affecting vehicle mass are: maneuverability and re-entry heating, the compatibility of an irregular cargo bay geometry to future mission requirements, the fabrication and assembly of large honeycomb structure fuselage sections, and the development of LOX/LH2 engine extendable nozzles and dual-propulsion schemes. It is shown that vehicle geometry and materials and structural technologies will be the critical areas in the development of such a system.

  2. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  3. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  4. Advanced earth-to-orbit transportation vehicles and their propulsion systems

    NASA Technical Reports Server (NTRS)

    Shelton, B. W.

    1978-01-01

    This paper identifies some of the advanced transportation systems and their associated propulsion systems being considered by MSFC for near-term missions (1980-1990), future missions (1990-2000), and far-term missions (post 2000). The near-term launch-vehicle considerations center around the growth Shuttle and the Shuttle-derived Heavy-Lift Launch Vehicle (HLLV) systems. The future and far-term considerations support the development of larger more advanced transportation systems. In such cases, the changing nature of the propulsion requirements needed by the launch vehicle are identified. The evolvement of chemical propulsion launch vehicles into the far future is prognosticated, and where applicable from a launch vehicle or propulsion viewpoint, orbit transfer vehicles are discussed.

  5. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  6. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  7. Low Earth Orbiter: Terminal

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  8. Pressure Control for Low Earth Orbit Investigated

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2005-01-01

    There is renewed interest in cryogenic oxygen storage for an advanced second-generation orbital maneuvering system and reaction control systems in a low Earth orbit because cryogenic propellants are more energetic and environmentally friendly than current storable propellants. Unfortunately, heat transfer or heat leak into these storage systems increases tank pressure. On Earth, pressure is easily controlled by venting from the gaseous, or ullage, space above the liquid. In low gravity, the location of vapor is unknown and direct venting would expel liquid. Historically, upper stages have used auxiliary thrusters to resettle the tank contents and fix the location of the ullage space in orbit.

  9. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  10. Lunar Orbiter: Moon and Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  11. Lunar Orbiter I - Moon & Earth

    NASA Technical Reports Server (NTRS)

    1966-01-01

    First view of the earth and moon from space. Published in: Spaceflight Revolution: Langley Research Center From Sputnik to Apollo, by James R. Hansen. NASA History Series. NASA SP ; 4308. p ii. Caption: 'The picture of the century was this first view of the earth from space. Lunar Orbiter I took the photo on 23 August 1966 on its 16th orbit just before it passed behind the moon. The photo also provided a spectacular dimensional view of the lunar surface.'

  12. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  13. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  14. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  15. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  16. Cargo launch vehicles to low earth orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.

    1990-01-01

    There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.

  17. Orbital Analysis for Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Chodas, P. W.

    1995-01-01

    For recently discovered Near-Earth Objects (NEO) two body computations can be used to determine the minimum distance between the object's orbit and that of the Earth. Determinations can then be made for potential near-term threats to the Earth. This preliminary orbit analysis must be followed with planetary perturbation computations of the object's future motion to predict actual close Earth approaches.

  18. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  19. Earth-to-Orbit Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III

    2003-01-01

    The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.

  20. Cycler orbit between Earth and Mars

    NASA Technical Reports Server (NTRS)

    Byrnes, Dennis V.; Longuski, James M.; Aldrin, Buzz

    1993-01-01

    A periodic orbit between Earth and Mars has been discovered that, after launch, permits a space vehicle to cycle back and forth between the planets with moderate maneuvers at irregular intervals. A Space Station placed in this cycler orbit could provide a safe haven from radiation and comfortable living quarters for astronauts en route to Earth or Mars. The orbit is largely maintained by gravity assist from Earth. Numerical results from multiconic optimization software are presented for a 15-year period from 1995 through 2010.

  1. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  2. A study of a 63 K radiative cooler for the advanced moisture and temperature sounder. [earth-orbiting IR spectrometer for atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Salazar, R.; Evans, N.

    1981-01-01

    A study was performed of cooling methods for a space-borne, earth observing infrared optical instrument, AMTS. Major requirements on the thermal design are an optics temperature below 200 K, a detector array temperature below 75 K, orbital lifetime of 3 to 5 years, a near polar, sun synchronous orbit with altitude near 800 km. Power dissipation of the detectors is 38 mW, in the optics compartment 1.4 W. Large radiative coolers positioned so as to be shielded from sun, spacecraft and earth result in predicted optics temperature of 156 K and detector temperature of 63 K.

  3. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.

  4. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  5. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases [1]. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission [2]. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  6. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  7. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  8. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases.1 Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission.2 Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an Advanced Design Methods (ADM) based approach. This approach applies the concepts of Design of Experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development e ort. In order to t a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  9. Earth Observing-1 Advanced Imager Flight Performance Assessment: Investigating Dark Current Stability Over One-Half Orbit Period during the First 60 Days

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.

  10. Circulating transportation orbits between earth and Mars

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Niehoff, J. C.; Byrnes, D. V.; Longuski, J. M.

    1986-01-01

    This paper describes the basic characteristics of circulating (cyclical) orbit design as applied to round-trip transportation of crew and materials between earth and Mars in support of a sustained manned Mars Surface Base. The two main types of nonstopover circulating trajectories are the socalled VISIT orbits and the Up/Down Escalator orbits. Access to the large transportation facilities placed in these orbits is by way of taxi vehicles using hyperbolic rendezvous techniques during the successive encounters with earth and Mars. Specific examples of real trajectory data are presented in explanation of flight times, encounter frequency, hyperbolic velocities, closest approach distances, and Delta V maneuver requirements in both interplanetary and planetocentric space.

  11. Earth orbital variations and vertebrate bioevolution

    NASA Technical Reports Server (NTRS)

    Mclean, Dewey M.

    1988-01-01

    Cause of the Pleistocene-Holocene transition mammalian extinctions at the end of the last age is the subject of debate between those advocating human predation and climate change. Identification of an ambient air temperature (AAT)-uterine blood flow (UBF) coupling phenomenon supports climate change as a factor in the extinctions, and couples the extinctions to earth orbital variations that drive ice age climatology. The AAT-UBF phenomenon couples mammalian bioevolution directly to climate change via effects of environmental heat upon blood flow to the female uterus and damage to developing embryos. Extinctions were in progress during climatic warming before the Younger Dryas event, and after, at times when the AAT-UBF couple would have been operative; however, impact of a sudden short-term cooling on mammals in the process of adapting to smaller size and relatively larger S/V would have been severe. Variations in earth's orbit, and orbital forcing of atmospheric CO2 concentrations, were causes of the succession of Pleistocene ice ages. Coincidence of mammalian extinctions with terminations of the more intense cold stages links mammalian bioevolution to variations in earth's orbit. Earth orbital variations are a driving source of vertebrate bioevolution.

  12. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  13. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  14. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  15. Spacewire on Earth orbiting scatterometers

    NASA Technical Reports Server (NTRS)

    Bachmann, Alex; Lang, Minh; Lux, James; Steffke, Richard

    2002-01-01

    The need for a high speed, reliable and easy to implement communication link has led to the development of a space flight oriented version of IEEE 1355 called SpaceWire. SpaceWire is based on high-speed (200 Mbps) serial point-to-point links using Low Voltage Differential Signaling (LVDS). SpaceWIre has provisions for routing messages between a large network of processors, using wormhole routing for low overhead and latency. {additionally, there are available space qualified hybrids, which provide the Link layer to the user's bus}. A test bed of multiple digital signal processor breadboards, demonstrating the ability to meet signal processing requirements for an orbiting scatterometer has been implemented using three Astrium MCM-DSPs, each breadboard consists of a Multi Chip Module (MCM) that combines a space qualified Digital Signal Processor and peripherals, including IEEE-1355 links. With the addition of appropriate physical layer interfaces and software on the DSP, the SpaceWire link is used to communicate between processors on the test bed, e.g. sending timing references, commands, status, and science data among the processors. Results are presented on development issues surrounding the use of SpaceWire in this environment, from physical layer implementation (cables, connectors, LVDS drivers) to diagnostic tools, driver firmware, and development methodology. The tools, methods, and hardware, software challenges and preliminary performance are investigated and discussed.

  16. Distributed earth model/orbiter simulation

    NASA Technical Reports Server (NTRS)

    Geisler, Erik; Mcclanahan, Scott; Smith, Gary

    1989-01-01

    Distributed Earth Model/Orbiter Simulation (DEMOS) is a network based application developed for the UNIX environment that visually monitors or simulates the Earth and any number of orbiting vehicles. Its purpose is to provide Mission Control Center (MCC) flight controllers with a visually accurate three dimensional (3D) model of the Earth, Sun, Moon and orbiters, driven by real time or simulated data. The project incorporates a graphical user interface, 3D modelling employing state-of-the art hardware, and simulation of orbital mechanics in a networked/distributed environment. The user interface is based on the X Window System and the X Ray toolbox. The 3D modelling utilizes the Programmer's Hierarchical Interactive Graphics System (PHIGS) standard and Raster Technologies hardware for rendering/display performance. The simulation of orbiting vehicles uses two methods of vector propagation implemented with standard UNIX/C for portability. Each part is a distinct process that can run on separate nodes of a network, exploiting each node's unique hardware capabilities. The client/server communication architecture of the application can be reused for a variety of distributed applications.

  17. Earth Orbital Science, Space in the Seventies.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is part of the "Space in the Seventies" series and reviews the National Aeronautics and Space Administration's (NASA) earth orbital scientific research programs in progress and those to be pursued in the coming decade. Research in space physics is described in Part One in these areas: interplanetary monitoring platforms, small…

  18. Retrieval of RTG'S in earth orbit

    SciTech Connect

    Raab, B.; Frieder, M.A.; Skrabek, A.

    1982-08-01

    Since 1961, some ten Radioisotope Thermoelectric Generators (RTG's) have been placed into a variety of spacecraft which are now in earth orbit. All of these spacecraft are in orbits with lifetimes in excess of 100 years and pose no risk. However, since most of these spacecraft are no longer being actively used, these may be subject to an active removal program to reduce the population of objects in space. Therefore, a study was undertaken to evaluate the feasibility of retrieving or disposing of spacecraft with RTGs on board. Intervention scenarios are developed and an orbital rendezvous vehicle is conceptualized. The costs of RTG retrieval are derived and compared to the costs of RTG disposal, i.e., boost to a higher, multi-millenium-lifetime orbit, and are found to be not significantly different.

  19. Nickel hydrogen low Earth orbit life testing

    NASA Technical Reports Server (NTRS)

    Badcock, C. C.; Haag, R. L.

    1986-01-01

    A program to demonstrate the long term reliability of NiH2 cells in low Earth orbits (LEO) and support use in mid-altitude orbits (MAO) was initiated. Both 3.5 and 4.5 inch diameter nickel hydrogen cells are included in the test plan. Cells from all U.S. vendors are to be tested. The tests will be performed at -5 and 10 C at 40 and 60% DOD for LEO orbit and 10 C and 80% DOD for MAO orbit simulations. The goals of the testing are 20,000 cycles at 60% DOD and 30,000 cycles at 40% DOD. Cells are presently undergoing acceptance and characterization testing at Naval Weapons Systems Center, Crane.

  20. Near Earth asteroid orbit perturbation and fragmentation

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Harris, Alan W.

    1992-01-01

    Collisions by near earth asteroids or the nuclei of comets pose varying levels of threat to man. A relatively small object, approximately 100 meter diameter, which might be found on an impact trajectory with a populated region of the Earth, could potentially be diverted from an Earth impacting trajectory by mass driver rocket systems. For larger bodies, such systems would appear to be beyond current technology. For any size object, nuclear explosions appear to be more efficient, using either the prompt blow-off from neutron radiation, the impulse from ejecta of near-surface explosion for deflection, or as a fragmenting charge. Practical deflections of bodies with diameters of 0.1, 1, and 10 km require interception, years to decades prior to earth encounter, with explosions a few kilotons, megatons, or gigatons, respectively, of equivalent TNT energy to achieve orbital velocity changes or destruction to a level where fragments are dispersed to harmless spatial densities.

  1. Analysing the Orbital Movement and Trajectory of LEO (Low Earth Orbit) Satellite Relative to Earth Rotation

    NASA Astrophysics Data System (ADS)

    Bohra, Nafeesa; de Meer, Hermann; Memon, Aftab. A.

    Next generation of wireless Internet scenarios include LEOs (Low Earth Orbit Satellites). Lower altitudes of LEO constellations could allow global coverage while offering: low end-to-end propagation delay, low power consumption, and effective frequency usage both for the users and the satellite network. LEOs rotate asynchronously to the earth rotation. Fast movement of LEOs makes it necessary to include efficient mobility management. In past few years mobility patterns have been proposed by considering the full earth coverage constellation whereby, the rotation of earth was often assumed too negligible to be taken into account. The prime objective of this study is to provide facts and figures that show LEOs traverse relative to the rotation of earth. In order to analyse the orbital movement and trajectory of LEOs relative to earth rotation mathematical analysis have been done and justification have been made through equations.

  2. Earth Albedo and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1985-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  3. Cosmic ray environment model for Earth orbit

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1985-01-01

    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed.

  4. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  5. Cauchy Drag Estimation For Low Earth Orbiters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Mashiku, Alinda K.

    2015-01-01

    Recent work on minimum variances estimators based on Cauchy distributions appear relevant to orbital drag estimation. Samples form Cauchy distributions which are part of a class of heavy-tailed distributions, are characterized by long stretches of fairly small variation, punctuated by large variations that are many times larger than could be expected from a Gaussian. Such behavior can occur when solar storms perturb the atmosphere. In this context, the present work describes an embedding of the scalar Idan-Speyer Cauchy Estimator to estimate density corrections, within an Extended Kalman Filter that estimates the state of a low Earth orbiter. In contrast to the baseline Kalman approach, the larger formal errors of the present approach fully and conservatively bound the predictive error distribution, even in the face of unanticipated density disturbances of hundreds of percent.

  6. Earth Parking Orbit and Translunar Injection

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The objectives of this slide presentation are to (1) Describe the general characteristics of the Earth Parking Orbit (EPO) and Translunar Injection (TLI) (2) List the general activities that occurred during EPO (4) State what went into verifying a working Saturn IVB S-IVB IU and a CSM GNC (5) Differentiate between a Free-Return Trajectory vs. a Hybrid Non-Free-Return Trajectory (6) Identify the crew monitoring task during the TLI Burn and (7) Identify the abort modes in the event of severe systems problems during the TLI timeframe

  7. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  8. Supportability for Beyond Low Earth Orbit Missions

    NASA Technical Reports Server (NTRS)

    Crillo, William M.; Goodliff, Kandyce E.; Aaseng, Gordon; Stromgren, Chel; Maxwell, Andrew J.

    2011-01-01

    Exploration beyond Low Earth Orbit (LEO) presents many unique challenges that will require changes from current Supportability approaches. Currently, the International Space Station (ISS) is supported and maintained through a series of preplanned resupply flights, on which spare parts, including some large, heavy Orbital Replacement Units (ORUs), are delivered to the ISS. The Space Shuttle system provided for a robust capability to return failed components to Earth for detailed examination and potential repair. Additionally, as components fail and spares are not already on-orbit, there is flexibility in the transportation system to deliver those required replacement parts to ISS on a near term basis. A similar concept of operation will not be feasible for beyond LEO exploration. The mass and volume constraints of the transportation system and long envisioned mission durations could make it difficult to manifest necessary spares. The supply of on-demand spare parts for missions beyond LEO will be very limited or even non-existent. In addition, the remote nature of the mission, the design of the spacecraft, and the limitations on crew capabilities will all make it more difficult to maintain the spacecraft. Alternate concepts of operation must be explored in which required spare parts, materials, and tools are made available to make repairs; the locations of the failures are accessible; and the information needed to conduct repairs is available to the crew. In this paper, ISS heritage information is presented along with a summary of the challenges of beyond LEO missions. A number of Supportability issues are discussed in relation to human exploration beyond LEO. In addition, the impacts of various Supportability strategies will be discussed. Any measure that can be incorporated to reduce risk and improve mission success should be evaluated to understand the advantages and disadvantages of implementing those measures. Finally, an effort to model and evaluate

  9. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  10. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  11. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Astrophysics Data System (ADS)

    Bosset, M.

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  12. Neutron Environment Calculations for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Clowdsley, M. S.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Heinbockel, J. H.; Atwell, W.

    2001-01-01

    The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth's magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth's atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors. The models discussed herein are being developed to evaluate the natural and induced environment data for the Intelligence Synthesis Environment Project and eventual use in spacecraft optimization.

  13. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  14. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  15. A mixed fleet transportation system to low Earth orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Based on a provided mission model, this project considered three different classes of launch vehicles for possible use: (1) modifications to the current Space Transportation System, or replacement by a second-generation vehicle using current technology; (2) a heavy-lift cargo vehicle, designed to minimize the cost of bulk cargo to low earth orbit; and (3) an advanced man-rated system incorporating technology anticipated for the year 1995. The mission model provided included commercial, scientific, and military payloads for the years 1990 through 2010. Use of the current Space Transportation System was also permitted in the final fleet sizing analysis. The near-term shuttle group performed trade studies on a number of modifications and variations before selecting a new vehicle design, incorporating a fly-back reusable first stage and reduced-size orbiter. Orbiter payload was limited to 5000 kg (priority items), with up to 25,000 kg of payload carried in a forward payload bay within the nose shroud of the orbiter external tank. This allowed reduction of orbiter size, without significant loss of reusability.

  16. Observatories in earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji (Editor)

    1990-01-01

    The present volume on observations in earth orbit and beyond discusses current and future missions, launch vehicles, the relative merits of various observatories, and long-term future issues. Attention is given to the Granat automatic spacecraft, the prospects of the Hipparcos mission, EUV and FUV astronomy from Voyagers 1 and 2, and the X-ray Timing Explorer. Topics addressed include the SAX mission for X-ray astronomy, the Space Infrared Telescope Facility, the Ulysses mission in the high-latitude heliosphere, and science operations for future space astrophysics missions. Also discussed are science observations with the IUE using the one-gyro mode, new methods of determining spacecraft attitude, cryogenic testing of optics for ISOCAM, and the stellar X-ray polarimeter for the Spectrum-X-Gamma mission.

  17. Advanced algorithm for orbit computation

    NASA Technical Reports Server (NTRS)

    Szenbehely, V.

    1983-01-01

    Computational and analytical techniques which simplify the solution of complex problems in orbit mechanics, Astrodynamics and Celestial Mechanics were developed. The major tool of the simplification is the substitution of transformations in place of numerical or analytical integrations. In this way the rather complicated equations of orbit mechanics might sometimes be reduced to linear equations representing harmonic oscillators with constant coefficients.

  18. Tethered Capturing Scenarios in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Keramati Nigjeh, Behzad; Trivailo, Pavel; Blanksby, Chris

    To-date, a few actuation methods have been presented which enable zero differential velocity rendezvous for the tip of a space tether and a payload. Some researchers in the field have also investigated the futuristic, ambitious, tethered capturing scenarios for interplanetary transfers. This paper investigates some new and beneficial tethered space capturing scenarios, which can be implemented for near-term space mass/momentum transfer missions in Low Earth Orbit (LEO), by using currently available technology and resources. Zero differential velocity capture could be achieved by initiating a swinging motion in the tether before rendezvous. The lack of significant damping forces in space, means the swinging motion continues after capture, which is extremely undesirable for the retrieval phase and poses a serious danger for the platform as the payload approaches to it. Although exploiting space propulsion on the capturing device at the tip of the tether could stop the swinging motion of the tether directly after the capture, another alternative presented in this paper is to use the space propulsion to boost the payload to the same orbit as the platform. This has the benefit of dramatically reducing fuel consumption and accomplishment of the retrieval phase with low risk of impact to the platform. The numerical methods utilized in the dynamic simulation have been used to evaluate the efficiency of the tethered capturing scenarios mentioned above in comparison to the direct space capture and ideal Hohmann orbit transfer. The payload mass addition to the tip of the elastic tether at capture causes a longitudinal vibration mode (Bobbing mode) in the tether. Since the structural damping in the tether is negligible, a precise length rate/tension control could be used to dampen this mode in the first semi-period, demolishing any subsequent tension peak. This is a new mathematical non-linear control scheme, which is described for tension mitigation and damping of Bobbing

  19. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    NASA Astrophysics Data System (ADS)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  20. Innovations in mission architectures for exploration beyond low Earth orbit.

    PubMed

    Cooke, D R; Joosten, B J; Lo, M W; Ford, K M; Hansen, R J

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.

  1. Innovations in mission architectures for exploration beyond low Earth orbit.

    PubMed

    Cooke, D R; Joosten, B J; Lo, M W; Ford, K M; Hansen, R J

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. PMID:14649260

  2. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  3. The orbital distribution of Near-Earth Objects inside Earth's orbit

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Ngo, Henry; Gladman, Brett

    2012-01-01

    Canada's Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399-433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% of the steady-state NEO population. Vatiras are a previously undiscussed NEO population clearly defined in our integrations, whose orbits lie completely interior to that of Venus. Our integrations also uncovered the unexpected production of retrograde orbits from main-belt asteroid sources; this retrograde NEA population makes up ≃0.1% of the steady-state NEO population. The relative NEO impact rate onto Mercury, Venus, and Earth, as well as the normalized distribution of impact speeds, was calculated from the NEOSSat-1.0 orbital model under the assumption of a steady-state. The new model predicts a slightly higher Mercury impact flux.

  4. Contamination of optical surfaces in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.

    1992-01-01

    Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.

  5. NASA Now: Orbital Mechanics: Earth Observing Satellites

    NASA Video Gallery

    This NASA Now program is all about satellites and their orbits. Dr. James Gleason, project scientist for NPP, explains what it takes for a satellite to stay in orbit, why there are different types ...

  6. Earth Orbit Raise Design for the Artemis Mission

    NASA Technical Reports Server (NTRS)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  7. Low Earth Orbit Plasma Variability Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2003-01-01

    The empirical International Reference Ionosphere is a widely used model for estimating low Earth orbit plasma characteristics for use in spacecraft design and mission analysis. The climatological model provides mean values of plasma density, temperature, composition, and other ionospheric parameters that can be used to estimate the average magnitude of spacecraft charging, current collection for electrodynamic tethers, and other effects on spacecraft design. Mean IRI parameters are not adequate to answer questions such as what is the maximum or minimum value of the spacecraft potential, does the maximum spacecraft potential exceed a program requirement, will an electrodynamic tether provide adequate drag to deorbit a satellite at end of life, and will the tether provide sufficient thrust to reboost a spacecraft at any time in the solar cycle. These questions require estimates of the variability of the ionospheric environment about the mean values. This presentation describes the status of work at MSFC to develop an empirical ionospheric variability model that can be used in conjunction with the climatological IRI model to provide both mean ionospheric parameters and variations of the environment about the mean. Our technique will use an extensive database of satellite and radar observations of the electron density and temperature to derive variances of the data about the model values. The variances will then be incorporated into Fortran wrapper software that calls the IRI-2001 model and provides statistical estimates of the deviation of the environment about the mean IRI values. We will provide an update on the state of the database development and provide examples of analysis and modeling efforts completed specifically for an International Space Station application.

  8. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  9. Collision risk against space debris in Earth orbits

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Valsecchi, G. B.

    2006-05-01

    Öpik’s formulae for the probability of collision are applied to the analysis of the collision risk against space debris in Low-Earth Orbit (LEO) and Medium Earth Orbit. The simple analytical formulation of Öpik’s theory makes it applicable to complex dynamical systems, such as the interaction of the ISS with the whole debris population in LEO The effect of a fragmentation within a multiplane constellation can also be addressed. The analysis of the evolution of the collision risk in Earth orbit shows the need of effective mitigation measures to limit the growth of the collision risk and of the fragmentation debris in the next century.

  10. Near Earth Asteroids- Prospection, Orbit Modification and Mining

    NASA Astrophysics Data System (ADS)

    Grandl, W.; Bazso, A.

    2014-04-01

    The number of known Near Earth Asteroids (NEAs) has increased continuously during the last decades. Now we understand the role of asteroid impacts for the evolution of life on Earth. To ensure that mankind will survive in the long run, we have to face the "asteroid threat" seriously. On one hand we will have to develop methods of detection and deflection for Hazardous Asteroids, on the other hand we can use these methods to modify their orbits and exploit their resources. Rare-earth elements, rare metals like platinum group elements, etc. may be extracted more easily from NEAs than from terrestrial soil, without environmental pollution or political and social problems. In a first step NEAs, which are expected to contain resources like nickel-iron, platinum group metals or rare-earth elements, will be prospected by robotic probes. Then a number of asteroids with a minimum bulk density of 2 g/cm^3 and a diameter of 150 to 500 m will be selected for mining. Given the long duration of an individual mission time of 10-20 years, the authors propose a "pipeline" concept. While the observation of NEAs can be done in parallel, the precursor missions of the the next phase can be launched in short intervals, giving time for technical corrections and upgrades. In this way a continuous data flow is established and there are no idle times. For our purpose Potentially Hazardous Asteroids (PHAs) seem to be a favorable choice for the following reasons: They have frequent closeencounters to Earth, their minimum orbit intersection distance is less than 0.05 AU (Astronomic Units) and they have diameters exceeding 150 meters. The necessary velocity change (delta V) for a spaceship is below 12 km/s to reach the PHA. The authors propose to modify the orbits of the chosen PHAs by orbital maneuvers from solar orbits to stable Earth orbits beyond the Moon. To change the orbits of these celestial bodies it is necessary to develop advanced propulsion systems. They must be able to deliver high

  11. Advanced propulsion concepts for orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1982-01-01

    Studies of the United States Space Transportation System show that in the mid-to-late 1990s expanded capabilities for Orbital Transfer Vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possible men to geosynchronous orbit. NASA is conducting a technology program in support of an advanced propulsion system for future OTVs. This program is briefly described with results to date of the first program element, the Conceptual Design and Technology Definition studies.

  12. A Cryogenic Propellant Production Depot for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.; Henley, Mark; Guitierrez, Sonia; Fikes, John; Carrington, Connie; Smitherman, David; Gerry, Mark; Sutherlin, Steve; Beason, Phil; Howell, Joe (Technical Monitor)

    2001-01-01

    The cost of access to space beyond low Earth orbit can be lowered if vehicles can refuel in orbit. The power requirements for a propellant depot that electrolyzes water and stores cryogenic oxygen and hydrogen can be met using technology developed for space solar power. A propellant depot is described that will be deployed in a 400 km circular equatorial orbit, receive tanks of water launched into a lower orbit from Earth by gun launch or reusable launch vehicle, convert the water to liquid hydrogen and oxygen, and store Lip to 500 metric tonnes of cryogenic propellants. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. The tanks are configured in an inline gravity-gradient configuration to minimize drag and settle the propellant. Temperatures can be maintained by body-mounted radiators; these will also provide some shielding against orbital debris. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotate once per orbit to track the Sun. In the longer term, cryogenic propellant production technology can be applied to a larger LEO depot, as well as to the use of lunar water resources at a similar depot elsewhere.

  13. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  14. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a DELTA V penalty. Usually, because of the DELTA V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Highly Elliptical Orbit (HEO) (2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) (3) One impulsive maneuver from a Low Earth Orbit (LEO) (4) Two impulsive maneuvers from LEO (5) Three impulsive maneuvers from LEO.

  15. Propulsion issues for advanced orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1984-01-01

    Studies of the United States Space Transportation System show that in the mid to late 1990s expanded capabilities for orbital transfer vehicles (OTV) will be needed to meet increased payload requirements for transporting materials and possibly men to geosynchronous orbit. Discussion and observations relative to the propulsion system issues of space basing, aeroassist compatibility, man ratability and enhanced payload delivery capability are presented. These issues will require resolution prior to the development of a propulsion system for the advanced OTV. The NASA program in support of advanced propulsion for an OTV is briefly described along with conceptual engine design characteristics.

  16. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life. PMID:20879864

  17. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  18. Sensing the solar-wind termination shock from Earth's orbit

    NASA Technical Reports Server (NTRS)

    Hsieh, K. C.; Shih, K. L.; Jokipii, J. R.; Gruntman, M. A.

    1992-01-01

    The solar-wind termination shock is inaccessible for repeated in situ investigation. We examine, therefore, the possibility of remote sensing the entire heliopause from Earth's orbit using the energetic neutral atoms (ENA) produced by charge exchange between energetic ions and the neutral atoms of the interstellar medium at and beyond the termination shock. We estimate the ENA fluxes at Earth's orbit coming from the thermalized solar-wind ions and the shock-accelerated anomalous cosmic rays (ACR) at the heliospheric boundary.

