Science.gov

Sample records for advanced electrical systems

  1. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  2. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  3. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  4. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  5. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  6. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  7. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  8. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  9. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  10. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  11. Advances in Optimizing Weather Driven Electric Power Systems.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  12. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  13. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  14. Design options for automotive batteries in advanced car electrical systems

    NASA Astrophysics Data System (ADS)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  15. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  16. An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range

    NASA Astrophysics Data System (ADS)

    Armenta, Jesús; Núñez, Ciro; Visairo, Nancy; Lázaro, Isabel

    2015-06-01

    Over the last years issues regarding both the use and the improvement of energy management in electric vehicles have been highlighted by industry and academic fields. Some of the research has been focused on exploiting the ultracapacitor characteristics and on protecting the battery life. From this standpoint, this paper proposes an advanced energy management system based on the adequate discharge of the ultracapacitor bank in order to utilize all the energy available from the regenerative breaking. In this way, the energy consumption is reduced and the electric vehicle range is increased. This strategy, based on simple rules, takes advantage of the high power density of the ultracapacitor and prevents an overstress of the battery. The benefits are featured using three standard drive cycles for a 1550 kg electric vehicle via simulations.

  17. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  18. Analysis of life cycle costs for electric vans with advanced battery systems

    SciTech Connect

    Marr, W.W.; Walsh, W.J.; Miller, J.F.

    1989-01-01

    The performance of advanced Zn/Br/sub 2/, LiAl/FeS, Na/S, Ni/Fe, and Fe/Air batteries in electric vans was compared to that of tubular lead-acid technology. The MARVEL computer analysis system evaluated these batteries for the G-Van and IDSEP vehicles over two driving schedules. Each of the advanced batteries exhibited the potential for major improvements in both range and life cycle cost compared with tubular lead-acid. A sensitivity analysis reveals specific energy, battery initial cost, and cycle life to be the dominant factors in reducing life cycle cost for the case of vans powered by tubular lead-acid batteries.

  19. Analysis of life cycle costs for electric vans with advanced battery systems

    SciTech Connect

    Marr, W.W.; Walsh, W.J.; Miller, J.F.

    1988-11-01

    The performance of advanced Zn/Br/sub 2/, LiAl/FeS, Na/S, Ni/Fe, and Fe/Air batteries in electric vans was compared to that of tubular lead-acid technology. The MARVEL computer analysis system evaluated these batteries for the G-Van and IDSEP vehicles over two driving schedules. Each of the advanced batteries exhibited the potential for major improvements in both range and life cycle cost compared with tubular lead-acid. A sensitivity analysis revealed specific energy, battery initial cost, and cycle life to be the dominant factors in reducing life cycle cost for the case of vans powered by tubular lead-acid batteries. 5 refs., 8 figs., 2 tabs.

  20. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion - Phase I

    SciTech Connect

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-06

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature {approx} 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  1. Formulation of advanced consumables management models: Executive summary. [modeling spacecraft environmental control, life support, and electric power supply systems

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.

  2. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  3. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional

  4. Advanced batteries for electric vehicles

    SciTech Connect

    Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. )

    1994-11-01

    The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

  5. Development Status: Automation Advanced Development Space Station Freedom Electric Power System

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Kish, James A.; Mellor, Pamela A.

    1990-01-01

    Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.

  6. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  7. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  8. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  9. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  10. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  11. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's

  12. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the

  13. Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.

  14. Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1989-01-01

    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals.

  15. Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric application

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1989-01-01

    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals.

  16. Advances in functional electrical stimulation (FES).

    PubMed

    Popović, Dejan B

    2014-12-01

    This review discusses the advancements that are needed to enhance the effects of electrical stimulation for restoring or assisting movement in humans with an injury/disease of the central nervous system. A complex model of the effects of electrical stimulation of peripheral systems is presented. The model indicates that both the motor and sensory systems are activated by electrical stimulation. We propose that a hierarchical hybrid controller may be suitable for functional electrical stimulation (FES) because this type of controller acts as a structural mimetic of its biological counterpart. Specific attention is given to the neural systems at the periphery with respect to the required electrodes and stimulators. Furthermore, we note that FES with surface electrodes is preferred for the therapy, although there is a definite advantage associated with implantable technology for life-long use. The last section of the review discusses the potential need to combine FES and robotic systems to provide assistance in some cases. PMID:25287528

  17. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  18. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  19. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  20. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  1. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  2. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-01-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  3. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    NASA Technical Reports Server (NTRS)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  4. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  5. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    1982-01-01

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  6. Comparison of advanced thermal and electrical storage for parabolic dish solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Birur, G. C.; Schredder, J. M.; Bowyer, J. M.; Awaya, H. I.

    Parabolic dish solar concentrator cluster concepts are explored, with attention given to thermal storage systems coupled to Stirling and Brayton cycle power conversion devices. Sensible heat storage involving molten salt (NaOH), liquid sodium, and solid cordierite bricks are considered for 1500 F thermal storage systems. Latent heat storage with NaF-MgF2 phase change materials are explored in terms of passive, active, and direct contact designs. Comparisons are made of the effectiveness of thermal storage relative to redox, Na-S, Zn-Cl, and Zn-Br battery storage systems. Molten lead trickling down through a phase change eutectic, the NaF-MgF2, formed the direct contact system. Heat transport in all systems is effected through Inconel pipes. Using a cost goal of 120-150 mills/kWh as the controlling parameter, sensible heat systems with molten salts transport with either Stirling or Brayton engines, or latent heat systems with Stirling engines, and latent heat-Brayton engine with direct contact were favored in the analyses. Battery storage systems, however, offered the most flexibility of applications.

  7. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  8. Primary and secondary electrical space power based on advanced PEM systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.

    1993-01-01

    For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.

  9. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  10. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  11. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  12. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  13. Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993

    SciTech Connect

    Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

    1993-08-01

    Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

  14. Advanced Electrophysiologic Mapping Systems

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Clinical Need Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation

  15. Advances in percutaneous electrode systems.

    PubMed

    Mooney, V; Roth, A M

    1976-01-01

    In the past eight years, developing a percutaneous electrode system has advanced to a successful, yet simple, method to transmit electrical signals, overcoming the serious problems of excessive mechanical irritation at the skin interface. Experience with over 50-74% in the clinical applications of 1) chronic pain relief; 2) contracture correction; and 3) sensory feedback.

  16. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  17. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  18. Mandate a Man to Fish?: Technological advance in cooling systems at U.S. thermal electric plants

    NASA Astrophysics Data System (ADS)

    Peredo-Alvarez, Victor M.; Bellas, Allen S.; Trainor-Guitton, Whitney J.; Lange, Ian

    2016-02-01

    Steam-based electrical generating plants use large quantities of water for cooling. The potential environmental impacts of water cooling systems have resulted in their inclusion in the Clean Water Act's (CWA) Sections 316(a), related to thermal discharges and 316(b), related to cooling water intake. The CWA mandates a technological standard for water cooling systems. This analysis examines how the performance-adjusted rates of thermal emissions and water withdrawals for cooling units have changed over their vintage and how these rates of change were impacted by imposition of the CWA. Results show that the rate of progress increased for cooling systems installed after the CWA whilethere was no progress previous to it.

  19. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  20. Electric flight systems, overview

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1982-01-01

    Materials illustrating a presentation on electric flight systems are presented. Fuel consumption, the power plant assembly, flight control technology, electromechanical actuator systems and components of possible power systems are surveyed.

  1. Electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Appleyard, M.

    1992-01-01

    New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.

  2. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O. ); Weir, T.J. )

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  3. Advanced Microturbine Systems

    SciTech Connect

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  4. Electrical system architecture

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  5. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  6. Electrical power systems for Mars

    NASA Astrophysics Data System (ADS)

    Giudici, Robert J.

    1986-05-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  7. Electrical power systems for Mars

    NASA Technical Reports Server (NTRS)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  8. Hawaii electric system reliability.

    SciTech Connect

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  9. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  10. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  11. Electricity Market Complex Adaptive System

    2004-10-14

    EMCAS is a model developed for the simulation and analysis of electricity markets. As power markets are relatively new and still continue to evolve, there is a growing need for advanced modeling approaches that simulate the behavior of electricity markets over time and how market participants may act and react to the changing economic, financial, and regulatory environments in which they operate. A new and rather promising approach applied in the EMCAS software is tomore » model the electricity market as a complex adaptive system using an agent-based modeling and simulation scheme. With its unique combination of various novel approaches, the Agent Based Modeling System (ABMS) provides the ability to capture and investigate the complex interactions between the physical infrastructures (generation, transmission, and distribution) and the economic behavior of market participants that are a trademark of the newly emerging markets.« less

  12. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  13. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  14. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  15. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-01-01

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  16. Advanced turbine systems program

    SciTech Connect

    Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

    1992-12-31

    In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

  17. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  18. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  19. CONDOR Advanced Visionics System

    NASA Astrophysics Data System (ADS)

    Kanahele, David L.; Buckanin, Robert M.

    1996-06-01

    The Covert Night/Day Operations for Rotorcraft (CONDOR) program is a collaborative research and development program between the governments of the United States and the United Kingdom of Great Britain and Northern Ireland to develop and demonstrate an advanced visionics concept coupled with an advanced flight control system to improve rotorcraft mission effectiveness during day, night, and adverse weather conditions in the Nap- of-the-Earth environment. The Advanced Visionics System for CONDOR is the flight- ruggedized head mounted display and computer graphics generator with the intended use of exploring, developing, and evaluating proposed visionic concepts for rotorcraft including; the application of color displays, wide field-of-view, enhanced imagery, virtual displays, mission symbology, stereo imagery, and other graphical interfaces.

  20. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  1. Solar electric systems

    NASA Astrophysics Data System (ADS)

    Warfield, G.

