Sample records for advanced electronic packaging

  1. Packaging and Embedded Electronics for the Next Generation

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  2. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  3. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  4. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  5. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  6. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  7. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  8. HALT to qualify electronic packages: a proof of concept

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2014-03-01

    A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.

  9. Visual and x-ray inspection characteristics of eutectic and lead free assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2003-01-01

    For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).

  10. Thermoelectric Outer Planets Spacecraft (TOPS) electronic packaging and cabling development summary report

    NASA Technical Reports Server (NTRS)

    Dawe, R. H.; Arnett, J. C.

    1974-01-01

    Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.

  11. FOREWORD: Proceedings of the 39th International Microelectronics and Packaging IMAPS Poland Conference

    NASA Astrophysics Data System (ADS)

    Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert

    2016-01-01

    These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.

  12. Extreme temperature packaging: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Johnson, R. Wayne

    2016-05-01

    Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.

  13. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  14. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  15. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  16. Integrated microsystems packaging approach with LCP

    NASA Astrophysics Data System (ADS)

    Jaynes, Paul; Shacklette, Lawrence W.

    2006-05-01

    Within the government communication market there is an increasing push to further miniaturize systems with the use of chip-scale packages, flip-chip bonding, and other advances over traditional packaging techniques. Harris' approach to miniaturization includes these traditional packaging advances, but goes beyond this level of miniaturization by combining the functional and structural elements of a system, thus creating a Multi-Functional Structural Circuit (MFSC). An emerging high-frequency, near hermetic, thermoplastic electronic substrate material, Liquid Crystal Polymer (LCP), is the material that will enable the combination of the electronic circuit and the physical structure of the system. The first embodiment of this vision for Harris is the development of a battlefield acoustic sensor module. This paper will introduce LCP and its advantages for MFSC, present an example of the work that Harris has performed, and speak to LCP MFSCs' potential benefits to miniature communications modules and sensor platforms.

  17. Reliability and quality EEE parts issues

    NASA Technical Reports Server (NTRS)

    Barney, Dan; Feigenbaum, Irwin

    1990-01-01

    NASA policy and procedures are established which govern the selection, testing, and application of electrical, electronic, and electromechanical (EEE) parts. Recent advances in the state-of-the-art of electronic parts and associated technologies can significantly impact the electronic designs and reliability of NASA space transportation avionics. Significant issues that result from these advances are examined, including: recent advances in microelectronics technology (as applied to or considered for use in NASA projects); electron packaging technology advances (concurrent with, and as a result of, the development of the advanced microelectronic devices); availability of parts used in space avionics; and standardization and integration of parts activities between projects, centers, and contractors.

  18. Low-dielectric constant insulators for future integrated circuits and packages.

    PubMed

    Kohl, Paul A

    2011-01-01

    Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.

  19. A Self-Contained Cold Plate Utilizing Force-fed Evaporation for Cooling of High flux Electronics

    DTIC Science & Technology

    2007-01-01

    additional improvement. The second advanced heat sink to be covered was developed and studied by Sung and Mudawar [27]. They created a hybrid jet...cooling by using manifold microchannel heat sinks.” Advanced Electronic Packaging. 2 (1997) 1837-1842. [27] Sung, M. K. & Mudawar , I

  20. (abstract) Electronic Packaging for Microspacecraft Applications

    NASA Technical Reports Server (NTRS)

    Wasler, David

    1993-01-01

    The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.

  1. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  2. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  3. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion activation enthalpy and diffusion pre-factor by using lattice structure simulation. Last but not the least, X-ray photoelectron spectroscopy and First principal calculation simulation were used to observe the electron binding energies in the intermetallic compound and illustrate the partial covalent bonding behavior in the intermetallic compounds.

  4. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A multiple rework processes may be implemented with CCGA packaging technology to understand the effect of number of reworks on the reliability of this technology for harsh thermal environments. In general, reliability of the assembled electronic packages reduces as a function of number of reworks and the extent is not known yet. A CCGA rework process has been tried and implemented to design a daisy-chain test board consists of 624 and 717 packages. Reworked CCGA interconnect electronic packages of printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging and optical microscope techniques. The assembled boards after 1st rework and 1st reflow were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space JPL/NASA for moderate to harsh thermal mission environments. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling to determine intermittent failures. This paper provides the experimental reliability test results to failure of assemblies for the first time of reflowed and reworked CCGA packages under extreme harsh thermal environments.

  5. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  6. Proceedings of the International Electronic Circuit Packaging Symposium (3rd) on Advances in Electronic Circuit Packaging Held at Boulder, Colorado on 15-17 August 1962. Volume 3,

    DTIC Science & Technology

    1963-01-01

    the connector pin, which was then sol - dered at various levels of wire build up. It is proposed, with a slight modification of the connector terminal...sacrificial anode for galvanic protection of other metals. Aluminum Aluminum and its alloys show promise for applications in long-life oceano - graphic...section of a dumet weld lead. Calculations and actual heat measurements on the effects of welding and sol - dering within 0.060 in. of the component

  7. On the release of cppxfel for processing X-ray free-electron laser images.

    PubMed

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian

    2016-06-01

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.

  8. On the release of cppxfel for processing X-ray free-electron laser images

    DOE PAGES

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K.; ...

    2016-05-11

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Herecppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set.Cppxfelis released with the hope that the unique and useful elements of this package can be repurposed formore » existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.« less

  9. Thermo-Mechanical Analysis for John Deere Electronics Solutions | Advanced

    Science.gov Websites

    impacts of alternative manufacturing processes Die, package, and interface material analysis for power module reliability Manufacturing process impacts versus thermal cycling impacts on power module

  10. Reliability Assessment of Advanced Flip-clip Interconnect Electronic Package Assemblies under Extreme Cold Temperatures (-190 and -120 C)

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.

    2005-01-01

    Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.

  11. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these moremore » sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 {micro}{var_epsilon} peak) amplitude and a 100 {micro}s duration (measured at 10% amplitude).« less

  13. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.

  14. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  15. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  17. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitivemore » electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps {at} 100 {micro}s for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials` achievement of these purposes.« less

  19. Metastable Polymers for On Demand Transient Electronic Packaging

    DTIC Science & Technology

    2018-01-17

    a triggerable polymer for engineering applications. 25 Approved for public release; distribution is unlimited. 6 REFERENCES (1) Aso, C.; Tagami, S...R. Advanced Materials 2014, 26, 7637. (4) Ito, H.; Willson, C. G. Polymer Engineering & Science 1983, 23, 1012. (5) Ito, H.; England, W. P.; Ueda, M

  20. The Assurance Challenges of Advanced Packaging Technologies for Electronics

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    Advances in microelectronic parts performance are driving towards finer feature sizes, three-dimensional geometries and ever-increasing number of transistor equivalents that are resulting in increased die sizes and interconnection (I/O) counts. The resultant packaging necessary to provide assemble-ability, environmental protection, testability and interconnection to the circuit board for the active die creates major challenges, particularly for space applications, Traditionally, NASA has used hermetically packaged microcircuits whenever available but the new demands make hermetic packaging less and less practical at the same time as more and more expensive, Some part types of great interest to NASA designers are currently only available in non-hermetic packaging. It is a far more complex quality and reliability assurance challenge to gain confidence in the long-term survivability and effectiveness of nonhermetic packages than for hermetic ones. Although they may provide more rugged environmental protection than the familiar Plastic Encapsulated Microcircuits (PEMs), the non-hermetic Ceramic Column Grid Array (CCGA) packages that are the focus of this presentation present a unique combination of challenges to assessing their suitability for spaceflight use. The presentation will discuss the bases for these challenges, some examples of the techniques proposed to mitigate them and a proposed approach to a US MIL specification Class for non-hermetic microcircuits suitable for space application, Class Y, to be incorporated into M. IL-PRF-38535. It has recently emerged that some major packaging suppliers are offering hermetic area array packages that may offer alternatives to the nonhermetic CCGA styles but have also got their own inspectability and testability issues which will be briefly discussed in the presentation,

  1. Qualification and Reliability for MEMS and IC Packages

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2004-01-01

    Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface

  2. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  3. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    NASA Astrophysics Data System (ADS)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  4. Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS

    NASA Astrophysics Data System (ADS)

    Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve

    2018-02-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.

  5. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  6. Advanced technology component derating

    NASA Astrophysics Data System (ADS)

    Jennings, Timothy A.

    1992-02-01

    A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.

  7. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  8. Conduction-driven cooling of LED-based automotive LED lighting systems for abating local hot spots

    NASA Astrophysics Data System (ADS)

    Saati, Ferina; Arik, Mehmet

    2018-02-01

    Light-emitting diode (LED)-based automotive lighting systems pose unique challenges, such as dual-side packaging (front side for LEDs and back side for driver electronics circuit), size, harsh ambient, and cooling. Packaging for automotive lighting applications combining the advanced printed circuit board (PCB) technology with a multifunctional LED-based board is investigated with a focus on the effect of thermal conduction-based cooling for hot spot abatement. A baseline study with a flame retardant 4 technology, commonly known as FR4 PCB, is first compared with a metal-core PCB technology, both experimentally and computationally. The double-sided advanced PCB that houses both electronics and LEDs is then investigated computationally and experimentally compared with the baseline FR4 PCB. Computational models are first developed with a commercial computational fluid dynamics software and are followed by an advanced PCB technology based on embedded heat pipes, which is computationally and experimentally studied. Then, attention is turned to studying different heat pipe orientations and heat pipe placements on the board. Results show that conventional FR4-based light engines experience local hot spots (ΔT>50°C) while advanced PCB technology based on heat pipes and thermal spreaders eliminates these local hot spots (ΔT<10°C), leading to a higher lumen extraction with improved reliability. Finally, possible design options are presented with embedded heat pipe structures that further improve the PCB performance.

  9. Sensor Amplifier for the Venus Ground Ambient

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.

    2006-01-01

    Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.

  10. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  11. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  12. Advanced Interconnect Roadmap for Space Applications

    NASA Technical Reports Server (NTRS)

    Galbraith, Lissa

    1999-01-01

    This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.

  13. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  14. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  15. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  16. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...

  17. Paperless Work Package Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Jr., William R.; Morrell, Jr., Otto K.; Morrison, Dan

    2014-07-31

    Paperless Work Package (PWP) System is a computer program process that takes information from Asset Suite, provides a platform for other electronic inputs, Processes the inputs into an electronic package that can be downloaded onto an electronic work tablet or laptop computer, provides a platform for electronic inputs into the work tablet, and then transposes those inputs back into Asset Suite and to permanent SRS records. The PWP System will basically eliminate paper requirements from the maintenance work control system. The program electronically relays the instructions given by the planner to work on a piece of equipment which is currentlymore » relayed via a printed work package. The program does not control/approve what is done. The planner will continue to plan the work package, the package will continue to be routed, approved, and scheduled. The supervisor reviews and approves the work to be performed and assigns work to individuals or to a work group. (The supervisor conducts pre job briefings with the workers involved in the job) The Operations Manager (Work Controlling Entity) approves the work package electronically for the work that will be done in his facility prior to work starting. The PWP System will provide the package in an electronic form. All the reviews, approvals, and safety measures taken by people outside the electronic package does not change from the paper driven work packages.« less

  18. Advancements in meat packaging.

    PubMed

    McMillin, Kenneth W

    2017-10-01

    Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Recent advances in superconducting nanowire single photon detectors for single-photon imaging

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Allman, M. S.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Marsili, F.; Beyer, A.; Shaw, M. D.; Stern, J. A.; Mirin, R. P.; Nam, S. W.

    2016-05-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  20. U.S. Navy Advanced Receiving: A Better Approach to the Basics.

    DTIC Science & Technology

    1987-04-01

    the Navy and DLA should begin now to plan for electronic interchange of data between their inventory management systems. This would eliminate the...labor savings from work simplification, improved material handling, and better work load planning 0 Material savings from reduced packaging and use of... planning purposes, source distribution managers use the following equa- tion to determine maximum consolidation time: Maximum consolidation time = 21

  1. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less

  2. Laser Welding in Electronic Packaging

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  3. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  4. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  5. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  6. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  7. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  8. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less

  10. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  11. Participation in the Center for Advanced Processing and Packaging Studies

    DTIC Science & Technology

    2009-11-24

    University, the University ofCalifomia, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...University, the University of California, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...amyloliquefaciens, spore inactivation, FT-IR spectroscopy, infrared 11 spectroscopy 12 13 14 15 16 17 Department of Food Science and Technology

  12. Users Guide on Scaled CMOS Reliability: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    White, Mark; Cooper, Mark; Johnston, Allan

    2011-01-01

    Reliability of advanced CMOS technology is a complex problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be found in Ref. 1; it should be consulted for a more thorough discussion. The present document provides a more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the recommended approach for these advanced devices compared to that of less aggressively scaled devices. It includes specific recommendations that can be used by flight projects that use advanced CMOS. The primary emphasis is on conventional memories, microprocessors, and related devices.

  13. Advanced large scale GaAs monolithic IF switch matrix subsystem

    NASA Technical Reports Server (NTRS)

    Ch'en, D. R.; Petersen, W. C.; Kiba, W. M.

    1992-01-01

    Attention is given to a novel chip design and packaging technique to overcome the limitations due to the high signal isolation requirements of advanced communications systems. A hermetically sealed 6 x 6 monolithic GaAs switch matrix subsystem with integral control electronics based on this technique is presented. An 0-dB insertion loss and 60-dB crosspoint isolation over a 3.5-to-6-GHz band were achieved. The internal controller portion of the switching subsystem provides crosspoint control via a standard RS-232 computer interface and can be synchronized with an external systems control computer. The measured performance of this advanced switching subsystem is fully compatible with relatively static 'switchboard' as well as dynamic TDMA modes of operation.

  14. Electronic publishing and intelligent information retrieval

    NASA Technical Reports Server (NTRS)

    Heck, A.

    1992-01-01

    Europeans are now taking steps to homogenize policies and standardize procedures in electronic publishing (EP) in astronomy and space sciences. This arose from an open meeting organized in Oct. 1991 at Strasbourg Observatory (France) and another business meeting held late Mar. 1992 with the major publishers and journal editors in astronomy and space sciences. The ultimate aim of EP might be considered as the so-called 'intelligent information retrieval' (IIR) or better named 'advanced information retrieval' (AIR), taking advantage of the fact that the material to be published appears at some stage in a machine-readable form. It is obvious that the combination of desktop and electronic publishing with networking and new structuring of knowledge bases will profoundly reshape not only our ways of publishing, but also our procedures of communicating and retrieving information. It should be noted that a world-wide survey among astronomers and space scientists carried out before the October 1991 colloquium on the various packages and machines used, indicated that TEX-related packages were already in majoritarian use in our community. It has also been stressed at each meeting that the European developments should be carried out in collaboration with what is done in the US (STELLAR project, for instance). American scientists and journal editors actually attended both meetings mentioned above. The paper will offer a review of the status of electronic publishing in astronomy and its possible contribution to advanced information retrieval in this field. It will also report on recent meetings such as the 'Astronomy from Large Databases-2 (ALD-2)' conference dealing with the latest developments in networking, in data, information, and knowledge bases, as well as in the related methodologies.

  15. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  16. Power Electronics Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less

  17. Packaging of electronic modules

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1966-01-01

    Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.