  19. Accelerated simulation of near-Earth-orbit polymer degradation

    NASA Technical Reports Server (NTRS)

    Laue, Eric

    1992-01-01

    There is a need to simulate the near-Earth-orbit environmental conditions, and it is useful to be able to monitor the changes in physical properties of spacecraft materials. Two different methods for simulating the vacuum-ultraviolet (VUV) and soft X-ray near-Earth-orbit flux are presented. Also, methods for monitoring the changes in optical ultraviolet transmission and mass loss are presented. The results of exposures to VUV photons and charged particles on these materials are discussed.

  20. GPS early-orbit subsystem for earth satellites

    NASA Technical Reports Server (NTRS)

    Laczo, V. T.; Maury, J. L.

    1972-01-01

    The early-orbit capability of the Goddard Trajectory Determination System, which determines starting vectors for earth satellites from angles-only or range-angles observations, is described and documented. Early-orbit results obtained from a variety of satellites, data types and methods of solution are also presented.

  1. Image Stacking Method Application for Low Earth Orbit Faint Objects

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Matsumoto, H.; Yanagisawa, T.; Kurosaki, H.; Oda, H.; Kitazawa, Y.; Hanada, T.

    2013-09-01

    Space situational awareness is one of the most important actions for safe and sustainable space development and its utilization. Tracking and maintaining debris catalog are the basis of the actions. Current minimum size of objects in the catalog that routinely tracked and updated is approximately 10 cm in the Low Earth Orbit region. This paper proposes collaborative observation of space-based sensors and ground facilities to improve tracking capability in low Earth orbit. This observation geometry based on role-sharing idea. A space-based sensor has advantage in sensitivity and observation opportunity however, it has disadvantages in periodic observation which is essential for catalog maintenance. On the other hand, a ground facility is inferior to space-based sensors in sensitivity however; observation network composed of facilities has an advantage in periodic observation. Whole observation geometry is defined as follows; 1) space-based sensors conduct initial orbit estimation for a target 2) ground facility network tracks the target based on estimated orbit 3) the network observes the target periodically and updates its orbit information. The second phase of whole geometry is based on image stacking method developed by the Japan aerospace exploration agency and this method is verified for objects in geostationary orbit. This method enables to detect object smaller than a nominal size limitation by stacking faint light spot along archived time-series frames. The principle of this method is prediction and searching target's motion on the images. It is almost impossible to apply the method to objects in Low Earth Orbit without proper orbit information because Low Earth Orbit objects have varied orbital characteristics. This paper discusses whether or not initial orbit estimation results given by space-based sensors have enough accuracy to apply image stacking method to Low Earth Orbit objects. Ground-based observation procedure is assumed as being composed of

  2. Environments stressful to optical materials in low earth orbit

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Malloy, W. J.

    1990-01-01

    Spacecraft in low earth orbit experience a variety of environments which are potentially damaging to materials and to optical systems including electronic controls and components. The low earth orbit (typically 400 km) has a significantly different set of environments than higher orbits. The environments vary not only with altitude but also with inclination. This paper deals with the environment that the Space Station Freedom will experience and with some of the effects on the materials and electronic components that will comprise the optical systems on the station. Specific optical systems are not addressed but the information presented is general and does apply to optical systems.

  3. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Mai, N.; McIntyre, M.; Yost, B.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  4. Energetic particle environment in near-Earth orbit.

    PubMed

    Klecker, B

    1996-01-01

    The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment. PMID:11540369

  5. Low-Earth Orbit Determination from Gravity Gradient Measurements

    NASA Astrophysics Data System (ADS)

    Sun, Xiucong; Chen, Pei; Macabiau, Christophe; Han, Chao

    2016-06-01

    An innovative orbit determination method which makes use of gravity gradients for Low-Earth-Orbiting satellites is proposed. The measurement principle of gravity gradiometry is briefly reviewed and the sources of measurement error are analyzed. An adaptive hybrid least squares batch filter based on linearization of the orbital equation and unscented transformation of the measurement equation is developed to estimate the orbital states and the measurement biases. The algorithm is tested with the actual flight data from the European Space Agency's Gravity field and steady-state Ocean Circulation Explorer (GOCE). The orbit determination results are compared with the GPS-derived orbits. The radial and cross-track position errors are on the order of tens of meters, whereas the along-track position error is over one order of magnitude larger. The gravity gradient based orbit determination method is promising for potential use in GPS-denied spacecraft navigation.

  6. Gateway: An earth orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1988-01-01

    University of Texas Mission Design (UTMD) has outlined the components that a space based transportation facility must include in order to support the first decade of Lunar base buildup. After studying anticipated traffic flow to and from the hub, and taking into account crew manhour considerations, propellant storage, orbital transfer vehicle maintenance requirements, and orbital mechanics, UTMD arrived at a design for the facility. The amount of activity directly related to supporting Lunar base traffic is too high to allow the transportation hub to be part of the NASA Space Station. Instead, a separate structure should be constructed and dedicated to handling all transportation-related duties. UTMD found that the structure (named Gateway) would need a permanent crew of four to perform maintenance tasks on the orbital transfer and orbital maneuvering vehicles and to transfer payload from launch vehicles to the orbital transfer vehicles. In addition, quarters for 4 more persons should be allocated for temporary accommodation of Lunar base crew passing through Gateway. UTMD was careful to recommend an expendable structure that can adapt to meet the growing needs of the American space program.

  7. Inhomogeneities in the use of orbit - Impact of earth stations

    NASA Astrophysics Data System (ADS)

    Sane, C. K.

    The paper highlights rapid increase in demand for the two limited natural resources, the geostationary satellite orbit (GSO) and radio frequency spectrum, arising from spectacular growth of satellite communication systems in the recent years. Certain parts of the GSO are relatively more congested due to uneven distribution of countries, their sizes, population, geographical factors and telecommunication requirements over the surface of the earth. Consideration for the selection of the orbit slots, inhomogeneity in the use of GSO and technical factors relating to intersatellite spacing are presented. Uneven use of GSO, intersatellite interference and impact of earth station parameters has been discussed. Techno-economic factors influencing earth station subsystems are given.

  8. 2012 Earth-Orbiting Heliophysics Fleet

    NASA Video Gallery

    Since Sentinels of the Heliosphere in 2008, there have been a few new missions, and a few missions have been shut down. As of Fall of 2012, here's a tour of the NASA Near-Earth Heliophysics fleet, ...

  9. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-01

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  10. Numerical orbit generators of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  11. Earth orbital teleoperator manipulator system evaluation program

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Frederick, P. N.; Brye, R.; Malone, T. B.

    1975-01-01

    The performance of an orbital teleoperator system which includes small dextrous servicing manipulators to be used in satellite servicing was examined. System/operator performance testing was implemented and the results of a fine positioning control test using two different manipulator systems varying widely in manipulator configuration and control systems are presented. Fine position control is viewed as representing a fundamental requirement placed on manipulator control. The relationship of position control to more complex tasks which directly represent on-orbit servicing operations are also presented.

  12. An analysis of the low-earth-orbit communications environment

    NASA Astrophysics Data System (ADS)

    Diersing, Robert Joseph

    Advances in microprocessor technology and availability of launch opportunities have caused interest in low-earth-orbit satellite based communications systems to increase dramatically during the past several years. In this research the capabilities of two low-cost, store-and-forward LEO communications satellites operating in the public domain are examined--PACSAT-1 (operated by the Radio Amateur Satellite Corporation) and UoSAT-3 (operated by the University of Surrey, England, Electrical Engineering Department). The file broadcasting and file transfer facilities are examined in detail and a simulation model of the downlink traffic pattern is developed. The simulator will aid the assessment of changes in design and implementation for other systems. The development of the downlink traffic simulator is based on three major parts. First, is a characterization of the low-earth-orbit operating environment along with preliminary measurements of the PACSAT-1 and UoSAT-3 systems including: satellite visibility constraints on communications, monitoring equipment configuration, link margin computations, determination of block and bit error rates, and establishing typical data capture rates for ground stations using computer-pointed directional antennas and fixed omni-directional antennas. Second, arrival rates for successful and unsuccessful file server connections are established along with transaction service times. Downlink traffic has been further characterized by measuring: frame and byte counts for all data-link layer traffic; 30-second interval average response time for all traffic and for file server traffic only; file server response time on a per-connection basis; and retry rates for information and supervisory frames. Finally, the model is verified by comparison with measurements of actual traffic not previously used in the model building process. The simulator is then used to predict operation of the PACSAT-1 satellite with modifications to the original design.

  13. Innovations in mission architectures for exploration beyond low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.; Joosten, B. J.; Lo, M. W.; Ford, K. M.; Hansen, R. J.

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  14. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  15. From Earth to Orbit: An assessment of transportation options

    NASA Astrophysics Data System (ADS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  16. Air-Cored Linear Induction Motor for Earth-to-Orbit Systems

    NASA Technical Reports Server (NTRS)

    Zabar, Zivan; Levi, Enrico; Birenbaum, Leo

    1996-01-01

    The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.

  17. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  18. Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico P.

    1991-01-01

    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions.

  19. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  20. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  1. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  2. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  3. Human Mars Mission: Launch Window from Earth Orbit. Pt. 1

    NASA Technical Reports Server (NTRS)

    Young, Archie

    1999-01-01

    The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data

  4. Human Exploration Missions Study Launch Window from Earth Orbit

    NASA Technical Reports Server (NTRS)

    Young, Archie

    2001-01-01

    The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric

  5. Dynamics of Drag Free Formations in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet

    2004-01-01

    In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.

  6. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  7. Debris environment interactions with low Earth orbit constellations

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Bade, Anette; Siebold, Karl; Johnson, Nicholas

    1997-01-01

    Several low earth orbit communication satellite constellations are planned. Due to their size and complexity, these constellations potentially contribute to the orbital debris environment. The results of a parametric assessment of the impact of low earth orbit constellations on the orbital debris environment are presented. The increase in loss rate of non constellation spacecraft is considered, as well as the increase in the loss rate or replacement rate of constellation satellites as a result of debris impact. Primary parameters in the analysis are the number, size and altitude of the constellation. Parameters are defined for the vulnerable area of loss of spacecraft and the disposition of constellation spacecraft at the end of its life.

  8. Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Gilb, R.

    2014-06-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing and duration of the seasons. This complexity makes Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g., Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and several relevant paleoclimatological data sets can be produced. Both

  9. Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Gilb, R.

    2013-11-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion. This complexity makes Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Both

  10. Controllability of Large SEP for Earth Orbit Raising

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    2004-01-01

    A six-degree-of-freedom (6DOF) simulation was constructed and exercised for a large solar electric propulsion (SEP) vehicle operating in low Earth orbit Nominal power was 500 kWe, with the large array sizes implied. Controllability issues, including gravity gradient, roll maneuvering for Sun tracking, and flexible arrays, and flight control methods, were investigated. Initial findings are that a SEP vehicle of this size is controllable and could be used for orbit raising of heavy payloads.

  11. Low-earth-orbit effects on strength of glasses

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8-y exposure to low-earth-orbit environment upon the mechanical properties of five commercial glasses and a low-expansion-coefficient glass-ceramic have been examined. The radiation components of the earth-orbit environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. Statistical problems arising from the low frequency of micrometeorite or space debris impacts upon the samples precluded statistically valid measurement of impacted sample strengths. Upper bounds for the magnitude of the impact event damage upon the strengths for impacted samples have been determined.

  12. From Order to Chaos in Earth Satellite Orbits

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  13. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  14. New method for estimating low-earth-orbit collision probabilities

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    An unconventional but general method is described for estimating the probability of collision between an earth-orbiting spacecraft and orbital debris. This method uses a Monte Caralo simulation of the orbital motion of the target spacecraft and each discrete debris object to generate an empirical set of distances, each distance representing the separation between the spacecraft and the nearest debris object at random times. Using concepts from the asymptotic theory of extreme order statistics, an analytical density function is fitted to this set of minimum distances. From this function, it is possible to generate realistic collision estimates for the spacecraft.

  15. MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN-ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS

    SciTech Connect

    Fujii, Yuka; Kawahara, Hajime

    2012-08-20

    Aiming at obtaining detailed information on the surface environment of Earth analogs, Kawahara and Fujii proposed an inversion technique of annual scattered light curves named spin-orbit tomography (SOT), which enables us to sketch a two-dimensional albedo map from annual variation of the disk-integrated scattered light, and demonstrated the method with a planet in a face-on orbit. We extend it to be applicable to general geometric configurations, including low-obliquity planets like the Earth in inclined orbits. We simulate light curves of the Earth in an inclined orbit in three photometric bands (0.4-0.5 {mu}m, 0.6-0.7 {mu}m, and 0.8-0.9 {mu}m) and show that the distribution of clouds, snow, and continents is retrieved with the aid of the SOT. We also demonstrate the SOT by applying it to an upright Earth, a tidally locked Earth, and Earth analogs with ancient continental configurations. The inversion is model independent in the sense that we do not assume specific albedo models when mapping the surface, and hence applicable in principle to any kind of inhomogeneity. This method can potentially serve as a unique tool to investigate the exohabitats/exoclimes of Earth analogs.

  16. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  17. A Survey Of Earth-Moon Libration Orbits: Stationkeeping Strategies And Intra-Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Folta, David; Vaughn, Frank

    2004-01-01

    Cislunar space is a readily accessible region that may well develop into a prime staging area in the effort to colonize space near Earth or to colonize the Moon. While there have been statements made by various NASA programs regarding placement of resources in orbit about the Earth-Moon Lagrangian locations, there is no survey of the total cost associated with attaining and maintaining these unique orbits in an operational fashion. Transfer trajectories between these orbits required for assembly, servicing, and positioning of these resources have not been extensively investigated. These orbits are dynamically similar to those used for the Sun-Earth missions, but differences in governing gravitational ratios and perturbation sources result in unique characteristics. We implement numerical computations using high fidelity models and linear and nonlinear targeting techniques to compute the various maneuver (Delta)V and temporal costs associated with orbits about each of the Earth-Moon Lagrangian locations (L1, L2, L3, L4, and L5). From a dynamical system standpoint, we speak to the nature of these orbits and their stability. We address the cost of transfers between each pair of Lagrangian locations.

  18. Averaging on Earth-Crossing Orbits

    NASA Astrophysics Data System (ADS)

    Gronchi, G. F.; Milani, A.

    The orbits of planet-crossing asteroids (and comets) can undergo close approaches and collisions with some major planet. This introduces a singularity in the N-body Hamiltonian, and the averaging of the equations of motion, traditionally used to compute secular perturbations, is undefined. We show that it is possible to define in a rigorous way some generalised averaged equations of motion, in such a way that the generalised solutions are unique and piecewise smooth. This is obtained, both in the planar and in the three-dimensional case, by means of the method of extraction of the singularities by Kantorovich. The modified distance used to approximate the singularity is the one used by Wetherill in his method to compute probability of collision. Some examples of averaged dynamics have been computed; a systematic exploration of the averaged phase space to locate the secular resonances should be the next step. `Alice sighed wearily. ``I think you might do something better with the time'' she said, ``than waste it asking riddles with no answers'' (Alice in Wonderland, L. Carroll)

  19. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  20. Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit

    NASA Technical Reports Server (NTRS)

    Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle

    1990-01-01

    The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.

  1. Can Sunlight Shift the Earth onto a Different Orbit?

    ERIC Educational Resources Information Center

    Esposito, S.

    2011-01-01

    This article comes from a question asked by a student of mine: if the Sun radiates energy in the form of electromagnetic waves, could they shift the Earth from its current orbit on a suitable timescale? The answer to such a question is apparently obvious and trivial. Nevertheless, it requires an instructive reasoning and interesting estimates of…

  2. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  3. Microlensing planet detection via geosynchronous and low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Mogavero, F.; Beaulieu, J. P.

    2016-01-01

    Planet detection through microlensing is usually limited by a well-known degeneracy in the Einstein timescale tE, which prevents mass and distance of the lens to be univocally determined. It has been shown that a satellite in geosynchronous orbit could provide masses and distances for most standard planetary events (tE ≈ 20 days) via a microlens parallax measurement. This paper extends the analysis to shorter Einstein timescales, tE ≈ 1 day, when dealing with the case of Jupiter-mass lenses. We then study the capabilities of a low Earth orbit satellite on even shorter timescales, tE ≈ 0.1 days. A Fisher matrix analysis is employed to predict how the 1-σ error on parallax depends on tE and the peak magnification of the microlensing event. It is shown that a geosynchronous satellite could detect parallaxes for Jupiter-mass free floaters and discover planetary systems around very low-mass brown dwarfs. Moreover, a low Earth orbit satellite could lead to the discovery of Earth-mass free-floating planets. Limitations to these results can be the strong requirements on the photometry, the effects of blending, and in the case of the low orbit, the Earth's umbra.

  4. From Earth to orbit. [assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Arthur

    1992-01-01

    Within this document, the National Research Council (NRC) assesses the requirements, benefits, technological feasibility, and roles of Earth-to-orbit transportation options that could be developed in support of the national space program. Among the topics covered are launch vehicles and infrastructure, propulsion, and technology.

  5. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph; Willis, Emily

    2014-01-01

    Internal charging is not generally considered a threat in low Earth orbit due to the relatively short exposure times and low flux of electrons with energies of a few MeV encountered in typical orbits. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. We investigate the conditions required for this internal charging process to occur in low Earth orbit using a one-dimensional charging model and evaluate the environments for which the process may be a threat to spacecraft.

  6. Single and dual burn maneuvers for low earth orbit maintenance

    NASA Astrophysics Data System (ADS)

    Hernandez, Andrew A.

    1994-12-01

    Optimal control theory suggests maintaining an orbital altitude band for Low-Earth-Orbiting (LEO) satellites using periodic thrusting than forced Keplerian motion, i.e. a trajectory obtained by thrust-drag cancellation. Designing guidance algorithm for orbit maintenance is complicated by the nonlinearities associated with orbital motion. An algorithm developed previously using thrusters firing significantly off the direction of motion successfully maintains an orbital band, but is very inefficient. This thesis develops two different control strategies based on the osculating orbital parameters. taking a conservative approach to keeping within altitude limitations. Thrust is in the local horizontal plane along the direction of flight. Single and dual burn maneuvers are considered for various bandwidths and thruster sizes. The dual burn strategy is somewhat close to a Hohmann transfer. The specified orbital band is generally maintained, with some cases slightly exceeding the upper limit. Propellant consumptions for both maneuvers is significantly better than previous methods. This thesis shows that forward firing thrusters can be used with osculating orbital parameters to obtain efficiencies within forced Keplerian motion values.

  7. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    SciTech Connect

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-04-20

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that {approx}0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for {approx}0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  8. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  9. Habitation Concepts for Human Missions Beyond Low-Earth-Orbit

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2016-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.

  10. A search for asteroids on Earth horseshoe orbits

    NASA Astrophysics Data System (ADS)

    Margot, J. L.; Nicholson, P. D.

    2003-08-01

    There are currently about a dozen known near-Earth objects with well-determined orbits and semi-major axis between 0.99 and 1.01 AU (Ted Bowell's asteroid database, 2003). We examined their orbital trajectories using the Horizons integrator (Giorgini, 1996) in an effort to find asteroids on Earth horseshoe orbits. Two objects (2002 AA29 and 2000 PH5) displayed a recent abrupt reversal in the evolution of their ecliptic longitude with respect to that of Earth, indicating a classic horseshoe or tadpole behavior. In a Sun-centered frame co-rotating with Earth, their trajectory displays the horseshoe pattern with the expected libration period of ˜100 years. 2002 AA29 was previously recognized as being on a horseshoe trajectory (Connors et al., 2002). Wiegert et al. (2002) suggested that 2000 PH5 and 2001 GO2 are on horseshoe orbits, although their claim rests on a single 4.5-day observational arc for 2001 GO2. Although the mean longitude of 2000 PH5 always remains at least ˜25 degrees away from the longitude of Earth, the asteroid makes very close Earth approaches, within a few lunar distances. This is due to its significant ˜0.2 eccentricity and the corresponding epicycle-like motion that is superimposed on the libration in mean longitude. The fact that this object happens to have just the right eccentricity to bring it so close to Earth suggests that it may have been barely ejected from the Earth-Moon system into an heliocentric orbit. Goldstone radar observations conducted by JLM and collaborators show that the object does not appear to be man-made. Higher resolution observations with the Arecibo radar will be conducted in an attempt to constrain its plausible source region. Because of its peculiar origin, repeating close approaches to Earth, and low delta-V, this object may be an attractive target for a sample return mission. A long-lived transponder on its surface would also provide interesting dynamical information.

  11. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  12. Monitoring objects orbiting earth using satellite-based telescopes

    SciTech Connect

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  13. Simplified Orbit Determination Algorithm for Low Earth Orbit Satellites Using Spaceborne Gps Navigation Sensor

    NASA Astrophysics Data System (ADS)

    Tukaram Aghav, Sandip; Achyut Gangal, Shashikala

    2014-06-01

    In this paper, the main work is focused on designing and simplifying the orbit determination algorithm which will be used for Low Earth Orbit (LEO) navigation. The various data processing algorithms, state estimation algorithms and modeling forces were studied in detail, and simplified algorithm is selected to reduce hardware burden and computational cost. This is done by using raw navigation solution provided by GPS Navigation sensor. A fixed step-size Runge-Kutta 4th order numerical integration method is selected for orbit propagation. Both, the least square and Extended Kalman Filter (EKF) orbit estimation algorithms are developed and the results of the same are compared with each other. EKF algorithm converges faster than least square algorithm. EKF algorithm satisfies the criterions of low computation burden which is required for autonomous orbit determination. Simple static force models also feasible to reduce the hardware burden and computational cost.

  14. Analysis on high-altitude earth Orbit Satellite Determination

    NASA Astrophysics Data System (ADS)

    He, J.; Hou, Y. W.; Yang, L.

    2016-02-01

    The difference is introduced between approx circular apogee orbit and approx circular perigee one by error transmitting at first. Then the characteristic of secant compensation is analysed when radar tracking object with high elevation. And two kinds of orbit force be pressed to, their perturbation influence and their earth-core angles are explained. And then the series of emulation results are shown including error data emulated with Monte Carlo method, the influence of the velocity increment from the ejecting force of spring while satellite-rocket separating and their perturbation influence and the length of influence of the data arc. Then decision analysis of Wald method and Bayesian statistics rule and the results from the two rule are introduced. So the suitable orbit determination decision is put forward from the decision method. Finally the result is tested reasonable and feasible via the real data. In the end it is useful to reference to make orbit decision in short injection of circular orbit far from the earth for calculating concurrently precise and timely.

  15. Low Earth Orbit Raider (LER) winged air launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn

    1989-01-01

    The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.

  16. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  17. Earth-orbiting resonant-mass gravitational wave detectors

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1989-01-01

    Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).

  18. Earth-orbit mission considerations and Space Tug requirements.

    NASA Technical Reports Server (NTRS)

    Huber, W. G.

    1973-01-01

    The reusable Space Tug is a major system planned to augment the Space Shuttle's capability to deliver, retrieve, and support automated payloads. The Space Tug will be designed to perform round-trip missions from low earth orbit to geosynchronous orbit. Space Tug goals and requirements are discussed together with the characteristics of the full capability Tug. The Tug is to be operated in an unmanned 'teleoperator' fashion. Details of potential teleoperator applications are considered, giving attention to related systems studies, candidate Tug mission applications, Tug 'end-effector' alternatives, technical issues associated with Tug payload retrieval, and Tug/payload accommodations.

  19. Space life sciences: radiation risk assessment and radiation measurements in low Earth orbit.

    PubMed

    2004-01-01

    The volume contains papers presented at COSPAR symposia in October 2002 about radiation risk assessment and radiation measurements in low Earth orbit. The risk assessment symposium brought together multidisciplinary expertise including physicists, biologists, and theoretical modelers. Topics included current knowledge about known and predicted radiation environments, radiation shielding, physics cross section models, improved ion beam transport codes, biological demonstrations of specific shielding materials and applications to a manned mission to Mars, advancements in biological measurement of radiation-induced protein expression profiles, and integration of physical and biological parameters to assess key elements of radiation risk. Papers from the radiation measurements in low Earth orbit symposium included data about dose, linear energy transfer spectra, and charge spectra from recent measurements on the International Space Station (ISS), comparison between calculations and measurements of dose distribution inside a human phantom and the neutron component inside the ISS; and reviews of trapped antiprotons and positrons inside the Earth's magnetosphere. PMID:15880912

  20. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  1. Ranking upper stages in low Earth orbit for active removal

    NASA Astrophysics Data System (ADS)

    Anselmo, L.; Pardini, C.

    2016-05-01

    This paper addresses the problem of ranking the upper stages in orbit in order to evaluate their potential detrimental effects on the debris environment over the long-term, and the relative advantage of having them actively de-orbited. To do so, a new ranking scheme is introduced, applicable to any object in low Earth orbit (LEO) and able to prioritize the target objects potentially most critical for the future preservation of the LEO protected region. Applying the proposed approach, it was found, for instance, that the 22 most massive upper stages abandoned in LEO, at the beginning of 2015, are on the whole equivalent to several hundred average intact objects in sun-synchronous orbit, regarding their latent detrimental effects on the debris environment over the next 200 years. Most of them could therefore be the top priority targets of any worldwide coordinated effort for active removal and the prevention of new collisional debris. The ranking scheme was also applied to other main models of rocket bodies currently in orbit, trying to identify the combinations of orbital elements and upper stage types requiring particular attention.

  2. The effect of the low Earth orbit environment on space solar cells

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Brasted, Donald K.

    1990-01-01

    The results of a space flight experiment designed to provide reference cell standards for photovoltaic measurements as well as to investigate the solar spectrum and the effect of long-term exposure of solar cells to the space environment are presented. This experiment, the Advanced Photovoltaic Experiment (APEX), was launched into low Earth orbit as part of the Long Duration Exposure Facility in 1984 and retrieved 69 months later. APEX contained over 150 solar cells of a wide variety of materials, designs and coverglasses. Data on cell performance was recorded for the first year-on-orbit.

  3. Lageos orbit decay due to infrared radiation from earth

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    1987-01-01

    Infrared radiation from the earth may be the principal reason for the decay of Lageos' orbit. The radiation heats up the laser retroreflectors embedded in Lageos' aluminum surface. This creates a north-south temperature gradient on the satellite. The gradient in turn causes a force to be exerted on Lageos because of recoil from photons leaving its surface. The delayed heating of the retroreflectors due to their thermal inertia gives the force a net along-track component which always acts like drag. A simple thermal model for the retroreflectors indicates that this thermal drag accounts for about half the observed average along-track acceleration of -3.3 x 10 to the -10th power m/sec squared. The contribution from the aluminum surface to this effect is negligible. The infrared effect cannot explain the large observed fluctuations in drag which occur mainly when the orbit intersects the earth's shadow.

  4. Survey of Earth orbital telescopes and their potential for exobiology.

    PubMed

    Tarter, J C

    1986-01-01

    A series of Workshops on Exobiology in Earth Orbit held at NASA Ames Research Center has recently concluded. The draft of the final report from these Workshops contains a prioritized list of telescopic observations (possible only from above the Earth's atmosphere) that relate to the origin and evolution of the biogenic elements and compounds from their nucleosynthetic creation within stars to their inclusion in living systems. These orbital observations and the ground based laboratory and theoretical research necessary to support them have been termed Observational Exobiology. The details available on spacecraft, platforms and instrumentation most likely to be launched in the near future by the U.S. and Europe were considered in the Workshops. The purpose was to determine what observational programs would be tractible and what area of interest to exobiology required hardware and/or mission capabilities not yet envisioned. This paper summarizes the exciting opportunities that exist for Observational Exobiology.

  5. Atomic Oxygen Protection of Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Spacecraft polymeric materials as well as polymer-matrix carbon-fiber composites can be significantly eroded as a result of exposure to atomic oxygen in low Earth orbit (LEO). Several new materials now exist, as well as modifications to conventionally used materials, that provide much more resistance to atomic oxygen attack than conventional hydrocarbon polymers. Protective coatings have also been developed which are resistant to atomic oxygen attack and provide protection of underlying materials. However, in actual spacecraft applications, the configuration, choice of materials, surface characteristics and functional requirements of quasi-durable materials or protective coatings can have great impact on the resulting performance and durability. Atomic oxygen degradation phenomena occurring on past and existing spacecraft will be presented. Issues and considerations involved in providing atomic oxygen protection for materials used on spacecraft in low Earth orbit will be addressed. Analysis of in-space results to determine the causes of successes and failures of atomic oxygen protective coatings is presented.