    Subjects discussed in connection with solar electricity are related to solar radiation fundamentals, wind electric conversion and utilization, the basic theory of solar cells, photovoltaic materials, photovoltaic technology, components of solar thermal electric systems, solar thermal power plants, and integrated solar thermal electric complexes. The solar technology development in the Arab world is also examined, taking into account the horizon of solar energy in the Arab countries, solar energy activities at the Scientific Research Council in Iraq, solar energy activities at the Royal Scientific Society in Jordan, the solar energy program at Kuwait Institute for Scientific Research, application of solar energy in Libya, prospects of solar energy for Egypt, solar energy programs in Qatar, performance characteristics of a 350 kW photovoltaic power system for Saudi Arabian villages, nonconventional energy in Syria, wind and solar energies in Sudan, solar electric research and development program in Tunisia, and solar energy research and utilization in Yemen Arab Republic. No individual items are abstracted in this volume

  2. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  3. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

    1991-01-01

    The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This

  4. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  5. Advanced Microturbine Systems

    SciTech Connect

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  6. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  7. Solar Electric System

    NASA Astrophysics Data System (ADS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  8. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  9. Advanced coal gasification system for electric power generation. Third quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    1980-07-25

    The operation, maintenance and modifications to the Westinghouse gasification process development unit during the quarter are reviewed. The tests of the gasifier-agglomerator included direct coal feed as well as oxygen-blown gasification of a char or coal bed. Then the whole system was tested in single and double stage operation. Laboratory support involved fluidized bed test facilities at ambient temperature and at design temperature for devolatilization and gasification studies. Other laboratory systems were related to thermal analysis and pressurized high temperature studies of gasification and gas cleaning. (LTN)

  10. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  11. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  12. Advanced Electric Propulsion for RLV Launched Geosynchronous Spacecraft

    NASA Technical Reports Server (NTRS)

    Oleson, Steven

    1999-01-01

    Solar Electric Propulsion (SEP) when used for station keeping and final orbit insertion has been shown to increase a geostationary satellite's payload when launched by existing expendable launch vehicles. In the case of reusable launch vehicles or expendable launch vehicles where an upper stage is an expensive option, this methodology can be modified by using the existing on-board apogee chemical system to perform a perigee burn and then letting the electric propulsion system complete the transfer to geostationary orbit. The elimination of upper stages using on-board chemical and electric propulsion systems was thus examined for GEO spacecraft. Launch vehicle step-down from an Atlas IIAR to a Delta 7920 (no upper stage) was achieved using expanded on-board chemical tanks, 40 kW payload power for electric propulsion, and a 60 day elliptical to GEO SEP orbit insertion. Optimal combined chemical and electric trajectories were found using SEPSPOT. While Hall and ion thrusters provided launch vehicle step-down and even more payload for longer insertion times, NH3 arcjets had insufficient performance to allow launch vehicle step-down. Degradation levels were only 5% to 7% for launch step-down cases using advanced solar arrays. Results were parameterized to allow comparisons for future reusable launch vehicles. Results showed that for an 8 W/kg initial power/launch mass power density spacecraft, 50% to 100% more payload can be launched using this method.

  13. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  14. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  15. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  16. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  17. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  18. Advanced electric motor technology: Flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

    1992-01-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

  19. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  20. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  1. An Advanced Decision Support Tool for Electricity Infrastructure Operations

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu; Wong, Pak C.; Mackey, Patrick S.; Allwardt, Craig H.; Ma, Jian; Greitzer, Frank L.

    2010-01-31

    Electricity infrastructure, as one of the most critical infrastructures in the U.S., plays an important role in modern societies. Its failure would lead to significant disruption of people’s lives, industry and commercial activities, and result in massive economic losses. Reliable operation of electricity infrastructure is an extremely challenging task because human operators need to consider thousands of possible configurations in near real-time to choose the best option and operate the network effectively. In today’s practice, electricity infrastructure operation is largely based on operators’ experience with very limited real-time decision support, resulting in inadequate management of complex predictions and the inability to anticipate, recognize, and respond to situations caused by human errors, natural disasters, or cyber attacks. Therefore, a systematic approach is needed to manage the complex operational paradigms and choose the best option in a near-real-time manner. This paper proposes an advanced decision support tool for electricity infrastructure operations. The tool has the functions of turning large amount of data into actionable information to help operators monitor power grid status in real time; performing trend analysis to indentify system trend at the regional level or system level to help the operator to foresee and discern emergencies, studying clustering analysis to assist operators to identify the relationships between system configurations and affected assets, and interactively evaluating the alternative remedial actions to aid operators to make effective and timely decisions. This tool can provide significant decision support on electricity infrastructure operations and lead to better reliability in power grids. This paper presents examples with actual electricity infrastructure data to demonstrate the capability of this tool.

  2. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  3. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  4. Advanced hydrologic prediction system

    NASA Astrophysics Data System (ADS)

    Connelly, Brian A.; Braatz, Dean T.; Halquist, John B.; Deweese, Michael M.; Larson, Lee; Ingram, John J.

    1999-08-01

    As our Nation's population and infrastructure grow, natural disasters are becoming a greater threat to our society's stability. In an average year, inland flooding claims 133 lives and resulting property losses exceed 4.0 billion. Last year, 1997, these losses totaled 8.7 billion. Because of this blossoming threat, the National Weather Service (NWS) has requested funding within its 2000 budget to begin national implementation of the Advanced Hydrologic Prediction System (AHPS). With this system in place the NWS will be able to utilize precipitation and climate predictions to provide extended probabilistic river forecasts for risk-based decisions. In addition to flood and drought mitigation benefits, extended river forecasts will benefit water resource managers in decision making regarding water supply, agriculture, navigation, hydropower, and ecosystems. It's estimated that AHPS, if implemented nationwide, would save lives and provide $677 million per year in economic benefits. AHPS is used currently on the Des Moines River basin in Iowa and will be implemented soon on the Minnesota River basin in Minnesota. Experience gained from user interaction is leading to refined and enhanced product formats and displays. This discussion will elaborate on the technical requirements associated with AHPS implementation, its enhanced products and informational displays, and further refinements based on customer feedback.

  5. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  6. Advanced cryo propulsion systems

    NASA Technical Reports Server (NTRS)

    Tabata, William K.

    1991-01-01

    The following topics are presented in viewgraph form: (1) advanced space engine (ASE) chronology; (2) an ASE description; (3) a single expander; (4) a dual expander; (5) split expander; (6) launch vehicle start; (7) space start; (8) chemical transfer propulsion; and (9) an advanced expander test bed.

  7. Advanced worker protection system

    SciTech Connect

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  8. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  9. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  10. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify

  11. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  12. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  13. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A.; Parks, W.P.

    1993-03-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy`s (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE`s Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research & Development (R&D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R&D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  14. Plan for an Advanced Turbine Systems Program

    SciTech Connect

    Bajura, R.A.; Webb, H.A. ); Parks, W.P. )

    1993-01-01

    A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy's (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE's Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research Development (R D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

  15. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  16. Promising Electric Aircraft Drive Systems

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R.

    2010-01-01

    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  18. The General Electric Advanced Course in Engineering.

    ERIC Educational Resources Information Center

    Mack, Donald R.

    A three-year, in-house engineering course offered to selected General Electric Company engineers is discussed. It is designed to develop the ability to identify and solve real engineering problems. The course may be taken concurrently with college courses in a cooperative program that can result in a graduate degree in engineering. (MLH)

  19. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  20. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect

    1997-03-01

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  1. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  2. Advanced Light Source control system

    SciTech Connect

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  3. ARPA-E: Advancing the Electric Grid

    SciTech Connect

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  4. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2016-07-12

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  5. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  6. Electric propulsion system technology

    NASA Astrophysics Data System (ADS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  7. Diesel Mechanics: Electrical Systems.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the second in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to electricity and circuitry in a diesel trade. The text contains nine units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested…

  8. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  9. Advanced capability RFID system

    DOEpatents

    Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.

    2007-09-25

    A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.

  10. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  11. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  12. Electric-Power System Simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, R. W.; Grumm, R. L.; Biedebach, B. L.

    1984-01-01

    Shows different combinations of generation, storage, and load components: display, video monitor with keyboard input to microprocessor, and video monitor for display of load curves and power generation. Planning tool for electric utilities, regulatory agencies, and laymen in understanding basics of electric-power systems operation.

  13. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  14. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  15. Electric utility system master plan

    SciTech Connect

    Erickson, O.M.

    1992-10-01

    This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

  16. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  17. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  18. Advanced power electronics and electric machinery program

    SciTech Connect

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  19. Advanced electric motor technology flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Dean, Garvin

    1993-01-01

    Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.

  20. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  1. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  2. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  3. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  4. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    In this paper we describe an R&D effort to define an OS architecture suitable for the requirements of the Data Acquisition and Control of an LHC experiment. Large distributed computing systems are foreseen to be the core part of the DAQ and Control system of the future LHC experiments. Neworks of thousands of processors, handling dataflows of several gigaBytes per second, with very strict timing constraints (microseconds), will become a common experience in the following years. Problems like distributyed scheduling, real-time communication protocols, failure-tolerance, distributed monitoring and debugging will have to be faced. A solid software infrastructure will be required to manage this very complicared environment, and at this moment neither CERN has the necessary expertise to build it, nor any similar commercial implementation exists. Fortunately these problems are not unique to the particle and high energy physics experiments, and the current research work in the distributed systems field, especially in the distributed operating systems area, is trying to address many of the above mentioned issues. The world that we are going to face in the next ten years will be quite different and surely much more interconnected than the one we see now. Very ambitious projects exist, planning to link towns, nations and the world in a single "Data Highway". Teleconferencing, Video on Demend, Distributed Multimedia Applications are just a few examples of the very demanding tasks to which the computer industry is committing itself. This projects are triggering a great research effort in the distributed, real-time micro-kernel based operating systems field and in the software enginering areas. The purpose of our group is to collect the outcame of these different research efforts, and to establish a working environment where the different ideas and techniques can be tested, evaluated and possibly extended, to address the requirements of a DAQ and Control System suitable for LHC

  5. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  6. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  7. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  8. Power Systems Advanced Research

    SciTech Connect

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  9. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  10. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  11. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  12. Data management system advanced architectures

    NASA Technical Reports Server (NTRS)

    Chevers, ED

    1991-01-01

    The topics relating to the Space Station Freedom (SSF) are presented in view graph form and include: (1) the data management system (DMS) concept; (2) DMS evolution rationale; (3) the DMS advance architecture task; (4) DMS group support for Ames payloads; (5) DMS testbed development; (6) the DMS architecture task status; (7) real time multiprocessor testbed; (8) networked processor performance; (9) and the DMS advance architecture task 1992 goals.

  13. Space station electrical power system

    NASA Technical Reports Server (NTRS)

    Labus, Thomas L.; Cochran, Thomas H.

    1987-01-01

    The purpose of this paper is to describe the design of the Space Station Electrical Power System. This includes the Photovoltaic and Solar Dynamic Power Modules as well as the Power Management and Distribution System (PMAD). In addition, two programmatic options for developing the Electrical Power System will be presented. One approach is defined as the Enhanced Configuration and represents the results of the Phase B studies conducted by the NASA Lewis Research Center over the last two years. Another option, the Phased Program, represents a more measured approach to reaching about the same capability as the Enhanced Configuration.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  15. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  16. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  17. Electrical power system WP-04

    NASA Technical Reports Server (NTRS)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  18. Electrical power generation systems - Combat aircraft perspective

    NASA Astrophysics Data System (ADS)

    Moeller, R.

    The electrical power generation system requirements of combat aircraft are briefly examined. In particular, attention is given to customer requirements, development of the installed electrical power in aircraft, electrical load analysis for designing the power generation system, and definition of aircraft electrical power supply characteristics and consumer qualities. The discussion also covers reliability requirements for power generation systems, design of a power generation system, control and protection equipment in power generation systems, and helicopter electrical power systems.