  18. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  19. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  20. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  1. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  2. 21 CFR 1314.110 - Reports for mail-order sales.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Administration, submit the report in electronic form, either via computer disk or direct electronic data... units (e.g., 100 doses per package); (11) Package type (blister pack, etc.); (12) Number of packages...

  3. 21 CFR 1314.110 - Reports for mail-order sales.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Administration, submit the report in electronic form, either via computer disk or direct electronic data... units (e.g., 100 doses per package); (11) Package type (blister pack, etc.); (12) Number of packages...

  4. 21 CFR 1314.110 - Reports for mail-order sales.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Administration, submit the report in electronic form, either via computer disk or direct electronic data... units (e.g., 100 doses per package); (11) Package type (blister pack, etc.); (12) Number of packages...

  5. 21 CFR 1314.110 - Reports for mail-order sales.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Administration, submit the report in electronic form, either via computer disk or direct electronic data... units (e.g., 100 doses per package); (11) Package type (blister pack, etc.); (12) Number of packages...

  6. 21 CFR 1314.110 - Reports for mail-order sales.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Administration, submit the report in electronic form, either via computer disk or direct electronic data... units (e.g., 100 doses per package); (11) Package type (blister pack, etc.); (12) Number of packages...

  7. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  8. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques.

    PubMed

    Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar

    2016-09-01

    In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.

  9. Single-Event Effect (SEE) Survey of Advanced Reconfigurable Field Programmable Gate Arrays: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Allen, Gregory

    2011-01-01

    The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).

  10. AIN-Based Packaging for SiC High-Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Savrun, Ender

    2004-01-01

    Packaging made primarily of aluminum nitride has been developed to enclose silicon carbide-based integrated circuits (ICs), including circuits containing SiC-based power diodes, that are capable of operation under conditions more severe than can be withstood by silicon-based integrated circuits. A major objective of this development was to enable packaged SiC electronic circuits to operate continuously at temperatures up to 500 C. AlN-packaged SiC electronic circuits have commercial potential for incorporation into high-power electronic equipment and into sensors that must withstand high temperatures and/or high pressures in diverse applications that include exploration in outer space, well logging, and monitoring of nuclear power systems. This packaging embodies concepts drawn from flip-chip packaging of silicon-based integrated circuits. One or more SiC-based circuit chips are mounted on an aluminum nitride package substrate or sandwiched between two such substrates. Intimate electrical connections between metal conductors on the chip(s) and the metal conductors on external circuits are made by direct bonding to interconnections on the package substrate(s) and/or by use of holes through the package substrate(s). This approach eliminates the need for wire bonds, which have been the most vulnerable links in conventional electronic circuitry in hostile environments. Moreover, the elimination of wire bonds makes it possible to pack chips more densely than was previously possible.

  11. Reliability and Qualification of Hardware to Enhance the Mission Assurance of JPL/NASA Projects

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    Packaging Qualification and Verification (PQV) and life testing of advanced electronic packaging, mechanical assemblies (motors/actuators), and interconnect technologies (flip-chip), platinum temperature thermometer attachment processes, and various other types of hardware for Mars Exploration Rover (MER)/Mars Science Laboratory (MSL), and JUNO flight projects was performed to enhance the mission assurance. The qualification of hardware under extreme cold to hot temperatures was performed with reference to various project requirements. The flight like packages, assemblies, test coupons, and subassemblies were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases. Qualification/life testing was performed by subjecting flight-like qualification hardware to the environmental temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experimental flight qualification test results will be described in this presentation.

  12. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  13. Lithium-Ion Technology for Aerospace Applications- Advancing Battery Management Electronics

    NASA Astrophysics Data System (ADS)

    Gitzendanner, R.; Jones, E.; Deory, C.; Carmen, D.

    2005-05-01

    Lithium-ion technology offers a unique, weight and volume saving, solution to the power storage needs of space applications. With higher energy and power densities than conventional technologies, such as Nickel-Hydrogen (Ni-H) and Nickel/Cadmium (Ni- Cd), and comparable cycle life and reliability, Lithium-ion technology is gaining interest in many space applications. As the demand for Lithium-ion batteries with high reliability and long life increases, the need for battery management electronics, including individual cell balancing and monitoring, becomes apparent. With onboard electronics, the cells are monitored individually, and are protected from over charge or over discharge by way of integral protection circuitry. State of Charge, State of Health and other useful telemetry can also be calculated by the integrated electronics and reported to the application. Lab-based, and real-life, testing and use of these battery systems has shown the advantages of an integrated electronics package.

  14. Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2015-01-01

    The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.

  15. [The development and operation of a package inserts service system for electronic medical records].

    PubMed

    Yamada, Hidetoshi; Nishimura, Sachiho; Shimamori, Yoshimitsu; Sato, Seiji; Hayase, Yukitoshi

    2003-03-01

    To promote the appropriate use of pharmaceuticals and to prevent side effects, physicians need package inserts on medicinal drugs as soon as possible. A medicinal drug information service system was established for electronic medical records to speed up and increase the efficiency of package insert communications within a medical institution. Development of this system facilitates access to package inserts by, for example, physicians. The time required to maintain files of package inserts was shortened, and the efficiency of the drug information service increased. As a source of package inserts for this system, package inserts using a standard generalized markup language (SGML) form were used, which are accessible to the public on the homepage of the Organization for Pharmaceutical Safety and Research (OPSR). This study found that a delay occurred in communicating revised package inserts from pharmaceutical companies to the OPSR. Therefore a pharmaceutical department page was set up as part of the homepage of the medical institution for electronic medical records to shorten the delay in the revision of package inserts posted on the medicinal drug information service homepage of the OPSR. The usefulness of this package insert service system for electronic medical records is clear. For more effective use of this system based on the OPSR homepage pharmaceutical companies have been requested to provide quicker updating of package inserts.

  16. JTEC Panel report on electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.

  17. Compact fiber optic gyroscopes for platform stabilization

    NASA Astrophysics Data System (ADS)

    Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.

    2013-09-01

    SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.

  18. Packaging Concerns/Techniques for Large Devices

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2009-01-01

    This slide presentation reviews packaging challenges and options for electronic parts. The presentation includes information about non-hermetic packages, space challenges for packaging and complex package variations.

  19. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  20. Thermal Management and Packaging Reliability (Text Version) |

    Science.gov Websites

    Transportation Research | NREL Thermal Management and Packaging Reliability (Text Version ) Thermal Management and Packaging Reliability (Text Version) Learn how NREL's thermal management and ;Boosting Thermal Management & Reliability of Vehicle Power Electronics." Better power electronics

  1. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  2. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  3. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  4. Managing Advanced HIV Disease in a Public Health Approach

    PubMed Central

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg; Asero, Patricia; Bologna, Rosa; Chakroun, Mohamed; Chambal, Lucia; Chiller, Tom; Conradie, Francesca; Eholie, Serge; Frigati, Lisa; Gibb, Diana; Goemaere, Eric; Govender, Nelesh; Grant, Alison; Kumarasamy, Nagalingeswaran; Lalloo, David; Le, Thuy; Letang, Emilio; Mbori-Ngacha, Dorothy; Mfinanga, Sayoki; Nacher, Mathieu; Ribakare, Muhayimpundu; Siegfried, Nandi; Sikwese, Kenly; Tun, Nini; Vidal, Jose E

    2018-01-01

    Abstract In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease. PMID:29514232

  5. Managing Advanced HIV Disease in a Public Health Approach.

    PubMed

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg

    2018-03-04

    In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease.

  6. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high (greater than 0.4 GW) at 500 C in air. The attached SiC diode demonstrated low (less than 3.8 W/mm2) and relatively consistent dynamic resistance from room temperature to 500 C. These results indicate that the prototype package and the compatible die-attach scheme meet the initial design standards for high-temperature, low-power, and long-term operation. This technology will be further developed and evaluated, especially with more mechanical tests of each packaging element for operation at higher temperatures and longer lifetimes.

  7. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal cycles. Corner columns have started showing significant fatigue per optical inspection results.

  8. Current and Future Parts Management at NASA

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  9. Sterile Product Packaging and Delivery Systems.

    PubMed

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  10. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors

    NASA Astrophysics Data System (ADS)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to determine differences in current-voltage (IV) and capacitor-voltage (CV) relationships across variations in capacitor size and dielectric type. This effort requires an approximately 20-step process repeated for two-to-six varieties (dependent on temperature and thermal versus plasma options) of the following dielectrics: HfO2, SiO2, Al2O3, TaOx, and TiO2.

  11. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    PubMed

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

  12. Risk Management of Microelectronics: The NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2005-01-01

    This viewgraph information provides information on how the NASA Electronic Parts and Packaging (NEPP) Program evaluates the reliability of technologies for Electrical, Electronic, and Electromechanical (EEE) parts, and their suitability for spacecraft applications.

  13. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  14. Isolated post resonator mesogyroscope

    NASA Technical Reports Server (NTRS)

    Challoner, Dorian; Peay, Chris; Wellman, Joanne; Shcheglov, Kirill; Hayworth, Ken; Wiberg, Dean; Yee, Karl; Sipppola, Clayton

    2004-01-01

    A new symmetric vibratory gyroscope principle has been devised in which a central post proof mass is counter-rocked against an outer sensing plate such that the motion is isolated from the gyroscope case. Prototype gyroscopes have been designed and fabricated with micromachined silicon at mesoscale (20-cm resonator width), vs. microscale (e.g., 2-mm resonator width) to achieve higher sensitivity and machined precision. This novel mesogyro design arose out of an ongoing technical cooperation between JPL and Boeing begun in 1997 to advance the design of micro-inertial sensors for low-cost space applications. This paper describes the theory of operation of the mesogyro and relationships with other vibratory gyroscopes, the mechanical design, closed loop electronics design, bulk silicon fabrication and packaged gyroscope assembly and test methods. The initial packaged prototype test results are reported for what is believed to be the first silicon mesogyroscope.

  15. Missing data exploration: highlighting graphical presentation of missing pattern.

    PubMed

    Zhang, Zhongheng

    2015-12-01

    Functions shipped with R base can fulfill many tasks of missing data handling. However, because the data volume of electronic medical record (EMR) system is always very large, more sophisticated methods may be helpful in data management. The article focuses on missing data handling by using advanced techniques. There are three types of missing data, that is, missing completely at random (MCAR), missing at random (MAR) and not missing at random (NMAR). This classification system depends on how missing values are generated. Two packages, Multivariate Imputation by Chained Equations (MICE) and Visualization and Imputation of Missing Values (VIM), provide sophisticated functions to explore missing data pattern. In particular, the VIM package is especially helpful in visual inspection of missing data. Finally, correlation analysis provides information on the dependence of missing data on other variables. Such information is useful in subsequent imputations.

  16. An electron-beam dose deposition experiment: TIGER 1-D simulation code versus thermoluminescent dosimetry

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.

    1991-03-01

    The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

  17. Decontamination of food packaging using electron beam—status and prospects

    NASA Astrophysics Data System (ADS)

    Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  18. Nanotechnology: An Untapped Resource for Food Packaging.

    PubMed

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  19. Nanotechnology: An Untapped Resource for Food Packaging

    PubMed Central

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector. PMID:28955314

  20. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  1. Pilot production and advanced development of large-area picosecond photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, Michael J.; Adams, Bernhard W.; Aviles, Melvin; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; Foley, Michael R.; Lyashenko, Alexey; Popecki, Mark A.; Stochaj, Michael E.; Worstell, William A.; Mane, Anil U.; Elam, Jeffrey W.; Siegmund, Oswald H. W.; Ertley, Camden; Frisch, Henry; Elagin, Andrey

    2016-09-01

    We report pilot production and advanced development performance results achieved for Large Area Picosecond Photodetectors (LAPPD). The LAPPD is a microchannel plate (MCP) based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 square centimeters. In December 2015, Incom Inc. completed installation of equipment and facilities for demonstration of early stage pilot production of LAPPD. Initial fabrication trials commenced in January 2016. The "baseline" LAPPD employs an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode and amplified with a stacked chevron pair of "next generation" MCPs produced by applying resistive and emissive atomic layer deposition coatings to borosilicate glass capillary array (GCA) substrates. Signals are collected on RF strip-line anodes applied to the bottom plates which exit the detector via pinfree hermetic seals under the side walls. Prior tests show that LAPPDs have electron gains greater than 107, submillimeter space resolution for large pulses and several mm for single photons, time resolutions of 50 picoseconds for single photons, predicted resolution of less than 5 picoseconds for large pulses, high stability versus charge extraction, and good uniformity. LAPPD performance results for product produced during the first half of 2016 will be reviewed. Recent advances in the development of LAPPD will also be reviewed, as the baseline design is adapted to meet the requirements for a wide range of emerging application. These include a novel ceramic package design, ALD coated MCPs optimized to have a low temperature coefficient of resistance (TCR) and further advances to adapt the LAPPD for cryogenic applications using Liquid Argon (LAr). These developments will meet the needs for DOE-supported RD for the Deep Underground Neutrino Experiment (DUNE), nuclear physics applications such as EIC, medical, homeland security and astronomical applications for direct and indirect photon detection.

  2. Advanced combined iodine dispenser and detector. [for microorganism annihilation in potable water

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Schubert, F. H.; Jensen, F. C.; Powell, J. D.

    1977-01-01

    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals.

  3. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  4. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  5. Electronic Router

    NASA Technical Reports Server (NTRS)

    Crusan, Jason

    2005-01-01

    Electronic Router (E-Router) is an application program for routing documents among the cognizant individuals in a government agency or other organization. E-Router supplants a prior 14 NASA Tech Briefs, May 2005 system in which paper documents were routed physically in packages by use of paper slips, packages could be lost, routing times were unacceptably long, tracking of packages was difficult, and there was a need for much photocopying. E-Router enables a user to create a digital package to be routed. Input accepted by E-Router includes the title of the package, the person(s) to whom the package is to be routed, attached files, and comments to reviewers. Electronic mail is used to notify reviewers of needed actions. The creator of the package can, at any time, see the status of the package in the routing structure. At the end of the routing process, E-Router keeps a record of the package and of approvals and/or concurrences of the reviewers. There are commercial programs that perform the general functions of E-Router, but they are more complicated. E-Router is Web-based, easy to use, and does not require the installation or use of client software.

  6. Packaging films for electronic and space-related hardware

    NASA Astrophysics Data System (ADS)

    Shon, E. M.; Hamberg, O.

    1985-08-01

    Flexible packaging films are used to bag and/or wrap precision cleaned electronic or space hardware to protect them from environmental degradation during shipping and storage. Selection of packaging films depends on a knowledge of product requirements and packaging film characteristics. The literature presently available on protective packaging films has been updated to include new materials and to amplify space-related applications. Presently available packaging film materials are compared for their various characteristics: electrostatic discharge (ESD) control, flame retardancy, water vapor transmission rate, particulate shedding, molecular contamination, and transparency. The tradeoff between product requirements and the characteristics of the packaging films available are discussed. Selection considerations are given for the application of specific materials of space hardware-related applications. Applications for intimate, environmental, and electrostatic protective packaging are discussed.

  7. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  8. Qualification Testing of Engineering Camera and Platinum Resistance Thermometer (PRT) Sensors for Mars Science Laboratory (MSL) Project under Extreme Temperatures to Assess Reliability and to Enhance Mission Assurance

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.

    2008-01-01

    Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.

  9. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing of the Gen4 SWME is underway.