  6. Lageos orbit decay due to infrared radiation from Earth

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    1987-01-01

    Infrared radiation from the Earth may be the principal reason for the decay of Lageos' orbit. The radiation heats up the laser retroreflectors embedded in Lageos' aluminum surface. This creates a north-south temperature gradient on the satellite. The gradient in turn causes a force to be exerted on Lageos because of recoil from photons leaving its surface. The delayed heating of the retroreflectors due to their thermal inertia gives the force a net along-track component which always acts like drag. A simple thermal model for the retroreflectors indicates that this thermal drag accounts for about half the observed average along-track acceleration of -3.3 x 10 to the -10 power m/sec squared. The contribution from the aluminum surface to this effect is negligible. The infrared effect cannot explain the large observed fluctuations in drag which occur mainly when the orbit intersects the Earth's shadow.

  7. Mechanical failure probability of glasses in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Wiedlocher, David E.

    1992-01-01

    Results of five years of earth-orbital exposure on mechanical properties of glasses indicate that radiation effects on mechanical properties of glasses, for the glasses examined, are less than the probable error of measurement. During the 5 year exposure, seven micrometeorite or space debris impacts occurred on the samples examined. These impacts were located in locations which were not subjected to effective mechanical testing, hence limited information on their influence upon mechanical strength was obtained. Combination of these results with micrometeorite and space debris impact frequency obtained by other experiments permits estimates of the failure probability of glasses exposed to mechanical loading under earth-orbit conditions. This probabilistic failure prediction is described and illustrated with examples.

  8. Earth Orbit, Period, and Temperature - Past and Future

    NASA Astrophysics Data System (ADS)

    Leubner, I. H.

    2007-12-01

    The Earth climate, its recent history and near future (+/- 100 years) are under intense scrutiny because of temperature changes ascribed to green house effects. However, long-term temperature changes since the formation of the solar system (-4.5Byr) and for the extended future are not known. The present paper addresses the magnitude and the rate of Earth temperature changes for this time range, and compares the results to present observations. The model is based on the cohesion of the solar system which is determined by mass (solar radiative and solar wind)and gravity loss since the formation of the solar system, and the resulting expansion of planetary orbits.(1) This model has previously successfully predicted the why and when of the transition from water to ice on Mars. (2) After the formation of the solar system (-4.5 Byr) the Earth orbit was at 1.38E08 km (presently 1.50E08 km) and the Earth period was 0.89 years. In the future (+4.5 Byr), they are predicted to be 1.64E08 km and 1.15 yr. At -4.5 Byr, present temperatures of -50, zero, and + 50 C were higher at -40.5, 11.7, and 63.9 C, respectively. It is predicted that in +4.5 Byr these temperatures will have decreased to -60.0, -12.2, and 35.5 C. In the past million years, the present -50, 0, and +50 C temperatures were about 0.03C higher, and will be about 0.03 C lower in another million years. These results indicate that temperature changes due to changes of solar-Earth orbital interactions do not significantly contribute to the observed Earth global warming observations. (1) I. H. Leubner, 'Stability of planetary Orbits', AGU 2006 Fall Meeting, San Francisco, Ca, Dec. 11-15, 2006 (2) I. H. Leubner, 'Mars Orbit and Temperature: Why and When an Early wet Mars', AGU 2004 Fall Meeting, San Francisco, Ca, Dec. 14, 2004

  9. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  10. Low Earth Orbit Rendezvous Strategy for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Cirillo, William M.; Stromgren, Chel

    2006-01-01

    On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.

  11. Radiation protection guidance for activities in low-Earth orbit.

    PubMed

    Townsend, L W; Fry, R J M

    2002-01-01

    Scientific Committee 75 (SC 75) of the National Council on Radiation Protection and Measurements (NCRP) was assembled for the purpose of providing guidance to NASA concerning radiation protection in low-Earth orbit. The report of SC 75 was published in December 2000 as NCRP Report No. 132. In this presentation an overview of the findings and recommendations of the committee report will be presented. PMID:12539765

  12. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  13. Intracellular molecular distributions in spacecraft experiments in orbit around Earth

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis; Zouganelis, George D.

    2012-04-01

    It is possible that the nucleolous inside the cell plays the role of a "gravity receptor". Furthermore, cells up to 10 μm in diameter can demonstrate some effect due to the redistribution of mitochondria or nucleolous. Effects of gravity should be present in various cell systems where larger objects such as the ribosomes move from cell to cell. In this paper we study the effects of gravity on cells. In particular, we examine the resulting intracellular molecular distribution due to Brownian motion and the ordered distribution of molecules under the action of gravity, where n0 is the number per unit volume at certain level, and n is the number per unit volume above that level. This is an experiment that takes place at a certain orbital altitude in a spacecraft in orbit around Earth, where the acceleration due to the central field is corrected for the oblateness and also the rotation of the Earth. We found that equatorial circular and elliptical orbits have the highest n/n0 ratios. This experiment takes place in circular and elliptical orbits, with eccentricities e = 0, 0.1 and involves a bacterial cell at an orbital altitude of 300 km. We found that n/n0 = 1.00299 and 1.0037 respectively, which is still a 0.6-0.7 % higher than n/n0 = 0.0996685 calculated on the surface of the Earth. Examining mitochondria in similar orbital experiments we found that equatorial orbits result to higher n/n0 ratios. In particular, we found that n/n0 = 8.38119, where an elliptical orbit of eccentricity e = 0.1 results to n/n0 = 13.8525. Both are high above 100%, signifying the importance of Brownian motion over gravity. Our results are of interest to biomedical applications. Molecular concentrations are important for various processes such as the embryogenesis, positional homeostasis and its relation to cell energy expenditure, cell torque, cell deformation, and more. These results indicate that statistical molecular distributions play an important role for the recognition of a

  14. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  15. Orbital, rotational, and climatic interactions: Lessons from Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Though variations in orbital and rotational parameters of the Earth and Mars are widely recognized as plausible sources of significant climatic variation on 10(exp 3) to 10(exp 8) yr timescales, many aspects of the connection between orbital, rotational, and climatic variations remain poorly understood. In general, the orbital histories are very well known, the rotational histories (especially for Mars) are very poorly known. A brief review is given of recent progress in computing orbital and rotational secular variations, and in connecting them to climatic change. The emphasis is on highlighting those areas that limit the present understanding. It is obvious that mass redistributions associated with climatic change (glaciation) are a source of crustal deformation and geodynamic change on the Earth, and may have played similar roles on Mars. It is much less appreciated, that rates, phases, and amplitudes of deformation of the deep interior of the planet can influence climate. The mantle and core, if decoupled, would precess at different rates, and even with plausible coupling strengths, some degree of differential precession is possible.

  16. Orbital, rotational, and climatic interactions: Lessons from Earth and Mars

    NASA Astrophysics Data System (ADS)

    Bills, Bruce G.

    Though variations in orbital and rotational parameters of the Earth and Mars are widely recognized as plausible sources of significant climatic variation on 103 to 108 yr timescales, many aspects of the connection between orbital, rotational, and climatic variations remain poorly understood. In general, the orbital histories are very well known, the rotational histories (especially for Mars) are very poorly known. A brief review is given of recent progress in computing orbital and rotational secular variations, and in connecting them to climatic change. The emphasis is on highlighting those areas that limit the present understanding. It is obvious that mass redistributions associated with climatic change (glaciation) are a source of crustal deformation and geodynamic change on the Earth, and may have played similar roles on Mars. It is much less appreciated, that rates, phases, and amplitudes of deformation of the deep interior of the planet can influence climate. The mantle and core, if decoupled, would precess at different rates, and even with plausible coupling strengths, some degree of differential precession is possible.

  17. Orbital and Physical Characteristics of Meter-sized Earth Impactors

    NASA Astrophysics Data System (ADS)

    Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward

    2015-11-01

    We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).

  18. Interaction between subdaily Earth rotation parameters and GPS orbits

    NASA Astrophysics Data System (ADS)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  19. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  20. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very

  1. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  2. GPS World, Innovation: Autonomous Navigation at High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bamford, William; Winternitz, Luke; Hay, Curtis

    2005-01-01

    Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these

  3. Spatial Analysis of Galactic Cosmic Ray Particles in Low Earth Orbit/Near Equator Orbit Using SPENVIS

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Zulkeple, S. K.

    2014-04-01

    The space environment has grown intensively harmful to spacecraft and astronauts. Galactic cosmic rays (GCRs) are one of the radiation sources that composed of high energetic particles originated from space and capable of damaging electronic systems through single event upset (SEU) process. In this paper, we analyzed GCR fluxes at different altitudes by using Space Environment Information System (SPENVIS) software and the results are compared to determine their intensities with respect to distance in the Earth's orbit. The altitudes are set at low earth orbit (400 km and 685 km), medium earth orbit (19,100 km and 20,200 km) and high earth orbit (35,793 km and 1,000,000 km). Then, within Low Earth Orbit (LEO) near the equator (NEqO), we used altitude of 685 km to compare GCRs with the intensities of solar particles and trapped particles in the radiation belt to determine the significance of GCRs in the orbit itself.

  4. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  5. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  6. Secular tidal changes in lunar orbit and Earth rotation

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Boggs, Dale H.

    2016-11-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains d n/d t = -25.97± 0.05 ''/cent2, d a/d t = 38.30 ± 0.08 mm/year, and d i/d t = -0.5 ± 0.1 μas/year. Solving for two terrestrial time delays and an extra d e/d t from unspecified causes gives ˜ 3× 10^{-12}/year for the latter; solving for three LLR tidal time delays without the extra d e/d t gives a larger phase lag of the N2 tide so that total d e/d t = (1.50 ± 0.10)× 10^{-11}/year. For total d n/d t, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 ''/cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μas/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  7. Secular tidal changes in lunar orbit and Earth rotation

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Boggs, Dale H.

    2016-06-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = -25.97± 0.05 ''/ cent2 , da/dt = 38.30 ± 0.08 mm/year, and di/dt = -0.5 ± 0.1 μ as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives ˜ 3× 10^{-12} /year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = (1.50 ± 0.10)× 10^{-11} /year. For total dn/dt, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 '' /cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μ as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  8. How the inclination of Earth's orbit affects incoming solar irradiance

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Norton, A.; Dudok de Wit, T.; Kretzschmar, M.; Schmidt, G. A.; Cheung, M. C. M.

    2012-08-01

    The variability in solar irradiance, the main external energy source of the Earth's system, must be critically studied in order to place the effects of human-driven climate change into perspective and allow plausible predictions of the evolution of climate. Accurate measurements of total solar irradiance (TSI) variability by instruments onboard space platforms during the last three solar cycles indicate changes of approximately 0.1% over the sunspot cycle. Physics-based models also suggest variations of the same magnitude on centennial to millennia time-scales. Additionally, long-term changes in Earth's orbit modulate the solar irradiance reaching the top of the atmosphere. Variations of orbital inclination in relation to the Sun's equator could potentially impact incoming solar irradiance as a result of the anisotropy of the distribution of active regions. Due to a lack of quantitative estimates, this effect has never been assessed. Here, we show that although observers with different orbital inclinations experience various levels of irradiance, modulations in TSI are not sufficient to drive observed 100 kyr climate variations. Based on our model we find that, due to orbital inclination alone, the maximum change in the average TSI over timescales of kyrs is ˜0.003 Wm-2, much smaller than the ˜1.5 Wm-2 annually integrated change related to orbital eccentricity variations, or the 1-8 Wm-2 variability due to solar magnetic activity. Here, we stress that out-of-ecliptic measurements are needed in order to constrain models for the long-term evolution of TSI and its impact on climate.

  9. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions

    NASA Astrophysics Data System (ADS)

    Greenspon, J.

    Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365

  10. Lunar Dynamics on Internal Structure of the Moon on the orbit around the planet Earth

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2015-04-01

    This work concerns on problem of dynamics of the Moon rotating on the orbit around the Earth. First, the author introduces what about on the reference data which was updated by NASA in 2013. The NASA's mission of GRAIL (Gravity Recovery and Interior Laboratory)in 2012 was a key to obtain the lunar gravity field on the whole area of the Moon's surface. Now, the author introduces his dynamical model for obtaining an advanced understanding of the lunar internal structure inside of the Moon's surface. The data obtained by NASA had shown that the crust on the moon near side to the Earth was about 30 km thick and that on the moon far side to the Earth was was 50 km. Then, a bold modelling can be introduced for the existing Moon's internal structure referring to the fruuits of the research works in the field of the Earth's gravity found on the basis of the past contributions in the field of geodesy under several bold assumptions wich have been accepted in the fields of astronomy and of the space sciences. In brief, the Moon's gravity could reduce the lunar interface of the core must be surely excentric boldly about 10 km inside of the orbit on the radial line between the Moon and the Earth.Hence, the lunar magnetic field must be freezed to show the reversed polarity relative to that of the Earth. Neverthless, it should be updated to the details in the successive research.

  11. Statistical Analysis of Interference Between Earth Stations and Earth-Orbiting Satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D.

    1994-01-01

    Determination of the potential for radio frequency interference between Earth stations and orbiting spacecraft is often desirable. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. Also, it is useful for planning emission standards and filtering requirements for future telecommunications equipment. A model is developed that will determine the statistics of interference between Earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long term statistics of interference.

  12. Formation design and relative navigation in high Earth orbits

    NASA Astrophysics Data System (ADS)

    Lane, Christopher Morgan

    This dissertation focuses on three key elements of precision satellite formation flying: formation design; relative navigation; and sensor and measurement modeling. Formation flying in high Earth orbit (HEO) is complicated by the difficulty of accurately modeling relative dynamics in highly eccentric orbits and the sparse nature of tracking data at high altitudes. This research develops a formation design tool and extended Kalman filter that mitigate these factors by representing the relative motion in Keplerian element space rather than conventional rectangular position and velocity coordinates and presents the measurement models and preliminary data generation techniques necessary for processing reflected GPS and reflected crosslink observations in a relative navigation filter. Geometrical methods for formation design based on simple relative motion models originally intended for rendezvous in low Earth orbit (LEO) have been previously developed and used to specify desired relative motions in near circular orbits. A comparable set of geometrical relationships for formations in eccentric orbits are developed here. This approach offers valuable insight into the relative motion and allows for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separations, or a particular geometric shape. The expressions formulate the relative motion in terms of a constant set of Keplerian element differences and are valid for arbitrary eccentricities. The use of these relationships to investigate formation designs and their evolution in time is demonstrated. In addition, the long-term effects of unmodeled perturbations on the desired formation geometry are shown in several examples. Formation flying in HEO relies on accurate relative navigation information for precise formation control and accurate interpretation of science data. An extended Kalman filter for relative navigation in HEO is

  13. Cosmic ray environment model for Earth orbit. Final Report

    SciTech Connect

    Edmonds, L.

    1985-01-01

    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed.

  14. A possible space VLBI constellation utilizing the stable orbits around the TLPs in the Earth-Moon system.

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun

    2016-07-01

    Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.

  15. Advantages of High vs. Low Earth Orbit for SIRTF

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Werner, Michael W.

    1989-01-01

    While the subject of this workshop, which we will refer to as ET (for Enlightenment Telescope), is a dazzling successor to the Hubble Space Telescope, its location is unlikely to be the Low Earth Orbit (LEO) used by HST. Locations suggested for ET include High Earth Orbit (HEO) and the moon. The first space telescope to occupy HEO will be the liquid helium cooled Space Infrared Telescope Facility (SIRTF). The selection of HEO for SIRTF was the outcome of a recent study led by the Ames Research Center which showed significant advantages for SIRTF in HEO vs. LEO. This article summarizes the main results of that study. We begin with a review of SIRTF's rationale and requirements, in part because the IR capabilities and low temperature proposed for ET make it something of a successor to SIRTF as well as to HST. We conclude with some comments about another possible location for both SIRTF and ET, the Earth-Sun L2 Lagrangian point.

  16. European activities in exobiology in earth orbit: results and perspectives

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1999-01-01

    A large portion of European activities in Earth orbit have concentrated on studies of the responses of resistant microbes to the harsh environment of space with the aim of providing experimental evidence testing the hypothesis that interplanetary transfer of life is possible. Various types of microorganisms, such as bacterial or fungal spores, as well as viruses and biomolecules, such as DNA, amino acids and liposomes, have been exposed to selected and combined space conditions outside the Earth's magnetic field (Apollo 16) or in low Earth orbit (Spacelab 1, Spacelab D2, ERA on EURECA, LDEF, BIOPAN on FOTON). Space parameters, such as high vacuum, intense solar ultraviolet radiation, different components of the cosmic radiation field and temperature extremes affected the genetic stability of the organisms in space, leading to increased mutation rates, DNA damage and inactivation. Extraterrestrial solar UV radiation was the most lethal factor. If shielded against the influx of solar UV, spores of Bacillus subtilis survived for more than 5 years in space. Future research will be directed towards long-term studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches, such as endolithic and endoevaporitic ecosystems. For these studies, the European Space Agency will provide the facility EXPOSE to be accommodated on the External Platform of the International Space Station during the Early Utilization Phase.

  17. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  18. Natural and Induced Environment in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Kim, Myung-Hee Y.; Clowdsley, Martha S.; Heinbockel, John H.; Cucinotta, Francis A.; Badhwar, Gautam D.; Atwell, William; Huston, Stuart L.

    2002-01-01

    The long-term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind which varies over the solar cycle. The neutron environment within the Shuttle in low Earth orbit has two sources. A time dependent model for the ambient environment is used to evaluate the natural and induced environment. The induced neutron environment is evaluated using measurements on STS-31 and STS-36 near the 1990 solar maximum.

  19. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  20. Space tourism: from earth orbit to the moon

    NASA Astrophysics Data System (ADS)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  1. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  2. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2012-02-01

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere. PMID:22186831

  3. Magnetically levitated space elevator to low-earth orbit.

    SciTech Connect

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  4. Spectral Fingerprints of Earth-like Planets Orbiting Other Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, Sarah; Kaltenegger, Lisa; Sasselov, Dimitar

    2015-01-01

    A wide range of potentially rocky planets in the habitable zone (HZ) have been detected by Kepler as well as ground-based searches. The type of host star influences our ability to detect atmospheric features with future space- and ground-based telescopes like JWST and E-ELT. We present a complete suit of stellar models as well as model atmospheres for an Earth-analogue planets in their HZ for stellar effective temperature from Teff = 2300K to 7000K, sampling the entire FGKM stellar type range. The UV emission from a planet's host star dominates the photochemistry and thus the resultant observable spectral features of the planet. Using the latest UV spectra obtained by Hubble as well as IUE, we model the effect of activity on Earth-like planets. We focus on the primary detectable atmospheric features that indicate habitability on Earth, namely: H2O, O3, CH4, N2O and CH3Cl. We model the emergent as well as transit spectra of Earth-analogue planets orbiting our grid of FGKM stars in the VIS/NIR (0.4 - 4 microns) and the IR (5 - 20 microns) range as input for future missions like JWST and concepts like Darwin/TPF.

  5. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  6. Impact of Ionosphere on GPS-based Precise Orbit Determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Jaeggi, A.; Beutler, G.; Meyer, U.; Schaer, S.

    2015-12-01

    Deficiencies in geodetic products derived from the orbital trajectories of Low Earth Orbiting (LEO) satellites determined by GPS-based Precise Orbit Determination (POD) were identified in recent years. The precise orbits of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission are, e.g., severely affected by an increased position noise level over the geomagnetic poles and spurious signatures along the Earth's geomagnetic equator (see Fig. 1, which shows the carrier phase residuals of a reduced-dynamic orbit determination for GOCE in m). Such degradations may directly map into the gravity fields recovered from the orbits. They are related to a disturbed GPS signal propagation through the Earth's ionosphere and indicate that the GPS observation model and/or the data pre-processing need to be improved. While GOCE was the first mission where severe ionosphere-related problems became obvious, the GPS-based LEO POD of satellites of the more recent missions Swarm and Sentinel-1A turn out to be affected, as well. We characterize the stochastic and systematic behavior of the ionosphere by analyzing GPS data collected by the POD antennas of various LEO satellites covering a broad altitude range (e.g., GRACE, GOCE and Swarm) and for periods covering significant parts of an entire solar cycle, which probe substantially different ionosphere conditions. The information may provide the basis for improvements of data pre-processing to cope with the ionosphere-induced problems of LEO POD. The performance of cycle slip detection can, e.g., be degraded by large changes of ionospheric refraction from one measurement epoch to the next. Geographically resolved information on the stochastic properties of the ionosphere above the LEOs provide more realistic threshold values for cycle slip detection algorithms. Removing GPS data showing large ionospheric variations is a crude method to mitigate the ionosphere-induced artifacts in orbit and gravity field products

  7. Structures technology project summary: Earth orbiting platforms program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs are presented on the structures technology for the Earth orbiting platforms program. The objective of the work is to develop component and system level structural concepts and design methods to enable in-space construction and deployment of large platform structures in low earth orbit (LEO) and geosynchronous orbit (GEO) including primary platform structures, reflectors and antenna, and habitat and storage modules.

  8. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  9. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  10. Radiation measured with passive dosimeters in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Semones, E.; Gaza, R.; Weyland, M.

    begin center Radiation Measured with Passive Dosimeters in Low Earth Orbit end center begin center D Zhou 1 2 E Semones 1 R Gaza 1 2 M Weyland 1 end center begin center 1 Johnson Space Center - NASA 2101 Nasa Road 1 Houston 77058 USA end center begin center 2 Universities Space Research Association 2101 Nasa Parkway Houston 77058 USA end center begin center Abstract end center The linear energy transfer LET of particles in low Earth orbit LEO is extended from sim 0 1 to sim 1000 keV mu m water The best passive dosimeters for the radiation measurement are thermoluminescence dosimeters TLDs or optically stimulated luminescence dosimeters OSLDs for low LET and CR-39 plastic nuclear track detectors PNTDs for high LET Radiation quantities fluence absorbed dose dose equivalent and quality factor were measured with the passive dosimeters composed of TLDs OSLDs and CR-39 PNTDs for STS-114 mission This paper introduces the operation principles for TLDs OSLDs and CR-39 PNTDs describes the method to combine the results measured by TLDs OSLDs and CR-39 PNTDs and presents the results measured by different dosimeters for different LET band and that combined for all LET

  11. Earth's external magnetic fields at low orbital altitudes

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.

    1990-01-01

    Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.

  12. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  13. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  14. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Colson, A.; Minow, J. I.; Parker, L.

    2012-12-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (~10's kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from ~0.6 kV to ~2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  15. Orbital Drivers of Climate Change on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zent, A. P.

    Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which

  16. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  17. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. PMID:11863032

  18. Small asteroid fragments in earth-crossing orbits

    NASA Astrophysics Data System (ADS)

    Duha, J.; Afonso, G. B.

    2014-10-01

    The meteorite that fell in Chelyabinsk, Russia, naturally made many people think it could be a smaller companion of the Asteroid 2012 DA14, which passed close to Earth on that same day. Some asteroid specialists discarded this hypothesis for two main reasons: The meteorite was too far away from the asteroid, because the collision happened sixteen hours before the asteroid passed close to Earth. Moreover, it was not traveling, similarly to asteroid DA14, from south to north. However the possibility of the meteorite being a companion of the Asteroid 2012 DA14 cannot be completely discarded. The Asteroid 2012 DA14, with a diameter of 45 meters, is very small. It can be considered an asteroids fragment, which is usually accompanied by other smaller fragments, scattered in space, practically in the same orbit and possibly being separated from each other by long distances. Assuming that 2012 DA14 is not an isolated asteroid, but the biggest remaining fragment from a previous impact, we developed a model to study the dynamics of an asteroid fragment, similar to DA14, and its companions, the smaller fragments. This dynamically interesting encounter with planet Earth is addressed and the orbital changes that could explain the Chelyabinsk event are discussed. As a result we find that, there could be a collision of a meteorite before, during, or after the Asteroid 2012 DA14 passing by, the same way that happens with meteorite showers, which can last several days. Therefore, it would be very interesting to look for asteroid fragments also, close to the larger fragments, more easily found.

  19. Surface and atmosphere parameter maps from earth-orbiting radiometers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.

    1976-01-01

    Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.

  20. Hardware in-the-Loop Demonstration of Real-Time Orbit Determination in High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Moreau, Michael; Naasz, Bo; Leitner, Jesse; Carpenter, J. Russell; Gaylor, Dave

    2005-01-01

    This paper presents results from a study conducted at Goddard Space Flight Center (GSFC) to assess the real-time orbit determination accuracy of GPS-based navigation in a number of different high Earth orbital regimes. Measurements collected from a GPS receiver (connected to a GPS radio frequency (RF) signal simulator) were processed in a navigation filter in real-time, and resulting errors in the estimated states were assessed. For the most challenging orbit simulated, a 12 hour Molniya orbit with an apogee of approximately 39,000 km, mean total position and velocity errors were approximately 7 meters and 3 mm/s respectively. The study also makes direct comparisons between the results from the above hardware in-the-loop tests and results obtained by processing GPS measurements generated from software simulations. Care was taken to use the same models and assumptions in the generation of both the real-time and software simulated measurements, in order that the real-time data could be used to help validate the assumptions and models used in the software simulations. The study makes use of the unique capabilities of the Formation Flying Test Bed at GSFC, which provides a capability to interface with different GPS receivers and to produce real-time, filtered orbit solutions even when less than four satellites are visible. The result is a powerful tool for assessing onboard navigation performance in a wide range of orbital regimes, and a test-bed for developing software and procedures for use in real spacecraft applications.

  1. Surface mass variation monitoring from orbit information of GPS-tracked low-Earth orbiters

    NASA Astrophysics Data System (ADS)

    Baur, O.; Weigelt, M. L. B.; Zehentner, N.; Mayer-Gürr, T.; van Dam, T. M.

    2014-12-01

    In the last decade, temporal variations of the gravity field from GRACE inter-satellite observations have become one of the most ubiquitous and valuable sources of information for environmental studies. In order to bridge the likely gap between the present GRACE and the upcoming GRACE follow-on projects, we investigate the potential of gravity field information derived from orbit analysis for surface mass variation detection. The Swarm mission - launched on November 22, 2013 - is the most promising candidate to directly acquire large-scale mass variation information on the Earth's surface in the absence of GRACE. Although the magnetometry mission Swarm has not been designed for gravity field purposes, its three satellites have the appropriate orbit characteristics for such an endeavour. Hence, from an orbit analysis point of view the Swarm satellites are comparable to the CHAMP, GRACE and GOCE spacecraft. In a first study, we assess the stand-alone capability of the Swarm mission for mass variation detection in a real-case environment. For this purpose, we ''approximate'' the Swarm scenario by the GRACE+CHAMP constellation. In a second study, we incorporate tracking observations from a series of additional satellites (e.g., GOCE, MetOp, TanDEM-X, Swarm) and extend the length of the time series according to data availability. We will demonstrate to what extent these measures improve the inference of time-variable features from orbit information. For both studies, in the first step, kinematic orbits of the individual satellites are derived from GPS observations. From these orbits, we compute monthly combined time-variable gravity fields. Finally, we infer mass variation in selected areas from the gravity signal. These results are compared to the findings obtained from mass variation detection exploiting CSR-RL05 gravity fields (the latter serve as ''benchmark solutions'').

  2. Impact of the ionosphere on GPS-based precise orbit determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard

    2016-04-01

    GPS-derived kinematic precise Swarm orbits are significantly affected by increased position noise over the geomagnetic poles and spurious signatures along the geomagnetic equator. The latter deficiencies were identified for the first time for the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission and are attributed to the distortion of the GPS carrier signal when propagating through portions of the Earth's ionosphere with a large free electron content. Via the GPS-derived kinematic Swarm positions, the spurious signatures along the geomagnetic equator map directly into the derived gravity fields. This was already the case for GOCE and obviously is also true for Swarm. To identify the root cause of the problem, the stochastic and deterministic behavior of the ionosphere is characterized by analyzing data collected by the GPS receivers on various LEO satellites. We compare in particular the performance of the Swarm and the GRACE receivers, because no obvious degradations occur in GRACE orbit and gravity field solutions. Removing GPS data with large ionospheric variations mitigates the ionosphere-induced artifacts in orbits and gravity fields. We illustrate the impact of this measure on the Swarm orbit and gravity field solutions. Making use of the geographically resolved ionosphere characteristics, e.g., to establish better data weighting schemes, results in a better POD performance for LEO satellites.