  19. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  20. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  1. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  2. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  4. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  6. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  7. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  8. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  9. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  10. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: the measurement of dissociative electron attachment cross sections and negative ion production in S2F10, S2OF10, and S2O2F10, and Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF6-insulated power systems and can be sources of gas decomposition.

  11. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  12. Applications of advanced electric/electronic technology to conventional aircraft

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.

    1980-01-01

    The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.

  13. Gas fired Advanced Turbine System

    SciTech Connect

    LeCren, R.T.; White, D.J.

    1993-01-01

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  14. Reliability impact of solar electric generation upon electric utility systems

    NASA Astrophysics Data System (ADS)

    Day, J. T.; Hobbs, W. J.

    1982-08-01

    The introduction of solar electric systems into an electric utility grid brings new considerations in the assessment of the utility's power supply reliability. This paper summarizes a methodology for estimating the reliability impact of solar electric technologies upon electric utilities for value assessment and planning purposes. Utility expansion and operating impacts are considered. Sample results from photovoltaic analysis show that solar electric plants can increase the reliable load-carrying capability of a utility system. However, the load-carrying capability of the incremental power tends to decrease, particularly at significant capacity penetration levels. Other factors influencing reliability impact are identified.

  15. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  16. Feasibility study of advanced technology hov systems. Volume 2B. Emissions impact of roadway-powered electric buses, light-duty vehicles, and automobiles. Research report

    SciTech Connect

    Miller, M.A.; Dato, V.; Chira-Chavala, T.

    1992-12-01

    Changes in pollutant emissions as a result of adopting roadway-powered electric buses, Light Duty Vehicles (LDV's), and automobiles in California are analyzed. The analysis involves comparing emissions of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), oxides of sulfur (SOx), and particulate matter (PM), in grams per vehicle-mile of travel, between roadway-powered electric vehicles (RPEV's) and existing internal-combustion-engine vehicles (ICEV's). Findings indicate that significant reductions in emissions of HC and CO can be expected from the adoption of RPEV's, while fluctuations between emission increases and reductions are likely for NOx, SOx, and PM depending on energy consumption by vehicle type, the split between roadway/battery power usage, power flow efficiencies from the power plant to the roadway, and the mix of fuel sources and processing technologies assumed for electricity generation.

  17. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  18. Advanced gas turbine systems program

    SciTech Connect

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  19. A review of electric propulsion systems and mission applications

    NASA Technical Reports Server (NTRS)

    Vondra, R.; Nock, K.; Jones, R.

    1984-01-01

    The satisfaction of growing demands for access to space resources will require new developments related to advanced propulsion and power technologies. A key technology in this context is concerned with the utilization of electric propulsion. A brief review of the current state of development of electric propulsion systems on an international basis is provided, taking into account advances in the USSR, the U.S., Japan, West Germany, China and Brazil. The present investigation, however, is mainly concerned with the U.S. program. The three basic types of electric thrusters are considered along with the intrinsic differences between chemical and electric propulsion, the resistojet, the augmented hydrazine thruster, the arcjet, the ion auxiliary propulsion system flight test, the pulsed plasma thruster, magnetoplasmadynamic propulsion, a pulsed inductive thruster, and rail accelerators. Attention is also given to the applications of electric propulsion.

  20. Electrically driven environmental control system

    SciTech Connect

    Mcnamara, J.E.

    1984-05-01

    An environmental control system (ECS) being developed under the title of energy efficient environmental control system is described. The ECS is a closed-loop, electrically driven, vapor cycle system. The vapor cycle will have a compressor driven by a variable speed, high-voltage dc motor. The reasons for selecting this type of system are discussed here. Breadboard testing of a variable speed compressor to demonstrate the feasibility of such an approach has been completed. The testing results were used to develop a preliminary design of a prototype compressor. In future phases of the program, the prototype compressor will be developed a prototype system will be constructed and laboratory tested and finally the prototype system will be flight demonstrated.

  1. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  2. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  3. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  4. Advanced vehicle systems assessment. Volume V. Appendices

    SciTech Connect

    Not Available

    1985-03-01

    This report, which is divided into five volumes, documents the evaluation of advanced electric and hybrid vehicles for potential development by the early 1990s. The primary objective of the assessment is to recommend subsystem research priorities based on a comparison of alternatives as part of complete vehicle systems with equivalent performance. The assessment includes evaluations of candidate technologies as well as technical and economic comparisons of vehicle systems for specified missions. The availability of nonpetroleum fuel is also addressed, and preference analyses are used to assist in the evaluation of the relative merits of competing systems. Volume V, the Appendices, includes reports on battery design, battery cost, aluminum vehicle construction, IBM PC computer programs, and battery discharge models.

  5. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  6. Apollo Lunar Module Electrical Power System Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.

  7. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  8. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  9. Electric and hybrid vehicle systems assessment seminar: proceedings

    SciTech Connect

    Not Available

    1984-03-15

    The following twenty papers are included in these proceedings: (1) electric and hybrid vehicle assessment overview, (2) electric and hybrid vehicle systems considerations, (3) advanced vehicle assessment, (4) hybrid vehicle assessment, (5) battery optimization considerations, (6) alkaline battery technology, (7) lead-acid batteries, (8) nickel-iron batteries, (9) zinc-chloride batteries, (10) zinc-bromine batteries, (11) sodium-sulfur batteries, (12) system/battery design interaction for a lithium-method sulfide van battery, (13) iorn-air batteries, (14) aluminium-air cells, (15) fuel cell overview, (16) variable-reluctance motor drives, (17) electric vehicle design, (18) advanced electric vehicle powertrain program, (19) Eaton ac drivetrains, and (20) JET Propulsion Laboratory ac power system. (MOW)

  10. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  11. Research for Electric Energy Systems

    SciTech Connect

    Anderson, W.E.

    1991-06-01

    This report documents the technical progress in investigations. The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. NIST cohosted a workshop on exposure and biological parameters that should be considered during the vitro studies with extremely low frequency (ELF) magnetic and electric fields. Also, equations were developed to predict the magnetic field in a parallel plate magnetic field exposure system. The second investigation is concerned with two different activities: the detection of trace levels of S{sub 2}F{sub 10} in SF{sub 6} and the development of an improved stochastic analyzer for pulsating phenomena (SAPP). The detection of S{sub 2}F{sub 10} in the presence of SF{sub 6} using mass-spectrometric detection coupled to a gas chromatograph is difficult because of the similar mass spectra. A technique is described that enables the detection of S{sub 2}F{sub 10} in gaseous SF{sub 6} down to the ppb level using a modified gas chromatograph-mass spectrometer. The new system was applied to an investigation of the stochastic behavior of negative corona (Trichel pulses) and the effect of a dielectric barrier on these discharges. The third investigation is concerned with breakdown and prebreakdown phenomena in liquid dielectrics. The activity reported here was a study of negative steamers preceding electric breakdown in hexanes. Using the image preserving optical delay, the growth of the streamers associated with partial discharges at a point cathode are photographed at high magnification. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse. A compact resistive divider, NIST4, was designed. It is anticipated that this divider together with some Kerr electro-optical devices will be used as the reference system at NIST.

  12. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  13. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  14. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  15. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  16. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  17. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  18. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  19. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  20. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5-micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  1. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  2. Optimization and Control of Electric Power Systems

    SciTech Connect

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  3. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  4. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  5. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  6. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  7. Advanced Docking Berthing System Update

    NASA Technical Reports Server (NTRS)

    Lewis, James

    2006-01-01

    In FY05 the Exploration Systems Technology Maturation Program selected the JSC advanced mating systems development to continue as an in-house project. In FY06, as a result of ESAS Study (60 Day Study) the CEV Project (within the Constellation Program) has chosen to continue the project as a GFE Flight Hardware development effort. New requirement for CEV to travel and dock with the ISS in 2011/12 in support of retiring the Shuttle and reducing the gap of time where US does not have any US based crew launch capability. As before, long-duration compatible seal-on-seal technology (seal-on-seal to support androgynous interface) has been identified as a risk mitigation item.

  8. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  9. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-01-01

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal. PMID:16012695

  10. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  11. Liberalization of the Spanish electricity sector: An advanced model

    SciTech Connect

    Unda, J.I.

    1998-06-01

    Spain`s electricity industry is being restructured to provide a competitive generation market, a regulated, open access transmission and distribution system, and phased-in customer choice. But while the reform is radical in its objectives, it will be gradual in its implementation. This article briefly describes the current state of affairs within the Spanish electricity sector and details the reform plans set out in the act, focusing on the adopted institutional design and the established transition period. It also offers an overview of the role that the regulatory authority will play throughout the process.

  12. Electrical Systems. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…

  13. Diesel Electrical Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Sprinkle, Tom; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains eight instructional units that cover the following topics: (1) introduction to electrical systems; (2) electrical circuits; (3) electrical indicator circuits; (4) storage batteries; (5) starting systems and circuits; (6) ignition circuits; (7)…

  14. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electrical system. 238.225 Section 238.225... Equipment § 238.225 Electrical system. All passenger equipment shall comply with the following: (a... produce electrical noise that affects the safe performance of train line control and communications...

  15. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electrical system. 238.425 Section 238.425... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... the operating environment. (2) The electronic equipment shall not produce electrical noise...

  16. 49 CFR 238.425 - Electrical system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electrical system. 238.425 Section 238.425... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be... the operating environment. (2) The electronic equipment shall not produce electrical noise...

  17. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electrical system. 238.225 Section 238.225... Equipment § 238.225 Electrical system. All passenger equipment shall comply with the following: (a... produce electrical noise that affects the safe performance of train line control and communications...

  18. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  19. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  20. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  1. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  2. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance...

  3. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  4. Electric Bike Sharing--System Requirements and Operational Concepts

    SciTech Connect

    Cherry, Christopher; Worley, Stacy; Jordan, David

    2010-08-01

    Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

  5. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  6. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  7. Hybrid electric vehicle power management system

    SciTech Connect

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  8. Electrical stimuli in the central nervous system microenvironment.

    PubMed

    Thompson, Deanna M; Koppes, Abigail N; Hardy, John G; Schmidt, Christine E

    2014-07-11

    Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue. PMID:25014787

  9. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    M. Maniyar

    2004-06-22

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  10. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  11. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The analytical methodology for advanced encapsulation designs for the development of photovoltaic modules is presented. Analytical models are developed to test optical, thermal, electrical and structural properties of the various encapsulation systems. Model data is compared to relevant test data to improve model accuracy and develop general principles for the design of photovoltaic modules.

  12. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  13. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  14. The Advanced Launch System (ALS)

    NASA Astrophysics Data System (ADS)

    Eldred, Charles H.

    The Advanced Launch System (ALS) is an unmanned vehicle that will achieve low hardware cost by using a reusable booster stage which flies back to the launch site, and a core stage in which the rocket engines and redundant avionics are in a module that is returned to earth and recovered for reuse. The booster's utilization of liquid propellant instead of solid propellant will help lower the consumable costs. The ALS also includes launch processing and flight control facilities, necessary support equipment, and ground- and flight-operations infrastructure. The ALS program studies show that, through the ALS, the United States can launch a major Mars initiative economically and with confidence. It is estimated that the objective ALS can be operational in the late 1990s.