  10. RI 1170 advanced strapdown gyro

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The major components of the RI 1170 gyroscope are described. A detailed functional description of the electronics including block diagrams and photographs of output waveshapes within the loop electronics are presented. An electronic data flow diagram is included. Those gyro subassemblies that were originally planned and subsequently changed or modified for one reason or another are discussed in detail. Variations to the original design included the capacitive pickoffs, torquer flexleads, magnetic suspension, gas bearings, electronic design, and packaging. The selection of components and changes from the original design and components selected are discussed. Device failures experienced throughout the program are reported and design corrections to eliminate the failure modes are noted. Major design deficiencies such as those of the MSE electronics are described in detail. Modifications made to the gas bearing parts and design improvements to the wheel are noted. Changes to the gas bearing prints are included as well as a mathematical analysis of the 1170 gas bearing wheel by computer analysis. The mean free-path effects on gas bearing performance is summarized.

  11. The Electronic Astrophysical Journal Letters Project

    NASA Astrophysics Data System (ADS)

    Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.

    The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.

  12. 1st NASA Electronic Parts Packaging (NEPP) Program Electronic Technology Workshop (ETW)

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    NEPP supports all of NASA for >20 years - 7 NASA Centers and JPL actively participate The NEPP Program focuses on the reliability aspects of electronic devices - Three prime technical areas: Parts (die), Packaging, and Radiation Alternately, reliability may be viewed as: -

  13. rEHR: An R package for manipulating and analysing Electronic Health Record data.

    PubMed

    Springate, David A; Parisi, Rosa; Olier, Ivan; Reeves, David; Kontopantelis, Evangelos

    2017-01-01

    Research with structured Electronic Health Records (EHRs) is expanding as data becomes more accessible; analytic methods advance; and the scientific validity of such studies is increasingly accepted. However, data science methodology to enable the rapid searching/extraction, cleaning and analysis of these large, often complex, datasets is less well developed. In addition, commonly used software is inadequate, resulting in bottlenecks in research workflows and in obstacles to increased transparency and reproducibility of the research. Preparing a research-ready dataset from EHRs is a complex and time consuming task requiring substantial data science skills, even for simple designs. In addition, certain aspects of the workflow are computationally intensive, for example extraction of longitudinal data and matching controls to a large cohort, which may take days or even weeks to run using standard software. The rEHR package simplifies and accelerates the process of extracting ready-for-analysis datasets from EHR databases. It has a simple import function to a database backend that greatly accelerates data access times. A set of generic query functions allow users to extract data efficiently without needing detailed knowledge of SQL queries. Longitudinal data extractions can also be made in a single command, making use of parallel processing. The package also contains functions for cutting data by time-varying covariates, matching controls to cases, unit conversion and construction of clinical code lists. There are also functions to synthesise dummy EHR. The package has been tested with one for the largest primary care EHRs, the Clinical Practice Research Datalink (CPRD), but allows for a common interface to other EHRs. This simplified and accelerated work flow for EHR data extraction results in simpler, cleaner scripts that are more easily debugged, shared and reproduced.

  14. Integrated Electronic Warfare System Advanced Development Model (ADM); Appendix 1 - Functional Requirement Specification.

    DTIC Science & Technology

    1977-10-01

    APPROVED DATE FUNCTION APPROVED jDATE WRITER J . K-olanek 2/6/76 REVISIONS CHK DESCRIPTION REV CHK DESCRIPTION IREV REVISION jJ ~ ~ ~~~ _ II SHEET NO...DOCUMENT (CDBDD) 45 5.5 COMPUTER PROGRAM PACKAGE (CPP)- j 45 5.6 COMPUTER PROGRAM OPERATOR’S MANUAL (CPOM) 45 5.7 COMPUTER PROGRAM TEST PLAN (CPTPL) 45...I LIST OF FIGURES Number Page 1 JEWS Simplified Block Diagram 4 2 System Controller Architecture 5 SIZE CODE IDENT NO DRAWING NO. A 49956 SCALE REV J

  15. Results on 3D interconnection from AIDA WP3

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther; AIDA-WP3

    2016-09-01

    From 2010 to 2014 the EU funded AIDA project established in one of its work packages (WP3) a network of groups working collaboratively on advanced 3D integration of electronic circuits and semiconductor sensors for applications in particle physics. The main motivation came from the severe requirements on pixel detectors for tracking and vertexing at future Particle Physics experiments at LHC, super-B factories and linear colliders. To go beyond the state-of-the-art, the main issues were studying low mass, high bandwidth applications, with radiation hardness capabilities, with low power consumption, offering complex functionality, with small pixel size and without dead regions. The interfaces and interconnects of sensors to electronic readout integrated circuits are a key challenge for new detector applications.

  16. Types, production and assessment of biobased food packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  17. Evaluation of Five Microcomputer CAD Packages.

    ERIC Educational Resources Information Center

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the…

  18. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing capabilities, and average lifetimes of over 320 hours when operated in constant emission mode under elevated pressures, without sacrificing performance. Additionally, a novel packaged ion source for miniature mass spectrometer applications using CNT emitters, a MEMS based Nier-type geometry, and a Low Temperature Cofired Ceramic (LTCC) 3D scaffold with integrated ion optics were developed and characterized. While previous research has shown other devices capable of collecting ion currents on chip, this LTCC packaged MEMS micro-ion source demonstrated improvements in energy and angular dispersion as well as the ability to direct the ions out of the packaged source and towards a mass analyzer. Simulations and experimental design, fabrication, and characterization were used to make these improvements. Finally, novel CNT-FE devices were developed to investigate their potential to perform as active circuit elements in VMD circuits. Difficulty integrating devices at micron-scales has hindered the use of vacuum electronic devices in integrated circuits, despite the unique advantages they offer in select applications. Using a combination of particle trajectory simulation and experimental characterization, device performance in an integrated platform was investigated. Solutions to the difficulties in operating multiple devices in close proximity and enhancing electron transmission (i.e., reducing grid loss) are explored in detail. A systematic and iterative process was used to develop isolation structures that reduced crosstalk between neighboring devices from 15% on average, to nearly zero. Innovative geometries and a new operational mode reduced grid loss by nearly threefold, thereby improving transmission of the emitted cathode current to the anode from 25% in initial designs to 70% on average. These performance enhancements are important enablers for larger scale integration and for the realization of complex vacuum microelectronic circuits.

  19. The NASA Electronic Parts and Packaging (NEPP) Program: Insertion of New Electronics Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2007-01-01

    This viewgraph presentation gives an overview of NASA Electronic Parts and Packaging (NEPP) Program's new electronics technology trends. The topics include: 1) The Changing World of Radiation Testing of Memories; 2) Even Application-Specific Tests are Costly!; 3) Hypothetical New Technology Part Qualification Cost; 4) Where we are; 5) Approaching FPGAs as a More Than a "Part" for Reliability; 6) FPGAs Beget Novel Radiation Test Setups; 7) Understanding the Complex Radiation Data; 8) Tracking Packaging Complexity and Reliability for FPGAs; 9) Devices Supporting the FPGA Need to be Considered; 10) Summary of the New Electronic Technologies and Insertion into Flight Programs Workshop; and 11) Highlights of Panel Notes and Comments

  20. Missing data exploration: highlighting graphical presentation of missing pattern

    PubMed Central

    2015-01-01

    Functions shipped with R base can fulfill many tasks of missing data handling. However, because the data volume of electronic medical record (EMR) system is always very large, more sophisticated methods may be helpful in data management. The article focuses on missing data handling by using advanced techniques. There are three types of missing data, that is, missing completely at random (MCAR), missing at random (MAR) and not missing at random (NMAR). This classification system depends on how missing values are generated. Two packages, Multivariate Imputation by Chained Equations (MICE) and Visualization and Imputation of Missing Values (VIM), provide sophisticated functions to explore missing data pattern. In particular, the VIM package is especially helpful in visual inspection of missing data. Finally, correlation analysis provides information on the dependence of missing data on other variables. Such information is useful in subsequent imputations. PMID:26807411

  1. Hermetic electronics package with dual-sided electrical feedthrough configuration

    DOEpatents

    Shah, Kedar G.; Pannu, Satinderpall S.

    2016-11-22

    A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.

  2. Information Business: Applying Infometry (Informational Geometry) in Cognitive Coordination and Genetic Programming for Electronic Information Packaging and Marketing.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    1994-01-01

    Describes the use of infometry, or informational geometry, to meet the challenges of information service businesses. Highlights include theoretical models for cognitive coordination and genetic programming; electronic information packaging; marketing electronic information products, including cost-benefit analyses; and recapitalization, including…

  3. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  4. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  5. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  6. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  7. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  8. The NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond and Recent Radiation Highlights

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.

  9. 76 FR 52862 - Time for Payment of Certain Excise Taxes, and Quarterly Excise Tax Payments for Small Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...

  10. Qualification of Engineering Camera for Long-Duration Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.

    2012-01-01

    Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.

  11. Emerging Chitosan-Based Films for Food Packaging Applications.

    PubMed

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  12. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  13. Multimedia package for LRFD concrete bridge design.

    DOT National Transportation Integrated Search

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  14. Lumped element filters for electronic warfare systems

    NASA Astrophysics Data System (ADS)

    Morgan, D.; Ragland, R.

    1986-02-01

    Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.

  15. Evaluation of COTS SiGe, SOI, and Mixed Signal Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.

  16. Skylab electronic technological advancements

    NASA Technical Reports Server (NTRS)

    Hornback, G. L.

    1974-01-01

    The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.

  17. Defect printability for high-exposure dose advanced packaging applications

    NASA Astrophysics Data System (ADS)

    Mikles, Max; Flack, Warren; Nguyen, Ha-Ai; Schurz, Dan

    2003-12-01

    Pellicles are used in semiconductor lithography to minimize printable defects and reduce reticle cleaning frequency. However, there are a growing number of microlithography applications, such as advanced packaging and nanotechnology, where it is not clear that pellicles always offer a significant benefit. These applications have relatively large critical dimensions and require ultra thick photoresists with extremely high exposure doses. Given that the lithography is performed in Class 100 cleanroom conditions, it is possible that the risk of defects from contamination is sufficiently low that pellicles would not be required on certain process layer reticles. The elimination of the pellicle requirement would provide a cost reduction by saving the original pellicle cost and eliminating future pellicle replacement and repair costs. This study examines the imaging potential of defects with reticle patterns and processes typical for gold-bump and solder-bump advanced packaging lithography. The test reticle consists of 30 to 90 μm octagonal contact patterns representative of advanced packaging reticles. Programmed defects are added that represent the range of particle sizes (3 to 30 μm) normally protected by the pellicle and that are typical of advanced packaging lithography cleanrooms. The reticle is exposed using an Ultratech Saturn Spectrum 300e2 1X stepper on wafers coated with a variety of ultra thick (30 to 100 μm) positive and negative-acting photoresists commonly used in advanced packaging. The experimental results show that in many cases smaller particles continue to be yield issues for the feature size and density typical of advanced packaging processes. For the two negative photoresists studied it appears that a pellicle is not required for protection from defects smaller than 10 to 15 μm depending on the photoresist thickness. Thus the decision on pellicle usage for these materials would need to be made based on the device fabrication process and the cleanliness of a fabrication facility. For the two positive photoresists studied it appears that a pellicle is required to protect from defects down to 3 μm defects depending on the photoresist thickness. This suggests that a pellicle should always be used for these materials. Since a typical fabrication facility would use both positive and negative photoresists it may be advantageous to use pellicles on all reticles simply to avoid confusion. The cost savings of not using a pellicle could easily be outweighed by the yield benefits of using one.

  18. An Investigation of Nonuniform Dose Deposition From an Electron Beam

    DTIC Science & Technology

    1994-08-01

    to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR

  19. A new high-speed IR camera system

    NASA Technical Reports Server (NTRS)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  20. FFTF Passive Safety Test Data for Benchmarks for New LMR Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.

    Liquid Metal Reactors (LMRs) continue to be considered as an attractive concept for advanced reactor design. Software packages such as SASSYS are being used to im-prove new LMR designs and operating characteristics. Significant cost and safety im-provements can be realized in advanced liquid metal reactor designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associ-ated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. The FFTF passive safety testing pro-gram was developed to examine howmore » specific design elements influenced dynamic re-activity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results to reactors of current interest. The U.S. Department of En-ergy, Office of Nuclear Energy Advanced Reactor Technology program is in the pro-cess of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Benchmarks based on empirical data gathered during operation of the Fast Flux Test Facility (FFTF) as well as design documents and post-irradiation examination will aid in the validation of these software packages and the models and calculations they produce. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs« less

  1. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  2. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  3. Automated Work Package: Conceptual Design and Data Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek

    The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on the frontend aspects of the AWP, the backend data architecture was researched and developed in this effort. The backend design involved data architecture aspects. It was realized through this effort that the key aspects of this design are hierarchy, data configuration and live information, data templates and instances, the flow of work package execution, the introduction of properties, and the means to interface the backend to the frontend. After the backend design was developed, a data structure was built to reflect the developed data architecture. The data structure was developed to accommodate the fifty functionalities identified by the envisioned scenario development. The data structure was evaluated by incorporating an example work order from the nuclear power industry. The implementation resulted in several optimization iterations of the data structure. In addition, the rearrangement of the work order information to fit the data structure highlighted several possibilities for improvement in the current work order design, and significantly reduced the size of the work order.« less

  4. Advances in food packaging films from milk proteins

    USDA-ARS?s Scientific Manuscript database

    Most commercial petroleum-based food packaging films are poor oxygen barriers, do not biodegrade, and some are suspected to even leach compounds into the food product. For instance, three-perfluorinated coatings were banned from convenience food packaging earlier this year. These shortcomings are a ...

  5. Thermal Testing and Quality Assurance of BGA LCC & QFN Electronic Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuper, Cameron Mathias

    The purpose of this project is to experimentally validate the thermal fatigue life of solder interconnects for a variety of surface mount electronic packages. Over the years, there has been a significant amount of research and analysis in the fracture of solder joints on printed circuit boards. Solder is important in the mechanical and electronic functionality of the component. It is important throughout the life of the product that the solder remains crack and fracture free. The specific type of solder used in this experiment is a 63Sn37Pb eutectic alloy. Each package was surrounded conformal coating or underfill material.

  6. Processing of NiTi Reinforced Adaptive Solder for Electronic Packaging

    DTIC Science & Technology

    2004-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PROCESSING OF NITI REINFORCED ADAPTIVE SOLDER FOR ELECTRONIC PACKAGING...March 2004 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Processing of NiTi Reinforced Adaptive Solder for Electronic...reports in the development a process to fabricate solder joints with a fine distribution of shape memory alloys (SMA) NiTi particulates. The

  7. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  8. The MAMMOTH project

    NASA Technical Reports Server (NTRS)

    Gerchar, Tim

    1994-01-01

    On the surface MAMMOTH is a high performance 5.25-inch half-high 8mm helical scan tape drive that records a native 20 Gigabytes of data on Advanced Metal Evaporated media at a sustained throughput of 3 Megabyte per second over a high speed SCSI interface, that is scheduled for production in the second half of 1995. But it's much more than that. Inside its custom designed sheet metal enclosure lies one of the greatest technical achievements of its kind. Exabyte's strategic direction is to increase throughput and capacity while continuing to improve drive, data and media reliability to its products. MAMMOTH adheres to that direction and the description of its technical advances is described in this paper. MAMMOTH can be broken down into four main functional assemblies: high-performance integrated digital electronics, high-reliability tape transport mechanism, high-performance scanner, and advanced metal evaporated media. All this technology is packaged into a standard 5.25-inch half-high form factor that dissipates only 15 watts.