  3. A Major Threat of Satellite Radio Systems in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Perez, R.

    1999-01-01

    Over the last two years several satellites in Low Earth Orbit (LEO) and geosynchronous orbit (GEO) have experienced serious or catastrophic failures including interruption of desired communications due especially to non linear interference.

  4. Advanced Earth Observation System Instrumentation Study (AEOSIS)

    NASA Technical Reports Server (NTRS)

    Var, R. E.

    1976-01-01

    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS.

  5. Optimization of Return Trajectories for Orbital Transfer Vehicle between Earth and Moon

    NASA Technical Reports Server (NTRS)

    Funase, Ryu; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2007-01-01

    In this paper, optimum trajectories in Earth Transfer Orbit (ETO) for a lunar transportation system are proposed. This paper aims at improving the payload ratio of the reusable orbital transfer vehicle (OTV), which transports the payload from Low Earth Orbit (LEO) to Lunar Low Orbit (LLO) and returns to LEO. In ETO, we discuss ballistic flight using chemical propulsion, multi-impulse flight using electrical propulsion, and aero-assisted flight using aero-brake. The feasibility of the OTV is considered.

  6. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  7. Tracking target objects orbiting earth using satellite-based telescopes

    DOEpatents

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  8. Fast oxygen atom studies related to low Earth orbit activities

    NASA Astrophysics Data System (ADS)

    Caledonia, G. E.; Krech, R. H.; Holtzclaw, K. W.; Sonnenfroh, D.

    1993-06-01

    The technique of laser induced gas breakdown to develop a high flux pulsed source of fast oxygen atoms (v = 5 to 12 km/s) is considered. The technique is also used to produce high velocity beams of N/N2 mixtures and can be extended to produce beams of other species. The fast oxygen atoms are of particular current interest since this is the dominant atmospheric species encountered by spacecraft operating in Low Earth Orbit (LEO). The fast oxygen atom source has proven extremely versatile and is used to study a variety of gas-surface and gas-gas collision phenomena. The fast atom facility has reproducibly provided good comparison with LEO observations. Expanded programs involving material testing and measurement of O atom momentum and energy accommodation coefficients with surfaces are presently underway.

  9. Degradation of Spacesuit Fabrics in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Baldwin, Sammantha M.; Folz, Angela D.; Waters, Deborah L.; McCue, Terry R.; Jaworske, Donald A.; Clark, Gregory W.; Rogers, Kerry J.; Batman, Brittany; Bruce, John; Mengesu, Tsega

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake-side low Earth orbit environment on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, optical spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that the environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and an increase in the elastic modulus by a factor of two.

  10. Spacecraft design project: Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  11. Aneutronic fusion propulsion for earth-to-orbit and beyond

    SciTech Connect

    Froning, H. David Jr.; Bussard, Robert W.

    1998-01-15

    Previous work by Bussard has indicated that certain aneutronic fusion rocket propulsion systems could enable establishment of self-supporting space colonies throughout the solar system at transportation costs less than one-tenth current costs to place satellites in orbit around earth. This paper shows that such colonization costs would not significantly increase, even if fusion propulsion performance that is significantly less than that estimated by Bussard would cause increase in the masses and flight times of some of the vehicles. Costs for some colonization missions would significantly increase if colonization vehicles could not be used for other space missions. But even under such circumstances, transportation costs would be extraordinarily low compared to those currently envisioned for solar system exploration.

  12. High temperature heat pipe experiments in low earth orbit

    SciTech Connect

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-02-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

  13. Medical constraints in spaceflight: Venturing beyond low earth orbit

    NASA Astrophysics Data System (ADS)

    Fondy, Susan R. E.

    2011-01-01

    NASA has generated a list of thirty-three gaps in medical capability that need to be addressed in order to extend the current model of medical care used in spaceflight in low-earth orbit to a model of medical care that will be conducive to exploration space missions. The intent of this project was to identify organizations that are doing research and development or have established products that will fulfill the closure criteria of these gaps, enabling NASA researchers to focus on those remaining gaps for which no product exists. The research conducted for this capstone identified existing capabilities relevant to the majority of the gaps within the Exploration Medical Capability (ExMC) portion of the HRP integrated research plan presented in NASA HRP-47065 Rev B.

  14. Precision positioning of earth orbiting remote sensing systems

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Yunck, T. P.; Wu, S. C.

    1987-01-01

    Decimeter tracking accuracy is sought for a number of precise earth sensing satellites to be flown in the 1990's. This accuracy can be achieved with techniques which use the Global Positioning System (GPS) in a differential mode. A precisely located global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite states. Three basic navigation approaches include classical dynamic, wholly nondynamic, and reduced dynamic or hybrid formulations. The first two are simply special cases of the third, which promises to deliver subdecimeter accuracy for dynamically unpredictable vehicles down to the lowest orbit altitudes. The potential of these techniques for tracking and gravity field recovery will be demonstrated on NASA's Topex satellite beginning in 1991. Applications to the Shuttle, Space Station, and dedicated remote sensing platforms are being pursued.

  15. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  16. Optical properties of water released in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Gardner, James A., II; Rall, David L.; Trowbridge, Christian A.; Kofsky, Irving L.; Viereck, Rodney A.

    1993-06-01

    Analysis of intensified video photographs of a twilight venting of excess water from the space shuttle showed that the approx. 1 mm diameter stream cavitationally fragments within about 1 m, forming two discrete-particle components and vapor. The images from nearby cameras are dominated by irregular, polydisperse water/ice droplets with sizes comparable with the venting orifice and outward velocity indistinguishable from that of the initially coherent liquid. In contrast the 2 1/2 km-long quasiconical trail imaged from a distant ground station consists of accompanying submicron ice spherules that were produced by partial recondensation of the overexpanded vacuum-evaporated water gas, which are sublimating at rates that we calculated from the measured falloff of axial sunlight-scatter radiance and the energy balance of progressively roughening ice at 329 km altitude; at low latitudes they cool to 180 K in less than 1 s, and their radii transition to the Rayleigh-scattering range in approx. 1 min. The very much larger fragmentation particles come to a slightly higher equilibrium temperature within approx. 2 min, and persist for a few earth orbits. These three components of the vented water (and other high vapor pressure liquids) radiate and scatter earthshine and solar photons, and the orbital-velocity molecules are also excited by collisions with the residual atmospheric gas, overlaying wide-angle contaminating foregrounds on remote optical sensing from onboard.

  17. Controllable ON-OFF adhesion for Earth orbit grappling applications

    NASA Astrophysics Data System (ADS)

    Parness, Aaron; Hilgendorf, Tyler; Daniel, Phillip; Frost, Matt; White, Victor; Kennedy, Brett

    ON-OFF adhesives can benefit multiple Earth orbit applications by providing the capability to selectively anchor two surfaces together repeatedly and releasably without significant preload. Key to this new capability, targets will not need special preparation; ON-OFF adhesives can be used with cooperative and non-cooperative objects, like defunct satellites or space debris. Using an ON-OFF adhesive gripper allows large surfaces on a target to serve as potential grapple points, reducing the precision needed in the sensing and control throughout the grapple operation. A space-rated adhesive structure is presented that can be turned ON-OFF using a slight sliding motion. This adhesive mimics the geometry and performance characteristics of the adhesive structures found on the feet of gecko lizards. Results from adhesive testing on common orbital surfaces like solar panels, thermal blankets, composites, and painted surfaces are presented. Early environmental testing results from cold temperature and vacuum tests are also presented. Finally, the paper presents the design, fabrication, and preliminary testing of a gripping mechanism enabled by these ON-OFF adhesives in preparation for satellite-servicing applications. Adhesive levels range from near zero on rough surfaces to more than 75 kPa on smooth surfaces like glass.

  18. A Low Earth Orbit satellite marine communication system demonstration

    NASA Technical Reports Server (NTRS)

    Elms, T. Keith; Butt, Kenneth A.; Asmus, Ken W.

    1995-01-01

    An application of Low Earth Orbit (LEO) satellite communications technology was investigated during a joint Canadian/American scientific expedition to the north pole in the summer of 1994. The Canadian ice breaker involved, was equipped with a store-and-forward LEO satellite terminal which was linked to a ground station in St. John's, Newfoundland, via the near-polar-orbiting satellite, HealthSat-l. The objective was to evaluate the performance of such a system while providing an alternate means of communications in the far north. The system performed well, given its inherent limitations. All 151 attempts to send data files to the ship were successful. Only two (2) of the 35 attempts to send files from the ship were unsuccessful. The files ranged in size from 0.1 to 60 Kbytes. In the high arctic, above 80 deg north, this system often provided the only practical means of data communications. This experiment demonstrated the potential of such a system for not-real-time communications with remote and/or mobile stations, and highlighted the many issues involved. This paper describes the project objectives, system configuration and experimental procedure used, related technical issues, trial results, future work, and conclusions.

  19. Direct Data Distribution From Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Fujikawa, Gene; Kunath, Richard R.; Nguyen, Nam T.; Romanofsky, Robert R.; Spence, Rodney L.

    1997-01-01

    NASA Lewis Research Center (LeRC) is developing the space and ground segment technologies necessary to demonstrate a direct data distribution (1)3) system for use in space-to-ground communication links from spacecraft in low-Earth orbit (LEO) to strategically located tracking ground terminals. The key space segment technologies include a K-band (19 GHz) MMIC-based transmit phased array antenna, and a multichannel bandwidth- and power-efficient digital encoder/modulate with an aggregate data rate of 622 Mb/s. Along with small (1.8 meter), low-cost tracking terminals on the ground, the D3 system enables affordable distribution of data to the end user or archive facility through interoperability with commercial terrestrial telecommunications networks. The D3 system is applicable to both government and commercial science and communications spacecraft in LEO. The features and benefits of the D3 system concept are described. Starting with typical orbital characteristics, a set of baseline requirements for representative applications is developed, including requirements for onboard storage and tracking terminals, and sample link budgets are presented. Characteristics of the transmit array antenna and digital encoder/modulator are described. The architecture and components of the tracking terminal are described, including technologies for the next generation terminal. Candidate flights of opportunity for risk mitigation and space demonstration of the D3 features are identified.

  20. PLANECHG: Earth orbit to lunar orbit delta V estimation program. User and technical documentation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The PLANECNG computer program calculates velocities for Earth-to-Mooon and Moon-to-Earth trajectories. The flight to be analyzed originates in a circular orbit of any inclination and altitude about one of the bodies, and culminates in a circular orbit of any inclination and altitude about the other body. An intermedate delta V and plane change occurs at the Lunar Sphere of Influence (SOI), the region where the vehicle is near its lowest velocity in the trajectory, and therefore where it is able to make the plane change with the lowest delta V. A given flight may penetrate the SOI at a number of points. Each point has associated with it a unique set of delta V's and total velocity. The program displays the velocities, in matrix form, for a representative set of SOI penetration points. An SOI point is identified by projecting Lunar latitude and longitude onto the SOI. The points recorded for a given flight are defined by the user, who provides a starting longitude and latitude, and an increment for each. A matrix is built with 10 longitudes forming the columns and 19 latitudes forming the rows. This matrix is presented in six reports, each containing different velocity or node information in the body of the matrix.

  1. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen, formed in Earth s thermosphere, interacts readily with many materials on spacecraft flying in low Earth orbit (LEO). All hydrocarbon based polymers and graphite are easily oxidized upon the impact of approx.4.5 eV atomic oxygen as the spacecraft ram into the residual atmosphere. The resulting interactions can change the morphology and reduce the thickness of these materials. Directed atomic oxygen erosion will result in the development of textured surfaces on all materials with volatile oxidation products. Examples from space flight samples are provided. As a result of the erosive properties of atomic oxygen on polymers and composites, protective coatings have been developed and are used to increase the functional life of polymer films and composites that are exposed to the LEO environment. The atomic oxygen erosion yields for actual and predicted LEO exposure of numerous materials are presented. Results of in-space exposure of vacuum deposited aluminum protective coatings on polyimide Kapton indicate high rates of degradation are associated with aluminum coatings on both surfaces of the Kapton. Computational modeling predictions indicate that less trapping of the atomic oxygen occurs, with less resulting damage, if only the space-exposed surface is coated with vapor deposited aluminum rather than having both surfaces coated.

  2. Stochasticity and orbit types in advanced beam-driven FRCs

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Barnes, Dan; Dettrick, Sean; Monkhorst, Henk; TAE Team

    2015-11-01

    Advanced beam-driven FRCs (Field Reversed Configurations) represent a plasma configuration which is aimed to reach steady state through external sustainment. In an advanced beam-driven FRC the plasma has a very rich selection of orbit types, namely, drift, betatron, figure-8 and type-I. How much each type contributes to the total quantity of orbits strongly depends on both plasma and external field parameters and it may include regular and stochastic orbits with very different ratios. We study the orbit type distribution as well as the fractions of regular and stochastic orbits for a set of realistic advanced beam-driven FRC equilibria in very different plasma regimes. In particular, we investigate the dependences of the orbit type distribution on the equilibrium parameters and we discuss the relevant role of the FRC parameter s in providing a good estimate of the total quantity of stochastic orbits. A first investigation of the possible role of stochastic orbits in thermalizing processes induced by magnetic pumping techniques is presented.

  3. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.

    2014-01-01

    Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a

  4. Modification of Earth-satellite orbits using medium-energy pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    1993-05-01

    Laser impulse space propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors, and improved coefficients for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science -- ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we discuss these most immediate applications, leaving LEO-LISP -- the application requiring the longest reach -- for another venue.

  5. Modification of earth-satellite orbits using medium-energy pulsed lasers

    SciTech Connect

    Phipps, C.R.

    1992-10-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  6. Modification of earth-satellite orbits using medium-energy pulsed lasers

    SciTech Connect

    Phipps, C.R.

    1992-01-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  7. Modification of Earth-satellite orbits using medium-energy pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coefficients for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science - ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  8. Orbit determination of highly elliptical Earth orbiters using improved Doppler data-processing modes

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.

    1995-01-01

    A navigation error covariance analysis of four highly elliptical Earth orbits is described, with apogee heights ranging from 20,000 to 76,800 km and perigee heights ranging from 1,000 to 5,000 km. This analysis differs from earlier studies in that improved navigation data-processing modes were used to reduce the radio metric data. For this study, X-band (8.4-GHz) Doppler data were assumed to be acquired from two Deep Space Network radio antennas and reconstructed orbit errors propagated over a single day. Doppler measurements were formulated as total-count phase measurements and compared to the traditional formulation of differenced-count frequency measurements. In addition, an enhanced data-filtering strategy was used, which treated the principal ground system calibration errors affecting the data as filter parameters. Results suggest that a 40- to 60-percent accuracy improvement may be achievable over traditional data-processing modes in reconstructed orbit errors, with a substantial reduction in reconstructed velocity errors at perigee. Historically, this has been a regime in which stringent navigation requirements have been difficult to meet by conventional methods.

  9. Orbital Simulations on Deflecting Near-Earth Objects by Directed Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Walsh, Kevin J.; Melis, Carl; Hughes, Gary B.; Lubin, Philip M.

    2016-04-01

    Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand-on “DE-STARLITE” system may travel alongside the target, slowly deflecting it from nearby over a long period. This paper presents orbital simulations comparing the effectiveness of both systems across a range of laser and NEO parameters. Simulated parameters include magnitude, duration and, for the stand-on system, direction of the thrust, as well as the type, size, and orbital characteristics of the target NEO. These simulations indicate that deflection distance is approximately proportional to the magnitude of thrust and to the square of the duration of ablation, and is inversely proportional to the mass. Furthermore, deflection distance shows strong dependence on thrust direction with the optimal direction of thrust varying with the duration of laser activity. As one example, consider a typical 325 m asteroid: beginning 15 years in advance, just 2 N of thrust from a ∼20 kW stand-on DE-STARLITE system is sufficient to deflect the asteroid by 2 {R}\\oplus . Numerous scenarios are discussed as is a practical implementation of such a system consistent with current launch vehicle capabilities.

  10. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  11. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  12. Mass driver retrievals of earth-approaching asteroids. [earth orbit capture for mining purposes

    NASA Technical Reports Server (NTRS)

    Oleary, B.

    1977-01-01

    Mass driver tugs can be designed to move Apollo and Amor asteroids at opportunities of low velocity increment to the vicinity of the earth. The cost of transferring asteroids through a velocity interval of 3 km/sec by mass driver is about 16 cents per kilogram amortized over 10 years, about ten times less than that required to retrieve lunar resources during the early phases of a program of space manufacturing. About 22 per cent of a 200-meter diameter asteroid could be transferred to high earth orbit by an automated 100 megawatt solar-powered mass driver in a period of five years for a cost of approximately $1 billion. Estimates of the total investment of a space manufacturing program could be reduced twofold by using asteroidal instead of lunar resources; such a program could begin several years sooner with minimal concurrent development if asteroidal search programs and mass driver development are immediately accelerated.

  13. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  14. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  15. Earth-to-orbit reusable launch vehicles: A comparative assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1978-01-01

    A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.

  16. Ballistic design of transfer trajectories from artificial-satellite earth orbit to halo orbit in the neighborhood of the L 2 point of the Sun-Earth system

    NASA Astrophysics Data System (ADS)

    Il'in, I. S.; Zaslavsky, G. S.; Lavrenov, S. M.; Sazonov, V. V.; Stepanyantz, V. A.; Tuchin, A. G.; Tuchin, D. A.; Yaroshevsky, V. S.

    2014-11-01

    The paper considers the ballistic design of spacecraft (SC) transfer to the neighborhood of the L 2 point and subsequent entry of the SC into the halo orbit. Trajectory calculations of one-impulse Earth-halo orbit transfers with and without using a lunar gravitational maneuver are presented. For the calculation of one-impulse trajectories of Earth-halo-orbit transfers, an algorithm for constructing initial approximations is applied. These approximations are constructed by calculating and analyzing the isolines as a function of two variables. This function is represented by the pericenter height of the outgoing orbit over the Earth's surface. The arguments of the function are special parameters that characterize the halo orbit. The mentioned algorithm allows one to obtain halo orbits with specified geometrical characteristics both in the ecliptic plane, and in the plane orthogonal to it. The estimates of the characteristic velocity expenses for maintaining SC in the selected halo orbit are obtained. The described technique was used to search for working orbits of the Spectr-RG and Millimetron spacecraft. Examples of orbits obtained are presented.

  17. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  18. EURECA orbits above the Earth's surface prior to STS-57 OV-105 RMS capture

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Backdropped against open ocean waters, the European Retrievable Carrier (EURECA) spacecraft, with solar array (SA) panels folded flat against its sides, approaches Endeavour, Orbiter Vehicle (OV) 105, on flight day five. Later, the remote manipulator system (RMS) end effector was used to 'capture' the spacecraft. After ten days in Earth orbit, the crew returned to Earth, bringing EURECA home.

  19. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    the number of links looking above and below GEO; the detailed design of a GEO SSBS spacecraft bus and its accommodation of the communication payload, and a summary of the trade study that resulted in the selection of the Falcon 9 launch vehicle to deploy the SSBS and its impact on cost reductions per satellite. ======================================================================== Several initiatives have taken place within NASA1 and international space agencies2 to create a human exploration strategy for expanding human presence into the solar system; these initiatives have been driven by multiple factors to benefit Earth. Of the many elements in the strategy one stands out: to send robotic and human missions to destinations beyond Low Earth Orbit (LEO), including cis-lunar space, Near-Earth Asteroids (NEAs), the Moon, and Mars and its moons.3, 4 The time frame for human exploration to various destinations, based on the public information available,1,4 is shown in Figure 1. Advance planning is needed to define how future space communications services will be provided in the new budget environment to meet future space communications needs. The spacecraft for these missions can be dispersed anywhere from below LEO to beyond GEO, and to various destinations within the solar system. NASA's Space Communications and Navigation (SCaN) program office provides communication and tracking services to space missions during launch, in-orbit testing, and operation phases. Currently, SCaN's space networking relay satellites mainly provide services to users below GEO, at Near Earth Orbit (NEO), below LEO, and in deep space. The potential exists for using a space-based relay satellite, located in the vicinity of various solar system destinations, to provide communication space links to missions both below and above its orbit. Such relays can meet the needs of human exploration missions for maximum connectivity to Earth locations and for reduced latency. In the past, several studies

  20. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  1. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  2. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  3. Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.

  4. Low earth orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, R. E.; Gardiner, J. G.

    1993-01-01

    Digital cellular mobile 'second generation' systems are now gradually being introduced into service; one such example is GSM, which will provide a digital voice and data service throughout Europe. Total coverage is not expected to be achieved until the mid '90's, which has resulted in several proposals for the integration of GSM with a geostationary satellite service. Unfortunately, because terrestrial and space systems have been designed to optimize their performance for their particular environment, integration between a satellite and terrestrial system is unlikely to develop further than the satellite providing a back-up service. This lack of system compatibility is now being addressed by system designers of third generation systems. The next generation of mobile systems, referred to as FPLMTS (future public land mobile telecommunication systems) by CCIR and UMTS (universal mobile telecommunication system) in European research programs, are intended to provide inexpensive, hand-held terminals that can operate in either satellite, cellular, or cordless environments. This poses several challenges for system designers, not least in terms of the choice of multiple access technique and power requirements. Satellite mobile services have been dominated by the geostationary orbital type. Recently, however, a number of low earth orbit configurations have been proposed, for example Iridium. These systems are likely to be fully operational by the turn of the century, in time for the implementation of FPLMTS. The developments in LEO mobile satellite service technology were recognized at WARC-92 with the allocation of specific frequency bands for 'big' LEO's, as well as a frequency allocation for FPLMTS which included a specific satellite allocation. When considering integrating a space service into the terrestrial network, LEO's certainly appear to have their attractions: they can provide global coverage, the round trip delay is of the order of tens of milliseconds, and

  5. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  6. Application of single crystal superalloys for Earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960's. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The space shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  7. Application of single crystal superalloys for earth-to-orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Parr, R. A.

    1987-01-01

    Single crystal superalloys were first identified as potentially useful engineering materials for aircraft gas turbine engines in the mid-1960s. Although they were not introduced into service as turbine blades in commercial aircraft engines until the early 1980's, they have subsequently accumulated tens of millions of flight hours in revenue producing service. The Space Shuttle main engine (SSME) and potential advanced earth-to-orbit propulsion systems impose severe conditions on turbopump turbine blades which for some potential failure modes are more severe than in aircraft gas turbines. Research activities which are directed at evaluating the potential for single crystal superalloys for application as turbopump turbine blades in the SSME and advanced rocket engines are discussed. The mechanical properties of these alloys are summarized and the effects of hydrogen are noted. The use of high gradient directional solidification and hot isostatic pressing to improve fatigue properties is also addressed.

  8. Mass estimating techniques for earth-to-orbit transports with various configuration factors and technologies applied

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Macconochie, I. O.

    1979-01-01

    A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.

  9. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  10. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  11. NASA/DOD earth orbit shuttle traffic models based on end to end loading of payloads

    NASA Technical Reports Server (NTRS)

    Kincade, R. E.; Donahoo, M. E.; Pruett, W. R.

    1971-01-01

    An analysis of the spacecraft configurations and space missions for the Earth Orbit Shuttle traffic model based on an end-to-end loading of payloads is presented. Two possible reusable tugs are considered. The space missions are described with respect to the following: (1) number of earth orbit shuttle flights by inclination, (2) total payloads to orbit, (3) energy stages required, and (4) characteristics of reusable tug.

  12. Cosmic-ray neutron albedo dose in low-earth orbits

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Farhat, H.

    1989-01-01

    An earth albedo neutron environmental model is proposed which provides a way to estimate neutron exposure in low-earth orbit. It is shown that, in the predominantly low inclination orbits (i=28.5 deg) used in the U.S. space program, the neutron exposures are relatively low (0.7 cSv/y). The neutron exposures are more significant for polar orbital missions and even high inclination missions, such as Skylab (i=57 deg).

  13. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  14. Accurate Determination of Comet and Asteroid Orbits Leading to Collision With Earth

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Kay-Bunnell, Linda; Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Hausman, Matthew A.

    2005-01-01

    Movements of the celestial bodies in our solar system inspired Isaac Newton to work out his profound laws of gravitation and motion; with one or two notable exceptions, all of those objects move as Newton said they would. But normally harmonious orbital motion is accompanied by the risk of collision, which can be cataclysmic. The Earth s moon is thought to have been produced by such an event, and we recently witnessed magnificent bombardments of Jupiter by several pieces of what was once Comet Shoemaker-Levy 9. Other comets or asteroids may have met the Earth with such violence that dinosaurs and other forms of life became extinct; it is this possibility that causes us to ask how the human species might avoid a similar catastrophe, and the answer requires a thorough understanding of orbital motion. The two red square flags with black square centers displayed are internationally recognized as a warning of an impending hurricane. Mariners and coastal residents who know the meaning of this symbol and the signs evident in the sky and ocean can act in advance to try to protect lives and property; someone who is unfamiliar with the warning signs or chooses to ignore them is in much greater jeopardy. Although collisions between Earth and large comets or asteroids occur much less frequently than landfall of a hurricane, it is imperative that we learn to identify the harbingers of such collisions by careful examination of an object s path. An accurate determination of the orbit of a comet or asteroid is necessary in order to know if, when, and where on the Earth s surface a collision will occur. Generally speaking, the longer the warning time, the better the chance of being able to plan and execute action to prevent a collision. The more accurate the determination of an orbit, the less likely such action will be wasted effort or, what is worse, an effort that increases rather than decreases the probability of a collision. Conditions necessary for a collision to occur are

  15. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Cross, Jon B.

    1990-03-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  16. Low Earth Orbital Atomic Oxygen Interactions With Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.

    2004-01-01

    Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.

  17. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  18. Laboratory simulation of Low Earth Orbit (LEO) atomic oxygen effects

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.; Oakes, David B.

    1994-01-01

    A pulsed fast oxygen atom source has been used extensively over the last 7 years to investigate the effects of ambient oxygen atoms impacting materials placed in low Earth orbit. In this period, we irradiated well over 2000 material samples with 8 km/s oxygen atoms generated in our source. Typical irradiance level is 3 x 10(exp 20) O atoms/sq cm although some materials have been irradiated to fluence levels as high as 6 x 10(exp 21) O atoms/sq cm. The operating principles and characteristics of our source are reviewed along with diagnostic and handling procedures appropriate to material testing. Representative data is presented on the velocity dependence of oxygen atom erosion rates (the PSI source provides oxygen atoms tunable over the velocity range of 5 to 12 km/s) as well as the dependence on material temperature. Specific examples of non-linear oxidative effects related to surface contamination and test duration are also be provided.

  19. Thermodynamic Vent System Test in a Low Earth Orbit Simulation

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2004-01-01

    A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.

  20. Physical Limitations of Nuclear Propulsion for Earth to Orbit

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Patton, Bruce; Rhys, Noah O.; Schafer, Charles F. (Technical Monitor)

    2001-01-01

    An assessment of current nuclear propulsion technology for application in Earth to Orbit (ETO) missions has been performed. It can be shown that current nuclear thermal rocket motors are not sufficient to provide single stage performance as has been stated by previous studies. Further, when taking a systems level approach, it can be shown that NTRs do not compete well with chemical engines where thrust to weight ratios of greater than I are necessary, except possibly for the hybrid chemical/nuclear LANTR (LOX Augmented Nuclear Thermal Rocket) engine. Also, the ETO mission requires high power reactors and consequently large shielding weights compared to NTR space missions where shadow shielding can be used. In the assessment, a quick look at the conceptual ASPEN vehicle proposed in 1962 in provided. Optimistic NTR designs are considered in the assessment as well as discussion on other conceptual nuclear propulsion systems that have been proposed for ETO. Also, a quick look at the turbulent, convective heat transfer relationships that restrict the exchange of nuclear energy to thermal energy in the working fluid and consequently drive the reactor mass is included.

  1. The meaning of desert color in earth orbital photographs

    NASA Technical Reports Server (NTRS)

    El-Baz, F.

    1978-01-01

    The color of desert surfaces as seen in earth orbital photographs is indicative of soil composition. Apollo-Soyuz photographs of the Sturt and Simpson Deserts of Australia confirm that sand grains become redder as the distance from the source increases. Reddening is caused by a thin iron-oxide coating on individual sand grains and can be used, in some cases, to map relative-age zones. Photographs of the Western (Libyan) Desert of Egypt indicate three distinct and nearly parallel color zones that have been correlated in the field with: (1) arable soil composed of quartz, clay, and calcium carbonate particles; (2) relatively active sand with or without sparse vegetation; and (3) relatively inactive sand mixed with dark (desert-varnished) pebbles. The youngest sands are in the form of longitudinal dunes, which are migrating to the south-southeast along the prevailing wind direction. Some of the young dune fields are encroaching on the western boundary of the fertile Nile Valley.