  15. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  16. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  17. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  18. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  19. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    SciTech Connect

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  20. High-voltage electrical survey advances using UV/IR

    NASA Astrophysics Data System (ADS)

    Ninedorf, Daniel A.; Stolper, Roel; Hart, Jaco

    2008-03-01

    Technology miniaturization has made new advancements in high voltage electrical surveying possible. A solar-blind ultraviolet image overlaid onto infrared, combined with a solar-blind ultraviolet image and then overlaid onto color visible in the same camera with a weight of 6 pounds provides the comparison images and portability to allow an operator to do on-the-spot analysis and repair priority assignment. The UV-VIS image provides the quickest location and identification. The UV-IR image allows analysis to determine if there is damage and the severity. This can be accomplished in just seconds thru menu selection: before it required two separate cameras. This presentation will provide examples of different images and analysis, with operating time from hand-held, laboratory, vehicle and aerial camera mounts.

  1. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  2. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  3. Battery Monitoring and Electrical Energy Management. Precondition for future vehicle electric power systems

    NASA Astrophysics Data System (ADS)

    Meissner, Eberhard; Richter, Gerolf

    New vehicle electric systems are promoted by the needs of fuel economy and ecology as well as by new functions for the improvement of safety and comfort, reliability, and the availability of the vehicle. Electrically controlled and powered systems for braking, steering and stabilisation need a reliable supply of electrical energy. The planned generation of electrical energy (only when it is economically beneficial meaningful), an adequate storage, and thrifty energy housekeeping with an intelligent integration of the battery as the storage medium into the overall concept of the vehicle Energy Management, and early detection of possible restrictions of reliability by Battery Monitoring allows for actions by the Energy Management well in advance, while the driver need not be involved at all. To meet today's requirements for Battery Monitoring and Energy Management, solutions have been developed for series vehicles launched in years 2001-2003, operating at the 14 V level.

  4. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  5. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  6. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  7. Feasibility study of advanced technology hov systems. Volume 2A. Feasibility of implementing roadway-powered electric vehicle technology in El-Monte busway. A case study. Research report

    SciTech Connect

    Chira-Chavala, T.; Lechner, E.H.; Empey, D.M.

    1992-12-01

    Electric vehicles (EV's) are essentially emission free,' in that they themselves do not emit pollutants while running on the road or stopping in traffic, although power plants supplying electric power to them do. One way to increase the range of EV's between overnight battery recharging is through the use of roadway powered electric vehicles (RPEV's). These are hybrid electric-electric vehicles using an inductive' coupling power transfer principle, whereby energy in the battery is supplemented by energy transferred to the vehicle through an inductive coupling system (ICS). RPEV's can operate both on and off the electrified roadway. The objective of this study is to assess the feasibility of early deployment of the RPEV technology in existing high-occupancy-vehicle (HOV) facilities in California.

  8. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations

  9. Electric System-wide Measurements: North American Directions

    SciTech Connect

    Widergren, Steven E.; Huang, Zhenyu; Dagle, Jeffery E.

    2007-01-03

    The western interconnected electric system of North America pioneered the concept of system-wide measurements, particularly applied to system dynamic issues. This involved the development and deployment of synchronized, sub-second measurement units and their associated data collection networks. More recently, the United States Department of Energy has collaborated with the North American Electric Reliability Council, electric utilities, reliability coordinators, equipment and software suppliers, and researchers to advance the use phasors in the eastern interconnection of North America. This paper provides an overview of the status of system-wide monitoring in North America, the directions emerging for application of this data to situational awareness and system operations, as well as the institutional changes underway to organize the relevant parties and establish a viable infrastructure to support the information exchange required to fulfill each party’s role.

  10. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  11. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is

  12. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  13. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  14. Advanced Chemical Propulsion System Study

    NASA Technical Reports Server (NTRS)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  15. Garrett Electric Boosting Systems (EBS) Program

    SciTech Connect

    Steve Arnold; Craig Balis; Pierre Barthelet; Etienne Poix; Tariq Samad; Greg Hampson; S. M. Shahed

    2005-03-31

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assisted turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under

  16. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  17. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  18. Evaluation of biomass systems for electricity generation

    NASA Astrophysics Data System (ADS)

    Lipinsky, E. S.; Ball, D. A.; Anson, D.

    1982-02-01

    State-of-the-art information and evaluation of alternative biomass systems for generation of electricity are provided. The biomass systems consist of silvicultural or agricultural resources, processing and conversion technology to make biomass-derived fuels, and electricity-generating technology. The systems are delineated in energy network charts and are evaluated in matrices that display biomass-system alternatives and multiple technical, economic, and environmental-impact criteria.

  19. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  20. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  1. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  2. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.

  3. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  4. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  5. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  6. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  7. High density electrical card connector system

    SciTech Connect

    Haggard, J.E.; Trotter, G.R.

    2000-02-29

    An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.

  8. High density electrical card connector system

    DOEpatents

    Haggard, J. Eric; Trotter, Garrett R.

    2000-01-01

    An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.

  9. Advanced vehicle systems assessment. Volume 4: Supporting analyses

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 4 (Supporting Analyses) is part of a five-volume report, Advanced Vehicle Systems Assessment. Thirty-nine individuals, knowledgeable in advanced technology, were interviewed to obtain their preferences. Rankings were calculated for the eight groups they represented, using multiplicative and additive utility models. The four topics for consideration were: (1) preferred range for various battery technologies; (2) preferred battery technology for each of a variety of travel ranges; (3) most promising battery technology, vehicle range combination; and (4) comparison of the most preferred electric vehicle with the methanol-fuled, spark-ignition engine vehicle and with the most preferred of the hybrid vehicles.

  10. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  11. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  12. Bus bar electrical feedthrough for electrorefiner system

    DOEpatents

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  13. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  14. Advanced vehicle systems assessment. Volume 5: Appendices

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    An appendix to the systems assessment for the electric hybrid vehicle project is presented. Included are battery design, battery cost, aluminum vehicle construction, IBM PC computer programs and battery discharge models.

  15. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    NASA Astrophysics Data System (ADS)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  16. Survey of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  17. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging.

    PubMed

    Patel, Anjla C; Thornton, Rachel C; Mitchell, Tejal N; Michell, Andrew W

    2016-10-01

    Over the last two decades, technological advances in electroencephalography (EEG) have allowed us to extend its clinical utility for the evaluation of patients with epilepsy. This article reviews three main areas in which substantial advances have been made in the diagnosis and pre-surgical planning of patients with epilepsy. Firstly, the development of small portable video-EEG systems have allowed some patients to record their attacks at home, thereby improving diagnosis, with consequent substantial healthcare and economic implications. Secondly, in specialist centres carrying out epilepsy surgery, there has been considerable interest in whether bursts of very high frequency EEG activity can help to determine the regions of the brain likely to be generating the seizures. Identification of these discharges, initially only recorded from intracranial electrodes, may thus allow better surgical planning and improve surgical outcomes. Finally we discuss the contribution of electrical source imaging in the pre-surgical evaluation of patients with focal epilepsy, and its prospects for the future.

  18. Electric and hybrid vehicle system R/D

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  19. Electric and hybrid vehicle system R/D

    NASA Astrophysics Data System (ADS)

    Schwartz, H. J.

    1980-09-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  20. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  1. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be...

  2. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be...

  3. 49 CFR 238.225 - Electrical system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be...

  4. Optimizing Advanced Power System Designs Under Uncertainty

    SciTech Connect

    Rubin, E.S.; Diwekar; Frey, H.C.

    1996-12-31

    This paper describes recent developments in ongoing research to develop and demonstrate advanced computer-based methods for dealing with uncertainties that are critical to the design of advanced coal-based power systems. Recent developments include new deterministic and stochastic methods for simulation, optimization, and synthesis of advanced process designs. Results are presented illustrating the use of these new modeling tools for the design and analysis of several advanced systems of current interest to the U.S. Department of Energy, including the technologies of integrated gasification combined cycle (IGCC), advanced pressurized fluid combustion (PFBC), and the externally fired combined cycle (EFCC) process. The new methods developed in this research can be applied generally to any chemical or energy conversion process to reduce the technological risks associated with uncertainties in process performance and cost.

  5. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  6. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.P. McCann

    1999-04-16

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side

  7. Influence of Power System Technology on Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1995-01-01

    Electric propulsion (EP) thruster technology, with efficient lightweight power systems can provide substantial reductions in propulsion system wet mass due to the high specific impulse (Isp) of the thrusters. Historically, the space power systems are too massive for many potential orbital missions. The objective of this paper is to show the impact of current power system technology on EP mission performance and determine what technology advancements are needed to make EP beneficial for earth orbital applications. The approach of the paper is to model the electric propulsion system and orbital mission using a partial parametric method. Various missions are analyzed from orbit maintenance to orbit transfer. Results portray the relationship between mission performance and power technology level. Conclusions show which mission applications currently have acceptable power technology, and which mission applications require power technology improvements.

  8. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  9. Nonelastomeric Rod Seals for Advanced Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Hady, W. F.; Waterman, A. W.

    1976-01-01

    Advanced high temperature hydraulic system rod sealing requirements can be met by using seals made of nonelastomeric (plastic) materials in applications where elastomers do not have adequate life. Exploratory seal designs were optimized for advanced applications using machinable polyimide materials. These seals demonstrated equivalent flight hour lives of 12,500 at 350 F and 9,875 at 400 F in advanced hydraulic system simulation. Successful operation was also attained under simulated space shuttle applications; 96 reentry thermal cycles and 1,438 hours of vacuum storage. Tests of less expensive molded plastic seals indicated a need for improved materials to provide equivalent performance to the machined seals.

  10. Activity and accomplishments of dish/Stirling electric power system development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  11. Trouble shooting system for an electric vehicle

    SciTech Connect

    Horiuchi, M.

    1986-01-14

    This patent describes a trouble shooting system for an electric vehicle. The electric vehicle contains a driving mechanism, a driving operation part and a control device. The driving mechanism includes a power source, an electric motor and a modality for controlling output level from the power supply to the electric motor in response to the driving operation part. The control device includes a microprocessor which receives commands from the driving operation part and supplies a control signal to the driving mechanism in response to a stored drive control program. The trouble shooting system consists of control device storage mechanisms for storing trouble shooting programs for various parts of the vehicle which are executed by the microprocessor. This system also includes a command generating modality responsive to manual operation for supplying a command to the microprocessor to initiate the execution and read out of a selected trouble shooting program and a method by which the microprocessor may display the program being processed.