  9. Japan's technology and manufacturing infrastructure

    NASA Astrophysics Data System (ADS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  10. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  11. Application of GA package in functional packaging

    NASA Astrophysics Data System (ADS)

    Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.

    2018-05-01

    The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.

  12. A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver

    NASA Technical Reports Server (NTRS)

    Provencher, Charles E., Jr.; Spence, Rodney L.

    1988-01-01

    The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector.

  13. Development and testing of the Junkeeper Control Corporation integrated programmable electronic controller and hydronics package

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1979-01-01

    Additional developmental work on the existing programmable electronic controller and hydronic package for use with solar heating and cooling systems is summarized. The controller/hydronics subsystems passed all acceptance tests and performance criteria. The subsystems were shown marketable for public use.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying; Li, Hong; Bridges, Denzel

    We report that the continuing miniaturization of microelectronics is pushing advanced manufacturing into nanomanufacturing. Nanojoining is a bottom-up assembly technique that enables functional nanodevice fabrication with dissimilar nanoscopic building blocks and/or molecular components. Various conventional joining techniques have been modified and re-invented for joining nanomaterials. Our review surveys recent progress in nanojoining methods, as compared to conventional joining processes. Examples of nanojoining are given and classified by the dimensionality of the joining materials. At each classification, nanojoining is reviewed and discussed according to materials specialties, low dimensional processing features, energy input mechanisms and potential applications. The preparation of new intermetallicmore » materials by reactive nanoscale multilayer foils based on self-propagating high-temperature synthesis is highlighted. This review will provide insight into nanojoining fundamentals and innovative applications in power electronics packaging, plasmonic devices, nanosoldering for printable electronics, 3D printing and space manufacturing.« less

  15. Joint Communications Support Element: The Voice Heard Round the World

    DTIC Science & Technology

    2013-01-01

    Initial Entry Package ( IEP ), Early Entry Package (EEP), and Joint Mobil- ity Package provide secure and nonsecure voice, video, and data to small mobile...teams operating worldwide. The IEP and EEP can be rapidly scaled to meet force surge require- ments from small dismounted teams up to an advance

  16. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  17. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    PubMed

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  18. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks

    PubMed Central

    Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina

    2018-01-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699

  19. Tool for use in lifting pin supported objects

    NASA Technical Reports Server (NTRS)

    Marzek, R. A.; Read, W. S. (Inventor)

    1974-01-01

    A tool for use in lifting a pin-supported, electronic package mounted in juxtaposition with the surface of an electronic circuit board is described. The tool is configured to be received beneath a pin-supported package and is characterized by a manually operable linkage, including an elongated, rigid link is supported for axial reciprocation and a pivotal link pinned to the body and supported for oscillation induced in response to axial motion imparted to the rigid link. A lifting plate is pivotally coupled to the distal end of the pivotal link so that oscillatory motion imparted to the pivotal link serves to move the plate vertically for elevating the plate into lifting engagement with the electronic package positioned thereabove.

  20. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  1. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  2. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  3. Electromechanical actuation for cryogenic valve control

    NASA Technical Reports Server (NTRS)

    Lister, M. J.; Reichmuth, D. M.

    1993-01-01

    The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

  4. Standardized strapdown inertial component modularity study, volume 2

    NASA Technical Reports Server (NTRS)

    Feldman, J.

    1974-01-01

    To obtain cost effective strapdown navigation, guidance and stabilization systems to meet anticipated future needs a standardized modularized strapdown system concept is proposed. Three performance classes, high, medium and low, are suggested to meet the range of applications. Candidate inertial instruments are selected and analyzed for interface compatibility. Electronic packaging and processing, materials and thermal considerations applying to the three classes are discussed and recommendations advanced. Opportunities for automatic fault detection and redundancy are presented. The smallest gyro and accelerometer modules are projected as requiring a volume of 26 cubic inches and 23.6 cubic inches, respectively. Corresponding power dissipation is projected as 5 watts, and 2.6 watts respectively.

  5. HEMT Amplifiers and Equipment for their On-Wafer Testing

    NASA Technical Reports Server (NTRS)

    Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard

    2008-01-01

    Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.

  6. Advances in vaccine stability monitoring technology.

    PubMed

    Zweig, Stephen E

    2006-08-14

    Electronic time-temperature indicator (eTTI) monitors can be programmed to exactly follow the stability characteristics of vaccines with a high degree of realism. The monitors have a visual output, enabling vaccine status to be assessed at a glance, and can also output more detailed statistical data. When packaged with vaccine vials in groups of about 10 vials per box, the eTTI can remain with a vaccine throughout most of the vaccine's lifetime. The monitors can detect essentially all cold-chain breaks, and can detect issues, such as inadvertent freezing, that are presently not detected by other vaccine stability monitors such as Vaccine Vial Monitors (VVM).

  7. Dissemination Package for Transition into Electronics (TIE) Project, October 1979-June 1980.

    ERIC Educational Resources Information Center

    Evergreen Valley Coll., San Jose, CA.

    This dissemination package consists of a variety of advertising materials, forms, questionnaires, tests, and handouts developed as a part of the Transition into Electronics (TIE) Project. (The TIE Project was a project that developed, implemented, and evaluated a model designed to encourage persons to pursue education and training leading to…

  8. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2010-10-01 2010-10-01 false Electronic Data Transmission Format C Appendix C...

  9. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2011-10-01 2011-10-01 false Electronic Data Transmission Format C Appendix C...

  10. Silicon Carbide Integrated Circuit Chip

    NASA Image and Video Library

    2015-02-17

    A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.

  11. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOEpatents

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  12. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  13. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  14. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  15. High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics.

    PubMed

    Wang, Binghao; Huang, Wei; Chi, Lifeng; Al-Hashimi, Mohammed; Marks, Tobin J; Facchetti, Antonio

    2018-05-22

    Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.

  16. Progress on development of an airborne two-micron IPDA lidar for water vapor and carbon dioxide column measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed

    2017-09-01

    An airborne 2-μm triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  17. Sandia Advanced MEMS Design Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor R.; Allen, James J.; Lantz, Jeffrey W.

    This is a major revision to the Sandia Advanced MEMS Design Tools. It replaces all previous versions. New features in this version: Revised to support AutoCAD 2014 and 2015 This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exists somemore » files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  18. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  19. Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; hide

    2014-01-01

    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.

  20. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    NASA Astrophysics Data System (ADS)

    Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo

    2016-09-01

    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.

  1. A microelectronics approach for the ROSETTA surface science package

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer (Editor); Alkalaj, Leon

    1996-01-01

    In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.

  2. NASA DOD Lead Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  3. Microstructure-Evolution and Reliability Assessment Tool for Lead-Free Component Insertion in Army Electronics

    DTIC Science & Technology

    2008-10-01

    provide adequate means for thermal heat dissipation and cooling. Thus electronic packaging has four main functions [1]: • Signal distribution which... dissipation , involving structural and materials consideration. • Mechanical, chemical and electromagnetic protection of components and... nature when compared to phenomenological models. Microelectronic packaging industry spends typically several months building and reliability

  4. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    NASA Astrophysics Data System (ADS)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  5. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  6. Fiber optic sensors IV; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 13, 14, 1990

    NASA Technical Reports Server (NTRS)

    Kersten, Ralf T. (Editor)

    1990-01-01

    Recent advances in fiber-optic sensor (FOS) technology are examined in reviews and reports. Sections are devoted to components for FOSs, special fibers for FOSs, interferometry, FOS applications, and sensing principles and influence. Particular attention is given to solder glass sealing technology for FOS packaging, the design of optical-fiber current sensors, pressure and temperature effects on beat length in highly birefringent optical fibers, a pressure FOS based on vibrating-quartz-crystal technology, remote sensing of flammable gases using a fluoride-fiber evanescent probe, a displacement sensor with electronically scanned white-light interferometer, the use of multimode laser diodes in low-coherence coupled-cavity interferometry, electronic speckle interferometry compensated for environmentally induced phase noise, a dual-resolution noncontact vibration and displacement sensor based on a two-wavelength source, and fiber optics in composite materials.

  7. Zero-dimensional to three-dimensional nanojoining: current status and potential applications

    DOE PAGES

    Ma, Ying; Li, Hong; Bridges, Denzel; ...

    2016-08-01

    We report that the continuing miniaturization of microelectronics is pushing advanced manufacturing into nanomanufacturing. Nanojoining is a bottom-up assembly technique that enables functional nanodevice fabrication with dissimilar nanoscopic building blocks and/or molecular components. Various conventional joining techniques have been modified and re-invented for joining nanomaterials. Our review surveys recent progress in nanojoining methods, as compared to conventional joining processes. Examples of nanojoining are given and classified by the dimensionality of the joining materials. At each classification, nanojoining is reviewed and discussed according to materials specialties, low dimensional processing features, energy input mechanisms and potential applications. The preparation of new intermetallicmore » materials by reactive nanoscale multilayer foils based on self-propagating high-temperature synthesis is highlighted. This review will provide insight into nanojoining fundamentals and innovative applications in power electronics packaging, plasmonic devices, nanosoldering for printable electronics, 3D printing and space manufacturing.« less

  8. Microelectronics in Japan

    NASA Astrophysics Data System (ADS)

    Boulton, William R.

    1995-02-01

    The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.

  9. Microelectronics in Japan

    NASA Technical Reports Server (NTRS)

    Boulton, William R.

    1995-01-01

    The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.

  10. Roles of chemical metrology in electronics industry and associated environment in Korea: a tutorial.

    PubMed

    Kang, Namgoo; Joong Kim, Kyung; Seog Kim, Jin; Hae Lee, Joung

    2015-03-01

    Chemical metrology is gaining importance in electronics industry that manufactures semiconductors, electronic displays, and microelectronics. Extensive and growing needs from this industry have raised the significance of accurate measurements of the amount of substances and material properties. For the first time, this paper presents information on how chemical metrology is being applied to meet a variety of needs in the aspects of quality control of electronics products and environmental regulations closely associated with electronics industry. For a better understanding of the roles of the chemical metrology within electronics industry, the recent research activities and results in chemical metrology are presented using typical examples in Korea where electronic industry is leading a national economy. Particular attention is paid to the applications of chemical metrology for advancing emerging electronics technology developments. Such examples are a novel technique for the accurate quantification of gas composition at nano-liter levels within a MEMS package, the surface chemical analysis of a semiconductor device. Typical metrological tools are also presented for the development of certified reference materials for fluorinated greenhouse gases and proficiency testing schemes for heavy metals and chlorinated toxic gas in order to cope properly with environmental issues within electronics industry. In addition, a recent technique is presented for the accurate measurement of the destruction and removal efficiency of a typical greenhouse gas scrubber. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  12. Electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  13. Electronic Joint Army/Navy Point Detonating/Delay Fuze

    DTIC Science & Technology

    1982-08-01

    be battery powered and will use an existing S & A , such as an M739 . We recormiended that the fuzes be fired at various zones and high-speed cameras...Demonstrator 10 Power Supply Tasks 47 11 Electronic S & A 43 11.1 Explosive Barrier Module 49 11.2 Internal Development Program 51 12 Fuze Packaging...program, contract number DAAK10-80-C-0049. We included the Electronic S & A and Fuze Packaging sections to present a complete understanding of the overall

  14. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  15. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features that could be detected using the most advanced C-SAM equipment with a skilled operator. Investigation continued using in-house equipment with its limitations. For comparison, representative X-rays of the assemblies were also gathered to show key defect detection features of these non-destructive techniques. Key images gathered and compared are: Compared the images of 2D X-ray and C-SAM for a plastic LGA assembly showing features that could be detected by either NDE technique. For this specific case, X-ray was a clear winner. Evaluated flip-chip CGA and FCBGA assemblies with and without heat sink by C-SAM. Only the FCCGA package that had no heat sink could be fully analyzed for underfill and bump quality. Cross-sectional microscopy did not revealed peripheral delamination features detected by C-SAM. Analyzed a number of fine pitch PBGA assemblies by C-SAM. Even though the internal features of the package assemblies could be detected, C-SAM was unable to detect solder joint failure at either the package or board level. Twenty times touch ups by solder iron with 700degF tip temperature, each with about 5 second duration, did not induce defects to be detected by C-SAM images. Other techniques need to be considered to induce known defects for characterization. Given NASA's emphasis on the use of microelectronic packages and assemblies and quality assurance on workmanship defect detection, understanding key features of various inspection systems that detect defects in the early stages of package and assembly is critical to developing approaches that will minimize future failures. Additional specific, tailored non-destructive inspection approaches could enable low-risk insertion of these advanced electronic packages having hidden and fine features.

  16. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.

    2011-03-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods includingmore » multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.« less

  17. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  18. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  19. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2899] Certain Integrated Circuit Packages Provided With... complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and..., telephone (202) 205-2000. The public version of the complaint can be accessed on the Commission's electronic...

  20. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  1. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  2. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  3. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  4. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Packaging Technology for Dielectric-Coating-Less Heavy Ion Radiation Testing of High-Voltage (HV) Electronic Parts

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew; Chen, Liangyu

    2017-01-01

    Testing high voltage (HV) electronic parts (greater than 300 V) for sudden event effects (SEE) caused by cosmic rays in the space environment, consisting of energetic heavy-ions, and neutron radiation in the upper atmosphere is a crucial step towards using these parts in spacecraft and aircraft. Due to the nature of cosmic radiation and neutrons, electronic parts are tested for SEE without any packaging and/or shielding over the top of the device. In the case of commercial HV parts, the top of the packaging is etched off and then a thin dielectric coating is placed over the part in order to avoid electrical arcing between the device surface and wire bonds and other components. Even though the effects of the thin dielectric layer on SEE testing can be accounted for, the dielectric layer significantly hinders post testing failure analysis. Replicating the test capability of state-of-the-art packaging while eliminating the need for post radiation test processing of the die surface (that obscures failure analysis) is the goal. To that end, a new packaging concept for HV parts has been developed that requires no dielectric coating over the part. Testing of prototype packages used with Schottky diodes (rated at 1200V) has shown no electrical arcing during testing and leakage currents during reverse bias testing are within the manufactures specifications.

  6. Language games: Advanced R & R packages: Book Review

    DOE PAGES

    Hraber, Peter Thomas

    2016-03-23

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  7. Language games: Advanced R & R packages: Book Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter Thomas

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  8. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  9. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  10. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  11. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

    PubMed Central

    Morgan, Martin; Anders, Simon; Lawrence, Michael; Aboyoun, Patrick; Pagès, Hervé; Gentleman, Robert

    2009-01-01

    Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources. Availability and Implementation: This package is implemented in R and available at the Bioconductor web site; the package contains a ‘vignette’ outlining typical work flows. Contact: mtmorgan@fhcrc.org PMID:19654119

  12. Computer Managed Instruction: An Application in Teaching Introductory Statistics.

    ERIC Educational Resources Information Center

    Hudson, Walter W.