  2. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  3. Effects of the low Earth orbital environment on spacecraft materials

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1986-01-01

    It is evident from space flights during the last three years that the low Earth orbital (LEO) environment interacts with spacecraft surfaces in significant ways. One manifestation of these interactions is recession of, in particular, organic-polymer-based surfaces presumably due to oxidation by atomic oxygen, the major component of the LEO environment. Three experiments have been conducted on Space Shuttle flights 5, 8 and 41-G to measure reaction rates and the effects of various parameters on reaction rates. Surface recession on these flights indicates reaction efficiencies approximately 3 x 10(-24) cu cm/atoms for unfilled organic polymers. Of the metals, silver and osmium are very reactive. Effects on spacecraft or experiment surfaces can be evaluated using the derived reaction efficiencies and a definition of the total exposure to atomic oxygen. This exposure is obtained using an ambient density model, solar activity data and spacecraft parameters of altitude, attitude and operational date. Oxygen flux on a given surface is obtained from the ambient density and spacecraft velocity and can then be integrated to provide the total exposure or fluence. Such information can be generated using simple computational programs and can be converted to various formats. Overall, the extent of damage is strongly dependent on the type of surface and total exposure time.

  4. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  5. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  6. Lessons Learned from Natural Space Debris in Heliocentric Orbit: An Analogue for Hazardous Debris in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, Hanying; Connors, Martin; Lai, Hairong; Delzanno, Gian Luca

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records. Our current understanding is that IFEs result from interactions between solar wind and clouds of nanometer-scale charged dust released in interplanetary collisions. These charged dust clouds are then accelerated by the solar wind and moving away from the Sun at near solar wind speed and detected by spacecraft in heliocentric orbit. The dynamics of the debris in heliocentric orbit is analogous to that mankind has placed into Earth orbit. There are lessons here that are worth exploring. The IFE formation hypothesis was supported by the discovery of co-orbiting materials associated with asteroid 2201 Oljato: IFE rate peaked when Oljato was close and IFE occurrence clustered in the longitudes near which the orbit of Oljato intersects the orbital plane of Venus. A followed up study with Venus Express observations suggested that the co-orbiting materials dissipated in 30 years. An important aspect of this evolution is that at collisional speeds of 20 km/s, a small body can destroy one 106 times more massive. This destruction of large debris by small debris could also be important in the evolution of the terrestrial debris. At 1AU, based on ACE and Wind observations, IFEs have a significant cluster in the longitude range between 195° and 225°. Thus we use the same IFE technique to identify the ‘parent’ Near-Earth Objects of co-orbiting materials which should be responsible for those IFEs. There are more than 5000 JPL documented NEOs whose ecliptic plane crossings are near to or inside the Earth’s orbit and whose orbital periods are less than five years. By comparing their trajectories, we find that the asteroid 138175 is a good candidate for the ‘parent’ body. This asteroid orbits the Sun in a 5.24° inclined elliptical orbit with a period of 367.96 days. Its descending node is at about 206°, where the IFE occurrence rate peaks. We also find that

  7. Around 1500 near-Earth-asteroid orbits improved via EURONEAR

    NASA Astrophysics Data System (ADS)

    Vaduvescu, O.; Hudin, L.; Birlan, M.; Popescu, M.; Tudorica, A.; Toma, R.

    2014-07-01

    Born in 2006 in Paris, the European Near Earth Asteroids Research project (EURONEAR, euronear.imcce.fr) aims ''to study NEAs and PHAs using existing telescopes available to its network and hopefully in the future some automated dedicated 1--2 m facilities''. Although we believe the first aim is fulfilled, the second was not achieved yet, requiring serious commitment from the European NEA researchers and funding agencies. Mainly using free labor by about 30 students and amateur astronomers (from Romania, Chile, UK, France, etc), the PI backed up by his associates M. Birlan (IMCCE Paris) and J. Licandro (IAC Tenerife) and a few other astronomers of the EURONEAR network having access to a few telescopes are approaching around 1,500 observed NEAs whose orbits were improved based on our astrometric contributions. To achive this milestone, we used two main resources and a total of 15 facilities: i) Observing time obtained at 11 professional 1--4 m class telescopes (Chile, La Palma, France, Germany) plus 3 smaller 30--50 cm educational/public outreach telescopes (Romania and Germany) adding about 1,000 observed NEAs; and ii) astrometry obtained from data mining of 4 major image archives (ESO/MPG WFI, INT WFC, CFHTLS Megacam and Subaru SuprimeCam) adding about 500 NEAs recovered in archival images. Among the highlights, about 100 NEAs, PHAs and VIs were observed, recovered or precovered in archives at their second opposition (up to about 15 years away from discovery) or have their orbital arc much extended, and a few VIs and PHAs were eliminated. Incidentally, about 15,000 positions of almost 2,000 known MBAs were reported (mostly in the INT, ESO/MPG and Blanco large fields). About 40 new (one night) NEO candidates and more than 2,000 (one night) unknown MBAs were reported, including about 150 MBAs credited as EURONEAR discoveries. Based on the INT and Blanco data we derived some statistics about the MBA and NEA population observable with 2m and 4m telescopes, proposing a

  8. Effects of Low Earth Orbit on Docking Seal Materials

    NASA Technical Reports Server (NTRS)

    Imka, Emily C.; Asmar, Olivia C.; deGroh, Henry C., III; Banks, Bruce A.

    2014-01-01

    Spacecraft docking seals are typically made of silicone elastomers. When such seals are exposed to low Earth orbit (LEO) conditions, they can suffer damage from ultraviolet (UV) radiation and atomic oxygen (AO, or monoatomic oxygen, the predominant oxygen species in LEO). An experiment flew on the International Space Station (ISS) to measure the effects of LEO on seal materials S0383-70 and ELA-SA-401 and various mating counterface materials which included anodized aluminum. Samples flown in different orientations received different amounts of UV and AO. The hypotheses were that most of the damage would be from UV, and 10 days or more of exposure in LEO would badly damage the seals. Eighteen seals were exposed for 543 days in ram (windward), zenith (away from Earth), or wake (leeward) orientations, and 15 control samples (not flown) provided undamaged baseline leakage. To determine post-flight leak rates, each of the 33 seals were placed in an O-ring groove of a leak test fixture and pressure tested over time. Resistance temperature detectors (RTDs), pressure transducers, and LabVIEW (National Instruments) programs were used to measure and analyze the temperature and pressure and calculate leakage. Average leakage of control samples was 2.6 x 10(exp -7) lbs/day. LEO exposure did not considerably damage ELA-SA-401. The S0383-70 flight samples leaked at least 10 times more than ELA-SA-401 in all cases except one, demonstrating that ELA-SA-401 may be a more suitable sealing material in LEO. AO caused greater damage than UV; samples in ram orientation (receiving an AO fluence of 4.3 x 10(exp 21) atoms/(sq cm) and in wake (2.9x 10(exp 20) atoms/(sq cm)) leaked more than those in zenith orientation (1.58 x 10(exp 20) atoms/(sq cm)), whereas variations in UV exposure did not seem to affect the samples. Exposure to LEO did less damage to the seals than hypothesized, and the data did not support the conjecture that UV causes more damage than AO.

  9. Medium Earth Orbit Scatterometer (MEOScat) Concept Phase Study

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.

    2004-01-01

    In this report, advanced scatterometer concept options to operate in the post-SeaWinds era are examined. In order to meet the future requirements of scientific and operational users, a variety of scatterometer systems capable of producing improved wind vector products are evaluated. Special emphasis is placed on addressing concept options that operate at higher altitudes in order to improve the temporal revisit time. A preliminary set of generalized wind measurement goals designed to meet the future needs of both scientific and operational communities is put forth. Geophysically based measurement constraints (such as allowable carrier frequencies and measurement incidence angles) are identified. It was found that a potential key constraint at higher satellite altitudes is the longer time required to make all of the azimuth measurements. The revisit and coverage characteristics of a variety of platform orbits throughout the MEO range is studied in detail, and a discussion of the associated increase in radiation is presented. The "trade space" of scatterometer architectures and design options, along with associated advantages and disadvantages, is described for mission options in the MEO range. Finally, key technology studies that will enable further development of a MEO scatterometer mission are identified.

  10. Conceptual radiometer design studies for Earth observations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  11. Advances in Sun-Earth Connection Modeling

    NASA Astrophysics Data System (ADS)

    Ganguli, S. B.; Gavrishchaka, V. V.

    2003-06-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed.

  12. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NASA Astrophysics Data System (ADS)

    Heiligers, Jeannette; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-07-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun's motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of Sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits.

  13. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  14. Strategies for plane change of Earth orbits using lunar gravity and derived trajectories of family G

    NASA Astrophysics Data System (ADS)

    de Melo, C. F.; Macau, E. E. N.; Winter, O. C.

    2009-04-01

    The dynamics of the circular restricted three-body Earth-Moon-particle problem predicts the existence of the retrograde periodic orbits around the Lagrangian equilibrium point L1. Such orbits belong to the so-called family G (Broucke, Periodic orbits in the restricted three-body problem with Earth-Moon masses, JPL Technical Report 32-1168, 1968) and starting from them it is possible to define a set of trajectories that form round trip links between the Earth and the Moon. These links occur even with more complex dynamical systems as the complete Sun-Earth-Moon-particle problem. One of the most remarkable properties of these trajectories, observed for the four-body problem, is a meaningful inclination gain when they penetrate into the lunar sphere of influence and accomplish a swing-by with the Moon. This way, when one of these trajectories returns to the proximities of the Earth, it will be in a different orbital plane from its initial Earth orbit. In this work, we present studies that show the possibility of using this property mainly to accomplish transfer maneuvers between two Earth orbits with different altitudes and inclinations, with low cost, taking into account the dynamics of the four-body problem and of the swing-by as well. The results show that it is possible to design a set of nominal transfer trajectories that require Δ V Total less than conventional methods like Hohmann, bi-elliptic and bi-parabolic transfer with plane change.

  15. Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation

    NASA Technical Reports Server (NTRS)

    Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)

    2002-01-01

    This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.

  16. Effects of Solar Radiation Pressure on Earth Satellite Orbits.

    PubMed

    Parkinson, R W; Jones, H M; Shapiro, I I

    1960-03-25

    Calculations show that, at a mean altitude of 1000 miles, radiation pressure can displace the orbit of the 100-foot Echo balloon at rates up to 3.7 miles per day, the orbit of the 12-foot Beacon satellite at 0.7 mile per day. For certain resonant conditions this effect accumulates, drastically affecting the satellite's lifetime.

  17. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  18. Collisional cascading - The limits of population growth in low earth orbit

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1991-01-01

    Random collisions between made-made objects in earth orbit will lead to a significant source of orbital debris, but there are a number of uncertainties in these models, and additional analysis and data are required to fully characterize the future environment. However, the nature of these uncertainties are such that while the future environment is uncertain, the fact that collisions will control the future environment is less uncertain. The data that already exist is sufficient to show that cascading collisions will control the future debris environment with no, or very minor increases in the current low-earth-orbit population. Two populations control this process: explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low earth orbit; it is necessary to begin limiting the number of expended rocket bodies and payloads in orbit.

  19. Single Event Effects Testing For Low Earth Orbit Missions with Neutrons

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon; O'Neill, Pat; Bailey, Chuck; Nguyen, Kyson

    2015-01-01

    Neutrons can effectively be used to screen electronic parts intended to be used in Low Earth Orbit. This paper compares neutron with proton environments in spacecraft and discusses recent comparison testing.

  20. A model to compare performance of space and ground network support of low-Earth orbiters

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1992-01-01

    This article compares the downlink performance in a gross average sense between space and ground network support of low-Earth orbiters. The purpose is to assess what the demand for DSN support of future small, low-cost missions might be, if data storage for spacecraft becomes reliable enough and small enough to support the storage requirements needed to enable support only a fraction of the time. It is shown that the link advantage of the DSN over space reception in an average sense is enormous for low-Earth orbiters. The much shorter distances needed to communicate with the ground network more than make up for the speedup in data rate needed to compensate for the short contact times with the DSN that low-Earth orbiters have. The result is that more and more requests for DSN-only support of low-Earth orbiters can be expected.

  1. Dust particles from comets and asteroids collected at the Earth's orbit: Parent-daughter relationships

    NASA Technical Reports Server (NTRS)

    Jackson, A. A.; Zook, H. A.

    1991-01-01

    The relative contributions of comets and asteroids to the reservoir of dust in the interplanetary medium is not well known. There are direct observations of dust released from comets and there is evidence to associate the IRAS dust bands with possible collisions of Asteroids in the main belt. It is believed that one may combine lab analysis of the physics and chemistry of captured particles with orbital data in order to identify comet and asteroid parent bodies. It is possible to use the collected orbits of the dust to connect with its source in two ways. One is to consider the long time orbit evolution of the dust under Poynting-Robertson drag. The other is to look at the prompt orbit change of dust from comets onto trajectories that intersect the earth's orbit. In order to characterize the orbits of dust particles evolved over a long period of time, a study of its orbital evolution was undertaken. Various parameters associated with these dust orbits as they cross the Earth's orbit were considered in order to see if one may discriminate between particles evolved from comets and asteroids. The method was to calculate by a numerical procedure the orbits of dust particles after they left their parent bodies. It appears that as the particles pass the Earth's orbit, asteroidal grains and cometary grains can be differentiated on the basis of their measured orbital eccentricities even after much planetary perturbation. Broad parent daughter associations can be made on this basis from measurement of their trajectories intercepted in earth orbit.

  2. Rings of Earth detected by orbital debris radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Randolph, L.

    1990-01-01

    Small particles moving at an orbital velocity of 7.6 kilometers per second can present a considerable hazard to human activity in space. For astronauts outside of the protective shielding of their space vehicles, such particles can be lethal. The powerful radar at NASA's Goldstone Deep Communications Complex was used to monitor such orbital debris. This radar can detect metallic objects as small as 1.8 mm in diameter at 600 km altitude. The results of the preliminary survey show a flux (at 600 km altitude) of 6.4 objects per square kilometer per day of equivalent size of 1.8 mm or larger. Forty percent of the observed particles appear to be concentrated into two orbits. An orbital ring with the same inclination as the radar (35.1 degrees) is suggested. However, an orbital band with a much higher inclination (66 degrees) is also a possibility.

  3. Probable Spin–Orbit Aligned Super-Earth Planet Candidate KOI2138

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Ahlers, Johnathon P.; Seubert, Shayne A.; Relles, Howard M.

    2015-08-01

    We use rotational gravity darkening in the disk of Kepler star KOI-2138 to show that the orbit of 2.1-{R}\\oplus transiting planet candidate KOI-2138.01 has a low projected spin–orbit alignment of λ =1^\\circ +/- 13^\\circ . KOI-2138.01 is just the second super-Earth with a measured spin–orbit alignment after 55 Cancri e, and the first to be aligned. With a 23.55 days orbital period, KOI-2138.01 may represent the tip of a future iceberg of solar-system-like terrestrial planets having intermediate periods and low-inclination circular orbits.

  4. Tests of general relativity in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1989-01-01

    Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.

  5. Investigation of Teflon FEP embrittlement on spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.

    1997-01-01

    Teflon(TM) fluorinated ethylene-propylene (FEP) is used on the exterior of spacecraft surfaces in the low earth orbit environment for thermal control. Silverized or aluminized Teflon(TM) FEP used in the Long Duration Exposure Facility (LDEF) and the Hubble Space Telescope (HST) provided evidence of the low earth orbit environments. Samples from the LDEF and HST were evaluated for solar induced embrittlement and for synergistic effects of solar degradation and atomic oxygen.

  6. Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object

    NASA Astrophysics Data System (ADS)

    Shupe, Nathan C.

    Based on the recommendations of the Augustine Commission, President Obama has proposed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and predicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population. The objective of this thesis is to pick up where the previous Constellation study left off by considering what orbit options are available for an Orion-class spacecraft upon arrival at a NEO. A model including multiple perturbations (solar radiation pressure, solar gravity, non-spherical mass distribution of the central body) to two-body dynamics is constructed to numerically integrate the motion of a satellite in close proximity to a small body in an elliptical orbit about the Sun. Analytical limits derived elsewhere in the literature for the thresholds on the size of the satellite orbit required to maintain stability in the presence of these perturbing forces are verified by the numerical model. Simulations about NEOs possessing various physical parameters (size, shape, rotation period) are then used to empirically develop general guidelines for establishing orbits of an Orion-class spacecraft about a NEO. It is found that an Orion-class spacecraft can orbit NEOs at any distance greater than the NEO surface height and less than the maximum semi-major axis allowed by the solar radiation pressure perturbation, provided that the ellipticity perturbation is sufficiently weak (this condition is met if the NEO is relatively round and/or has a long rotation

  7. UV Surface Environment of Earth-like Planets Orbiting FGKM Stars through Geological Evolution

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Segura, A.; Kaltenegger, L.; Sasselov, D.

    2015-06-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth-Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth-Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  8. Space environmental effects on LDEF low Earth orbit exposed graphite reinforced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    George, Pete

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was deployed on April 7, 1984 in low earth orbit (LEO) at an altitude of 482 kilometers. On board experiments experienced the harsh LEO environment including atomic oxygen (AO), ultraviolet radiation (UV), and thermal cycling. During the 5.8 year mission, the LDEF orbit decayed to 340 kilometers where significantly higher AO concentrations exist. LDEF was retrieved on January 12, 1990 from this orbit. One experiment on board LDEF was M0003, Space Effects on Spacecraft Materials. As a subset of M0003 nearly 500 samples of polymer, metal, and glass matrix composites were flown as the Advanced Composites Experiment M0003-10. The Advanced Composites Experiment is a joint effort between government and industry with the Aerospace Corporation serving as the experiment integrator. A portion of the graphite reinforced polymer matrix composites were furnished by the Boeing Defense and Space Group, Seattle, Washington. Test results and discussions for the Boeing portion of M0003-10 are presented. Experiment and specimen location on the LDEF are presented along with a quantitative summary of the pertinent exposure conditions. Matrix materials selected for the test were epoxy, polysulfone, and polyimide. These composite materials were selected due to their suitability for high performance structural capability in spacecraft applications. Graphite reinforced polymer matrix composites offer higher strength to weight ratios along with excellent dimensional stability. The Boeing space exposed and corresponding ground control composite specimens were subjected to post flight mechanical, chemical, and physical testing in order to determine any changes in critical properties and performance characteristics. Among the more significant findings are the erosive effect of atomic oxygen on leading edge exposed specimens and microcracking in non-unidirectionally reinforced flight specimens.

  9. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  10. Performance and Comparison of Lithium-Ion Batteries Under Low-Earth-Orbit Mission Profiles

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Smart, Marshall C.; Bugga, Ratnakumar V.; Manzo, Michelle A.; Miller, Thomas B.; Gitzendanner, Rob

    2007-01-01

    The performance of two 28 V, 25 Ah lithium-ion batteries is being evaluated under low-Earth-orbit mission profiles for satellite and orbiter applications. The batteries are undergoing life testing and have achieved over 12,000 cycles to 40 percent depth-of-discharge.

  11. Large deployable reflector thermal characteristics in low earth orbits

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Miyake, R. N.

    1988-01-01

    Preliminary results are presented from the development of a thermal analytical tool capable of analyzing the orbital thermal characteristics of a Large Deployable Reflector (LDR) spaceborne astronomical instrument for observations in the 30-micron to 1-mm range. This LDR thermal analytical tool is a 9X6-node reflector thermal model to be used in conjunction with the thermal analyzer program SINDA, as well as the orbital heat flux program TRASYS for the computation of solar and IR radiation and orbit-related input data.

  12. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations

    NASA Astrophysics Data System (ADS)

    Son, Ju Young; Jo, Jung Hyun; Choi, Jin; Kim, Bang-Yeop; Yoon, Joh-Na; Yim, Hong-Suh; Choi, Young-Jun; Park, Sun-Youp; Bae, Young Ho; Roh, Dong-Goo; Park, Jang-Hyun; Kim, Ji-Hye

    2015-09-01

    We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

  13. The distributions of positions of Minimal Orbit Intersection Distances among Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo

    2012-07-01

    This paper presents the distributions of the positions of the Minimal Orbit Intersection Distances (MOID) among three subgroups of the Near Earth Asteroids (NEAs). This includes 683 Atens, 4185 Apollos and 3538 Amors which makes over 15 millions combinations of the pairs of orbits. The results which are obtained in this analysis show very interesting distributions of positions of the MOIDs and circumstances of close approaches of the asteroids and emphasize influence of different orbital elements on these distributions.

  14. Information services platforms at geosynchronous earth orbit: A requirements analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The potential user requirements for Information Services Platforms at geosynchronous orbits were investigated. A rationale for identifying the corollary system requirements and supporting research and technology needs was provided.

  15. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  16. Measuring the Eccentricity of the Earth's Orbit with a Nail and a Piece of Plywood

    ERIC Educational Resources Information Center

    Lahaye, Thierry

    2012-01-01

    I describe how to obtain a rather good experimental determination of the eccentricity of the Earth's orbit, as well as the obliquity of the Earth's rotation axis, by measuring, over the course of a year, the elevation of the Sun as a function of time during a day. With a very simple "instrument" consisting of an elementary sundial, first-year…

  17. A Conceptual Titan Orbiter Mission Using Advanced Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Shirley, James H.; Spilker, Thomas R.

    2006-01-01

    This study details a conceptual follow-on Titan orbiter mission that would provide full global topographic coverage. surface imaging, and meteorological characterization of the atmosphere over a nominal 5-year science mission duration. The baseline power requirement is approx.1 kWe at EOM and is driven by a high power radar instrument that would provide 3-dimensional measurements of atmospheric clouds, precipitation, and surface topography. While this power level is moderately higher than that of the Cassini spacecraft. higher efficiency advanced RPSs could potentially reduce the plutonium usage to less than 1/3rd of that used on the Cassini spacecraft. The Titan Orbiter mission is assumed to launch in 2015. It would utilize advanced RPSs to provide all on-board power.

  18. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  19. Stationkeeping of the First Earth-Moon Libration Orbiters: The ARTEMIS Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Woodard, Mark; Cosgrove, D.

    2011-01-01

    Libration point orbits near collinear locations are inherently unstable and must be controlled. For Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) Earth-Moon Lissajous orbit operations, stationkeeping is challenging because of short time scales, large orbital eccentricity of the secondary, and solar gravitational and radiation pressure perturbations. ARTEMIS is the first NASA mission continuously controlled at both Earth-Moon L1 and L2 locations and uses a balance of optimization, spacecraft implementation and constraints, and multi-body dynamics. Stationkeeping results are compared to pre-mission research including mode directions.

  20. Scheme of rendezvous mission to lunar orbital station by spacecraft launched from Earth

    NASA Astrophysics Data System (ADS)

    Murtazin, R. F.

    2016-05-01

    In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon's surface with the Apollo spacecraft's command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.

  1. Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Defrees, D. (Editor); Brownlee, D. (Editor); Tarter, J. (Editor); Usher, D. (Editor); Irvine, W. (Editor); Klein, H. (Editor)

    1989-01-01

    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented.

  2. Orbiter Reinforced Carbon-Carbon Advanced Sealant Systems: Screening Tests

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Lewis, Ronad K.; Norman, Ignacio; Chao, Dennis; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Oxidation protection for the Orbiter reinforced carbon-carbon (RCC consists of three components: silicon carbide coating, tetraethyl orthosilicate (TEOS) impregnated into the carbon substrate and a silicon based surface sealant (designated Type A). The Orbiter Type A sealant is being consumed each mission, which results in increased carbon-carbon substrate mass loss, which adversely impacts the mission life of the RCC components. In addition, the sealant loss in combination with launch pad contamination (salt deposit and zinc oxide) results in RCC pinholes. A sealant refurbishment schedule to maintain mission life and minimize affects of pin hole formation has been implemented in the Orbiter maintenance schedule. The objective of this investigation is to develop an advanced sealant system for the RCC that extends the refurbishment schedule by reducing sealant loss/pin hole formation and that can be applied to existing Orbiter RCC components. This paper presents the results of arc jet screening tests conducted on several sealants that are being considered for application to the Orbiter RCC.

  3. Integrated magnetometer-horizon sensor low-earth orbit determination using UKF

    NASA Astrophysics Data System (ADS)

    Farahanifar, Mohammad; Assadian, Nima

    2015-01-01

    The estimation of the satellite orbital elements using the integrated magnetometer and horizon sensors data has been investigated in this study. These sensors are generally employed for attitude estimation. The magnetometer and the horizon sensor measure the Earth's magnetic field as well as the Earth's center direction in the body frame, respectively. The magnitude of the magnetic field and the angle between two vectors have been used for orbit estimation purpose. This excludes the knowledge of the attitude in the orbit determination. The Gaussian variation of parameters equations is used for the orbital motion dynamical model to have the orbital elements as the states of the system. Since the dynamics of the system and the measurement model are nonlinear, the unscented Kalman filter (UKF) is utilized. Moreover, the magnetometer is subjected to scale factor and bias errors and these parameters are also estimated together with the orbital elements. It has been revealed that the UKF-based orbit determination algorithm can determine the sensor error parameters as well as the Keplerian orbital elements. The sensitivity analysis results show that this approach is insensitive to inclination and eccentricity for most orbits and can be adopted for near equatorial as well as near circular orbits.

  4. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  5. Doubly-periodic orbits in the Sun-Earth-Moon system

    NASA Technical Reports Server (NTRS)

    Farohar, R.; Muhonen, D.; Dunham, D.

    1980-01-01

    A series of periodic orbits in the Earth-Moon circular restricted problem of three bodies was found which is ideally suited for exploring the Earth's geomagnetic tail. The mean apsidal motion of the basic highly elliptical Earth orbit was maintained at about one degree per day by a sequence of lunar swingbys, keeping the apogees in the anti-Sun direction. The orbits were periodic in reference frames rotating at both lunar and solar rates. Apogee distances were alternately raised and lowered by the lunar swingby maneuvers. Several categories of these Sun-synchronous double lunar swingby orbits were identified. The strength and flexibility of this trajectory concept was demonstrated with real world simulations.

  6. Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible

    NASA Astrophysics Data System (ADS)

    Northway, P.

    2015-12-01

    As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.

  7. Access to Mars from Earth-Moon Libration Point Orbits:. [Manifold and Direct Options

    NASA Technical Reports Server (NTRS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-01-01

    This investigation is focused specifically on transfers from Earth-Moon L(sub 1)/L(sub 2) libration point orbits to Mars. Initially, the analysis is based in the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L(sub 2) orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L(sub 2) libration point orbits to Sun-Earth L(sub 1)/L(sub 2) halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  8. Access to Mars from Earth-Moon libration point orbits: Manifold and direct options

    NASA Astrophysics Data System (ADS)

    Kakoi, Masaki; Howell, Kathleen C.; Folta, David

    2014-09-01

    This investigation is focused specifically on transfers from Earth-Moon L1/L2 libration point orbits to Mars. Initially, the analysis is based on the circular restricted three-body problem to utilize the framework of the invariant manifolds. Various departure scenarios are compared, including arcs that leverage manifolds associated with the Sun-Earth L2 orbits as well as non-manifold trajectories. For the manifold options, ballistic transfers from Earth-Moon L2 libration point orbits to Sun-Earth L1/L2 halo orbits are first computed. This autonomous procedure applies to both departure and arrival between the Earth-Moon and Sun-Earth systems. Departure times in the lunar cycle, amplitudes and types of libration point orbits, manifold selection, and the orientation/location of the surface of section all contribute to produce a variety of options. As the destination planet, the ephemeris position for Mars is employed throughout the analysis. The complete transfer is transitioned to the ephemeris model after the initial design phase. Results for multiple departure/arrival scenarios are compared.

  9. Distant Retrograde Orbits for space-based Near Earth Objects detection

    NASA Astrophysics Data System (ADS)

    Stramacchia, Michele; Colombo, Camilla; Bernelli-Zazzera, Franco

    2016-09-01

    We analyse a concept for the detection of Potentially Hazardous Asteroids (PHAs) from a space-based network of telescopes on retrograde Distant Periodic Orbits. Planar periodic orbits are designed in the Sun-Earth circular restricted three-body problem, starting from initial conditions in the Hill's problem available from the literature. A family of retrograde orbits centred at the Earth is selected as baseline, based on their maximum distance from Earth, larger than the Earth-L2 distance. Indeed, spacecraft on such orbits can detect PHAs incoming from the Sun direction, which could not otherwise be monitored from current Earth-based systems. A trade-off on the orbit amplitude, asteroid diameter to be detected, and the constellation size is performed considering current visible sensor telescope technology. The Chelyabinsk meteor scenario is studied and the potential warning time that could be gained with a space-based survey system with respect to an Earth based-survey system is shown.