  12. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  13. Implementing a dynamometer system on electric motors for unmanned systems

    NASA Astrophysics Data System (ADS)

    Hanlon, David; Lee, Andrew; Wilkerson, Stephen A.; Al-Shabi, Mohammad; Gadsden, S. Andrew

    2016-05-01

    Electric motors are becoming increasingly popular for the propulsion and control of unmanned systems. In order to optimize power generation and energy use for unmanned systems, it is important to understand the dynamics of electric motors and the corresponding powertrain. This paper provides an early, preliminary study on an electric motor used for unmanned aerial systems (UAS'). An electric motor dynamometer is used for collecting data on the motor, and trends are discussed. Future work will look at implementing mathematical models in an unmanned ground system built for experimentation.

  14. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  15. Development of advanced turbine systems: Meeting tomorrow's needs

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The National Energy Strategy calls for increased efficiency in all sectors of energy use. It also projects a significant increase in natural gas consumption by the year 2000, due in part to increased use of natural gas for electric power generation. Consistent with the NES, a Department of Energy program is being formulated to develop Advanced Turbine Systems (ATS) which will be: ultra-high efficiency, environmentally superior, and cost competitive. The ATS program is to be a comprehensive effort involving DOE Fossil Energy, DOE Conservation and Renewable Energy, turbine manufacturers, the Gas Research Institute, the Electric Power Research Institute and others. A ten-year plan is being formulated to develop natural-gas-fired baseload power systems for commercial offering by 2002. Systems will be developed to serve both central power (utility and independent power producer) and industrial applications. The central power systems will be suitable for future adaptation to coal firing.

  16. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  17. High slot utilization systems for electric machines

    DOEpatents

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  18. MHD-EMP and electric power systems

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; Tesche, F.M.

    1992-03-01

    A solar-induced geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms have caused a range of equipment and operating problems for electric power systems; the most noteably problems according in March 1989. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years as power system systems have become more interconnected and as transmission lines have increased in length, and because power systems are now operated closer to their limits than in the past. In this paper, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It is found that electric power systems are susceptible to geomagnetically-induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects of GMDs are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced GMDs and the response of power systems to these types of storms. A better understanding of GMDs and the power systems response to GMDs is needed so that mitigation measures can be implemented which will make power systems less susceptible to severe geomagnetic disturbances. 3 refs.

  19. MHD-EMP and electric power systems

    SciTech Connect

    Barnes, P.R.; Rizy, D.T. ); Tesche, F.M. , Dallas, TX )

    1992-01-01

    A solar-induced geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms have caused a range of equipment and operating problems for electric power systems; the most noteably problems according in March 1989. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years as power system systems have become more interconnected and as transmission lines have increased in length, and because power systems are now operated closer to their limits than in the past. In this paper, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It is found that electric power systems are susceptible to geomagnetically-induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects of GMDs are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced GMDs and the response of power systems to these types of storms. A better understanding of GMDs and the power systems response to GMDs is needed so that mitigation measures can be implemented which will make power systems less susceptible to severe geomagnetic disturbances. 3 refs.

  20. Advances in rotorcraft system identification

    NASA Astrophysics Data System (ADS)

    Hamel, Peter G.; Kaletka, Jürgen

    1997-03-01

    System identification can best be described as the extraction of system characteristics from measured flight test data. Therefore it provides an excellent tool for determining and improving mathematical models for a wide range of applications. The increasing need for accurate models for the design of high bandwidth control systems for rotorcraft has initiated a high interest in and a more intensive use of system identification. This development was supported by the AGARD FVP Working Group 18 on ‘Rotorcraft System Identification’, which brought together specialists from research organisations and industry, tasked with exploring the potential of this tool. In the Group, the full range of identification approaches was applied to dedicated helicopter flight-test-data including data quality checking and the determination and verification of flight mechanical models. It was mainly concentrated on the identification of six degrees of freedom rigid body models, which provide a realistic description of the rotorcraft dynamics for the lower and medium frequency range. The accomplishment of the Working Group has increased the demand for applying these techniques more routinely and, in addition, for extending the model order by including explicit rotor degrees of freedom. Such models also accurately characterize the higher frequency range needed for high bandwidth control system designs. In the specific case of the DLR In-Flight Simulator BO 105 ATTHeS, the application of the identified higher order models for the model-following control system was a major prerequisite for the obtained high simulation quality.

  1. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  2. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  3. Advanced launch system (ALS) actuation and power systems impact operability and cost

    SciTech Connect

    Sundberg, G.R. . Lewis Research Center)

    1990-09-01

    To obtain the advanced launch system (ALS) primary goals of reduced costs ($300/lb earth to LEO) and improved operability, there must be significant reductions in the launch operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using electrical actuation integrated with a single vehicle electrical power system and controls for all actuation and avionics requirements. This paper reviews the ALS and its associated advanced development program to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the ALS goals (cryogenic fuel valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles and a multitude of commercial applications.

  4. Green electricity: Tracking systems for environmental disclosure

    SciTech Connect

    Biewald, B.E.; Ramey, J.A.

    1997-12-31

    For the first time, electricity consumers in the US are beginning to choose their generation providers. One of the opportunities created by the introduction of retail choice in electricity is the chance for customers to influence the mix of generating resources through their purchasing decisions. Some environmentally aware consumers will want {open_quotes}clean,{close_quotes} {open_quotes}green,{close_quotes} or renewable power. While some suppliers will attempt to differentiate themselves according to their environmental performance, such claims for green electricity can be particularly difficult to verify given the complexity of the interconnected electric system. Because electricity is delivered over an integrated transmission grid and kilowatt-hours at the point of retail sale are indistinguishable from each other; disclosure requires tracking protocols to attribute generation at power plants to sales at the customers` meters. Fortunately, it is possible to implement a workable disclosure system. Some states have already included disclosure requirements in their electric industry restructuring orders and legislation. In this paper, a set of design criteria for an environmental disclosure system are presented along with two methods for disclosure: the company approach and the product approach. In addition, the authors discuss of power pools, data availability issues, and propose a company-based disclosure system using a {open_quotes}wholesale sales first{close_quotes} approach to transaction accounting.

  5. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  6. PEGASUS: a multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements.

  7. Seismic reliability assessment of electric power systems

    SciTech Connect

    Singhal, A.; Bouabid, J.

    1995-12-31

    This paper presents a methodology for the seismic risk assessment of electric power systems. In evaluating damage and loss of functionality to the electric power components, fragility curves and restoration functions are used. These vulnerability parameters are extracted from the GIS-based regional loss estimation methodology being developed for the US. Observed damage in electric power components during the Northridge earthquake is used to benchmark the methodology. The damage predicted using these vulnerability parameters is found to be in good agreement with the damage observed during the earthquake.

  8. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  9. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  10. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  11. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  12. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  13. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1994-10-01

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

  14. Advances in Microsphere Insulation Systems

    NASA Astrophysics Data System (ADS)

    Allen, M. S.; Baumgartner, R. G.; Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    Microsphere insulation, typically consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. Microspheres provide robust, low-maintenance insulation systems for cryogenic transfer lines and dewars. They also do not suffer from compaction problems typical of perlite that result in the necessity to reinsulate dewars because of degraded thermal performance and potential damage to its support system. Since microspheres are load bearing, autonomous insulation panels enveloped with lightweight vacuum-barrier materials can be created. Comprehensive testing performed at the Cryogenics Test Laboratory located at the NASA Kennedy Space Center demonstrated competitive thermal performance with other bulk materials. Test conditions were representative of actual-use conditions and included cold vacuum pressure ranging from high vacuum to no vacuum and compression loads from 0 to 20 psi. While microspheres have been recognized as a legitimate insulation material for decades, actual implementation has not been pursued. Innovative microsphere insulation system configurations and applications are evaluated.

  15. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  16. Direct drive options for electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1995-01-01

    Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.

  17. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  18. Development of advanced gas turbine systems

    SciTech Connect

    Bannister, R.L.; Little, D.A.; Wiant, B.C.

    1993-11-01

    The objective of the Advanced Turbine Systems study is to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% efficiency within a 8-year time frame. The potential system was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. Progress is described.

  19. 77 FR 56241 - Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... COMMISSION Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive.... Nuclear Regulatory Commission (NRC or the Commission) ``retire'' the final design approval (FDA) for the Advanced Passive 1000 (AP1000) design upon the completion of rulemaking for the amendment to the...

  20. The Advanced Light Source (ALS) Radiation Safety System. Revised

    SciTech Connect

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies.

  1. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  2. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  3. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  4. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  5. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  6. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  7. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  8. Configuration management; Operating power station electrical systems

    SciTech Connect

    Beavers, R.R.; Sumiec, K.F. )

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations.

  9. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  10. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  11. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    NASA Technical Reports Server (NTRS)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  12. Seismic Retrofit for Electric Power Systems

    SciTech Connect

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  13. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  14. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  15. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  16. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. The location and the electrical rating of all stationary electric apparatus in connection...

  17. 30 CFR 75.508 - Map of electrical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Map of electrical system. 75.508 Section 75.508... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.508 Map of electrical system. The location and the electrical rating of all stationary electric apparatus in connection...

  18. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  19. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  20. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  1. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  2. Multimegawatt nuclear power systems for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  3. Radiation and electrical safety systems for PEP

    SciTech Connect

    Smith, H.; Constant, T.; Crook, K.; Fitch, J.; Taylor, T.

    1981-02-01

    At SLAC, the Personnel Protection System (PPS) protects people from radiation hazards. For PEP, the system has been expanded to include protection against electrical and RF hazards. This paper describes the overall system design, giving particular attention to the novel features not found in similar systems in other areas of SLAC. These include the Restricted Access Mode to allow limited occupancy in the ring while high voltage or RF may be present, the automatic badge reader system for improving the efficiency of entry logging and control, and the solid state lighting control system for switching large lighting loads with minimum electro-magetic interference.

  4. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  5. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  6. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  7. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  8. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  9. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  10. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  11. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  12. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  13. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  14. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  15. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  16. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  17. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  18. 14 CFR 25.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 25.1363 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  19. 14 CFR 29.1363 - Electrical system tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system tests. 29.1363 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 29.1363 Electrical system tests. (a) When laboratory tests of the electrical system are conducted— (1) The tests...

  20. Technical review of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect

    Diakunchak, I.S.; Bannister, R.L.