    1985-01-01

    This paper describes a computer managed instruction package for teaching introductory or advanced statistics. The instructional package is described and anecdotal information concerning its performance and student responses to its use over two semesters are given. (Author/BL)

  13. Sensors Applications, Volume 3, Sensors in Medicine and Health Care

    NASA Astrophysics Data System (ADS)

    Öberg, P. Åke; Togawa, Tatsuo; Spelman, Francis A.

    2004-08-01

    Taken as a whole, this series covers all major fields of application for commercial sensors, as well as their manufacturing techniques and major types. As such the series does not treat bulk sensors, but rather places strong emphasis on microsensors, microsystems and integrated electronic sensor packages. Each of the individual volumes is tailored to the needs and queries of readers from the relevant branch of industry. A review of applications for point-of-care diagnostics, their integration into portable systems and the comfortable, easy-to-use sensors that allow patients to monitor themselves at home. The book covers such advanced topics as minimal invasive surgery, implantable sensors and prostheses, as well as biocompatible sensing.

  14. Packaging Concerns and Techniques for Large Devices: Challenges for Complex Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    NASA is going to have to accept the use of non-hermetic packages for complex devices. There are a large number of packaging options available. Space application subjects the packages to stresses that they were probably not designed for (vacuum for instance). NASA has to find a way of having assurance in the integrity of the packages. There are manufacturers interested in qualifying non-hermetic packages to MIL-PRF-38535 Class V. Government space users are agreed that Class V should be for hermetic packages only. NASA is working on a new Class for non-hermetic packages for M38535 Appendix B, "Class Y". Testing for package integrity will be required but can be package specific as described by a Package Integrity Test Plan. The plan is developed by the manufacturer and approved by DSCC and government space.

  15. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kee, R.J.; Rupley, F.M.; Meeks, E.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library.more » This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.« less

  16. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  17. New optoelectronic methodology for nondestructive evaluation of MEMS at the wafer level

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Ferguson, Curtis F.; Melson, Michael J.

    2004-02-01

    One of the approaches to fabrication of MEMS involves surface micromachining to define dies on single crystal silicon wafers, dicing of the wafers to separate the dies, and electronic packaging of the individual dies. Dicing and packaging of MEMS accounts for a large fraction of the fabrication costs, therefore, nondestructive evaluation at the wafer level, before dicing, can have significant implications on improving production yield and costs. In this paper, advances in development of optoelectronic holography (OEH) techniques for nondestructive, noninvasive, full-field of view evaluation of MEMS at the wafer level are described. With OEH techniques, quantitative measurements of shape and deformation of MEMS, as related to their performance and integrity, are obtained with sub-micrometer spatial resolution and nanometer measuring accuracy. To inspect an entire wafer with OEH methodologies, measurements of overlapping regions of interest (ROI) on a wafer are recorded and adjacent ROIs are stitched together through efficient 3D correlation analysis algorithms. Capabilities of the OEH techniques are illustrated with representative applications, including determination of optimal inspection conditions to minimize inspection time while achieving sufficient levels of accuracy and resolution.

  18. QEDMOD: Fortran program for calculating the model Lamb-shift operator

    NASA Astrophysics Data System (ADS)

    Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.

    2018-02-01

    We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.

  19. Warning Statements and Safety Practices among Manufacturers and Distributors of Electronic Cigarette Liquids in the United States.

    PubMed

    Fagan, Pebbles; Pokhrel, Pallav; Herzog, Thaddeus A; Guy, Mignonne C; Sakuma, Kari-Lyn K; Trinidad, Dennis R; Cassel, Kevin; Jorgensen, Dorothy; Lynch, Tania; Felicitas-Perkins, Jamie Q; Palafox, Sherilyn; Hamamura, Faith; Maloney, Sarah; Degree, Kaylah; Sterling, Kymberle; Moolchan, Eric; Clanton, Mark S; Eissenberg, Thomas

    2017-05-18

    Prior to the Food and Drug Administration's (FDA) regulation of electronic cigarettes and warning statements related to nicotine addiction, there was no critical examination of manufacturer/distributor voluntary practices that could potentially inform FDA actions aimed to protect consumers. This study examined the content of warning statements and safety characteristics of electronic cigarette liquid bottles using a national sample. Research staff randomly selected four electronic cigarette liquid manufacturers/distributors from four U.S. geographic regions. Staff documented the characteristics of product packaging and content of warning statements on 147 electronic cigarette liquids (0-30 mg/ml of nicotine) purchased online from 16 manufacturers/distributors in April of 2016. Data showed that 97.9% of the electronic cigarette liquid bottles included a warning statement, most of which focused on nicotine exposure rather than health. Only 22.4% of bottles used a warning statement that indicated the product "contained nicotine". Of bottles that advertised a nicotine-based concentration of 12 mg/ml, 26% had a warning statements stated that the product "contains nicotine". None of the statements that indicated that the product "contained nicotine" stated that nicotine was "addictive". All bottles had a safety cap and 12% were in plastic shrink-wrap. Fifty-six percent of the websites had a minimum age requirement barrier that prevented under-aged persons from entering. Most manufacturers/distributors printed a warning statement on electronic cigarette liquid bottles, but avoided warning consumers about the presence and the addictiveness of nicotine. Studies are needed to examine manufacturer/distributor modifications to product packaging and how packaging affects consumer behaviors. These data can inform future FDA requirements related to the packaging and advertising of e-cigarette liquids; regulation related to the content of warning statements, including exposure warning statements, which are not currently mandated; and requirements on websites or language on packaging to help manufacturers adhere to the minimum age of purchase regulation. The data can also be used to help FDA develop additional guidance on the framing of statements on packaging that helps consumers make informed decisions about purchasing the product or protecting young people from use or unintentional exposure to the product. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Study of multilayer polymer materials after ionization treatment

    NASA Astrophysics Data System (ADS)

    Tarasyuk, V. T.; Semkina, A. A.; Solovyeva, V. I.; Fedotova, D. D.; Strokova, N. E.; Malenko, D. M.; Baranov, O. V.; Bakumenko, A. V.; Puchkov, S. N.; Prokopenko, A. V.

    2017-12-01

    Electron-beam technologies of food products processing involves the use of modern packaging materials in form of polymer films of different composition. The objective of the research is to study the impact of accelerated electrons on the structure of the polymeric packaging materials used for storage of agricultural products. It was investigated radiation exposure on film material PE/PA (80/20) with a thickness of 80 mkm. This film used for storage of vegetables and fruits and has the necessary indicators for gas and vapor permeability. Electron beam treatment of the films was performed on a compact radiation sterilization installation with local bio-protection with electron energy of 5 MeV. A polymer films were irradiated with doses from 1 to 10 kGy. Changing the structure of the film composition was monitored by IR spectrometry. As a result of irradiation by accelerated electrons with doses up to 18 kGy is established that the polymer film is modification of the polymeric material in the form of a partial degradation with subsequent intra-molecular crosslinking. This improves the physico-mechanical properties in the transverse direction, and such film can be used for food packaging before electron-beam treatment.

  1. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  2. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  3. NLC Electrical

    Science.gov Websites

    Racks and Cable Plant Instrumentation Systems Tunnel Electronics Enclosures Low Level RF Beam Positron Electronics Vacuum Electronics (Summary) System Notes NLC Electrical System Work Package Task Descriptions

  4. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE PAGES

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-10-25

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  5. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy.

    PubMed

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-01-01

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .

  6. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  7. NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance, An Overview

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.

    2017-01-01

    This presentation will cover NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance Structure, NASA Electronic Parts and Packaging (NEPP) Program, NASA Electronic Parts Assurance Group (NEPAG), examples of assurance challenges, and future challenges.

  8. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  9. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  10. Electronic and software subsystems for an autonomous roving vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Doig, G. A.

    1980-01-01

    The complete electronics packaging which controls the Mars roving vehicle is described in order to provide a broad overview of the systems that are part of that package. Some software debugging tools are also discussed. Particular emphasis is given to those systems that are controlled by the microprocessor. These include the laser mast, the telemetry system, the command link prime interface board, and the prime software.

  11. IONIZING RADIATION AND PACKAGING EFFECTS ON RESPIRATORY BEHAVIOR, FUNGAL GROWTH, AND STORAGE-LIFE OF PEACHES, PRUNUS PERSICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaliwal, A.S.; Salunkhe, D.K.

    1963-01-01

    Investigations were conducted in 1960 to study effects of fast electron and gamma radiations and packaging films on respiratory rate, control of fungal deterioration, and subsequent refrigeration life of peaches. The fungi responsible for deterioration of peaches were also studied in vitro to determine if they were susceptible or resistant to ionizing (fast electron and gamma) radiations. Respiratory behavior of the fruits under normal as well as modified conditions was assessed with a Claypool and Keefer-type respirometer and Orsat- type gas analyzer. Two kinds of polyethylene films were used for packaging fruits. The fruits after treatments and packaging were storedmore » at 40 un. Concent 85% F and 85 per cent relative humidity and at 75 un. Concent 85% F and 35 per cent relative humidity. (auth)« less

  12. 49 CFR 173.472 - Requirements for exporting DOT Specification Type B and fissile packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or (202) 366-3650, or by electronic mail (e-mail) to “[email protected]” Each request is considered in... the package identification marking indicated in the U.S. Competent Authority Certificate. (e) Before... into or through which the package will be transported, unless the offeror has documentary evidence that...

  13. Solving PDEs with Intrepid

    DOE PAGES

    Bochev, P.; Edwards, H. C.; Kirby, R. C.; ...

    2012-01-01

    Intrepid is a Trilinos package for advanced discretizations of Partial Differential Equations (PDEs). The package provides a comprehensive set of tools for local, cell-based construction of a wide range of numerical methods for PDEs. This paper describes the mathematical ideas and software design principles incorporated in the package. We also provide representative examples showcasing the use of Intrepid both in the context of numerical PDEs and the more general context of data analysis.

  14. Drug packaging in 2015: risky industry choices and lax regulation.

    PubMed

    2016-06-01

    Prescrire examined the packaging quality of 240 drugs in 2015. No new advances were identified, but drug packaging continues to expose patients to a variety of dangers. Some past advances persist: for example, INNs are often more legible, and recent patient leaflets tend to be clearer and more informative. But these measures are not applied to all drugs, and are rarely applied retroactively to older drugs. The overall picture in 2015 is that many drugs are difficult to identify, risky or downright dangerous to prepare, or supplied with patient leaflets that fail to correctly inform patients about their medication. And measures to prevent drug poisoning in children need to be completely rethought. It is high time for regulators and policy makers to take the issue of drug packaging seriously, so blatant are the signs of their failure to do so: the increasing use of bulk bottles for new drugs; failure to implement guidelines on safe drug packaging (unit-dose presentations, appropriate dosing devices, etc.); and expanding umbrella brands which, given the dangers they pose to patients, should be banned instead. All things considered, healthcare professionals and patients must remain vigilant and report any dangers they identify. A major European initiative on drug packaging is becoming increasingly necessary.

  15. Nimbus D RMP program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an advanced long life rate measuring package, designed for a five year useful life as a meteorological satellite control sensor is discussed. The primary function of the rate mesuring package is to provide rate information for the reaction wheel and gas jet torquing devices that are used to damp spacecraft oscillations and to constrain the spacecraft to the required attitude with respect to the orbital plane. The specifications for the rate measuring package sensor are described. Application of the rate measuring package to the Nimbus D satellite is proposed.

  16. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  17. Continued advances in high brightness fiber-coupled laser modules for efficient pumping of fiber and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Hemenway, M.; Chen, Z.; Urbanek, W.; Dawson, D.; Bao, L.; Kanskar, M.; DeVito, M.; Martinsen, R.

    2018-02-01

    Both the fibber laser and diode-pumped solid-state laser market continue to drive advances in pump diode module brightness. We report on the continued progress by nLIGHT to develop and deliver the highest brightness diode-laser pumps using single-emitter technology. Continued advances in multimode laser diode technology [13] and fiber-coupling techniques have enabled higher emitter counts in the element packages, enabling us to demonstrate 305 W into 105 μm - 0.16 NA. This brightness improvement is achieved by leveraging our prior-reported package re-optimization, allowing an increase in the emitter count from two rows of nine emitters to two rows of twelve emitters. Leveraging the two rows off twelve emitter architecture,, product development has commenced on a 400 W into 200 μm - 00.16 NA package. Additionally, the advances in pump technology intended for CW Yb-doped fiber laser pumping has been leveraged to develop the highest brightness 793 nm pump modules for 2 μm Thulium fiber laser pumping, generating 150 W into 200 μm - 0.18 NA and 100 W into 105 μm - 0.15 NA. Lastly, renewed interest in direct diode materials processing led us to experiment with wavelength multiplexing our existing state of the art 200 W, 105 μm - 00.15 NA package into a combined output of 395 WW into 105 μm - 0.16 NA.

  18. Warpage Measurement of Thin Wafers by Reflectometry

    NASA Astrophysics Data System (ADS)

    Ng, Chi Seng; Asundi, Anand Krishna

    To cope with advances in the electronic and portable devices, electronic packaging industries have employed thinner and larger wafers to produce thinner packages/ electronic devices. As the thickness of the wafer decrease (below 250um), there is an increased tendency for it to warp. Large stresses are induced during manufacturing processes, particularly during backside metal deposition. The wafers bend due to these stresses. Warpage results from the residual stress will affect subsequent manufacturing processes. For example, warpage due to this residual stresses lead to crack dies during singulation process which will severely reorient the residual stress distributions, thus, weakening the mechanical and electrical properties of the singulated die. It is impossible to completely prevent the residual stress induced on thin wafers during the manufacturing processes. Monitoring of curvature/flatness is thus necessary to ensure reliability of device and its uses. A simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been developed and this project aims to take it to the next step for residual stress and full field surface shape measurement. The system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure slope and curvature. In this study, slope of the surface were obtain using the versatility of computer aided reflection grating method to manipulate and generate gratings in two orthogonal directions. The curvature and stress can be evaluated by performing a single order differentiation on slope data.

  19. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  20. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  1. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  2. Long life assurance study for manned spacecraft long life hardware. Volume 2: Long life assurance studies of EEE parts and packaging

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines for the design, development, and fabrication of electronic components and circuits for use in spacecraft construction are presented. The subjects discussed involve quality control procedures and test methodology for the following subjects: (1) monolithic integrated circuits, (2) hybrid integrated circuits, (3) transistors, (4) diodes, (5) tantalum capacitors, (6) electromechanical relays, (7) switches and circuit breakers, and (8) electronic packaging.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  4. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  5. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  6. Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems

    NASA Astrophysics Data System (ADS)

    Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter

    The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.

  7. 7 CFR 54.1016 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... applicant under the regulations, or other notification concerning the determination of compliance of...

  8. Electronic packaging: new results in singulation by Laser Microjet

    NASA Astrophysics Data System (ADS)

    Wagner, Frank; Sibailly, Ochelio; Richerzhagen, Bernold

    2004-07-01

    Cutting electronic packages that are produced in a matrix array fashion is an important process and deals with the ready-to-use devices. Thus an increase in the singulation yield is directly correlated to an increase in benefit. Due to the usage of different substrate materials, the saws encounter big problems in terms of lifetime and constancy of cut quality in these applications. Today"s equipment manufacturers are not yet in the position to propose an adequate solution for all types of packages. Compared to classical laser cutting, the water-jet guided laser technology minimizes the heat damages in any kind of sample. This new material processing method consists in guiding a laser beam inside a hair thin, lowpressure water-jet by total internal reflection, and is applied to package singulation since two years approximately. Using a frequency doubled Nd:YAG laser guided by a water jet, an LTCC-ceramics based package is singulated according to a scribe and break process. Speeds of 2-10 mm/s are reached in the LTTC and 40 mm/s in the mold compound. The process is wear-free and provides very good edge quality of the LTCC and the mold compound as well as reliable separation of the packages.