  10. Orbitally Forced Climatic Fluctuations in Snowball Earth: Compelling Evidence from a Data-Model Study

    NASA Astrophysics Data System (ADS)

    Benn, D.; Fairchild, I. J.; Le Hir, G.; Fleming, E.; Ramstein, G.; Stevenson, C.; Donnadieu, Y.; Bao, H.; Hambrey, M.; Petronis, M. S.; Wynn, P.

    2014-12-01

    The Snowball Earth model provides a powerful conceptual framework for understanding the causes and demise of the extreme global glaciations that occurred during the Neoproterozoic, and can be refined through creative interactions between geological, geochemical and modeling studies. We present unequivocal evidence for oscillating glacier extent and varying hydrological conditions during the Marinoan, the second major Cryogenian glaciation (~650-635 Ma), from the Wilsonbreen Formation of NE Svalbard. Extensive exposures record (1) a possibly long arid periglacial phase; (2) multiple switches between subglacial, glaciolacustrine, carbonate lacustrine and non-glacial terrestrial deposition; and (3) rapid deglaciation. Oxygen and sulfur isotopes of sulfate in carbonate facies indicate persistently high pCO2 consistent with deposition of the Formation on a 105-year timescale. Using an ice sheet model (GRISLI) coupled to a General Circulation Model (LMDz), the response of the continental ice-sheet to insolation changes (i.e. orbital forcing) and pCO2 is investigated. We show that land-ice cover waxes and wanes over the course of a precession cycle for pCO2 levels from 0.01 to 0.05 bar. Growth and retreat of ice reflect shifts in the balance between precipitation and evaporation (P-E), in response to migration of the tropical Hadley Cell. In cold conditions (<0.01bar), the weakness of the hydrological cycle makes the system insensitive to precession changes, explaining relatively stable ice-sheets during the earlier stages of the Snowball Earth. With 0.01orbital forcing) produces advances/retreats of the ice sheet in <10 kyr. With pCO2>0.05bar, the albedo effect is overcome and air temperatures rise in ice free regions in low latitudes and deglaciation occurs. The results show that the Snowball Earth model can be reconciled with evidence for prolonged, pulsed glacial deposition. The main, longest

  11. Attitude control requirements for an earth-orbital solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Andrews, P. D.; Jasper, T. P.

    1975-01-01

    Solar Electric Propulsion Stage (SEPS) application in earth orbit requires considerably more maneuvering for thrust vector steering and solar array pointing than planetary missions. Attitude maneuver requirements for geosynchronous and low earth-orbital missions are presented. Situations which result in optimum steering torque requirements exceeding the capability of current SEPS configurations are defined. Sub-optimal steering techniques are defined which reduce the geosynchronous mission torque requirements to acceptable levels with negligible performance penalties. Some low earth-orbital flight regimes with earth shadowing are found to result in much larger torque requirements and impose significant mechanization penalties if serious performance losses are to be avoided. Alternative attitude control mechanization techniques are defined for these cases.

  12. Solar Sail Halo Orbits at the Sun Earth Artificial L1 Point

    NASA Astrophysics Data System (ADS)

    Baoyin, Hexi; McInnes, Colin R.

    2006-02-01

    Halo orbits for solar sails at artificial Sun Earth L1 points are investigated by a third order approximate solution. Two families of halo orbits are explored as defined by the sail attitude. Case I: the sail normal is directed along the Sun-sail line. Case II: the sail normal is directed along the Sun Earth line. In both cases the minimum amplitude of a halo orbit increases as the lightness number of the solar sail increases. The effect of the z-direction amplitude on x- or y-direction amplitude is also investigated and the results show that the effect is relatively small. In case I, the orbit period increases as the sail lightness number increases, while in case II, as the lightness number increases, the orbit period increases first and then decreases after the lightness number exceeds ~0.01.

  13. Low-cost Alternative Orbits In The Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Melo, C. F.; Winter, O. C.; Vieira Neto, E.

    The moon has been the target of innumerous space missions throughout the last decades, and everything indicates that many others will occur. This is especially true due to the fact that lunar bases play a fundamental role in supporting future manned interplanetary missions. Thus, knowledge about low-cost alternative orbits in the Earth-Moon system can be extremely advantageous. In this paper, we presented two regions of alternative orbits in the Earth-Moon system. They are stable orbits around the Moon, whose distance from the lunar surface varies between 400 and 20,000 kilometers. In our studies, we determined the location and size of these regions based on the restricted circular planar problem of 3-body, Earth-Moon-spacecraft. In this system, the regions of stability correspond to quasi-periodic orbits around known periodic orbits (Broucke, 1968). Then, we considered a more realistic model. We adopted the restricted problem of 4-body Sun-Earth-Moon-spacecraft, taking into account the Earth's oblateness, the eccentricities of the Earth and the Moon, the inclination of the Moon, the obliquity of the Earth and the solar radiation pressure on the spacecraft. The results show that even so, a significant portion of the regions of stability remains. These orbits are stable in the practical sense that the energy of the problem of 2-body Moon-spacecraft remains negative for a period greater than 1000 days. The maintenance cost of orbits in these regions is low, keeping in mind that they are stable regions.

  14. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  15. Antenna servo design for tracking low-earth-orbiting satellites

    NASA Astrophysics Data System (ADS)

    Gawronski, W.; Mellstrom, J. A.

    1994-11-01

    The upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep-space missions. This paper investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, monopulse controller design, and tracking error reduction either through proper choice of elevation pinion location or through application of a notch filter or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the oversampled monopulse signal is described.

  16. International Space Station as a base camp for exploration beyond low Earth orbit

    NASA Astrophysics Data System (ADS)

    Raftery, Michael; Hoffman, Jeffrey

    2013-04-01

    The idea for using the International Space Station (ISS) as a platform for exploration has matured in the past few years and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed in cislunar space providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low Earth orbit. Life support systems and other technologies developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecrafts. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how the use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  17. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  18. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    SciTech Connect

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  19. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  20. Safety in earth orbit study. Volume 2: Analysis of hazardous payloads, docking, on-board survivability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.

  1. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jennette

    2016-01-01

    Enable future missions Any mission to a DRO or halo orbit could benefit from the capability to transfer between these orbits Chemical propulsion could be used for these transfers, but at high propellant cost Fill gaps in knowledge A variety of transfers using SEP or solar sails have been studied for the Earth-Moon system Most results in literature study a single transfer This is a step toward understanding the wide array of types of transfers available in an N-body force model.

  2. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  3. Anthropometric Outcomes following Fronto-Orbital Advancement for Metopic Synostosis

    PubMed Central

    Patel, Kamlesh B.; Skolnick, Gary B.; Mulliken, John B.

    2016-01-01

    Background The authors’ purpose is to present changes in anthropometric fronto-orbital dimensions after surgical correction of metopic synostosis. Methods The authors retrospectively analyzed craniometric dimensions in older patients with metopic synostosis corrected by fronto-orbital advancement performed by the senior author (J.B.M.). Preoperative and postoperative linear measures (frontal breadth, cranial width, and intercanthal distance) were taken by direct anthropometry. Interdacryon distance and width of the bandeau were also recorded intraoperatively, before and after widening. Follow-up anthropometric values were compared to age- and sex-matched normative data and standard (z) scores were calculated. Results Sixteen patients met the inclusion criteria. Syndromic diagnosis was documented in five of 16 patients. Average age at the last postoperative evaluation was 8.9 ± 3.8 years (range, 4 to 16 years). Mean frontal width z-scores decreased postoperatively from 0.82 to –0.32 (p = 0.007), indicating diminished growth in this dimension. The last measured frontal width strongly correlated with the breadth of the bandeau after surgical correction but not with preoperative values. Postoperative mean cranial width diminished significantly to a more normal value. Mean intercanthal distance was normal preoperatively and remained so but was significantly greater in syndromic than in nonsyndromic cases. Conclusions Frontal growth rate is diminished in the coronal plane after fronto-orbital advancement. The authors recommend primary techniques to overcorrect the width of the bandeau and frontal region, including zygomaticosphenoid osteotomies and interpositional cranial bone grafts to advance/widen the lateral orbital rim. Continued evaluation is required to assess whether overcorrection results in normal frontotemporal shape and breadth at skeletal maturity. PMID:27119926

  4. Biofilms On Orbit and On Earth: Current Methods, Future Needs

    NASA Technical Reports Server (NTRS)

    Vega, Leticia

    2013-01-01

    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  5. Investigation of vehicle reusability for human exploration of Near-Earth Asteroids using Sun-Earth Libration point orbits

    NASA Astrophysics Data System (ADS)

    Zimmer, A. K.

    2013-09-01

    Current plans for human exploration of the solar system envision several missions to Near-Earth Asteroids (NEAs) as stepping stones towards missions to Mars. This research investigates the feasibility of stationing reusable cargo spacecraft, such as habitats, in halo orbits at Sun-Earth Libration points 1 and 2 (L1 and L2) between NEA missions in an effort to reduce mission cost and thus overall campaign cost by lowering the mass required to be launched and the amount of new hardware to be built for each mission. Four example missions to the two currently most promising targets of the known NEA population in the 2025-2030 time frame are chosen. In the mission architecture proposed in this study, the crew vehicle directly commutes between Earth and the asteroid in order to keep mission durations for the crew short. The cargo vehicle departs from a halo orbit, rendezvous with the crew vehicle on the outbound trajectory, and returns to a halo orbit after the mission. Manifold trajectories of halo orbits in the northern and southern halo orbit family at L1 and L2 are considered for the transfer of the cargo vehicle to and from the interplanetary trajectory and the total Δv required for this transfer is minimized. This Δv is found to range from a few meters per second to hundreds of meters per second, depending on the specific energy and inclination of the interplanetary trajectory. These results show the great potential of the utilization of Sun-Earth Libration point orbits for enabling vehicle reusability, thus lowering the cost of human exploration missions.

  6. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  7. Study on Orbital Decay of Near Earth Satellites with KS Orthogonal Elements

    NASA Astrophysics Data System (ADS)

    Ps, Sandeep

    STUDY ON ORBITAL DECAY OF NEAR EARTH SATELLITES WITH KS ORTHOGONAL ELEMENTS SANDEEP P S The knowledge of satellite orbit decay and its expected life prior to launch is necessary for mission planning purpose. Several sets of data for various parametric studies is sought quite often, it is necessary to minimize computational time involved for generating decay predictions, keeping the prediction accuracy normally good. A number of factors play dominant role in perturbation modelling for near earth satellites such as oblateness of the Earth, presence of the atmosphere, luni-solar attraction and solar radiation pressure. This paper concerns with the study of orbital decay of near earth satellites with KS orthogonal elements, which provide accurate orbit predictions at low computational time. Perturbations considered are due to oblateness of the Earth and the atmospheric drag. The Earth’s zonal harmonic terms J2 to J6 are included and the drag is modeled with an analytical diurnally oblate atmosphere. Effect of Earth’s geomagnetic and solar activity is included in density and density scale height computations. JACCHIA77 atmospheric model is utilized. The developed software is validated with the orbital data of decayed objects taken from www.space-track.org.

  8. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  9. Jupiter-family comets in near-Earth orbits: Dynamical histories and potential source regions

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Sosa, A.

    2014-07-01

    We analyze the dynamical histories of a sample of 58 Jupiter-family comets (JFCs) coming close to the Earth, namely with perihelion distances q < 1.3 au at the time of their discovery. We carry out orbit integrations for these objects for 10^4 yr in the past and in the future, considering the orbital elements provided by the NASA/JPL Small Body Database, and 50 clones of each comet whose orbital elements were taken randomly within their error bars. We find that most orbits are chaotic, where comets are subject to frequent close encounters with Jupiter. Therefore, it is difficult to follow accurately the trajectory of a given comet beyond a few hundred years. We then define a likely dynamical path, which is computed as the average of the orbits of a given comet and the set of 50 clones. In particular we measure the degree of instability of a comet orbit by the time it takes the average perihelion distance q of a comet and its 50 clones to decrease by 1 au previous to the discovery time. We define this time scale as the capture time within the near-Earth region. We find that most JFCs have short capture times, of a few hundred to a couple of thousands of years, suggesting a recent incorporation to the near-Earth region. This is what one should expect for bodies whose typical lifetimes as active comets should not exceed a few 10^3 yr. This behavior is in sharp contrast with near-Earth asteroids that show more stable orbits with much longer residence times in the near-Earth region. The most likely source region of most JFCs is the transneptunian region. On the other hand, we find that a few JFCs move on stable orbits over the studied period with capture times > 10^4 yr. These objects might have a different source region, probably the outer asteroid belt or the Jupiter Trojans.

  10. Medium Earth Orbits: Is There a Need for a Third Protected Region?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    The Inter-Agency Space Debris Coordination Committee (IADC) and the United Nations have adopted the concept of near-Earth regions which should be afforded protection from the accumulation of orbital debris. These regions are low Earth orbit (LEO), which extends up to 2000 km altitude, and geosynchronous orbit (GEO), which includes the volume of space encompassed by 35,786 km +/- 200 km in altitude and +/- 15 degrees in inclination. The region between LEO and GEO is commonly referred to as Medium Earth Orbit (MEO). Although historically a small minority of spacecraft have operated in MEO, the number of such satellites residing in or routinely transiting the zone is increasing. The question thus arises: should MEO be considered an orbital debris protected region? This paper first reviews the characteristics of space systems now utilizing MEO, as well as those anticipated to join them in the near future. MEO is then contrasted with LEO and GEO, both physically and pragmatically. Recommended orbital debris mitigation guidelines for MEO space vehicles are highlighted, and the challenges of spacecraft and launch vehicle stage disposal are recognized. Note is also made of the principal tenets of the United Nations Outer Space Treaty and of recent trends toward de facto partitioning of MEO. Finally, the efficacy and practicality of establishing MEO as a new protected region with regard to orbital debris is addressed.

  11. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  12. Ideas for a future earth observing system from geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Shenk, William E.; Hall, Forrest; Esaias, Wayne; Maxwell, Marvin; Suomi, Verner E.; Von Bun, Fritz

    1986-01-01

    Uses for the proposed geosynchronous platform are described. The geosynchronous satellite could provide good spatial and temporal resolution, a large field-of-view, easier calibration, stereography, and data relay. The limitations of the platform are discussed. The applications of the geosynchronous platform to meteorology, earth surveying, and oceanography are examined.

  13. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  14. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  15. Manned Mars mission Earth-To-Orbit (ETO) delivery and orbit assembly of the manned Mars vehicle

    NASA Technical Reports Server (NTRS)

    Barisa, B.; Solmon, G.

    1986-01-01

    The initial concepts developed for the in-orbit assembly of a Manned Mars Vehicle and for the Earth-to-Orbit (ETO) delivery of the required hardware and propellant are presented. Two (2) Mars vehicle concepts (all-propulsive and all-aerobrake) and two (2) ETO Vehicle concepts were investigated. Both Mars Vehicle concepts are described in Reference 1, and both ETO Vehicle concepts are described in Reference 2. The all-aerobrake configuration reduces the number of launches and time required to deliver the necessary hardware/propellent to orbit. Use of the larger of the 2 ETO Vehicles (HLLV) further reduces the number of launches and delivery time; however, this option requires a completely new vehicle and supporting facilities.

  16. Analysis of GaAs and Si solar cell arrays for earth orbital and orbit transfer missions

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.

    1980-01-01

    Solar array systems have been studied and compared for earth orbital and orbit transfer missions with the principal objective of quantifying the cost tradeoffs between gallium arsenide and silicon array for specific classes of missions and system characteristics. For the missions considered, it is found that the purchase cost advantage of Si arrays is not overcome by the greater radiation resistance of GaAs arrays. The use of reflectors for concentration may significantly reduce the power system cost. However, GaAs arrays benefit considerably more from solar concentration than Si arrays in terms of mission cost because of their higher allowable temperature. In the case of orbit transfer missions, a cover glass thickness of at least 0.05 cm is recommended to reduce total mission cost.

  17. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  18. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  19. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  20. Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.

    2002-01-01

    Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.

  1. KOI2138 -- a Spin-Orbit Aligned Intermediate Period Super-Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.

    2015-11-01

    A planet's formation and evolution are encoded in spin-orbit alignment -- the planet's inclination relative to its star's equatorial plane. While the solar system's spin-orbit aligned planets indicate our own relatively quiescent history, many close-in giant planets show significant misalignment. Some planets even orbit retrograde! Hot Jupiters, then, have experienced fundamentally different histories than we experienced here in the solar system. In this presentation, I will show a new determination of the spin-orbit alignment of 2.1 REarth exoplanet candidate KOI2138. KOI2138 shows a gravity-darkened transit lightcurve that is consistent with spin-orbit alignment. This measurement is important because the only other super-Earth with an alignment determination (55 Cnc e, orbit period 0.74 days) is misaligned. With an orbital period of 23.55 days, KOI2138 is far enough from its star to avoid tidal orbit evolution. Therefore its orbit is likely primordial, and hence it may represent the tip of an iceberg of terrestrial, spin-orbit aligned planets that have histories that more closely resemble that of the solar system's terrestrial planets.

  2. The Advanced Orbiting Systems Testbed Program: Results to date

    NASA Technical Reports Server (NTRS)

    Otranto, John F.; Newsome, Penny A.

    1994-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.

  3. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  4. Earth-to-Moon low energy transfers targeting L1 hyperbolic transit orbits.

    PubMed

    Topputo, Francesco; Vasile, Massimiliano; Bernelli-Zazzera, Franco

    2005-12-01

    In the frame of the lunar exploration, numerous future space missions will require maximization of payload mass, and simultaneously achieving reasonable transfer times. To fulfill this request, low energy non-Keplerian orbits could be used to reach the Moon instead of high energetic transfers. The low energy solutions can be separated into two main categories depending on the nature of the trajectory approaching the Moon: low energy transit orbits that approach the Moon from the interior equilibrium point L(1) and weak stability boundary transfers that reach the Moon after passing through L(2). This paper proposes an alternative way to exploit the opportunities offered by L(1) transit orbits for the design of Earth-Moon transfers. First, in a neighborhood of the L(1) point, the three-body dynamics is linearized and written in normal form; then the entire family of nonlinear transit orbits is obtained by selecting the appropriate nontrivial amplitudes associated with the hyperbolic part. The L(1)-Earth arc is close to a 5:2 resonant orbit with the Moon, whose perturbations cause the apogee to rise. In a second step, two selected low altitude parking orbits around the Earth and the Moon are linked with the transit orbit by means of two three-body Lambert arcs, solutions of two two-point boundary value problems. The resulting Earth-to-Moon trajectories prove to be very efficient in the Moon captured arc and save approximately 100 m/sec in Deltav cost when compared to the Hohmann transfer. Furthermore, such solutions demonstrate that Moon capture could be obtained in the frame of the Earth-Moon R3BP neglecting the presence of the Sun.

  5. Computer subroutines for estimation of human exposure to radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1985-01-01

    Computer subroutines to calculate human exposure to trapped radiations in low Earth orbit (LEO) on the basis of a simple approximation of the human geometry by spherical shell shields of varying thickness are presented and detailed. The subroutines calculate the dose to critical body organs and the fraction of exposure limit reached as a function of altitude of orbit, degree of inclination, shield thickness, and days in mission. Exposure rates are compared with current exposure limits.

  6. Two-stage earth-to-orbit transport with translating oblique wings for booster recovery

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O. (Inventor); Briener, Charles A. (Inventor)

    1991-01-01

    A two-stage earth-to-orbit transport includes an orbiter vehicle and a pair of boosters, each having a depolyable oblique wing located along a longitudinal axis of the booster. The wing is deployed in an oblique disposition in supersonic and hypersonic speeds, and disposed at 90.degree. for subsonic speeds encountered during entry. The oblique wing is driven axially and rotated by means of a turret mounted on rails.

  7. Space shuttle: Program overview. [low-cost transportation to and from earth orbits

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The primary design and operations goal for the space shuttle program to provide low-cost transportation to and from earth orbits for the purpose of conducting investigations in space via spacelabs and free flying or automated satellites is reviewed. The space shuttle system and mission profile is described along with the space shuttle orbiter system and payloads accommodations, attachments, and handling. The implications the space shuttle program has for international cooperation in space are mentioned.

  8. The MicroSTAR accelerometer, a key payload for low Earth orbit aeronomy mission

    NASA Astrophysics Data System (ADS)

    Christophe, Bruno; Foulon, Bernard; Perrot, Eddy; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2014-05-01

    With its mature technology inherited from the still in-orbit electrostatic accelerometers of the GRACE and GOCE geodesy missions, the MicroSTAR accelerometer is well suited for low Earth orbit aeronomy missions. Weighting 1 kg inside less than 1 litre and with a power consumption of a little bit more than 1 W, MicroSTAR can be integrated both as auxiliary passenger payload on board any Earth observation satellite either can be the main payload of a micro satellite dedicated to aeronomy and space weather survey. Positioned in the vicinity of the spacecraft centre of gravity, the accelerometer provides the measurements of the satellite non gravitational surface forces. Associated with a precise orbit determination, the accelerometer measurement permits to distinguish the position or velocity fluctuations of the satellite due to the drag fluctuations from those due to the Earth gravity anomalies and so to deduce the atmospheric density after removal of radiation pressures (direct solar, Earth albedo and infrared radiation) assuming a well known mass and wetted surface of the satellite. MicroSTAR shall achieve a resolution performance up to 1.5E-11 m/s2/sqrt(Hz) in the measurement bandwidth from 0.2 mHz to 100 mHz. If integrated at the centre of a nearly spherical micro-satellite, taking advantage of a GPS receiver for precise orbit determination and with a simple mechanical devices for accurate in-orbit centring at the satellite centre of gravity, such a satellite launched on a 300km-1300km orbit with inclination as close as possible to a polar orbit, can provide a global coverage of the upper atmospheric density and of its spatial and temporal variations. After a description of the MicroSTAR instrument, the paper will presents its detailed performance budget and it will be concluded by a short trade off between the possible orbits and the expected scientific performance return pending on the potential LEO satellite missions.

  9. Advanced technologies for rocket single-stage-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Wilhite, Alan W.; Bush, Lance B.; Cruz, Christopher I.; Lepsch, Roger A.; Morris, W. Douglas; Stanley, Douglas O.; Wurster, Kathryn E.

    1991-01-01

    A single-stage-to-orbit vertical takeoff/horizontal landing rocket vehicle was studied to determine the benefits of advanced technology. Advanced technologies that were included in the study were variable mixture ratio oxygen/hydrogen rocket engines and materials, structures, and subsystem technologies currently being developed in the National Aero-Space Plane Program. The application of advanced technology results in an 85 percent reduction in vehicle dry weight. With advanced materials, an external thermal protection system, like the Space Shuttle tiles, was not required. Compared to an all-airbreathing horizontal takeoff/horizontal landing vehicle using the same advanced technologies and mission requirements, the rocket vehicle is lighter in dry weight and has fewer subsystems. To increase reliability and safety, operational features were included in the rocket vehicle-robust subsystems, 5 percent additional margin, no slush hydrogen, fail-operational with an engine out, and a crew escape module. The resulting vehicle grew in dry weight and was still lower in dry weight than the airbreathing vehicle.

  10. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  11. Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sarah; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.

  12. The orbit of 2010 TK7: possible regions of stability for other Earth Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Lhotka, C.; Zhou, L.

    2012-05-01

    The first Earth Trojan has been observed and found to be on an interesting orbit close to the Lagrange point L4. In the present study, we therefore perform a detailed investigation of the stability of its orbit and moreover extend the study to give an idea of the probability of finding additional Earth Trojans. Our results are derived using three different approaches. In the first, we derive an analytical mapping in the spatial elliptic restricted three-body problem to find the phase space structure of the dynamical problem. We then explore the stability of the asteroid in the context of the phase space geometry, including the indirect influence of the additional planets of our Solar system. In the second approach, we use precise numerical methods to integrate the orbit forward and backward in time in different dynamical models. On the basis of a set of 400 clone orbits, we derive the probability of capture and escape of the Earth Trojan asteroid 2010 TK7. To this end, in the third approach we perform an extensive numerical investigation of the stability region of the Earth's Lagrangian points. We present a detailed parameter study of possible stable tadpole and horseshoe orbits of additional Earth Trojans, i.e. with respect to the semi-major axes and inclinations of thousands of fictitious Trojans. All three approaches lead to the conclusion that the Earth Trojan asteroid 2010 TK7 finds itself in an unstable region on the edge of a stable zone; additional Earth Trojan asteroids may be found in this regime of stability.

  13. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  14. Study of multi-kW solar arrays for Earth orbit application

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low cost low Earth orbit (LOW) and geosynchronous Earth orbit (GEO) Solar Array concepts in the 300 to 1000 kW range which could be reduced to hardware in the mid 1980's, are identified. Size scaling factors and longer life demands are recognized as the prime drivers for the designs if low life cycle costs for energy are to be achieved. Technology is identified which requires further development in order to assure component readiness and availability. Use of the low concentration ratio (CR) concentrator, which uses gallium arsenide solar cells for both LEO and GEO applications, is recommended.

  15. Instrumentation for near-Earth measurement of orbital debris and cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Tuzzolino, Anthony J.

    1992-01-01

    Dust instrumentation based on polyvinylidene fluoride (PVDF) dust sensor arrays is described which will measure the masses, fluxes, velocities, and trajectories of orbital debris particles and natural micrometeoroids. Orbital debris particles are distinguished from natural particles (cosmic dust) by means of the velocity/trajectory information. The instrumentation will measure particle trajectory with a mean error of approximately 7 degrees (for isotropic flux) and is designed for measurements over the particle diameter range of approximately 2 to 200 micro-m. For future missions having Earth-return capabilities, arrays of capture cell devices positioned behind the PVDF trajectory system would provide for Earth-based chemical and isotopic analysis of captured dust.

  16. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  17. The Orbit and Future Motion of Earth Quasi-Satellite 2016 HO3

    NASA Astrophysics Data System (ADS)

    Chodas, Paul

    2016-10-01

    The newly discovered small asteroid 2016 HO3 is not only co-orbital with the Earth, it is currently trapped as a quasi-satellite, and it will remain a constant companion of our planet for centuries to come. Although it orbits the Sun, not the Earth, in a frame rotating with the Earth the asteroid appears to make yearly loops around our planet, and also bobs up and down through the ecliptic due to its 8-degree orbital inclination. What makes this asteroid a quasi-satellite is the fact that the Earth's gravity influences its motion so that it never wanders farther away than about 100 lunar distances. In the rotating frame, the asteroid's yearly cycles librate back and forth along the Earth's orbit, with a period of about 45 years. One other asteroid, 2003 YN107, followed a similar librational pattern from 1997 to 2006, but has since departed our vicinity. 2016 HO3, on the other hand, will continue to librate about our planet for centuries to come, making it the best and most stable example of a quasi-satellite to date.

  18. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    1999-01-01

    This presentation reviews the history of the Earth Radiation Budget Satellite (ERBS) and the problems which were experienced with the batteries. After two cells shorted on the first Battery, the decision was made to take battery 1 of line in late 1992. This left the second battery supporting all loads. The second battery began to experience problems in 1998 into 1999. The decision was made to bring the first battery on line and take the second battery off line. The steps to switching the batteries are reviewed, and the results are discussed.

  19. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  20. ADCS controllers comparison for small satellitess in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria

    2016-07-01

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In a previous work, a tailored Fuzzy controller was designed for a nanosatellite. Its performance and efficiency were compared with a traditional Proportional Integrative Derivative (PID) controller within the same specific mission. The orbit height varied along the mission from injection at around 380 km down to 200 km height, and the mission required pointing accuracy over the whole time. Due to both, the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, an efficient ADCS is required. Both methodologies, fuzzy and PID, were fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. The simulations showed that the Fuzzy controller is much more efficient (up to 65% less power required) in single manoeuvres, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the Fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. However, the controllers are meant to be used in a vast range of situations and configurations which exceed those used in the calibration process carried out in the previous work. To assess the suitability and performance of both controllers in a wider framework, parametric and statistical methods have been applied using the Monte Carlo technique. Several parameters have been modified randomly at the beginning of each simulation: the moments of inertia of the whole satellite and of the momentum wheel, the residual magnetic dipole and the initial conditions of the test. These parameters have been chosen because they are the main source of uncertainty during the design phase. The variables used for the analysis are the error (critical for science) and the operation cost (which impacts the mission lifetime and

  1. Near-earth orbital guidance and remote sensing

    NASA Technical Reports Server (NTRS)

    Powers, W. F.