    1995-10-01

    U.S. Department of Energy, Office of Fossil Energy Advanced Turbine Systems (ATS) Program is an ambitious program to develop the necessary technologies, which will result in a significant increase in natural gas-fired power generation plant efficiency, a decrease in cost of electricity and a decrease in harmful emissions. In Phase 1 of the ATS Program, preliminary investigations on different gas turbine cycles demonstrated that net plant efficiency greater than 60% could be achieved. The more promising cycles were evaluated in more detail in Phase 2 in order to select the one that would achieve all of the program goals. The closed-loop cooled combined cycle was selected because it offered the best solution with the least risk for exceeding the ATS Program goals of net plant efficiency, emissions, cost of electricity, reliability, availability, and maintainability (RAM), and commercialization in the year 2000. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam. turbine and a high efficiency generator. To enhance achievement of the challenging performance, emissions, and RAM goals, current technologies are being extended and new technologies developed. The attainment of ATS performance goal necessitates advancements in aerodynamics, sealing, cooling, coatings, and materials technologies. To reduce emissions to the required levels, demands a development effort in the following combustion technology areas: premixed ultra low NOx combustion, catalytic combustion, combustion instabilities, and optical diagnostics. To achieve the RAM targets, requires the utilization of proven design features, with quantified risk analysis, and advanced materials, coatings, and cooling technologies. Phase 2 research and development projects currently in progress, as well as those planned for Phase 3, will result in advances in gas turbine technology and greatly contribute to ATS Program success.

  1. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  2. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect

    Bruch, V.L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  3. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  4. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  5. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  6. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  7. A Survey of Wireless Communications for the Electric Power System

    SciTech Connect

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  8. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  9. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  10. A Self-Instructional System in Electricity.

    ERIC Educational Resources Information Center

    Greene, Mark M.; And Others

    A self-instructional system is presented designed to teach high school students fundamental concepts of electricity and how they are applied in daily life. In six lessons, the student attends to a self-paced slide and tape presentation and makes written responses in the workbooks. A supplementary application problem, requiring the assembly of some…

  11. Venezuelan energy resources and electric power system

    SciTech Connect

    Altimari, J.

    1994-06-01

    This article discusses the changing energy policy of Venezuela which is intended to make its electric power sector more competitive. The topics of the article include an overview of the power industry (both private and public utilities), energy sources, power system capacity, generation resources, power demand, load management, and energy conservation.

  12. Harmonic analysis of electrical distribution systems

    SciTech Connect

    1996-03-01

    This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.

  13. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  14. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  15. Advanced materials and device technology for photonic electric field sensors

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Kingsley, Stuart A.; Pollick, Andrea; Sriram, Sri; Taylor, Edward

    2012-10-01

    Photonic methods for electric field sensing have been demonstrated across the electromagnetic spectrum from near-DC to millimeter waves, and at field strengths from microvolts-per-meter to megavolts-per-meter. The advantages of the photonic approach include a high degree of electrical isolation, wide bandwidth, minimum perturbation of the incident field, and the ability to operate in harsh environments. Aerospace applications of this technology span a wide range of frequencies and field strengths. They include, at the high-frequency/high-field end, measurement of high-power electromagnetic pulses, and at the low-frequency/low-field end, in-flight monitoring of electrophysiological signals. The demands of these applications continue to spur the development of novel materials and device structures to achieve increased sensitivity, wider bandwidth, and greater high-field measurement capability. This paper will discuss several new directions in photonic electric field sensing technology for defense applications. The first is the use of crystal ion slicing to prepare high-quality, single-crystal electro-optic thin films on low-dielectricconstant, RF-friendly substrates. The second is the use of two-dimensional photonic crystal structures to enhance the electro-optic response through slow-light propagation effects. The third is the use of ferroelectric relaxor materials with extremely high electro-optic coefficients.

  16. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  17. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  18. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    SciTech Connect

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  19. Measuring advances in HVAC distribution system designs

    SciTech Connect

    Franconi, Ellen

    1998-07-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HVAC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  20. Measuring Advances in HVAC Distribution System Design

    SciTech Connect

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  1. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  2. Materials performance in advanced combustion systems

    SciTech Connect

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  3. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  4. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  5. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  6. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  7. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain...

  8. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain...

  9. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  10. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  11. Solar-Electric Dish Stirling System Development

    SciTech Connect

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  12. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  13. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  14. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  15. Long-term impacts of battery electric vehicles on the German electricity system

    NASA Astrophysics Data System (ADS)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  16. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  17. Multimegawatt electric propulsion system design considerations

    NASA Technical Reports Server (NTRS)

    Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.

    1991-01-01

    Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.

  18. Hubble Space Telescope electrical power system model

    NASA Technical Reports Server (NTRS)

    Baggett, Randy; Miller, Jim; Leisgang, Tom

    1988-01-01

    This paper describes one of the most comprehensive models ever developed for a spacecraft electrical power system (EPS). The model was developed for the Hubble Space Telescope (HST) to evaluate vehicle power system performance and to assist in scheduling maintenance and refurbishment missions by providing data needed to forecast EPS power and energy margins for the mission phases being planned. The EPS model requires a specific mission phase description as the input driver and uses a high granularity database to produce a multi-orbit power system performance report. The EPS model accurately predicts the power system response to various mission timelines over the entire operational life of the spacecraft.

  19. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  20. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  1. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Astrophysics Data System (ADS)

    Ardema, Mark D.

    1995-09-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  2. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1980-01-01

    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.

  3. Electronic spark advance-type ignition system

    SciTech Connect

    Koike, H.

    1986-12-09

    An electronic spark advance-type ignition system is described for an internal combustion engine comprising: an ignition coil; a magnetic pickup for generating a pair of pulse signals with a time interval therebetween substantially corresponding to a maximum advance angle in terms of crankshaft rotation degrees for each rotation of a crankshaft of the engine; signal generating means responsive to the pair of pulse signals for the pickup for generating a pair of comparison signals of different levels within each of the crankshaft rotation degrees of the maximum advance angle and the other crankshaft rotation degrees; and control means for comparing the signal levels of each of the pairs of comparison signals to generate an energization starting position signal and an ignition timing determining ignition position signal for the ignition coil, the signal generating means including means for controlling the waveform of one of the pair of comparison signals so that the ignition position signal is advanced in angle with respect to the energization starting position signal. The energization starting position signal is generated under all conditions prior to the timing of generation of the earlier one of the next pair of pulse signals generated from the pickup. The ignition position signal is generated within the maximum advance angle at a point in time following generation of the earlier one of the next pair of pulse signals by at least a predetermined amount.

  4. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  5. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  6. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  7. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  8. A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Evans, Michael; Shirley, James H.; Abelson, Robert Dean

    2006-01-01

    This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

  9. Advances in the application of in situ electrical resistance heating

    SciTech Connect

    Smith, Gregory J.; Beyke, Gregory

    2007-07-01

    Electrical Resistance Heating (ERH) is an aggressive in situ thermal remediation technology that was developed by the U.S. Department of Energy from the original oil production technology to enhance vapor extraction remediation technologies in low permeability soils. Soil and groundwater are heated by the passage of electrical current through saturated and unsaturated soil between electrodes, not by the electrodes themselves. It is the resistance to the flow of electrical current that results in increased subsurface temperatures, and this is typically applied to the boiling point of water. It is estimated that more than 75 ERH applications have been performed. Capacity to perform these projects has increased over the years, and as many as 15 to 20 of these applications now being performed at any given time, mainly in North America, with some European applications. While the main focus has been to vaporize volatile organic compounds, as one would expect other semi-volatile and non-volatile organic compounds have also been encountered, resulting in observations of chemical and physical reactions that have not been normally incorporated into environmental restoration projects. One such reaction is hydrolysis, which is slow under normal groundwater temperatures, becomes very rapid under temperatures that can easily be achieved using ERH. As a result, these chemical and physical reactions are increasing the applicability of ERH in environmental restoration projects, treating a wider variety of compounds and utilizing biotic and abiotic mechanisms to reduce energy costs. For the treatment of oil and coal tar residues from manufactured gas plants, a process TRS has called steam bubble floatation is used to physically remove the coal and oil tar from the soils for collection using conventional multi-phase collection methods. Heat-enhanced hydrolysis has been used to remediate dichloromethane from soils and groundwater at a site in Illinois, while heat-enhanced biotic and

  10. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  11. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew F.; Mclallin, Kerry L.; Zernic, Michael J.

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased space station user requirements and advancing technologies. The space station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial space station systems such as guidance navigation and control, external thermal, truss structural stiffness, computational capabilities and storage which must be planned-in in order to facilitate the addition of the solar dynamic modules.

  12. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  13. Advanced batteries for electric vehicle applications: Nontechnical summary

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.

    This paper provides an overview of the performance characteristics of the most prominent batteries under development for electric vehicles (EV's) and compares these characteristics to the USABC Mid-Term and Long-Term criteria, as well as to typical vehicle-related battery requirements. Most of the battery performance information was obtained from independent tests, conducted using simulated driving power profiles, for DOE and EPRI at Argonne National Laboratory. The EV batteries are categorized as near-term, mid-term, and long-term technologies based on their relative development status, as well as our estimate of their potential availability as commercial EV batteries. Also, the performance capabilities generally increase in going from the near-term to the mid-term and on to the long-term technologies. To date, the USABC has chosen to fund a few selected mid-term and long-term battery technologies.

  14. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  15. Advanced low emissions catalytic combustor program at General Electric

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The Advanced Low Emissions Catalytic Combustors Program (ALECC) is being undertaken to evaluate the feasibility of employing catalytic combustion technology in aircraft gas turbine engines as a means to control emission of oxides of nitrogen during subsonic stratospheric cruise operation. The ALECC Program is being conducted in three phases. The first phase, which was completed in November, 1978, consisted of a design study to identify catalytic combustor designs having the greatest potential to meet the emissions and performance goals specified. The primary emissions goal of this program was to obtain cruise NO emissions of less than 1g/kg (compared with levels of 15 to 20 g/x obtained with current designs)/ However, good overall performance and feasibility for engine development were heavily weighted in the evaluation of combustor designs.

  16. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  17. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  18. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  19. Seismic Retrofit for Electric Power Systems

    DOE PAGES

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  20. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  1. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  2. 46 CFR 169.676 - Grounded electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  3. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2002-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  4. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  5. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2001-07-01

    The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

  6. High voltage spacecraft electrical systems design

    NASA Technical Reports Server (NTRS)

    Stone, R. E.

    1993-01-01

    Factors which must be considered when designing the best and the most cost-effective high-voltage electrical system for a spacecraft are discussed with particular attention given to the EMC considerations, high-voltage power bus, and harnesses. It is emphasized that the use of serial data buses and lines greatly simplify the harness design and weight. Careful attention to the grounding concept and the EMC requirements is necessary for insuring a 'quiet' spacecraft.

  7. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  8. Electric airplane environmental control systems energy requirements

    SciTech Connect

    Buss, L.B.

    1984-05-01

    The electric airplane environmental control system (ECS) design drivers is discussed for an electric airplane from two aspects. The first aspect considered is the type of aircraft. The three examples selected are the 150-passenger commercial airline transport, the military on-station electronic-surveillance patrol aircraft, and the air-defense interceptor fighter. These vehicle examples illustrate the effect of both mission and mission profile on the design requirements of the ECS and the differences that the requirements make on the resulting advantages and disadvantages of electrification. For the commercial transport, the selection of the air source for ventilation will be featured. For the patrol aircraft, the cooling unit will be evaluated. For the fighter, emphasis will be placed on the need for systems integration. The second and more important consideration is the definition of the environmental control system requirements for both energy supply and heat sink thermal management integration from the power plant (engine) that make an electric ECS viable for each type of vehicle.