  9. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  10. The Jovian Electron and Ion Spectrometer (JEI) for the JUICE mission

    NASA Astrophysics Data System (ADS)

    Fränz, M.; Bührke, U.; Ferreira, P.; Fischer, H.; Heumüller, P.; Krupp, N.; Kühne, W.; Roussos, E.

    2017-09-01

    The magnetosphere of Jupiter is apart from the Sun the strongest source of charged particles in the Solar system. The interaction of these particles with the exospheres of the Jovian moons forms one of the most complex plasma laboratories encountered by human space flight. For this reason the plasma analyzer package forms a crucial experiment of the Jupiter Icy Moon Explorer (JUICE). As part of the Plasma Environment Package (PEP) we here describe a combined electron and ion spectrometer which is able to measure the electron and ion distribution functions in the energy range 1 to 50000 eV with high sensitivity and time resolution. This instrument is called the Jovian Electron and Ion Analyzer, JEI.

  11. Recent trends and future of pharmaceutical packaging technology

    PubMed Central

    Zadbuke, Nityanand; Shahi, Sadhana; Gulecha, Bhushan; Padalkar, Abhay; Thube, Mahesh

    2013-01-01

    The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS) vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD) coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future. PMID:23833515

  12. NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2008-01-01

    This viewgraph presentation reviews NASA's Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission needs. The NEPP Program focuses on the reliability aspects of electronic devices. Three principal aspects to this reliability: (1) lifetime, (2) effects of space radiation and the space environment, and (3) creation and maintenance of the assurance support infrastructure required for success.

  13. EEE Links. Volume 5

    NASA Technical Reports Server (NTRS)

    Humphrey, Robert (Editor)

    1999-01-01

    The EEE Links Newsletter is a quarterly publication produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The newsletter is produced as an electronic format deliverable made available via the referenced www site administered by Code 562, The newsletter publishes brief articles on topics of interest to NASA programs and projects in the area of electronic parts and packaging. The newsletter does not provide information pertaining to patented or proprietary information. The information provided is at the level of that produced by industry and university researchers and is published at national and international conferences.

  14. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  15. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  16. Status and Trend of Automotive Power Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  17. Thick resist for MEMS processing

    NASA Astrophysics Data System (ADS)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging technology. Uniformity and edge bead control defined the success of process implementation. Today advanced packaging solutions are created with thick photoresist coatings. The techniques and results will be presented.

  18. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  19. Motor/Generator and Inverter Characterization for Flywheel System Applications

    NASA Technical Reports Server (NTRS)

    Tamarcus, Jeffries L.

    2004-01-01

    The Advanced Electrical Systems Development Branch at NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheels systems for satellite energy storage and attitude applications. These flywheels will serve as replacement for chemical nickel hydrogen, nickel cadmium batteries and gyroscopic wheels. The advantages of using flywheel systems for energy storage on satellites are high energy density, high power density, long life, deep depth of discharge, and broad operating temperature ranges. A flywheel system for space applications consist of a number of flywheel modules, the motor/generator and magnetic bearing, and an electronics package. The motor/generator electronics package includes a pulse-width modulated inverter that drives the flywheel permanent magnet motor/generator located at one end of the shaft. This summer, I worked under the direct supervision of my mentor, Walter Santiago, and the goal for this summer was to characterize motor generator and inverter attributes in order to increase their viability as a more efficient energy storage source for space applications. To achieve this goal, magnetic field measurements around the motor/generator permanent magnet and the impedance of the motor/generator three phase windings were characterized, and a recreation of the inverter pulse width modulated control system was constructed. The Flywheel modules for space use are designed to maximize energy density and minimize loss, and attaining these values will aid in locating and reducing losses within the flywheel system as a whole, making flywheel technology more attractive for use as energy storage in future space applications.

  20. Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms.

    PubMed

    Castaño-Díez, Daniel; Kudryashev, Mikhail; Stahlberg, Henning

    2017-02-01

    Cryo electron tomography allows macromolecular complexes within vitrified, intact, thin cells or sections thereof to be visualized, and structural analysis to be performed in situ by averaging over multiple copies of the same molecules. Image processing for subtomogram averaging is specific and cumbersome, due to the large amount of data and its three dimensional nature and anisotropic resolution. Here, we streamline data processing for subtomogram averaging by introducing an archiving system, Dynamo Catalogue. This system manages tomographic data from multiple tomograms and allows visual feedback during all processing steps, including particle picking, extraction, alignment and classification. The file structure of a processing project file structure includes logfiles of performed operations, and can be backed up and shared between users. Command line commands, database queries and a set of GUIs give the user versatile control over the process. Here, we introduce a set of geometric tools that streamline particle picking from simple (filaments, spheres, tubes, vesicles) and complex geometries (arbitrary 2D surfaces, rare instances on proteins with geometric restrictions, and 2D and 3D crystals). Advanced functionality, such as manual alignment and subboxing, is useful when initial templates are generated for alignment and for project customization. Dynamo Catalogue is part of the open source package Dynamo and includes tools to ensure format compatibility with the subtomogram averaging functionalities of other packages, such as Jsubtomo, PyTom, PEET, EMAN2, XMIPP and Relion. Copyright © 2016. Published by Elsevier Inc.

  1. Transmission of ˜ 10 keV electron beams through thin ceramic foils: Measurements and Monte Carlo simulations of electron energy distribution functions

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Heindl, T.; Skrobol, C.; Wieser, J.; Krücken, R.; Ulrich, A.

    2008-07-01

    Electron beams with particle energy of ~10 keV were sent through 300 nm thick ceramic (Si3N4 + SiO2) foils and the resulting electron energy distribution functions were recorded using a retarding grid technique. The results are compared with Monte Carlo simulations performed with two publicly available packages, Geant4 and Casino v2.42. It is demonstrated that Geant4, unlike Casino, provides electron energy distribution functions very similar to the experimental distributions. Both simulation packages provide a quite precise average energy of transmitted electrons: we demonstrate that the maximum uncertainty of the calculated values of the average energy is 6% for Geant4 and 8% for Casino, taking into account all systematic uncertainties and the discrepancies in the experimental and simulated data.

  2. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.

    PubMed

    Fang, Hui; Zhao, Jianing; Yu, Ki Jun; Song, Enming; Farimani, Amir Barati; Chiang, Chia-Han; Jin, Xin; Xue, Yeguang; Xu, Dong; Du, Wenbo; Seo, Kyung Jin; Zhong, Yiding; Yang, Zijian; Won, Sang Min; Fang, Guanhua; Choi, Seo Woo; Chaudhuri, Santanu; Huang, Yonggang; Alam, Muhammad Ashraful; Viventi, Jonathan; Aluru, N R; Rogers, John A

    2016-10-18

    Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO 2 ) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO 2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.

  3. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Song, Enming; Farimani, Amir Barati; Chiang, Chia-Han; Jin, Xin; Xu, Dong; Du, Wenbo; Seo, Kyung Jin; Zhong, Yiding; Yang, Zijian; Won, Sang Min; Fang, Guanhua; Choi, Seo Woo; Chaudhuri, Santanu; Huang, Yonggang; Alam, Muhammad Ashraful; Viventi, Jonathan; Aluru, N. R.; Rogers, John A.

    2016-01-01

    Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants. PMID:27791052

  4. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  5. Diamond-based heat spreaders for power electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging potential of the two heat-spreading solutions invoked was evaluated. This study was carried out within the framework of a French-American collaboration between the Electrical Engineering department of the University of Nebraska-Lincoln (United States, U.S.) and the Institute of Condensed Matter Chemistry of the University of Bordeaux (France). This study was financed by the Office of Naval Research in the U.S., and by the Region Aquitaine in France.

  6. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  7. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  8. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  9. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering

    PubMed Central

    2015-01-01

    Summary: dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R's rich ecosystem of packages for performing hierarchical clustering of items. Availability and implementation: The dendextend R package (including detailed introductory vignettes) is available under the GPL-2 Open Source license and is freely available to download from CRAN at: (http://cran.r-project.org/package=dendextend) Contact: Tal.Galili@math.tau.ac.il PMID:26209431

  10. A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments.

    PubMed

    Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T

    2012-08-01

    InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.

  11. Modeling and MBL: Software Tools for Science.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…

  12. Conversion of continuous-direct-current TIG welder to pulse-arc operation

    NASA Technical Reports Server (NTRS)

    Lien, D. R.

    1969-01-01

    Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.

  13. Materials for High-Density Electronic Packaging and Interconnection

    DTIC Science & Technology

    1990-04-10

    play a prominent role in the future. Glass and Porcelain The earliest use of electronic ceramics was as insulators for carrying telegraph lines...Administration 61L & CORES , (Ot. stem. SAI WCJm 76. LOISS (C". SUMt *oW WVCf B’%2101 Constitution Avenue. N W Washington, D.C. 20418 Washington. D.C. 20301 G...Density Packaging 84 Tape Automated Bonding 87 Diamond 88 Superconductors 88 Composites 89 Materials for Very-High-Frequency Digital Systems 91

  14. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  15. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    PubMed

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  16. NMRbox: A Resource for Biomolecular NMR Computation.

    PubMed

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  17. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging that can be used to explain the influence of dispersion on the thermochemistry of large hydrocarbons, including fuels important to combustion technologies.« less

  18. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  19. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  20. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  1. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ...In this final rule, PHMSA is amending packaging requirements in the Hazardous Materials Regulations to enhance compliance flexibility, improve clarity, and reduce regulatory burdens. Specifically, we are revising several packaging related definitions; adding provisions to allow more flexibility when preparing and transmitting closure instructions, including conditions under which closure instructions may be transmitted electronically; adding a requirement for shippers to retain packaging closure instructions; incorporating new language that will allow for a practicable means of stenciling the ``UN'' symbol on packagings; and clarifying a requirement to document the methodology used when determining whether a change in packaging configuration requires retesting as a new design or may be considered a variation of a previously tested design. This final rule also incorporates requirements for construction, maintenance, and use of Large Packagings.

  2. PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.

    2018-03-01

    The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.

  3. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  4. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  5. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  6. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  7. 24 CFR 208.108 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... package to process certifications and recertifications and to provide subsidy billings to HUD must update their software packages and begin electronic transmission of that data in a HUD specified format by... TRANSMISSION OF REQUIRED DATA FOR CERTIFICATION AND RECERTIFICATION AND SUBSIDY BILLING PROCEDURES FOR...

  8. 24 CFR 208.108 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... package to process certifications and recertifications and to provide subsidy billings to HUD must update their software packages and begin electronic transmission of that data in a HUD specified format by... TRANSMISSION OF REQUIRED DATA FOR CERTIFICATION AND RECERTIFICATION AND SUBSIDY BILLING PROCEDURES FOR...

  9. 24 CFR 208.108 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... package to process certifications and recertifications and to provide subsidy billings to HUD must update their software packages and begin electronic transmission of that data in a HUD specified format by... TRANSMISSION OF REQUIRED DATA FOR CERTIFICATION AND RECERTIFICATION AND SUBSIDY BILLING PROCEDURES FOR...

  10. 24 CFR 208.108 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... package to process certifications and recertifications and to provide subsidy billings to HUD must update their software packages and begin electronic transmission of that data in a HUD specified format by... TRANSMISSION OF REQUIRED DATA FOR CERTIFICATION AND RECERTIFICATION AND SUBSIDY BILLING PROCEDURES FOR...

  11. A blended learning approach to teaching CVAD care and maintenance.

    PubMed

    Hainey, Karen; Kelly, Linda J; Green, Audrey

    2017-01-26

    Nurses working within both acute and primary care settings are required to care for and maintain central venous access devices (CVADs). To support these nurses in practice, a higher education institution and local health board developed and delivered CVAD workshops, which were supported by a workbook and competency portfolio. Following positive evaluation of the workshops, an electronic learning (e-learning) package was also introduced to further support this clinical skill in practice. To ascertain whether this blended learning approach to teaching CVAD care and maintenance prepared nurses for practice, the learning package was evaluated through the use of electronic questionnaires. Results highlighted that the introduction of the e-learning package supported nurses' practice, and increased their confidence around correct clinical procedures.

  12. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    NASA Astrophysics Data System (ADS)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  13. Information Technology.

    ERIC Educational Resources Information Center

    Marcum, Deanna; Boss, Richard

    1983-01-01

    Relates office automation to its application in libraries, discussing computer software packages for microcomputers performing tasks involved in word processing, accounting, statistical analysis, electronic filing cabinets, and electronic mail systems. (EJS)

  14. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  15. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. Copyright © 2015. Published by Elsevier B.V.

  16. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  17. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  18. Control Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Boeing Commercial Airplane Company's Flight Control Department engineers relied on Langley developed software package known as ORACLS to develop an advanced control synthesis package for both continuous and discrete control system. Package was used by Boeing for computerized analysis of new system designs. Resulting applications include a multiple input/output control system for the terrain-following navigation equipment of the Air Forces B-1 Bomber, and another for controlling in flight changes of wing camber on an experimental airplane. ORACLS is one of 1,300 computer programs available from COSMIC.

  19. Radiation treatment for sterilization of packaging materials

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.

    2007-08-01

    Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.

  20. Electron treatment of wood pulp for the viscose process

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  1. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    ERIC Educational Resources Information Center

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  2. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  3. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  4. Special Section on InterPACK 2017—Part 1

    DOE PAGES

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan; ...

    2018-03-02

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  5. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  6. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  7. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  8. Special Section on InterPACK 2017—Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  9. Guest Editorial: Special Section on InterPACK 2017 - Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Mysore, Kaushik; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  10. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  11. A New Electron Source for Laboratory Simulation of the Space Environment

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian

    2012-01-01

    We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses

  12. OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics

    DOE PAGES

    Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.

    2013-02-06

    We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less

  13. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    NASA Astrophysics Data System (ADS)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  14. Molding compound trends in a denser packaging world: Qualification tests and reliability concerns

    NASA Astrophysics Data System (ADS)

    Nguyen, L. T.; Lo, R. H. Y.; Chen, A. S.; Belani, J. G.