    1972-01-01

    The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.

  2. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    SciTech Connect

    Wilson, J.W.; Khandelwal, G.S.; Shinn, J.L.; Nealy, J.E.; Townsend, L.W.; Cucinotta, F.A.

    1990-05-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  3. Long-Duration Human Habitation Beyond Low-Earth Orbit: Why is the Near Future Critical?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel; Hatfield, C. A.

    2011-01-01

    For more than a decade, habitation systems capable of comfortable human occupation and effective operations beyond low-Earth orbit (LEO) for more than a few weeks have been a priority recommendation to NASA. This capability is a lynch pin for human exploration beyond the Earth-Moon system. Here we describe briefly some relevant concepts and discuss justifications in the current political and financial environment for why near-term human habitation systems beyond LEO is an imperative.

  4. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Khandelwal, Govind S.; Shinn, Judy L.; Nealy, John E.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1990-01-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  5. Spacecraft orbit/earth scan derivations, associated APL program, and application to IMP-6

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1971-01-01

    The derivation of a time shared, remote site, demand processed computer program is discussed. The computer program analyzes the effects of selected orbit, attitude, and spacecraft parameters on earth sensor detections of earth. For prelaunch analysis, the program may be used to simulate effects in nominal parameters which are used in preparing attitude data processing programs. After launch, comparison of results from a simulation and from satellite data will produce deviations helpful in isolating problems.

  6. Earth-to-Geostationary Orbit Transportation for Space Solar Power System Development

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donahue, Benjamin B.; Lawrence, Schuyler C.; McClanahan, James A.; Carrington, Connie K. (Technical Monitor)

    2000-01-01

    Space solar power satellites have the potential to provide abundant quantities of electricity for use on Earth. One concept, the Sun Tower, can be assembled in geostationary orbit from pieces transferred from Earth. The cost of transportation is one of the major hurdles to space solar power. This study found that autonomous solar-electric transfer is a good choice for the transportation from LEO to GEO.

  7. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    NASA Technical Reports Server (NTRS)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  8. Instability of the Current Space Debris Population in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, it is expected that a great deal of fragments will be created by explosions and collisions. Thus, the number of space debris may increase exponentially (Kessler Syndrome). This paper analyzes the Kessler Syndrome using the Low Earth Orbital Debris Environmental Evolutionary Model (LEODEEM) developed at Kyushu University with collaboration from JAXA. The purpose of the study aims at understanding the issues related to space environment conservation. The results provide effective conditions of Active Debris Removal which is one of the space debris mitigation procedures.

  9. Uranian ring orbits from earth-based and Voyager occultation observations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Elliot, J. L.; French, L. M.; Kangas, J. A.; Meech, K. J.; Ressler, M. E.; Buie, M. W.; Frogel, J. A.; Holberg, J. B.; Fuensalida, J. J.; Joy, M.

    1988-02-01

    The authors have combined an enhanced Earth-based occultation data set and Voyager occultation observations to determine a new solution for the ring orbital elements and the direction of the planetary pole. They describe the new ground-based observations and the Voyager data used for this analysis. They discuss the new orbit solution and a search for resonances associated with the γ and δ rings, which are not well matched by simple elliptical orbits. Then the authors discuss the new solution and investigate the suspected association of resonances between satellites 1986U7 and 1986U8 and some of the rings.

  10. Early Mission Orbit Determination Error Analysis Results for Low-Earth Orbiting Missions using TDRSS Differenced One-way Doppler Tracking Data

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    Differencing multiple, simultaneous Tracking and Data Relay Satellite System (TDRSS) one-way Doppler passes can yield metric tracking data usable for orbit determination for (low-cost) spacecraft which do not have TDRSS transponders or local oscillators stable enough to allow the one-way TDRSS Doppler tracking data to be used for early mission orbit determination. Orbit determination error analysis results are provided for low Earth orbiting spacecraft for various early mission tracking scenarios.

  11. Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn

    2004-01-01

    Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.

  12. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  13. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    Discovery from a Long-term Project at La Silla A new extrasolar planet has been found at the ESO La Silla Observatory as a companion to iota Horologii (iota Hor) . This 5.4-mag solar-type star is located at a distance of 56 light-years and is just visible to the unaided eye in the southern constellation Horologium (The Pendulum Clock). The discovery is the result of a long-term survey of forty solar-type stars that was begun in November 1992. It is based on highly accurate measurements of stellar radial velocities, i.e. the speed with which a star moves along the line of sight. The presence of a planet in orbit around a star is inferred from observed, regular changes of this velocity, as the host star and its planet revolve around a common center of gravity. Since in all cases the star is much heavier than the planet, the resulting velocity variations of the star are always quite small. The team that found the new planet, now designated iota Hor b , consists of Martin Kürster , Michael Endl and Sebastian Els (ESO-Chile), Artie P. Hatzes and William D. Cochran (University of Texas, Austin, USA), and Stefan Döbereiner and Konrad Dennerl (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany). Iodine cell provides very accurate velocity measurements iota Hor b represents the first discovery of an extrasolar planet with an ESO instrument [1]. The finding is based on data obtained with ESO's highest-resolution spectrograph, the Coudé Echelle Spectrometer (CES) at the 1.4-m Coudé Auxiliary Telescope (CAT). While this telescope has recently been decommissioned, the CES instrument is now coupled via an optical fiber link to the larger ESO 3.6-m telescope, thus permitting the continuation of this survey. The high precision radial velocity measurements that are necessary for a study of this type were achieved by means of a special calibration technique. It incorporates an iodine gas absorption cell and sophisticated data modelling. The cell is used like

  14. Marking Tests to Certify Part Identification Processes for Use in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Roxby, D. L.

    2015-01-01

    The primary purpose for the MISSE marking tests was to define Data Matrix symbol marking processes that will remain readable after exposure to Low Earth Orbit environments. A wide range of different Data Matrix symbol marking processes and materials, including some still under development, were evaluated. The samples flown on MISSE 1 and 2 were in orbit for 3 years and 348 days, MISSE 3 and 4 were in orbit for 1 year and 15 days, MISSE 6 was in orbit for 1 year and 130 days, and MISSE 8 was in orbit for 2 years and 55 days. The initial MISSE marking tests clearly reflected that intrusive marking processes can be successfully used for this purpose. All of the intrusive marking processes tested exceeded program expectations and met 100 percent of the principle investigators objectives. However, subsequent tests demonstrated that some additive marking processes will also satisfy the requirements. This was an unexpected result.

  15. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  16. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  17. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d. PMID:24191033

  18. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  19. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  20. Polyhedral representation of invariant manifolds applied to orbit transfers in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro; Teofilatto, Paolo

    2016-02-01

    Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth-Moon system and in alternative multibody environments. This work proposes and describes an intuitive polyhedral interpolative approach for each state component associated with manifold trajectories, both in two and in three dimensions. An adequate grid of data, coming from the numerical propagation of a finite number of manifold trajectories, is employed. Accuracy of this representation is evaluated with reference to the invariant manifolds associated with a two-dimensional Lyapunov orbit and a three-dimensional Halo orbit, and is proven to be satisfactory, with the exclusion of limited regions of the manifolds. As a first, preliminary application, the polyhedral interpolation technique allows identifying the orbits in the proximity of the interior collinear libration point as either asymptotic, transit, or bouncing trajectories. Then, two applications to orbital maneuvering are addressed. First, the globally optimal two-impulse transfer between a specified low Earth orbit and a Lyapunov orbit (through its stable manifold) is determined. Second, the minimum-time low-thrust transfer from the same terminal orbits is found using again the stable manifold. These applications prove the effectiveness of the polyhedral interpolative technique and represent the premise for its application also to different problems involving invariant manifold dynamics.

  1. NEAR-EARTH BINARIES AND TRIPLES: ORIGIN AND EVOLUTION OF SPIN-ORBITAL PROPERTIES

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-01-15

    In the near-Earth asteroid population, binary and triple systems have been discovered with mutual orbits that have significant eccentricities as well as large semimajor axes. All known systems with eccentric orbits and all widely separated primary-satellite pairs have rapidly rotating satellites. Here, we study processes that can elucidate the origin of these spin-orbital properties. Binary formation models based on rotational fissioning can reproduce asynchronous satellites on orbits with high eccentricities and a wide range of separations, but do not match observed properties. We explore whether any evolutionary mechanisms can link the spin and orbital parameters expected from post-fission dynamics to those observed today. We investigate four processes: tidal torques, radiative perturbations (BYORP), close planetary encounters, and Kozai oscillations. We find that a combination of post-fission dynamics and tidal evolution can explain nearly all the spin-orbit properties in a sample of nine well-characterized near-Earth binaries and triples. The other mechanisms may act as well but are not required to explain the observed data. Lastly, we describe evolutionary pathways between observed spin-orbital states including synchronous and circular, asynchronous and circular, and asynchronous and eccentric configurations.

  2. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Astrophysics Data System (ADS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-05-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  3. The long term behaviour of Earth orbits and the implications for debris control

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1985-01-01

    GEO orbits with inclinations which remain less than 45 degrees are very stable. Although the inclination of the orbital plane may vary as much as 15 degrees over a period of about 50 years, the orbit altitude will always remain within a few hundred kilometers of geosynchronous altitude, GEO orbits with inclinations greater than 45 degrees exhibit remarkable instabilities ir the eccentricity due to gravitational resonance. Over a period of a century the eccentricity can reach such a large value that reentry is a possibility. The combined effects of the Sun, Moon, and oblate Earth play a significant role in determining the lifetime of a GEO transfer orbit. Depending on the initial orientation of the orbital plane with respect to the Sun and Moon, lifetimes may vary from under 6 months to over several hundred years. Transfer orbits with inclinations over 45 degrees show strong instabilities in the perigee altitude resulting in generally short lifetimes of less than a few years. All transfer orbits can be designed to decay within one year if the initial perigee altitude is less than 231 km. However, there are restrictions on orbit plane placement and time of year of launch.

  4. Earth-to-orbit propulsion turbomachinery subsystem: Overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.; Garcia, R.

    1991-01-01

    The topics presented are covered in viewgraph form. The objectives are: (1) to develop the technology related to the turbomachinery systems of high performance rocket engines, which focuses on advanced design methodologies and concepts, develops high performance turbomachinery data bases, and validates turbomachinery design tools; and (2) specific turbomachinery subsystems and disciplines, which focus on turbine stages, pump stages, bearings, deals, structural dynamics, complex flow paths, materials, manufacturability, producibility, and inspectability, rotordynamics, and fatigue/fracture/life.

  5. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  6. EarthScope's Transportable Array: Advancing Eastward

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Vernon, F.; Newman, R. L.; Astiz, L.

    2006-12-01

    EarthScope's Transportable Array has installed more than 200 high-quality broadband seismic stations over the last 3 years in the western US. These stations have a nominal spacing of 70 km and are part of an eventual 400 station array that migrates from west to east at a rate of 18 stations per month. The full 400 stations will be operating by September 2007. Stations have a residence time of about 2 years before being relocated to the next site. Throughout the continental US, 1623 sites are expected to be occupied. Standardized procedures and protocols have been developed to streamline all aspects of Transportable Array operations, from siting to site construction and installation to equipment purchasing and data archiving. Earned Value Management tools keep facility installation and operation on budget and schedule. A diverse, yet efficient, infrastructure installs and maintains the Transportable Array. Sensors, dataloggers, and other equipment are received and tested by the IRIS PASSCAL Instrument Center and shipped to regional storage facilities. To engage future geoscientists in the project, students are trained to conduct field and analytical reconnaissance to identify suitable seismic station sites. Contract personnel are used for site verification; vault construction; and installation of sensors, power, and communications systems. IRIS staff manages permitting, landowner communications, and station operations and maintenance. Seismic signal quality and metadata are quality-checked at the Array Network Facility at the University of California-San Diego and simultaneously archived at the IRIS Data Management Center in Seattle. Station equipment has been specifically designed for low power, remote, unattended operation and uses diverse two-way IP communications for real-time transmission. Digital cellular services, VSAT satellite, and commercial DSL, cable or wireless transport services are employed. Automatic monitoring of status, signal quality and

  7. Earth anisotropic reflection and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Knocke, Philip; Taylor, V. Ray; Blackwell, Sue

    1987-01-01

    Radiation pressure due to sunlight anisotropically reflected from the oceans apparently cannot explain the fluctuations in the anomalous along-track deceleration of the LAGEOS satellite. It fails by about a factor of 2 to account for the major peaks in the acceleration. This result is based on an extreme model: a cloudless earth whose northern hemisphere consists of continent, and whose southern hemisphere consists of ocean. The continent is assumed to reflect sunlight according to Lambert's law, while the ocean reflects anisotropically according to a simple analytical law which mimics Nimbus 7 observations. The inclusion of clouds into the model would reduce the acceleration to perhaps an order of magnitude below those observed. Some other explanation for the fluctuations, which have magnitude about 2 x 10 to the -12th m/sec sq, must be sought.

  8. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ojakangas, G.; Anz-Meador, P.; Cowardin, H.

    2012-09-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these

  9. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  10. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. PMID:26393398

  11. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  12. Investigation of seismo-electromagnetic precursors by data analysis from low earth orbiting DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shourabh

    One of the major technological advancements in the subjective area of space science studies has been the investigation of seismo-electromagnetic phenomena with the help of satellite based data analysis. These studies primarily refer to the electric and magnetic field perturbations occurring before earthquakes and are observable a few days to a few hours before the seismic activities. In order to encourage such investigation which could serve as a tool for studying earthquake precursors, the DEMETER satellite has been launched from in 2004 which aims at the detection of such perturbations at ionospheric level. This satellite comprises of various on-board scientific experiments to detect the electric and magnetic field perturbations, electron density and ion density characteristics in the ionosphere. In this paper, the authors intent to present some vital results pertaining to seismo-electromagnetic phenomena observed before strong seismic activities in the recent past.The measurements and data analysis have been perfromed through data from low earth orbiting DEMETER satellite. In view of the results, the authors also discuss the long term benefits of such space based investigations for understanding and complexities of natural hazards such as earthquakes.

  13. The Methane-Acetylene Cycle Aerospace Plane: A potential option for inexpensive Earth to orbit transportation

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert M.

    1994-06-01

    Methane, a cheap, soft cryogen with six times the density of hydrogen could be an ideal fuel for use in a hypersonic aerospace plane. However, it does not burn fast enough for efficient scramjet operation and it possesses an inadequate thermal heat sink to cool the aircraft effectively. This paper proposes a concept, termed the Methane-Acetylene Cycle Aerospace Plane (MACASP), that may overcome these difficulties. In the MACASP concept, methane fuel is run out within the wing leading edge in pipes which are allowed to rise in temperature to about 1800 K. Drag heating is used to drive the highly endothermic chemical reaction; 2CH4 = 3H2 + C2H2. The reaction occurs on a millisecond time scale and endows the methane with a heat sink per unit mass comparable to that possessed by liquid hydrogen. The reaction products are fed into a combustion chamber and burned in air, releasing as much energy per unit mass at as rapid a combustion rate as hydrogen. This paper explores the thermodynamics of the MACASP concept and theoretical feasibility is demonstrated. Potential problems and areas of concern are identified. A conceptual point design for a MACASP vehicle is advanced and mission analysis performed comparing the MACASP to a conventional hydrogen aerospace plane. It is shown that the MACASP concept offers significant promise for economical Earth to orbit transportation.

  14. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  15. BioSentinel: Enabling CubeSat-Scale Biogical Research Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sorgenfrei, Matt; Lewis, Brian S.

    2014-01-01

    The introduction of the Space Launch System will provide NASA with a new means of access to space beyond low Earth orbit (LEO), creating opportunities for scientific research in a range of spacecraft sizes. This presentation describes the preliminary design of the BioSentinel spacecraft, a CubeSat measuring 10cm x 20cm x 30cm, which has been manifested for launch on the maiden voyage of the Space Launch System in 2017. BioSentinel will provide the first direct experimental data from a biological study conducted beyond LEO in over forty years, which in turn will help to pave the way for future human exploration missions. The combination of an advanced biology payload with standard spacecraft bus components required for operation in deep space within a CubeSat form factor poses a unique challenge, and this paper will describe the early design trades under consideration. The baseline spacecraft design calls for the biology payload to occupy four cube-units of volume (denoted 4U), with all spacecraft bus components occupying the remaining 2U.

  16. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  17. Study of an evolutionary interim earth orbit program

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Alton, L. R.; Arno, R. D.; Deerwester, J. M.; Edsinger, L. E.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1971-01-01

    An evolutionary, gradual, and step-wise spacecraft systems technology development from those used on the Apollos and Skylab 1 to that required for the space station was considered. The four mission spacecraft were dry workshop versions of the Saturn 4-B stage, and each individually configured, outfitted and launched by INT-21 vehicles. These spacecraft were evaluated for crews of three, six and nine men and for mission lifetimes of one year. Two versions of the Apollo CSM, a three man and a four man crew, were considered as the logistic vehicle. The solar cell electrical power system of the first mission evolves into a light weight panel system supplemented by an operating isotope-Brayton system on the later missions. The open life support system of the first mission evolves to a system which recovers both water and oxygen on the last mission. The data handling, communications, radiation shielding, micrometeoroid protection, and orbit keeping systems were determined. The program costs were estimated and, excluding operational costs, the cost for each mission would average about $2 billion of which one-sixth would be for development, one-fourth for experiments, and the balance for vehicle acquisition.

  18. Laser propulsion to earth orbit. Has its time come?

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1989-01-01

    Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.

  19. Exobiology experiments for Earth-orbital platforms. [Abstract only

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.; Marshall, J. R.

    1994-01-01

    Low-gravity (microgravity) studies relevant to prebiotic evolution and the history of the biogenic elements (C, H, N, O, P, S) are particularly suited to orbital platforms. Relevant to these topics are phenomena such as gas-particle interactions (e.g., formation of organic aerosols via photolytic reactions) including nucleation, condensation, evaporation, adsorption, and catalytic reactions on surfaces; and, small-particle or grain interactions (e.g., growth of interstellar dust particles and planetesimals) including processes such as aggregation (or coagulation), scavenging, and collisions. Both gas-particle and grain (i.e., dust, crystals, organic aerosols, etc.) interactions studies can benefit from microgravity and are pertinent to studies in the areas of chemical evolution in the solar nebula, the interstellar medium, and planetary atmospheres; growth of planetesimals; and prebiotic evolution. In general, the microgravity environment allows for long duration and controlled simulations of processes occurring in exobiologically significant systems such as Titan's atmosphere, interstellar dust clouds, and the solar nebula in which gas-particle or particle-particle interactions play a significant role.

  20. Advances in Sensor Webs for NASA Earth Science Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, R.; Moe, K.; Smith, S.; Prescott, G.

    2007-12-01

    The world is slowly evolving into a web of interconnected sensors. Innovations such as camera phones that upload directly to the internet, networked devices with built-in GPS chips, traffic sensors, and the wireless networks that connect these devices are transforming our society. Similar advances are occurring in science sensors at NASA. NASA developed autonomy software has demonstrated the potential for space missions to use onboard decision-making to detect, analyze, and respond to science events. This software has also enabled NASA satellites to coordinate with other satellites and ground sensors to form an autonomous sensor web. A vision for NASA sensor webs for Earth science is to enable "on-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit." Several technologies for improved autonomous science and sensor webs are being developed at NASA. Each of these technologies advances the state of the art in sensorwebs in different areas including enabling model interactions with sensorwebs, smart autonomous sensors, and sensorweb communications. Enabling model interactions in sensor webs is focused on the creation and management of new sensor web enabled information products. Specifically, the format of these data products and the sensor webs that use them must be standardized so that sensor web components can more easily communicate with each other. This standardization will allow new components such as models and simulations to be included within sensor webs. Smart sensing implies sophistication in the sensors themselves. The goal of smart sensing is to enable autonomous event detection and reconfiguration. This may include onboard processing, self-healing sensors, and self-identifying sensors. The goal of communication enhancements, especially session layer management, is to support dialog control for autonomous operations

  1. Accuracy Assessment of Geostationary-Earth-Orbit with Simplified Perturbations Models

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Xu, Xiaojun; Pang, Feng

    2016-06-01

    A two-line element set (TLE) is a data format encoding orbital elements of an Earth-orbiting object for a given epoch. Using suitable prediction formula, the motion state of the object can be obtained at any time. The TLE data representation is specific to the simplified perturbations models, so any algorithm using a TLE as a data source must implement one of these models to correctly compute the state at a specific time. Accurately adjustment of antenna direction on the earth station is the key to satellite communications. With the TLE set topocentric elevation and azimuth direction angles can be calculated. The accuracy of perturbations models directly affect communication signal quality. Therefore, finding the error variations of the satellite orbits is really meaningful. In this present paper, the authors investigate the accuracy of the Geostationary-Earth-Orbit (GEO) with simplified perturbations models. The coordinate residuals of the simplified perturbations models in this paper can give references for engineers to predict the satellite orbits with TLE.

  2. Seeing Earth's Orbit in the Stars: Parallax and Aberration

    ERIC Educational Resources Information Center

    Timberlake, Todd K.

    2013-01-01

    During the 17th century the idea of an orbiting and rotating Earth became increasingly popular, but opponents of this view continued to point out that the theory had observable consequences that had never, in fact, been observed. Why, for instance, had astronomers failed to detect the annual parallax of the stars that "must" occur if…

  3. Study on networking issues of medium earth orbit satellite communications systems

    NASA Technical Reports Server (NTRS)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  4. The local neutron flux at low Earth-orbiting altitudes.

    PubMed

    Weidenspointner, G; Bennett, K; van Dijk, R; Kappadath, S C; Lockwood, J; Morris, D; Schonfelder, V; Varendorff, M

    1998-01-01

    The COMPTEL instrument onboard the Compton Gamma Ray Observatory (CGRO) has been used to measure the variation of the atmospheric neutron flux below 5 MeV as a function of vertical cutoff rigidity and spacecraft orientation at an altitude of 450 km. The instrumental 2.2 MeV background line, resulting from thermal neutron capture on hydrogen, was used for the measurement. The dependence of the 2.2 MeV rate on rigidity and geocentre zenith can be described by an analytic function: the line rate decreases linearly with geocentre zenith, and decreases exponentially with the vertical cutoff rigidity. The flux varies on average by about a factor of 3.7 between the extremes in rigidity, and by a factor of 1.7 between the extremes of spacecraft orientation with respect to the Earth. We believe that mass shielding is more important in attenuating the atmospheric albedo than as a source of secondary neutrons. The COMPTEL instrument is well suited for a long-duration study of the dependence of the neutron flux on the vertical cutoff rigidity and the solar cycle. PMID:11542899

  5. The local neutron flux at low Earth-orbiting altitudes.

    PubMed

    Weidenspointner, G; Bennett, K; van Dijk, R; Kappadath, S C; Lockwood, J; Morris, D; Schonfelder, V; Varendorff, M

    1998-01-01

    The COMPTEL instrument onboard the Compton Gamma Ray Observatory (CGRO) has been used to measure the variation of the atmospheric neutron flux below 5 MeV as a function of vertical cutoff rigidity and spacecraft orientation at an altitude of 450 km. The instrumental 2.2 MeV background line, resulting from thermal neutron capture on hydrogen, was used for the measurement. The dependence of the 2.2 MeV rate on rigidity and geocentre zenith can be described by an analytic function: the line rate decreases linearly with geocentre zenith, and decreases exponentially with the vertical cutoff rigidity. The flux varies on average by about a factor of 3.7 between the extremes in rigidity, and by a factor of 1.7 between the extremes of spacecraft orientation with respect to the Earth. We believe that mass shielding is more important in attenuating the atmospheric albedo than as a source of secondary neutrons. The COMPTEL instrument is well suited for a long-duration study of the dependence of the neutron flux on the vertical cutoff rigidity and the solar cycle.

  6. In-orbit Calibration of the Lunar Orbiter Laser Altimeter Via Two-Way Laser Ranging with an Earth Station

    NASA Astrophysics Data System (ADS)

    Sun, X.; Barker, M. K.; Mao, D.; Marzarico, E.; Neumann, G. A.; Skillman, D. R.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Orbiting planetary laser altimeters have provided critical data on such bodies as the Earth, Mars, the Moon, Mercury, and 433 Eros. The measurement accuracy of these instruments depends on accurate knowledge of not only the position and attitude of the spacecraft, but also the pointing of the altimeter with respect to the spacecraft coordinate system. To that end, we have carried out several experiments to measure post-launch instrument characteristics for the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter. In these experiments, the spacecraft points away from the Moon and scans the Earth in a raster pattern as the LOLA laser fires (the downlink) while a ground station on Earth fires its own laser to the spacecraft (the uplink). The downlink pulse arrival times and digitized waveforms are recorded at the ground station, the Goddard Geophysical and Astronomical Observatory in Greenbelt, MD, and the uplink arrival times and pulse widths are measured by LOLA. From early in the mission, the experiments have helped to confirm a pointing anomaly when LOLA is facing towards deep space or the cold side of the Moon. Under these conditions, the downlink data indicate a laser bore-sight pointing offset of about -400 and 100 microradians in the cross-track and along-track directions, respectively. These corrections are consistent with an analysis of LOLA ground-track crossovers spread throughout the mission to determine lunar tidal flexure. The downlink data also allow the reconstruction of the laser far-field pattern. From the uplink data, we estimate a correction to the receiver telescope nighttime pointing of ~140 microradians in the cross-track direction. By comparing data from such experiments shortly after launch and nearly 5 years later, we have directly measured the changes in the laser characteristics and obtained critical data to understand the laser behavior and refine the instrument calibration.

  7. MALEO: Modular Assembly in Low Earth Orbit. A strategy for an IOC lunar base

    NASA Technical Reports Server (NTRS)

    Thangavelu, M.; Schierle, G. G.

    1990-01-01

    Modular Assembly in Low Earth Orbit (MALEO) is a new strategy for building an initial operational capability lunar habitation base. In this strategy, the modular lunar base components are brought up to Low Earth Orbit by the Space Transportation System/Heavy Lift Launch Vehicle fleet, and assembled there to form a complete lunar base. Modular propulsion systems are then used to transport the MALEO lunar base, complete and intact, all the way to the moon. Upon touchdown on the lunar surface, the MALEO lunar habitation base is operational. An exo-skeletal truss superstructure is employed in order to uniformly absorb and distribute the rocket engine thrusting forces incurred by the MALEO lunar base during translunar injection, lunar orbit insertion, and lunar surface touchdown. The components, configuration, and structural aspects of the MALEO lunar base are discussed. Advantages of the MALEO strategy over conventional strategies are pointed out. It is concluded that MALEO holds promise for lunar base deployment.

  8. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  9. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Cargo Vehicle s first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high

  10. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  11. Earth observation mission operation of COMS during in-orbit test

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2011-11-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service after the In-Orbit Test (IOT) phase. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. During the IOT phase the functionality and the performance of many aspects of the COMS satellite and ground station have been checked through the Earth observation mission operation for the observation of the meteorological phenomenon over several areas of the Earth and the monitoring of marine environments around the Korean peninsula. The Earth observation mission operation of COMS during the IOT phase is introduced in terms of mission operation characteristics, mission planning, and mission operation results for the missions of meteorological observation and ocean monitoring, respectively.

  12. Numerical investigation of planetesimal collision trajectories with a Moon accumulating in Earth orbit

    SciTech Connect

    Cox, L.P.

    1984-01-01

    In the scenario of lunar origin in which the Moon is assumed to have accreted most of its mass while in orbit about the Earth, planetasimals on the accretion knowledge of the relative impact rates of heliocentric planetting Earth and Moon is essential for any attempt to establish dynamical constraints on lunar origin. Numerical integrations of the regularized equations of motion for four bodies (Sun, Earth, Moon, planetismal) were done. A planetismal impact trajectory was calculated by assuming that the planetismal has hit the surface of the Moon at an assumed location, traveling in an assumed direction, and with an assumed impact speed. Next, the equations of motion were numerically integrated backward in time in order to determine from where the planetismal has come. In this way those volumes in heliocentric orbital element space which contribute trajectories that directly impact the Moon.

  13. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    NASA Technical Reports Server (NTRS)

    Hoots, F. R.; Fitzpatrick, P. M.