  9. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  10. Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems

    SciTech Connect

    Cao, J.; Bharathan, D.; Emadi, A.

    2007-01-01

    Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

  11. On the physical interconnection of Seismic Electric Signals with seismicity: Recent advances

    NASA Astrophysics Data System (ADS)

    Sarlis, Nicholas; Skordas, Efthimios; Lazaridou, Mary; Varotsos, Panayiotis

    2013-04-01

    We review the recent advances on Seismic Electric Signals (SES) which are low frequency (˜ 1Hz) signals that precede earthquakes [1-3]. Since the 1980's Varotsos and Alexopoulos proposed [4] that SES are generated in the future focal area when the stress reaches a critical value, thus causing a cooperative orientation of the electric dipoles that anyhow exist in the focal area due to lattice imperfections in the ionic constituents of the rocks. A series of such signals within a short time are termed SES activity [5] and usually appear before major earthquakes. The combination of their physical properties enable the determination of the epicentral region and the magnitude well in advance. Natural time analysis introduced a decade ago [6, 7] may uncover novel dynamic features hidden behind time series in complex systems [8]. By employing this analysis, several advances have been made towards a better understanding of the SES properties. For example, it has been found [6, 8] that the natural time analysis of the seismicity subsequent to the initiation of a SES activity enables the determination of the occurrence time of an impending major mainshock within a time window of around one week. On this basis, predictions -including the magnitude, epicenter and time window of the expected event- have been documented well in advance for all five mainshocks with M_w×6.4 in Greece since 2001 [8, 9]. In addition, by applying natural time analysis to the time series of earthquakes, we recently found [10] that the order parameter of seismicity exhibits a unique change approximately at the date at which SES activities have been reported to initiate. This is the first time that before the occurrence of major earthquakes, anomalous changes are found to appear almost simultaneously in two different geophysical observables. 1. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 73-98, 1984a. 2. P. Varotsos and K. Alexopoulos, Tectonophysics 110, 99-125, 1984b. 3. P.A. Varotsos, N

  12. Advanced laser systems for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Sampathkumar, Ashwin; Chan, Gary; Wu, Chunbai; Gross, Daniel; Heller, Donald F.

    2015-03-01

    We describe the ongoing development of laser systems for advanced photoacoustic imaging (PAI). We discuss the characteristics of these laser systems and their particular benefits for soft tissue imaging and next-generation breast cancer diagnostics. We provide an overview of laser performance and compare this with other laser systems that have been used for early-stage development of PAI. These advanced systems feature higher pulse energy output at clinically relevant repetition rates, as well as a novel wavelength-cycling output pulse format. Wavelength cycling provides pulse sequences for which the output repeatedly alternates between two wavelengths that provide differential imaging. This capability improves co-registration of captured differential images. We present imaging results of phantoms obtained with a commercial ultrasound detector system and a wavelength-cycling laser source providing ~500 mJ/pulse at 755 and 797 nm, operating at 25 Hz. The results include photoacoustic images and corresponding pulse-echo data from a tissue mimicking phantom containing inclusions, simulating tumors in the breast. We discuss the application of these systems to the contrast-enhanced detection of various tissue types and tumors.

  13. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  14. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  15. Simulation Of Advanced Train Control Systems

    NASA Astrophysics Data System (ADS)

    Craven, Paul; Oman, Paul

    This paper describes an Advanced Train Control System (ATCS) simulation environment created using the Network Simulator 2 (ns-2) discrete event network simulation system. The ATCS model is verified using ATCS monitoring software, laboratory results and a comparison with a mathematical model of ATCS communications. The simulation results are useful in understanding ATCS communication characteristics and identifying protocol strengths, weaknesses, vulnerabilities and mitigation techniques. By setting up a suite of ns-2 scripts, an engineer can simulate hundreds of possible scenarios in the space of a few seconds to investigate failure modes and consequences.

  16. Advanced Digital Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Hoh, R. H.; Teper, G. L.

    1977-01-01

    Objectives and functions of the Advanced Digital Avionics System (ADAS) for general aviation are outlined with particular reference to navigation, flight control, engine management, ATC surveillance, flight management, communications, and the pilot controls and displays. The resulting ADAS design comprises the selection of off-the-shelf avionics to be integrated with ADAS-unique elements including new pilot displays and controls along with a microcomputer control complex (MCC). Reasons for which the ADAS achieves increased avionics capability are mentioned, including overall system integration through the MCC and pilot orientation from navigation map display.

  17. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  18. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  19. Rotorcraft Digital Advanced Avionics System (rodaas)

    NASA Technical Reports Server (NTRS)

    Taira, B.

    1985-01-01

    A simulator is being built to determine the practicality of using an advanced avionics system in a helicopter. Features include an autopilot; a navigation and flight planning component; an advisory system built into the computer; conventional gages and displays; a clock function; a fuel totalizer; a weight and balance computator; a performance evaluator; and emergency and normal checklists. The translation of a computer program written in PASCAL into a form that can be read by the graphics package for the simulator and basic electronic work in simulator construction are discussed.

  20. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  1. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  2. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Rasky, Daniel J. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have led to the following approach. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are considered to be exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is defined after many trade-offs. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, SVM/[ESM + function (TRL)], with appropriate weighting and scaling. The total value is given by SVM. Cost is represented by higher ESM and lower TRL. The paper provides a detailed description and example application of a suggested System Value Metric and an overall ALS system metric.

  3. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  4. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  5. Electricity Storage Systems and the Grid

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2007-04-01

    Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power as baseline power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed.

  6. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  7. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  8. Advances in Primary Central Nervous System Lymphoma.

    PubMed

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  9. Advanced Gas Turbine Powertrain System Development Project

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1980-01-01

    A progress report on the Advanced Gas Turbine Powertrain System Development Project being performed under contract from NASA Lewis is presented. The goals and objectives of the project are described noting that funds from the DOE, Office of Transportation Programs are used to sponsor the project. Among the demonstration objectives are attaining a fuel economy of 42.5 miles per gallon in a 1985 Pontiac Phoenix, multifuel capability, and emission levels within the federal standards. Design objectives examined include competitive reliability and life as well as competitive initial and life cycle costs. Finally, it is stressed that high risk and key elements in this advanced powertrain project are the development of ceramic turbine engine components and the aerodynamic development of small size turbine components.

  10. Positive solutions of advanced differential systems.

    PubMed

    Diblík, Josef; Kúdelčíková, Mária

    2013-01-01

    We study asymptotic behavior of solutions of general advanced differential systems y(t) = F(t, y(t)), where F : Ω → [Symbol: see text] (n) is a continuous quasi-bounded functional which satisfies a local Lipschitz condition with respect to the second argument and Ω is a subset in [Symbol: see text] × C(r)(n), C(r)(n) := C([0, r], [Symbol: see text] (n)), y t [Symbol: see text]C(r)(n), and y t (θ) = y(t + θ), θ [Symbol: see text] [0, r]. A monotone iterative method is proposed to prove the existence of a solution defined for t → ∞ with the graph coordinates lying between graph coordinates of two (lower and upper) auxiliary vector functions. This result is applied to scalar advanced linear differential equations. Criteria of existence of positive solutions are given and their asymptotic behavior is discussed.

  11. Advances in Primary Central Nervous System Lymphoma.

    PubMed

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients. PMID:26475775

  12. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  13. Precise synchronization of phasor measurements in electric power systems

    NASA Technical Reports Server (NTRS)

    Phadke, Arun G.

    1990-01-01

    Phasors representing positive sequence voltages and currents in a power network are in the most important parameters in several monitoring, control, and protection functions in interconnected electric power networks. Recent advances in computer relaying have led to very efficient and accurate phasor measurement systems. When the phasors to be measured are separated by hundreds of miles, it becomes necessary to synchronize the measurement processes, so that a consistent description of the state of the power system can be established. Global Positioning System (GPS) transmissions offer an ideal source for synchronization of phasor measurements. The concept and implementation of this technique are described. Several uses of synchronized phasor measurements are also described. Among these are improved state estimation algorithms, state estimator enhancements, dynamic state estimates, improved control techniques, and improved protection concepts.

  14. Advanced Technology Training System on Motor-Operated Valves

    NASA Technical Reports Server (NTRS)

    Wiederholt, Bradley J.; Widjaja, T. Kiki; Yasutake, Joseph Y.; Isoda, Hachiro

    1993-01-01

    This paper describes how features from the field of Intelligent Tutoring Systems are applied to the Motor-Operated Valve (MOV) Advanced Technology Training System (ATTS). The MOV ATTS is a training system developed at Galaxy Scientific Corporation for the Central Research Institute of Electric Power Industry in Japan and the Electric Power Research Institute in the United States. The MOV ATTS combines traditional computer-based training approaches with system simulation, integrated expert systems, and student and expert modeling. The primary goal of the MOV ATTS is to reduce human errors that occur during MOV overhaul and repair. The MOV ATTS addresses this goal by providing basic operational information of the MOV, simulating MOV operation, providing troubleshooting practice of MOV failures, and tailoring this training to the needs of each individual student. The MOV ATTS integrates multiple expert models (functional and procedural) to provide advice and feedback to students. The integration also provides expert model validation support to developers. Student modeling is supported by two separate student models: one model registers and updates the student's current knowledge of basic MOV information, while another model logs the student's actions and errors during troubleshooting exercises. These two models are used to provide tailored feedback to the student during the MOV course.

  15. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  16. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  17. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  18. Advanced Life Support System Value Metric

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The NASA Advanced Life Support (ALS) Program is required to provide a performance metric to measure its progress in system development. Extensive discussions within the ALS program have reached a consensus. The Equivalent System Mass (ESM) metric has been traditionally used and provides a good summary of the weight, size, and power cost factors of space life support equipment. But ESM assumes that all the systems being traded off exactly meet a fixed performance requirement, so that the value and benefit (readiness, performance, safety, etc.) of all the different systems designs are exactly equal. This is too simplistic. Actual system design concepts are selected using many cost and benefit factors and the system specification is then set accordingly. The ALS program needs a multi-parameter metric including both the ESM and a System Value Metric (SVM). The SVM would include safety, maintainability, reliability, performance, use of cross cutting technology, and commercialization potential. Another major factor in system selection is technology readiness level (TRL), a familiar metric in ALS. The overall ALS system metric that is suggested is a benefit/cost ratio, [SVM + TRL]/ESM, with appropriate weighting and scaling. The total value is the sum of SVM and TRL. Cost is represented by ESM. The paper provides a detailed description and example application of the suggested System Value Metric.