    1993-12-01

    Molding compound development has traditionally been driven by the memory market, then subsequent applications filter down to other IC technologies such as logic, analog, and ASIC. However, this strategy has changed lately with the introduction of thin packages such as PQFP & TSOP. Rather than targeting a compound for a family of IC such as DRAM or SRAM, compound development efforts are now focused at specific classes of packages. The configurations of these thin packages impose new functional requirements that need to be revisited to provide the optimized combination of properties. The evolution of qualification tests mirrors the advances in epoxy and compounding technologies. From the first standard novolac-based epoxies of the 1970s to the latest 3(sup rd)-generation ultra-low stress materials, longer test times at increasingly harsher environments were achieved. This paper benchmarks the current reliability tests used by the electronic industry, examines those tests that affect and are affected by the molding compounds, discusses the relevance of accelerated testing, and addresses the major reliability issues facing current molding compound development efforts. Six compound-related reliability concerns were selected: moldability, package stresses, package cracking, halogen-induced intermetallic growth at bond pads, moisture-induced corrosion, and interfacial delamination. Causes of each failure type are surveyed and remedies are recommended. Accelerated tests are designed to apply to a limited quantity of devices, bias, or environmental conditions larger than usual ratings, to intensify failure mechanisms that would occur under normal operating conditions. The observed behavior is then extrapolated from the lot to the entire population. Emphasis is on compressing the time necessary to obtain reliability data. This approach has two main drawbacks. With increasingly complex devices, even accelerated tests are expensive. And with new technologies, it becomes difficult to ascertain that the applied stress 1) induces the failure phenomenon linked with usual field conditions, and 2) does not create any new ones. Technology evolution and reliability testing are interdependent. Devices get larger with increasingly smaller features and more complex geometries. Molding compounds have evolved considerably over the past decade to provide ultra-low stress levels and moldability for thin packages.

  15. NASA EEE Parts 2014 Year in Review

    NASA Technical Reports Server (NTRS)

    Lee, Sara-Anne

    2015-01-01

    The NASA Electronic Parts and Packaging Program continue to support Electrical, Electronic and Electromagnetic Parts for the agency with an eventful year of workshops, innovations, testing and challenges.

  16. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  17. 49 CFR 173.310 - Exceptions for radiation detectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.310 Exceptions for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization chambers, herein referred to as “radiation detectors,” that contain only Division 2.2 gases, are excepted...

  18. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  19. My Favorite Things Electronically Speaking, 1997 Edition.

    ERIC Educational Resources Information Center

    Glantz, Shelley

    1997-01-01

    Responding to an informal survey, 96 media specialists named favorite software, CD-ROMs, and online sites. This article lists automation packages, electronic encyclopedias, CD-ROMs, electronic magazine indexes, CD-ROM and online database services, electronic sources of current events, laser disks for grades 6-12, word processing programs for…

  20. Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.

    PubMed

    Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R

    2017-01-01

    A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.

  1. Battery packaging - Technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  2. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and data organization, fast aerial imaging applications, including the real time LWIR image mosaic for Google Earth, have been realized for NASA fs LWIR QWIP instrument. MAICSS is a significant improvement and miniaturization of current multisensor technologies. Structurally, it has a complete modular and solid-state design. Without rotating hard drives and other moving parts, it is operational at high altitudes and survivable in high-vibration environments. It is assembled from a suite of miniaturized, precision-machined, standardized, and stackable interchangeable embedded instrument modules. These stackable modules can be bolted together with the interconnection wires inside for the maximal simplicity and portability. Multiple modules are electronically interconnected as stacked. Alternatively, these dedicated modules can be flexibly distributed to fit the space constraints of a flying vehicle. As a flexibly configurable system, MAICSS can be tailored to interface a variety of multisensor packages. For example, with a 1,024x1,024 pixel LWIR and a 8,984x6,732 pixel EO payload, the complete MAICSS volume is approximately 7x9x11 in. (=18x23x28 cm), with a weight of 25 lb (=11.4 kg).

  3. Utilization of Pb-free solders in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  4. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    PubMed

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-05-13

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  5. Distinct DNA Exit and Packaging Portals in the Virus Acanthamoeba polyphaga mimivirus

    PubMed Central

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-01-01

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses. PMID:18479185

  6. Optomechanical Design and Characterization of a Printed-Circuit-Board-Based Free-Space Optical Interconnect Package

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.

    1999-09-01

    We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

  7. 3D interconnect metrology in CMS/ITRI

    NASA Astrophysics Data System (ADS)

    Ku, Y. S.; Shyu, D. M.; Hsu, W. T.; Chang, P. Y.; Chen, Y. C.; Pang, H. L.

    2011-05-01

    Semiconductor device packaging technology is rapidly advancing, in response to the demand for thinner and smaller electronic devices. Three-dimensional chip/wafer stacking that uses through-silicon vias (TSV) is a key technical focus area, and the continuous development of this novel technology has created a need for non-contact characterization. Many of these challenges are novel to the industry due to the relatively large variety of via sizes and density, and new processes such as wafer thinning and stacked wafer bonding. This paper summarizes the developing metrology that has been used during via-middle & via-last TSV process development at EOL/ITRI. While there is a variety of metrology and inspection applications for 3D interconnect processing, the main topics covered here are via CD/depth measurement, thinned wafer inspection and wafer warpage measurement.

  8. 3D integrated superconducting qubits

    NASA Astrophysics Data System (ADS)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  9. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  10. Open-Source Tools for Enhancing Full-Text Searching of OPACs: Use of Koha, Greenstone and Fedora

    ERIC Educational Resources Information Center

    Anuradha, K. T.; Sivakaminathan, R.; Kumar, P. Arun

    2011-01-01

    Purpose: There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text…

  11. 77 FR 12784 - Lifeline and Link Up Reform and Modernization, Advancing Broadband Availability Through Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... whether ETCs should be required to apply the Lifeline discount on all of their voice and data packages... governmental data sources would both improve the accuracy of eligibility determinations and ensure that only... discount on all of their service plans, including premium plans and packages that contain services other...

  12. Apparatus and method for fabricating a microbattery

    DOEpatents

    Shul, Randy J.; Kravitz, Stanley H.; Christenson, Todd R.; Zipperian, Thomas E.; Ingersoll, David

    2002-01-01

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  13. Introduction and NASA Electronic Parts and Packaging (NEPP) Program Overview

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2014-01-01

    This presentation includes an introduction to the space radiation environment, the effects on electronics, the environment in action, flight projects, mission needs, and radiation hardness assurance (RHA).

  14. 21 CFR 111.25 - What are the requirements under this subpart D for written procedures?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Equipment and Utensils § 111... dietary supplement; (b) Calibrating, inspecting, and checking automated, mechanical, and electronic... other contact surfaces that are used to manufacture, package, label, or hold components or dietary...

  15. 21 CFR 111.25 - What are the requirements under this subpart D for written procedures?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Equipment and Utensils § 111... dietary supplement; (b) Calibrating, inspecting, and checking automated, mechanical, and electronic... other contact surfaces that are used to manufacture, package, label, or hold components or dietary...

  16. 16 CFR 260.2 - Scope of guides.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... directly or by implication, through words, symbols, emblems, logos, depictions, product brand names, or... electronic mail. The guides apply to any claim about the environmental attributes of a product, package or service in connection with the sale, offering for sale, or marketing of such product, package or service...

  17. 78 FR 41721 - New Standards to Enhance Package Visibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... supporting electronic documentation including piece-level address or ZIP+4[supreg] Code information effective... package strategy relies on the availability of piece- level information provided through the widespread use of IMpb. IMpb can offer a number of benefits to mailers by providing piece- level visibility...

  18. Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package

    ERIC Educational Resources Information Center

    Ibrahim, Dogan

    2009-01-01

    The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…

  19. 77 FR 18707 - USPS Package Intercept-New Product Offerings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... service that replaced the former recall of mail process. Plans were announced to implement new features.... Additionally, customers using the electronic process will have the option of adding selected extra services to... POSTAL SERVICE 39 CFR Part 111 USPS Package Intercept--New Product Offerings AGENCY: Postal...

  20. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  1. Ion resonances and ELF wave production by an electron beam injected into the ionosphere - ECHO 6

    NASA Astrophysics Data System (ADS)

    Winckler, J. R.; Steffen, J. E.; Malcolm, P. R.; Erickson, K. N.; Abe, Y.; Swanson, R. L.

    1984-09-01

    Two effects observed with electron antennas ejected from a sounding rocket launched into the ionosphere in March 1983 carrying electron beam guns are discussed. The sensor packages were ejected and travelled parallel to the vehicle trajectory. Electric potentials were measured between the single probes and a plasma diagnostic package while the gun injected electrons into the ionosphere in perpendicular and parallel 1 kHz directions. Signal pulses over the dc-1250 kHz range were detected. A kHz gun frequency caused a signal that decreased by two orders of magnitude between 45-90 m from the beam field line. However, the signal was detectable at 1 mV/m at 120 m, supporting earlier data that indicated that pulsed electron beams can cause ELF waves in space. Beam injection parallel to the magnetic field produced an 840 Hz resonance that could be quenched by activation of a transverse beam.

  2. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  3. NREL in the News | Transportation Research | NREL

    Science.gov Websites

    Promises Power Electronics Innovation Wide bandgap (WBG) technology promises to dramatically increase performance, reduce cost, and improve reliability of electronics packaging in electric-drive vehicles and Department's new Manufacturing Innovation Institute for Next Generation Power Electronics to accelerate

  4. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  5. Meat packaging solutions to current industry challenges: A review.

    PubMed

    Holman, Benjamin W B; Kerry, Joseph P; Hopkins, David L

    2018-04-30

    Many advances have occurred in the field of smart meat packaging, and the potential for these to be used as tools that respond to challenges faced by industry is exciting. Here, we review packaging solutions to several immediate concerns, encompassing dark cutting, purge and yield losses, product traceability and provenance, packaging durability, microbial spoilage and safety, colour stability, environmental impacts, and the preservation of eating quality. Different active and intelligent packaging approaches to each of these were identified and are discussed in terms of their usefulness - to processors, retailers and/or consumers. From this, it became apparent that prior to selecting a packaging solution, industry should first define their criteria for success (e.g. How much purge is too much? What is a reasonable shelf-life to facilitate product turnover? Is the customer willing to pay for this?), and understand that packaging is not the sole solution, but acts as part of a holistic response to these issues. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  6. Boatswain's Mate F1 and C: Naval Rate Training Manual.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The Rate Training Manual and Nonresident Career Course (RTM/NRCC) form a self-study package that enables Aviation Boatswain's Mate F to fulfill the requirements for advancement to ABF1 and the ABF1 for advancement to the rank of ABFC. In preparing for advancement examinations, the manual should be studied in conjunction with Military Requirements…

  7. Electronics for a Spectrometer

    NASA Image and Video Library

    2014-01-24

    NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.

  8. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-08-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  9. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  10. Effects of health-oriented descriptors on combustible cigarette and electronic cigarette packaging: an experiment among adult smokers in the United States.

    PubMed

    Sanders-Jackson, Ashley; Tan, Andy S L; Yie, Kyeungyeun

    2017-10-05

    Certain tobacco companies use health-oriented descriptors (eg, 100% organic) on product packaging and advertising of combustible cigarettes or electronic cigarettes (e-cigarettes) that create a 'health halo' around smoking and vaping. Previous observational research suggests that such language may be associated with more favourable attitudes and reduced risk perceptions toward these brands compared with others. This study aimed to determine the effects of health-oriented descriptors on smokers' attitude toward the brand, perception of packaging information, comparative harm versus other brands and intention to purchase either combustible cigarettes or e-cigarettes. US adult smokers were randomly assigned to view either a health-oriented language package ('100% organic,' 'all natural' or 'no additives'), traditional marketing language package ('fine quality,' 'premium blend' or '100% original') or a no-language package of a combustible cigarette brand (Study 1, n=405) or an e-cigarette brand (Study 2, n=396) in an experimental design. Study 1: Participants in the health-oriented condition reported more favourable perceptions toward the package information, lower comparative harm and higher intention to purchase combustible cigarettes versus the no language control. In addition, participants in the health-oriented condition reported more positive attitude toward the brand and lower comparative harm versus the traditional marketing condition. Study 2: Compared with the traditional marketing condition, participants in the health-oriented condition reported greater intention to purchase Absolute e-cigarettes. There were no significant differences in attitude toward the brand, perception of packaging information and comparative harm versus other brands across conditions. The effect of health-oriented language was significant for combustible cigarettesand e-cigarette packages. Policies to restrict health-oriented language on cigarette and e-cigarette packaging are recommended. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Accelerated thermal and mechanical testing of CSP assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2000-01-01

    Chip Scale Packages (CSP) are now widely used for many electronic applications including portable and telecommunication products. A test vehicle (TV-1) with eleven package types and pitches was built and tested by the JPL MicrotypeBGA Consortium during 1997 to 1999. Lessons learned by the team were published as a guidelines document for industry use. The finer pitch CSP packages which recently became available were indluded in the next test vehicle of the JPL CSP Consortium.

  12. 76 FR 29733 - Petition for Waiver From LG Electronics, Inc. and Granting of the Interim Waiver From Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... for Waiver From LG Electronics, Inc. and Granting of the Interim Waiver From Commercial Package Air... LG Electronics, Inc. (LG). The petition for waiver (hereafter ``petition'') requests a waiver from... factors stated in the waivers that DOE granted to Mitsubishi Electric & Electronics USA, Inc. (Mitsubishi...

  13. The Articulation of Secondary and Post-Secondary Vocational Education Programs. Workshop Products.

    ERIC Educational Resources Information Center

    Keene State Coll., NH.

    As a result of the cooperative efforts in articulation by secondary/postsecondary instructor teams, six packages representing the occupational areas of child care, culinary arts, electronics, health occupations, power mechanics, and industrial welding were developed. Each package contains the following three components: a series of job titles…

  14. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  15. Impact of external influences on food packaging.

    PubMed

    Brody, A L

    1977-09-01

    Since the food supply is dependent upon an effective packaging system, threats to packaging represent implied threats to food processing and distribution. Enacted and potential legislation and regulation are retarding technological and commercial progress in food packaging and have already restricted some food packaging/processins systems. The results of these external influences is not simply the sum of the individual acts, but is a cascading self-imposed arresting of food packaging/processing advancement. The technological bases for the enacted and proposed legislation and regulation are presented in the enumeration of the external influences on food packaging. Economic and sociological arguments and facts surrounding the issues are also presented. Among the external influences on food packaging detailed are indirect additives, nutritional labeling, benefit:risk, solid waste and litter, environmental pollution, universal product code, and food industry productivity. The magnitude of the total impact of these external influences upon the food supply is so large that assertive action must be taken to channel these influences into more productive awareness. An objective and comprehensive public communications program supported by the technological community appears mandatory.

  16. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  17. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas

    2016-04-01

    Current generation automotive power electronics packages utilize silicon devices and lead-free solder alloys. To meet stringent technical targets for 2020 and beyond (for cost, power density, specific power, efficiency and reliability), wide-bandgap devices are being considered since they offer advantages such as operation at higher frequencies, voltages, and temperatures. Traditional power electronics packages must be redesigned to utilize the full potential of wide-bandgap devices, and the die- and substrate-attach layers are key areas where new material development and validation is required. Present solder alloys do not meet the performance requirements for these new package designs while also meeting cost andmore » hazardous substance restrictions. Sintered silver (Ag) promises to meet the needs for die- and substrate-attach interfaces but synthesis optimization and reliability evaluation must be completed. Sintered Ag material was proposed as an alternative solution in power electronics packages almost 20 years back. However, synthesis pressure requirements up 40 MPa caused a higher complexity in the production process and more stringent flatness specifications for the substrates. Recently, several manufacturers have developed sintered Ag materials that require lower (3-5 MPa) or even no bonding pressures. Degradation mechanisms for these sintered Ag materials are not well known and need to be addressed. We are addressing these aspects to some extent in this project. We are developing generalized (i.e., independent of geometry) stress intensity factor versus cycles-to-failure relations for sintered Ag. Because sintered Ag is a relatively new material for automotive power electronics, the industry currently does not have a good understanding of recommended synthesis parameters or expected reliability under prescribed conditions. It is an important deliverable of this project to transfer findings to industry to eliminate barriers to using sintered Ag as a viable and commercialized die- and substrate-attach material. Only a few manufacturers produce sintered Ag pastes and may consider some processing conditions as proprietary. It is the goal of this project to openly explore and define best practices in order to impact the maximum number of power electronics module manufacturers and suppliers.« less

  18. A Geant4 simulation of the depth dose percentage in brain tumors treatments using protons and carbon ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    2016-07-07

    The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.