    1979-01-01

    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  14. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  15. Earth magnetotail current sheet near and beyond the Lunar orbit

    NASA Astrophysics Data System (ADS)

    Vasko, I.; Petrukovich, A. A.; Artemyev, A.; Nakamura, R.; Zelenyi, L. M.

    2015-12-01

    We analyze the structure of the Earth magnetotail current sheet (CS) in middle, -50 RE

  16. A Flight Safety System Based-On Images from Earth Orbits

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiromichi; Gomi, Hiromi; Homma, Kohzo

    Using high-resolution images remotely sensed from Earth orbits, a terrain recognition and alerting system for wide range flight safety is discussed. Since the demand for air transportation has been growing in recent years, advanced technologies for the flight safety on a flight course become to be very important. The high-resolution satellite images give great benefits for these issues. In this paper, some critical items are discussed and an effective flight safety system based on satellite images is proposed. For the small airplane containing a helicopter, it is indispensable that a pilot recognizes correctly the geographical feature of the circumference on a flight course. Especially the support system for poor visibility is an urgent problem. In conventional systems, some crucial problems have been pointed out. One is the difficulty of getting the timely information of geographical feature on the flight course. Another one is the restriction of detecting the information of unusual approach to narrow objects on the ground owing to sensor characteristics. These make it difficult for the pilot to grasp the relative relationship between dangerous points and the flight direction. Moreover, it increases pilot's workload to recognize exactly the state of wide areas with a time-changeable and detailed geographical feature situation including a pinnacle type building, a steel tower, a power line, etc. Therefore, detecting in advance these flight obstacles existing in the flight direction is very important for adequate judgment of unusual approach information and pilot's prompt actions. The proposed system in this paper can cope with these difficulties and has a possibility to be able to contribute to the flight safety on all flight courses in the world.

  17. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  18. MINOTAUR (Maryland's innovative orbital technologically advanced University rocket)

    NASA Technical Reports Server (NTRS)

    Lewis, Mark J.; Akin, Dave; Lind, Charles; Rice, T. (Editor); Vincent, W. (Editor)

    1992-01-01

    Over the past decade, there has been an increasing interest in designing small commercial launch vehicles. Some of these designs include OSC's Pegasus, and AMROC's Aquila. Even though these vehicles are very different in their overall design characteristics, they all share a common thread of being expensive to design and manufacture. Each of these vehicles has an estimated production and operations cost of over $15000/kg of payload. In response to this high cost factor, the University of Maryland is developing a cost-effective alternative launch vehicle, Maryland's Innovative Orbital Technologically Advanced University Rocket (MINOTAUR). A preliminary cost analysis projects that MINOTAUR will cost under $10000/kg of payload. MINOTAUR will also serve as an enriching project devoted to an entirely student-designed-and-developed launch vehicle. This preliminary design of MINOTAUR was developed entirely by undergraduates in the University of Maryland's Space Vehicle Design class. At the start of the project, certain requirements and priorities were established as a basis from which to begin the design phase: (1) carry a 100 kg payload into a 200 km circular orbit; (2) provide maximum student involvement in the design, manufacturing, and launch phases of the project; and (3) use hybrid propulsion throughout. The following is the list of the project's design priorities (from highest to lowest): (1) safety, (2) cost, (3) minimum development time, (4) maximum use of the off-the-shelf components, (5) performance, and (6) minimum use of pyrotechnics.

  19. A 3D Earth orbit model; visualization and analysis of Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Gilb, R. D.; Kostadinov, T. S.

    2012-12-01

    An astronomically precise and accurate Earth orbit graphical model, Earth orbit v2.0, is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Prevalent paleoclimatic theories invoke Milankovitch cycles as a major forcing mechanism capable of shifting Earth's climate regimes on time scales of tens to hundreds of thousands of years. Variability of eccentricity (ellipticity of orbit), precession (longitude of perihelion) and obliquity (Earth's axial tilt) changes parameters such as amplitude of seasonal insolation, timing of seasons with respect to perihelion, and total annual insolation. Hays et al. (1976) demonstrated a strong link between Milankovitch cycles and paleoclimatological records, which has been confirmed and expanded many times since (e.g. Berger et al., 1994; Berger et al., 2010). The complex interplay of several orbital parameters on various time scales makes assessment and visualization of Earth's orbit and spatio-temporal insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns on various spatio-temporal scales. These factors also make Milankovitch theory difficult to teach effectively. The model allows substantial user control in a robust, yet intuitive and user-friendly graphical user interface (GUI) developed in Matlab. We present the user with a choice between Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. Berger solutions span from -1 Myr to +1 Myr, while Laskar provides solutions from -101 Myr to +21 Myr since J2000. Users can also choose a "demo" mode which allows the three Milankovitch parameters to be varied independently of each other, so the user can isolate the effects of each on orbital geometry and insolation. For example, extreme eccentricity can be

  20. The advanced orbiting systems testbed program: Results to date

    NASA Technical Reports Server (NTRS)

    Newsome, Penny A.; Otranto, John F.

    1993-01-01

    The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.

  1. Mission Preparation Program for Exobiological Experiments in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Reitz, Guenther; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra

    The ESA facilities EXPOSE-R and EXPOSE-E on board of the the International Space Station ISS provide the technology for exposing chemical and biological samples in a controlled manner to outer space parameters, such as high vacuum, intense radiation of galactic and solar origin and microgravity. EXPOSE-E has been attached to the outer balcony of the European Columbus module of the ISS in Febraury 2008 and will stay for about 1 year in space, EXPOSE-R will be attached to the Russian Svezda module of the ISS in fall 2008. The EXPOSE facilities are a further step in the study of the Responses of Organisms to Space Environment (ROSE concortium). The results from the EXPOSE missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. It resulted in several experiment verification tests EVTs and an experiment sequence test EST that were conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allow the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. The procedure and results of these EVT tests and EST will be presented. These results are an essential prerequisite for the success of the EXPOSE missions and have been done in parallel with the development and construction of the final hardware design of the facility. The results gained during the simulation experiments demonstrated mission

  2. The 2011 Draconid Shower Risk to Earth-Orbiting Satellites

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2010-01-01

    Current meteor shower forecast models project a strong Draconid outburst, possibly a storm, on October 8, 2011, with a duration of approximately 7 hours and peaking between 19 and 21 hours UT. Predicted rates span an order of magnitude, with maximum Zenithal Hourly Rates (ZHRs) ranging from a few tens to several hundred. Calibration of the NASA MSFC Meteoroid Stream Model 1 to radar and optical observations of past apparitions, particularly the 2005 Draconid outburst 2, suggest that the maximum rate will be several hundreds per hour. Given the high spatial density of the Draconid stream, this implies a maximum meteoroid flux of 5-10 Draconids km(exp -2)/hr (to a limiting diameter of 1 mm), some 25-50 times greater than the normal sporadic flux of 0.2 km(exp -2)/ hr for particles of this size. Total outburst fluence, assuming a maximum ZHR of 750, is 15.5 Draconids km(exp -2), resulting in an overall 10x risk increase to spacecraft surfaces vulnerable to hypervelocity impacts by 1 mm particles. It is now established that a significant fraction of spacecraft anomalies produced by shower meteoroids (e.g. OLYMPUS and LandSat 5) are caused by electrostatic discharges produced by meteoroid impacts. In these cases, the charge generated is roughly proportional to v(exp 3.5(4)), giving a Draconid moving at 20 km/s approximately 1/80th the electrical damage potential of a Leonid of the same mass. In other words, a Draconid outburst with a maximum ZHR of 800 presents the same electrical risk as a normal Leonid shower with a ZHR of 15, assuming the mass indices and shower durations are the same. This is supported by the fact that no spacecraft electrical anomalies were reported during the strong Draconid outbursts of 1985 and 1998. However, the lack of past anomalies should not be taken as carte blanche for satellite operators to ignore the 2011 Draconids, as the upcoming outburst will constitute a period of enhanced risk for vehicles in near-Earth space. Each spacecrft is

  3. ECLSS Reliability for Long Duration Missions Beyond Lower Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Nelson, Jason

    2014-01-01

    Reliability has been highlighted by NASA as critical to future human space exploration particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However, there is no consensus on what is meant by improving on reliability; nor on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the Spring of 2013, the AES Water Recovery Project (WRP) hosted a series of events at the NASA Johnson Space Center (JSC) with the intended goal of establishing a common language and understanding of our reliability goals and equipping the projects with acceptable means of assessing our respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools and techniques associated with evaluating and designing for system reliability. The campaign culminated in a workshop at JSC with members of the ECLSS and AES communities with the goal of developing a consensus on what reliability means to AES and identifying methods for assessing our low to mid-technology readiness level (TRL) technologies for reliability. This paper details the results of the workshop.

  4. Logistics Reduction and Repurposing Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L., Jr.

    2012-01-01

    All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Logistics contributions to total mission architecture mass can be minimized by considering potential reuse using systems engineering analysis. In NASA's Advanced Exploration Systems "Logistics Reduction and Repurposing Project," various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisance aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistical items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistics systems to support multiple exploration missions much more efficiently.

  5. Logistics Reduction and Repurposing Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.

    2011-01-01

    All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Utilizing systems engineering to analyze logistics from cradle-to-grave and then to potential reuse, can minimize logistics contributions to total mission architecture mass. In NASA's Advanced Exploration Systems Logistics Reduction and Repurposing Project , various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisances aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistic items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistic systems to support multiple exploration missions much more efficiently.

  6. ECLSS Reliability for Long Duration Missions Beyond Lower Earth Orbit

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Nelson, Jason

    2014-01-01

    Reliability has been highlighted by NASA as critical to future human space exploration particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However there is no consensus on what is meant by improving on reliability; nor on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the spring of 2013, the AES Water Recovery Project (WRP) hosted a series of events at the NASA Johnson Space Center (JSC) with the intended goal of establishing a common language and understanding of our reliability goals, and equipping the projects with acceptable means of assessing our respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools and techniques associated with evalauating and designing for system reliability. The campaign culminated in a workshop at JSC with members of the ECLSS and AES communities with the goal of developing a consensus on what reliability means to AES and identifying methods for assessing our low to mid-technology readiness level (TRL) technologies for reliability. This paper details the results of the workshop.

  7. The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Spacecraft and launch vehicle stages abandoned in Earth orbit have historically been a primary source of debris from accidental explosions. In the future, such satellites will become the principal cause of orbital debris via inadvertent collisions. To curtail both the near-term and far-term risks posed by derelict spacecraft and launch vehicle stages to operational space systems, numerous national and international orbital debris mitigation guidelines specifically recommend actions which could prevent or limit such future debris generation. Although considerable progress has been made in implementing these recommendations, some changes to existing vehicle designs can be difficult. Moreover, the nature of some missions also can present technological and budgetary challenges to be compliant with widely accepted orbital debris mitigation measures.

  8. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  9. A Comparison of Atomic Oxygen Degradation in Low Earth Orbit and in a Plasma Etcher

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Park, Gloria

    1997-01-01

    In low Earth orbit (LEO) significant degradation of certain materials occurs from exposure to atomic oxygen (AO). Orbital opportunities to study this degradation for specific materials are limited and expensive. While plasma etchers are commonly used in ground-based studies because of their low cost and convenience, the environment produced in an etcher chamber differs greatly from the LEO environment. Because of the differences in environment, the validity of using etcher data has remained an open question. In this paper, degradation data for 22 materials from the orbital experiment Evaluation of Oxygen Interaction with Materials (EOIM-3) are compared with data from EOIM-3 control specimens exposed in a typical plasma etcher. This comparison indicates that, when carefully considered, plasma etcher results can produce order-of-magnitude estimates of orbital degradation. This allows the etcher to be used to screen unacceptable materials from further, more expensive tests.

  10. Earth-Moon Libration Point Orbit Stationkeeping: Theory, Modeling and Operations

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.; Woodard, Mark A.

    2013-01-01

    Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincare maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.

  11. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    PubMed

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  12. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  13. Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit

    NASA Technical Reports Server (NTRS)

    Barry, B. F.; Pimm, R. S.; Rowe, C. K.

    1971-01-01

    In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.

  14. Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission. [Get Away Specials

    NASA Technical Reports Server (NTRS)

    Belbruno, E. A.

    1987-01-01

    A method is described to construct trajectories from the earth to the moon which utilizes the existence of lunar capture orbits and the concept of 'stability boundary'. These orbits are ballistic and represent a new family of trajectories. They go into orbit about the moon from a suitable position about the earth with no required thrusting. This method is applied to a mission being studied at JPL called Lunar GAS (Get Away Special). Other applications are discussed.

  15. The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    As a result of the increasing number of debris in low Earth orbit (LEO), numerous national and international orbital debris mitigation guidelines recommend the removal of spacecraft and launch vehicle stages from LEO within 25 years after mission termination. The primary purpose of this action is to enhance space safety by significantly limiting the potential of future accidental collisions resulting in the creation of large numbers of new orbital debris. Likewise, the passivation of these objects, i.e., the removal of residual stored energies, while they remain in orbit is important to prevent the generation of debris via self-induced explosions. Characteristics and trends in the growth of the derelict spacecraft and launch vehicle stage populations in LEO are examined. Depending upon the final operational altitude of the vehicle, achieving the goal of orbital lifetime reduction can influence the design and deployment philosophy of a new space system. Some spacecraft and launch vehicle stages have combined their end-of-mission passivation operations with maneuvers to vacate long-lived orbital regimes. Perhaps the most dramatic demonstration of this type occurred in 2006 when a U.S. Delta IV second stage executed an unprecedented controlled-reentry maneuver from a circular orbit at an altitude near 850 km. For space systems in orbital regimes near the upper regions of LEO (i.e., between 1400 km and 2000 km altitude), maneuvers to place the vehicle above LEO might be more attractive than attempting to ensure an atmospheric reentry within 25 years, and at least one space system operator has selected this option. In some cases, careful consideration of natural orbital perturbations can also lead to reduced orbital lifetimes, although new launch constraints might need to be imposed.

  16. THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF EXO-EARTHS

    SciTech Connect

    Shao, Michael; Catanzarite, Joseph; Pan Xiaopei E-mail: joseph.catanzarite@jpl.nasa.go

    2010-09-01

    The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet-star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet's orbit by direct imaging is complicated by a number of factors. One is the inner working angle (IWA). A space coronagraph or interferometer imaging an exo-Earth can separate the light from the planet from the light from the star only when the star-planet separation is larger than the IWA. Second, the apparent brightness of a planet depends on the orbital phase. A single image of a planet cannot tell us whether the planet is in the HZ or distinguish whether it is an exo-Earth or a Neptune-mass planet. Third is the confusion that may arise from the presence of multiple planets. With two images of a multiple planet system, it is not possible to assign a dot to a planet based only on the photometry and color of the planet. Finally, the planet-star contrast must exceed a certain minimum value in order for the planet to be detected. The planet may be unobservable even when it is outside the IWA, such as when the bright side of the planet is facing away from us in a 'crescent' phase. In this paper we address the question: 'Can a prior astrometric mission that can identify which stars have Earth-like planets significantly improve the science yield of a mission to image exo-Earths?' In the case of the Occulting Ozone Observatory, a small external occulter mission that cannot measure spectra, we find that the occulter mission could confirm the orbits of {approx}4 to {approx}5 times as many exo-Earths if an astrometric mission preceded it to identify which stars had such planets. In the case

  17. Discussion paper on environmental hazards on the Moon, in low Earth orbit, and in low Mars orbit

    SciTech Connect

    Heiken, G.

    1990-09-01

    In a lunar base era, potential problems with dust will be serious. Lunar soils, which make up most of the regolith that covers the Moon's surface, are similar to silty sands on Earth, with mean grain sizes of 45--100 {mu}m. Lunar dust has very low electrical conductivity and dielectric losses, permitting accumulation of electric charge under ultraviolet irradiation. Dust coatings cover thermally-sensitive surfaces, windows and visors, clog moving parts, and create continual abrasion hazards. Reduced gravity on the Moon favors the stability of aerosolized lunar soil and thereby will prolong its availability for inhalation if it is not removed from habitat atmosphere by filtration systems. Some of the other hazards that must be considered include: Perception; on the lunar surface it is difficult to judge topographic details and distances, and Micrometeoroid impact; new materials are needed to protect astronauts and equipment at a lunar base. Spacecraft in low orbits around Earth and Mars experience strong chemical interactions where O{sub 2} and CO{sub 2} are photodissociated by sunlight. A ground-based facility at Los Alamos can be used to test these chemical interactions with materials proposed for use in spacecraft and satellites. Another component of the space exploration initiative is the environmental effects posed by man on the tenuous lunar and martian atmospheres. Before significant development occurs on these planets, these atmospheres must be measured. Orbiting sensors designed to measure these atmospheres can also be used to search for water.

  18. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  19. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  20. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from milli-second pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar lightcurve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  1. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  2. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.

  3. A parametric study of space radiation exposures to critical body organs for low earth orbit missions.

    PubMed

    Atwell, W; Beever, E R; Hardy, A C

    1989-01-01

    The geomagnetically-trapped and galactic cosmic radiation environments are two of the major sources of naturally-occurring space radiation exposure to astronauts in low earth orbit. The exposure is dependent primarily on altitude, spacecraft shielding, crew stay-times, and solar cycle effects for a 28.5 deg orbital inclination. Based on Space Shuttle experience, the calculated results of a parametric study are presented for several mission scenarios using a computerized anatomical man model and are compared with the NASA crew exposure limits for several critical body organs. PMID:11537298

  4. Earth and Space Science Payload of the Shen Zhou Orbital Modules

    NASA Astrophysics Data System (ADS)

    Ulivi, P.

    While the fights of the habitable Shen Zhou spacecraft have attracted much interest, which culminated with the flight of Yang Liwei in Shenzhou-5 on October 15-16, 2003, the scientific payloads of the autonomous-flying Shen Zhou Orbital Module have been rarely described. This paper discusses Earth science and space science payloads carried by the Shen Zhou Orbital Modules, with particular emphasis on Shenzhou-2, for which several instruments and results have been described in detail. Moreover, a cancelled Chinese astronomical satellite of the early 1980s is described for the first time.

  5. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  6. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  7. Two-stage earth-to-orbit vehicles with series and parallel burn

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1986-01-01

    Recent studies have indicated that a fully reusable earth-to-orbit vehicle system will be needed near the beginning of the next century. One likely concept is a two-stage, vertical takeoff system with liquid rocket propulsion. Such vehicles have been examined with series burn and parallel burn of the engines of each stage. The results indicate that the preferred concept will have parallel burn with crossfeed, the booster will have hydrocarbon engines, the Orbiter will have both hydrocarbon and hydrogen engines, and the staging velocity will be low enough to allow the booster to glide back to the launch site.

  8. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  9. High Earth Orbit Design for Lunar-Assisted Medium Class Explorer Missions

    NASA Technical Reports Server (NTRS)

    McGiffin, Daniel A.; Mathews, Michael; Cooley, Steven

    2001-01-01

    This study investigates the application of high-Earth orbit (HEO) trajectories to missions requiring long on-target integration times, avoidance of the Earth's radiation belt, and minimal effects of Earth and Lunar shadow periods which could cause thermal/mechanical stresses on the science instruments. As used here, a HEO trajectory is a particular solution to the restricted three-body problem in the Earth-Moon system with the orbit period being either 1/2 of, or 1/4 of, the lunar sidereal period. A primary mission design goal is to find HEO trajectories where, for a five-year mission duration, the minimum perigee radius is greater than seven Earth radii (R(sub E)). This minimum perigee radius is chosen so that, for the duration of the mission, the perigee is always above the relatively heavily populated geosynchronous radius of 6.6 R(sub E). A secondary goal is to maintain as high an ecliptic inclination as possible for the duration of the mission to keep the apsis points well out of the Ecliptic plane. Mission design analysis was completed for launch dates in the month of June 2003, using both direct transfer and phasing loop transfer techniques, to a lunar swingby for final insertion into a HEO. Also provided are analysis results of eclipse patterns for the trajectories studied, as well as the effects of launch vehicle errors and launch delays.

  10. Trapped Proton Fluxes at Low Earth Orbits Measured by the PAMELA Experiment

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2015-01-01

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ~70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  11. View of Skylab space station cluster in Earth orbit from CSM

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overhead view of the Skylab space station cluster in Earth orbit as photographed from the Skylab 4 Command and Service Modules (CSM) during the final fly-around by the CSM before returning home. The space station is contrasted against a cloud-covered Earth. Note the solar shield which was deployed by the second crew of Skylab and from which a micrometeoroid shield has been missing since the cluster was launched on May 14, 1973. the OWS solar panel on the left side was also lost on workshop launch day.

  12. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into

  13. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    NASA Astrophysics Data System (ADS)

    Gafarov, Albert A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry.

  14. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    NASA Technical Reports Server (NTRS)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  15. Phasing Delta-V for transfers from Sun-Earth halo orbits to the Moon

    NASA Astrophysics Data System (ADS)

    Chen, Hongru; Kawakatsu, Yasuhiro; Hanada, Toshiya

    2016-10-01

    Inspired by successful extended missions such as the ISEE-3, an investigation for the extended mission that involves a lunar encounter following a Sun-Earth halo orbit mission is considered valuable. Most previous studies present the orbit-to-orbit transfers where the lunar phase is not considered. Intended for extended missions, the present work aims to solve for the minimum phasing ∆V for various initial lunar phases. Due to the solution multiplicity of the two-point boundary value problem, the general constrained optimization algorithm that does not identify multiple feasible solutions is shown to miss minima. A two-step differential corrector with a two-body Lambert solver is developed for identifying multiple solutions. The minimum ∆V associated with the short-way and long-way approaches can be recovered. It is acquired that the required ∆V to cover all initial lunar phases is around 45 m/s for the halo orbit with out-of-plane amplitude Az greater than 3.5×105 km, and 14 m/s for a small halo orbit with Az=1×105 km. In addition, the paper discusses the phasing planning based on the ∆V result and the shift of lunar phase with halo orbit revolution.

  16. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; Padgen, M.; Gentry, D.; Friedericks, C.; Defouw, G.; Parra, M.; Santa Maria, S.; Marina, D.; Swan, B. G.; Wheeler, S.; Gavalas, S.; Lewis, B.; Sanchez, H.; Chartres, J.; Lusby, T.

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  17. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination.

  18. Low earth orbit environmental effects on the Space Station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, H. K.

    1988-01-01

    A summary of the low earth orbital environment, its impact on the photovoltaic power systems of the Space Station and the solutions implemented to resolve the environmental concerns or issues are described. Low earth orbital environment (LEO) presents several concerns to the photovoltaic power systems of the Space Station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the Space Station with the desired life are also summarized.

  19. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Atwell, William; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1990-01-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination.

  20. Low Earth orbit environmental effects on the space station photovoltaic power generation systems

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1987-01-01

    A summary of the Low Earth Orbital Environment, its impact on the Photovoltaic Power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the Photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized.

  1. Mechanical properties of silicate glasses exposed to a low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8 year exposure to low earth orbit environment upon the mechanical properties of commercial optical fused silica, low iron soda-lime-silica, Pyrex 7740, Vycor 7913, BK-7, and the glass ceramic Zerodur were examined. Mechanical testing employed the ASTM-F-394 piston on 3-ball method in a liquid nitrogen environment. Samples were exposed on the Long Duration Exposure Facility (LDEF) in two locations. Impacts were observed on all specimens except Vycor. Weibull analysis as well as a standard statistical evaluation were conducted. The Weibull analysis revealed no differences between control samples and the two exposed samples. We thus concluded that radiation components of the Earth orbital environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. The upper bound of strength degradation for meteorite impacted samples based upon statistical analysis and observation was 50 percent.

  2. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  3. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Astrophysics Data System (ADS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-05-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  4. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  5. Precision non-conservative force modelling for Low Earth Orbiting spacecraft

    NASA Astrophysics Data System (ADS)

    Sibthorpe, Anthony John

    Low Earth Orbiting spacecraft are used in various ways for remote observation and measurement of system Earth some classes of measurements are only useful when modelled in a spatial reference frame. As the position of a satellite at a particular epoch is used to provide a fixed point of reference, it is vital that we know these positions both accurately and precisely. Non-conservative forces, which change the energy state of a spacecraft system, can have a dramatic effect on the estimated position of a satellite if unmodelled or, as is often the case, are modelled only crudely. Downstream Earth observation data can inherit significant errors as a result. As an example of this, it has been recognised that apparent long wavelength signals can be introduced into interferometric synthetic aperture radar (SAR) images by orbit error. Such images are used to monitor surface deformation, and may provide an indication of strain accumulation as a pre-cursor to Earthquake activity. It makes sense therefore to better model these non-conservative forces, thus improving the quality of the Earth observation data. This project develops precise methodologies for modelling of solar radiation pressure / thermal re-radiation / eclipse modelling / Earth radiation pressure / spacecraft internal heat distribution / on-board instrument power output, and applies these techniques to the European Space Agency's ENVISAT satellite. This complicated satellite has necessitated the development of a significant number of new algorithms for dealing with a large number of geometric primitives. A graphical display tool, developed during this research, allows rapid model development and improved error checking. Resultant models are incorporated into the GEODYN II orbit determination software, developed at NASA's Goddard Space Flight Centre. Precise orbits computed using tracking data in combination with the newly developed force models are compared against precise orbits generated using nominal force

  6. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  7. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  8. Oxidation-resistant reflective surfaces for solar dynamic power generation in near earth orbit

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.

    1987-01-01

    Reflective surfaces for Space Station power generation systems are required to withstand the atomic oxygen-dominated environment of near earth orbit. Thin films of platinum and rhodium, which are corrosion resistant reflective metals, have been deposited by ion beam sputter deposition onto various substrate materials. Solar reflectances were then measured as a function of time of exposure to a RF-generated air plasma.

  9. Do slow orbital periodicities appear in the record of earth's magnetic reversals?

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1987-01-01

    Time-series spectral analysis has been performed on the dates of geomagnetic reversals of the last 20 Myr BP and earlier. Possible evidence is found from the presence of high spectral peaks for two very long periodicities, 0.4 Myr and 1.3 Myr, that may be associated with slow variations of the earth's orbital eccentricity as predicted by Berger. However, statistical significance tests and a number of other arguments do not confirm the two detections.

  10. Possible Effect of the Earth's Inertial Induction on the Orbital Decay of LAGEOS

    NASA Astrophysics Data System (ADS)

    Dey, Ujjal; Kar, Samanwita; Ghosh, Amitabha

    2016-09-01

    The theory of velocity dependent inertial induction, based upon extended Mach's principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth's inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth's inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.

  11. View of Mission Control on first day of ASTP docking in Earth orbit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, JSC, on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC's Launch Complex 39.

  12. VIew of Mission Control on first day of ASTP docking in Earth orbit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission. The American ASTP flight controllers at JSC were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows Cosmonaut Yuri V. Romanenko at his spacecraft communicator's console in the ASTP mission control center in the Soviet Union.

  13. Design of a 35-kilowatt bipolar nickel-hydrogen battery for low Earth orbit application

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Smithrick, J. J.

    1982-01-01

    The needs of multikilowatt storage for low Earth orbit applications are featured. The modular concept, with projected energy densities of 20-24 W-hr/lb and 700-900 W-hr/ft3, has significant improvements over state of the art capabilities. Other design features are; active cooling, a new scheme for H2-O2 recombination, and pore size engineering of all cell components.

  14. Characteristic of the radiation field in low Earth orbit and in deep space.

    PubMed

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  15. Characteristic of the radiation field in low Earth orbit and in deep space.

    PubMed

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  16. Very long baseline interferometry using a radio telescope in Earth orbit

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Edwards, C. D.; Linfield, R. P.

    1987-01-01

    Successful Very Long Baseline Interferometry (VLBI) observations at 2.3 GHz were made using an antenna aboard an Earth-orbiting spacecraft as one of the receiving telescopes. These observations employed the first deployed satellite (TDRSE-E for East) of the NASA Tracking and Data Relay Satellite System (TDRSS). Fringes were found for 3 radio sources on baselines between TDRSE and telescopes in Australia and Japan. The purpose of this experiment and the characteristics of the spacecraft that are related to the VLBI observations are described. The technical obstacles to maintaining phase coherence between the orbiting antenna and the ground stations, as well as the calibration schemes for the communication link between TDRSE and its ground station at White Sands, New Mexico are explored. System coherence results and scientific results for the radio source observations are presented. Using all available calibrations, a coherence of 84% over 700 seconds was achieved for baselines to the orbiting telescope.

  17. The relationship between orbital, earth-based, and sample data for lunar landing sites

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  18. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words

  19. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  20. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.