  19. Advanced extravehicular activity systems requirements definition study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A study to define the requirements for advanced extravehicular activities (AEVA) was conducted. The purpose of the study was to develop an understanding of the EVA technology requirements and to map a pathway from existing or developing technologies to an AEVA system capable of supporting long-duration missions on the lunar surface. The parameters of an AEVA system which must sustain the crewmembers and permit productive work for long periods in the lunar environment were examined. A design reference mission (DRM) was formulated and used as a tool to develop and analyze the EVA systems technology aspects. Many operational and infrastructure design issues which have a significant influence on the EVA system are identified.

  20. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  1. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  2. Advanced conversion technologies for small-scale remote power systems

    SciTech Connect

    Lamp, T.R.

    1996-12-31

    Forest fires that endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) prompted the assessment of power generating systems that could be substituted for RTGs in small scale (10--120 watt) applications. Other non-RTG sites were also studied during the assessment. The power system assessment was conducted by the US Air Forces` Wright Laboratory and included the evaluation of engine-driven generators, solar, wind generators, propane thermoelectric generators (TEGs), batteries, fuel cells, and power systems based on advanced conversion technologies; such as, thermionics, free piston Stirling Engines (FPSE), alkali metal thermoelectric conversion (AMTEC), and thermophotovoltaics (TPV). The assessment team concluded that continued use of the RTGs is clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to access locations. If political considerations force the replacement of the RTGs, the likely replacement is a hybrid system consisting of solar-PV with a propane-TEG for off-solar times. The transport of combustible fuels in Arctic environments is extremely expensive. It is this high logistics cost that signaled the need to consider the option of more efficient and cost effective power sources for the remote, Arctic applications. This paper summarizes the assessment of some of the more attractive power systems that are based on the advanced conversion technologies of AMTEC, TPV and FPSE.

  3. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  4. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  5. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  6. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  7. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  8. Electric orbit transfer vehicle cryogenic propellant system

    NASA Astrophysics Data System (ADS)

    Schuster, J. R.; Huynh, C. T.; Williams, G. E.

    An electric orbit transfer vehicle (EOTV) is intended to transfer payloads from low Earth orbit (LEO) to higher orbits using low-thrust solar-electric propulsion and hydrogen propellant. Because of its high specific impulse and synergistic sharing of power supply, attitude control and communication systems with the payload, the highly efficient EOTV transfer stage permits use of a smaller, less costly launch vehicle than if orbit transfer were accomplished using chemical propulsion. Study of the propellant storage and supply system for an EOTV intended to fly a 168 day spiral trajectory from LEO to geosynchronous orbit (GEO) reveals that the low propellant flow rate needed by the thrusters can be supplied by the boil-off from the storage tank, eliminating the need for any overboard venting. The tank can be fabricated under the same pressure-stabilized, thin, stainless steel monocoque construction as the current Centaur upper stage, and insulated with Centaur fixed foam and MLI. The tank contains a thermodynamic vent system (TVS) for control of tank pressure in zero and low gravity and for supply of propellant to the thrusters. An external compressor, accumulator and regulator condition the hydrogen boil-off provided by the TVS and provide for start-up and shut-down transients. The resulting system is simple, has a very low structural mass fraction and builds on the Centaur cryogenic upper stage technology, which has been operational for over 25 years.

  9. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  10. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  11. Advanced Docking System With Magnetic Initial Capture

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  12. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.855 Section...

  13. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor... 46 Shipping 1 2014-10-01 2014-10-01 false Electrical distribution systems. 28.855 Section...

  14. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor... 46 Shipping 1 2012-10-01 2012-10-01 false Electrical distribution systems. 28.360 Section...

  15. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.360 Section...

  16. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or conductor... 46 Shipping 1 2010-10-01 2010-10-01 false Electrical distribution systems. 28.855 Section...

  17. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  18. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  19. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical... source does not affect the capability of the other source. The system must meet the National...

  20. 33 CFR 127.107 - Electrical power systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical power systems. 127.107... Waterfront Facilities Handling Liquefied Natural Gas § 127.107 Electrical power systems. (a) The electrical... source does not affect the capability of the other source. The system must meet the National...

  1. 46 CFR 28.855 - Electrical distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.855 Section 28.855... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.855 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  2. 46 CFR 28.360 - Electrical distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical distribution systems. 28.360 Section 28.360... Operate With More Than 16 Individuals on Board § 28.360 Electrical distribution systems. (a) Each electrical distribution system which has a neutral bus or conductor must have the neutral bus or...

  3. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake amperage value shall be not more than 20 percent above, and not less than 30 percent below, the...

  4. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake amperage value shall be not more than 20 percent above, and not less than 30 percent below, the...

  5. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake amperage value shall be not more than 20 percent above, and not less than 30 percent below, the...

  6. Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems

    SciTech Connect

    Hendricks, Terry J.

    2007-09-01

    Energy recovery is gaining importance in various transportation and industrial process applications because of rising energy costs and geopolitical uncertainties impacting basic energy supplies. Various advanced thermoelectric (TE) materials have properties that are inherently advantageous for particular TE energy recovery applications. Skutterudites, 0- and 1-dimensional quantum-well materials, and thin-film superlattice materials are providing enhanced opportunities for advanced TE energy recovery in transportation and industrial processes. This work demonstrates: 1) the potential for advanced thermoelectric systems in vehicle energy recovery, and 2) the inherently complex interaction between thermal system performance and thermoelectric device optimization in energy recovery. Potential power generation at specific exhaust temperature levels and for various heat exchanger performance levels is presented showing the current design sensitivities using different TE material sets. Mathematical relationships inherently linking optimum TE design variables and the thermal systems design (i.e., heat exchangers and required mass flow rates) are also investigated and characterized.

  7. Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems

    SciTech Connect

    Hendricks, Terry J.

    2007-12-01

    Energy recovery is gaining importance in various transportation and industrial process applications because of rising energy costs and geopolitical uncertainties impacting basic energy supplies. Various advanced thermoelectric (TE) materials have properties that are inherently advantageous for particular TE energy recovery applications. Skutterudites, 0- and 1-dimensional quantum-well materials, and thin-film superlattice materials are providing enhanced opportunities for advanced TE energy recovery in transportation and industrial processes. This work demonstrates: 1) the potential for advanced thermoelectric systems in vehicle energy recovery, and 2) the inherently complex interaction between thermal system performance and thermoelectric device optimization in energy recovery. Potential power generation at specific exhaust temperature levels and for various heat exchanger performance levels are presented showing the current design sensitivities using different TE material sets. Mathematical relationships inherently linking optimum TE design variables and the thermal systems design (i.e., heat exchangers and required mass flow rates) are also investigated and characterized.

  8. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the

  9. Integrated Electrical Wire Insulation Repair System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  10. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  11. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  12. Industrial Advanced Turbine Systems Program overview

    SciTech Connect

    Esbeck, D.W.

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  13. Advanced systems engineering and network planning support

    NASA Technical Reports Server (NTRS)

    Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred

    1990-01-01

    The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.

  14. Development of advanced lightweight containment systems

    NASA Technical Reports Server (NTRS)

    Stotler, C.

    1981-01-01

    Parametric type data were obtained on advanced lightweight containment systems. These data were used to generate design methods and procedures necessary for the successful development of such systems. The methods were then demonstrated through the design of a lightweight containment system for a CF6 size engine. The containment concept evaluated consisted basically of a lightweight structural sandwich shell wrapped with dry Kevlar cloth. The initial testing was directed towards the determination of the amount of Kevlar required to result in threshold containment for a specific set of test conditions. A relationship was then developed between the thickness required and the energy of the released blade so that the data could be used to design for conditions other than those tested.

  15. Advanced extravehicular protective systems study, volume 1

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    An appraisal was made of advanced portable and emergency life support systems concepts for space station, space shuttle, lunar base, and Mars EVA missions. Specifications are given, and the methodology is described. Subsystem studies and systems integration efforts are summarized. Among the conclusions are the following: (1) For long duration missions, a configuration incorporating a regenerable CO2 control subsystem and a thermal control subsystem utilizing a minimum of expendables decreases the vehicle penalty of present configurations. (2) For shorter duration missions, a configuration incorporating an expendable water thermal control subsystem is the most competitive subsystem; regenerable CO2 control subsystems if properly developed are competitive with nonregenerable counterparts. (3) The CO2 reduction and oxygen reclamation withing the parent vehicle is only competitive when there are three or more parent vehicle resupply periods. (4) For long duration emergency systems of one hour or more, inherent redundancy within the primary configuration to provide emergency thermal control is the most competitive approach.

  16. Proceedings of the Advanced Turbine Systems annual program review meeting

    SciTech Connect

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  17. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  18. ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM

    SciTech Connect

    Lawrence P. Golan

    2003-05-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for the reporting period October 1, 2002 to December 31, 2002 are described in this quarterly report. No new membership, workshops, research projects, internships, faculty fellowships or special studies were initiated during this reporting period. Contract completion is set for June 30, 2003. During the report period, six research progress reports were received (3 final reports and 3 semi-annual reports). The University of Central Florida contract SR080 was terminated during this period, as UCF was unable to secure research facilities. AGTSR now projects that it will under spend DOE obligated funds by approximately 340-350K$.

  19. Advanced propulsion system for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  20. A VISION of Advanced Nuclear System Cost Uncertainty

    SciTech Connect

    J'Tia Taylor; David E. Shropshire; Jacob J. Jacobson

    2008-08-01

    VISION (VerifIable fuel cycle SImulatiON) is the Advanced Fuel Cycle Initiative’s and Global Nuclear Energy Partnership Program’s nuclear fuel cycle systems code designed to simulate the US commercial reactor fleet. The code is a dynamic stock and flow model that tracks the mass of materials at the isotopic level through the entire nuclear fuel cycle. As VISION is run, it calculates the decay of 70 isotopes including uranium, plutonium, minor actinides, and fission products. VISION.ECON is a sub-model of VISION that was developed to estimate fuel cycle and reactor costs. The sub-model uses the mass flows generated by VISION for each of the fuel cycle functions (referred to as modules) and calculates the annual cost based on cost distributions provided by the Advanced Fuel Cycle Cost Basis Report1. Costs are aggregated for each fuel cycle module, and the modules are aggregated into front end, back end, recycling, reactor, and total fuel cycle costs. The software also has the capability to perform system sensitivity analysis. This capability may be used to analyze the impacts on costs due to system uncertainty effects. This paper will provide a preliminary evaluation of the cost uncertainty affects attributable to 1) key reactor and fuel cycle system parameters and 2) scheduling variations. The evaluation will focus on the uncertainty on the total cost of electricity and fuel cycle costs. First, a single light water reactor (LWR) using mixed oxide fuel is examined to ascertain the effects of simple parameter changes. Three system parameters; burnup, capacity factor and reactor power are varied from nominal cost values and the affect on the total cost of electricity is measured. These simple parameter changes are measured in more complex scenarios 2-tier systems including LWRs with mixed fuel and fast recycling reactors using transuranic fuel. Other system parameters are evaluated and results will be presented in the paper. Secondly, the uncertainty due to