  19. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    PubMed Central

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2018-01-01

    We compare forces resisting DNA packaging in bacteriophage phi29 inferred from optical tweezers studies with forces driving DNA ejection inferred from osmotic pressure studies. Ejection forces from 0–80% filling are consistent with a model that assumes a repulsive DNA-DNA interaction potential derived from DNA condensation studies and predicts an inverse spool DNA conformation. Forces resisting packaging from ~80–100% filling are also consistent with this model. However, that electron microscopy does not reveal a spool conformation suggests that this model overestimates bending rigidity and underestimates repulsion. Below 80% filling, inferred ejection forces are higher than those resisting packaging. Although unexpected, this suggests that most force that builds during packaging is available to drive DNA ejection. PMID:28618627

  20. The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Lee, Ning-Cheng

    2007-07-01

    The impact reliability of solder joints in electronic packages is critical to the lifetime of electronic products, especially those portable devices using area array packages such as ball-grid array (BGA) and chip-scale packages (CSP). Currently, SnAgCu (SAC) solders are most widely used for lead-free applications. However, BGA and CSP solder joints using SAC alloys are fragile and prone to premature interfacial failure, especially under shock loading. To further enhance impact reliability, a family of SAC alloys doped with a small amount of additives such as Mn, Ce, Ti, Bi, and Y was developed. The effects of doping elements on drop test performance, creep resistance, and microstructure of the solder joints were investigated, and the solder joints made with the modified alloys exhibited significantly higher impact reliability.

  1. Renewable Electrolysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    variable-input power conditions Designing and developing shared power-electronics packages and controllers Development NREL develops power electronics interfaces for renewable electrolysis systems to characterize and constant voltage DC bus and power electronics to regulate power output and to convert wild alternating

  2. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  3. CarbAl Heat Transfer Material

    NASA Technical Reports Server (NTRS)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  4. A rotor-mounted digital instrumentation system for helicopter blade flight research measurements

    NASA Technical Reports Server (NTRS)

    Knight, V. H., Jr.; Haywood, W. S., Jr.; Williams, M. L.

    1978-01-01

    A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft.

  5. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  6. EMAN2: an extensible image processing suite for electron microscopy.

    PubMed

    Tang, Guang; Peng, Liwei; Baldwin, Philip R; Mann, Deepinder S; Jiang, Wen; Rees, Ian; Ludtke, Steven J

    2007-01-01

    EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.

  7. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    PubMed

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  8. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.

    PubMed

    Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V

    2014-10-01

    Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Functional Requirements for an Electronic Work Package System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna H.

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basicmore » document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.« less

  10. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2007-01-01

    The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  11. A portable system for characterizing wildland fire behavior

    Treesearch

    Bret Butler; D. Jimenez; J. Forthofer; K. Shannon; Paul Sopko

    2010-01-01

    A field deployable system for quantifying energy and mass transport in wildland fires is described. The system consists of two enclosures: The first is a sensor/data logger combination package that allows characterization of convective/radiant energy transport in fires. This package contains batteries, a programmable data logger, sensors, and other electronics. The...

  12. Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy

    PubMed Central

    Zhao, Haiyan; Li, Kunpeng; Lynn, Anna Y.; Aron, Keith E.; Yu, Guimei; Jiang, Wen; Tang, Liang

    2017-01-01

    The enormous prevalence of tailed DNA bacteriophages on this planet is enabled by highly efficient self-assembly of hundreds of protein subunits into highly stable capsids. These capsids can stand with an internal pressure as high as ∼50 atmospheres as a result of the phage DNA-packaging process. Here we report the complete atomic model of the headful DNA-packaging bacteriophage Sf6 at 2.9 Å resolution determined by electron cryo-microscopy. The structure reveals the DNA-inflated, tensed state of a robust protein shell assembled via noncovalent interactions. Remarkable global conformational polymorphism of capsid proteins, a network formed by extended N arms, mortise-and-tenon–like intercapsomer joints, and abundant β-sheet–like mainchain:mainchain intermolecular interactions, confers significant strength yet also flexibility required for capsid assembly and DNA packaging. Differential formations of the hexon and penton are mediated by a drastic α–helix-to-β–strand structural transition. The assembly scheme revealed here may be common among tailed DNA phages and herpesviruses. PMID:28320961

  13. Selling Our Collecting Souls: How License Agreements Are Controlling Collection Management.

    ERIC Educational Resources Information Center

    McGinnis, Suzan D.

    2000-01-01

    Considers the challenges that licensing for electronic products are creating for academic libraries. Discusses ownership of versus access to information; packaging of electronic journals; cost-benefit analysis; multiple versions of the same information, e.g. print and electronic; consortial agreements; negotiating; legal issues; and the question…

  14. Status of the Direct Data Distribution (D(exp 3)) Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence

    2001-01-01

    NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.

  15. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j

    PubMed Central

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.

    2017-01-01

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110

  16. Trends in the Electron Microscopy Data Bank (EMDB).

    PubMed

    Patwardhan, Ardan

    2017-06-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.

  17. Trends in the Electron Microscopy Data Bank (EMDB)

    PubMed Central

    Patwardhan, Ardan

    2017-01-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved. PMID:28580912

  18. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.

  19. The NASA Electronic Parts and Packaging (NEPP) Program: Results and Direction

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2007-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program's mission is to provide guidance to NASA for the selection and application of microelectronic technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. This viewgraph presentation reviews the NEPP program's goals and objectives, and reviews many of the missions that the NEPP program has impacted, both in and out of NASA. Also included are examples of the evaluation that the program performed.

  20. Fatigue failure of pb-free electronic packages under random vibration loads

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.

    2018-03-01

    The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.

  1. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  2. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging.

  3. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  4. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    PubMed

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  5. Testing a structural model for viral DNA packaging motor function by optical tweezers measurements, site directed mutagenesis, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas A.; Migliori, Amy D.; Arya, Gaurav; Rao, Venigalla B.; Smith, Douglas E.

    2013-09-01

    Many double-stranded DNA viruses employ a molecular motor to package DNA into preformed capsid shells. Based on structures of phage T4 motor proteins determined by X-ray crystallography and cryo-electron microscopy, Rao, Rossmann and coworkers recently proposed a structural model for motor function. They proposed that DNA is ratcheted by a large conformational change driven by electrostatic interactions between charged residues at an interface between two globular domains of the motor protein. We have conducted experiments to test this model by studying the effect on packaging under applied load of site-directed changes altering these residues. We observe significant impairment of packaging activity including reductions in packaging rate, percent time packaging, and time active under high load. We show that these measured impairments correlate well with alterations in free energies associated with the conformational change predicted by molecular dynamics simulations.

  6. Structural and thermodynamic principles of viral packaging.

    PubMed

    Petrov, Anton S; Harvey, Stephen C

    2007-01-01

    Packaging of genetic material inside a capsid is one of the major processes in the lifecycle of bacteriophages. To establish the basic principles of packing double-stranded DNA into a phage, we present a low-resolution model of bacteriophage varphi29 and report simulations of DNA packaging. The simulations show excellent agreement with available experimental data, including the forces of packaging and the average structures seen in cryo-electron microscopy. The conformation of DNA inside the bacteriophage is primarily determined by the shape of the capsid and the elastic properties of DNA, but the energetics of packaging are dominated by electrostatic repulsions and the large entropic penalty associated with DNA confinement. In this slightly elongated capsid, the DNA assumes a folded toroidal conformation, rather than a coaxial spool. The model can be used to study packaging of other bacteriophages with different shapes under a range of environmental conditions.

  7. Compact 1 mJ fiber MOPA for space-based laser-ablation resonant ionization mass spectrometry (LARIMS)

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Crain, William; Nguyen, Can; Ionov, Pavel; Steinvurzel, Paul; Dotan, Yaniv; Karuza, Petras; Lotshaw, William; Rose, Todd; Beck, Steven; Anderson, F. Scott

    2018-02-01

    A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16"x14"x2.5" package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13"x11"x1" board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20"x18"x16.25" enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.

  8. Low-cost, compact, and robust gas abundance sensor package

    NASA Astrophysics Data System (ADS)

    Tran, Dat; Nehmetallah, George; Gorius, Nicolas; Ferguson, Frank T.; Esper, Jaime; Johnson, Natasha M.; Aslam, Shahid; Nixon, Conor

    2018-05-01

    Gas Abundance Sensor Package (GASP) is a stand-alone scientific instrument that has the capability to measure the concentration of target gases based on a non-dispersive infrared sensor system along with atmospheric reference parameters. The main objective of this work is to develop a GASP system which takes advantage of available technologies and off-the-shelf components to provide a cost-effective solution for localized sampling of gas concentrations. GASP will enable scientists to study the atmosphere and will identify the conditions of the target's planetary local environment. Moreover, due to a recent trend of miniaturization of electronic components and thermopiles detectors, a small size and robust instrument with a reduction in power consumption is developed in this work. This allows GASP to be easily integrated into a variety of small space vehicles such as CubeSats or small satellite system, especially the Micro-Reentry Capsule (MIRCA) prototype vehicle. This prototype is one of the most advanced concepts of small satellites that has the capability to survive the rapid dive into the atmosphere of a planet. In this paper, a fully-operational instrument system will be developed and tested in the laboratory environment as well as flight preparation for a field test of the instrument suite will be described.

  9. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  11. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  12. An investigation of nonuniform dose deposition from an electron beam

    NASA Astrophysics Data System (ADS)

    Lilley, William; Luu, Kieu X.

    1994-08-01

    In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.

  13. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  14. Thermal Cycle Reliability and Failure Mechanisms of CCGA and PBGA Assemblies with and without Corner Staking

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2008-01-01

    Area array packages (AAPs) with 1.27 mm pitch have been the packages of choice for commercial applications; they are now starting to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic ball grid array (PBGA) and chip scale package assemblies, because of their wide usage for commercial applications, have been extensively reported on in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.However, very limited data is available for thermal cycling behavior of ceramic packages commonly used for the aerospace applications. For high reliability applications, numerous AAPs are available with an identical design pattern both in ceramic and plastic packages. This paper compares assembly reliability of ceramic and plastic packages with the identical inputs/outputs(I/Os) and pattern. The ceramic package was in the form of ceramic column grid array (CCGA) with 560 I/Os peripheral array with the identical pad design as its plastic counterpart.

  15. NASA Electronic Parts and Packaging (NEPP) Program - Update

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.

  16. Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging

    NASA Astrophysics Data System (ADS)

    Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun

    2015-10-01

    The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D10 value than the ones packed aerobically. No significant difference was observed between the D10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens.

  17. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  19. Printing enzymatic reactions.

    PubMed

    Tian, Junfei; Shen, Wei

    2011-02-07

    We used relief and planographic printing methods to print the catalytic effect of an enzyme, but not the enzyme molecules, onto paper. Printing enzymatic reactions have applications in bioactive papers, low-cost diagnostics, anti-counterfeiting devices and advanced packaging materials. These methods can create novel printing effects on commodity surfaces for advanced applications.

  20. An anthology of advances in enteral tube feeding formulations.

    PubMed

    Campbell, Sheila M

    2006-08-01

    This article summarizes several major advances in tube feeding formulas marketed in the United States. It traces the progress in tube feeding formulas, starting with blenderized formulas to commercially available intact-nutrient formulas and culminating in the introduction of the concept of immunonutrition. The impact of packaging is also described.

  1. Project T.E.A.M. (Technical Education Advancement Modules). Final Report.

    ERIC Educational Resources Information Center

    Greenville Technical Coll., SC.

    Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training, created an introductory technical training program and a consumer education package emphasizing the benefits of technical training. The curriculum and training focus of the project began with an assessment of employee needs in…

  2. Study of the Fracture Mechanisms of Electroplated Metallization Systems Using In Situ Microtension Test

    NASA Astrophysics Data System (ADS)

    Msolli, Sabeur; Kim, Heung Soo

    2018-07-01

    This framework assesses the mechanical behavior of some potential thin/thick metallization systems in use as either ohmic contacts for diamond semi-conductors or for metallization on copper double bounded ceramic substrates present in the next-generation power electronics packaging. The interesting and unique characteristic of this packaging is the use of diamond as a semi-conductor material instead of silicon to increase the lifetime of embedded power converters for use in aeronautical applications. Theoretically, such packaging is able to withstand temperatures of up to 300 °C without breaking the semi-conductor, provided that the constitutive materials of the packaging are compatible. Metallization is very important to protect the chips and substrates. Therefore, we address this issue in the present work. The tested metallization systems are Ni/Au, Ni/Cr/Au and Ni/Cr. These specific systems were studied since they can be used in conjunction with existing bonding technologies, including AuGe soldering, Ag-In Transient liquid Phase Bonding and silver nanoparticle sintering. The metallization is achieved via electrodeposition, and a mechanical test, consisting of a microtension technique, is carried out at room temperature inside a scanning electron microscopy chamber. The technique permits observations the cracks initiation and growth in the metallization to locate the deformation zones and identify the fracture mechanisms. Different failure mechanisms were shown to occur depending on the metallic layers deposited on top of the copper substrate. The density of these cracks depends on the imposed load and the involved metallization. These observations will help choose the metallization that is compatible with the particular bonding material, and manage mechanical stress due to thermal cycling so that they can be used as a constitutive component for high-temperature power electronics packaging.

  3. Study of the Fracture Mechanisms of Electroplated Metallization Systems Using In Situ Microtension Test

    NASA Astrophysics Data System (ADS)

    Msolli, Sabeur; Kim, Heung Soo

    2018-03-01

    This framework assesses the mechanical behavior of some potential thin/thick metallization systems in use as either ohmic contacts for diamond semi-conductors or for metallization on copper double bounded ceramic substrates present in the next-generation power electronics packaging. The interesting and unique characteristic of this packaging is the use of diamond as a semi-conductor material instead of silicon to increase the lifetime of embedded power converters for use in aeronautical applications. Theoretically, such packaging is able to withstand temperatures of up to 300 °C without breaking the semi-conductor, provided that the constitutive materials of the packaging are compatible. Metallization is very important to protect the chips and substrates. Therefore, we address this issue in the present work. The tested metallization systems are Ni/Au, Ni/Cr/Au and Ni/Cr. These specific systems were studied since they can be used in conjunction with existing bonding technologies, including AuGe soldering, Ag-In Transient liquid Phase Bonding and silver nanoparticle sintering. The metallization is achieved via electrodeposition, and a mechanical test, consisting of a microtension technique, is carried out at room temperature inside a scanning electron microscopy chamber. The technique permits observations the cracks initiation and growth in the metallization to locate the deformation zones and identify the fracture mechanisms. Different failure mechanisms were shown to occur depending on the metallic layers deposited on top of the copper substrate. The density of these cracks depends on the imposed load and the involved metallization. These observations will help choose the metallization that is compatible with the particular bonding material, and manage mechanical stress due to thermal cycling so that they can be used as a constitutive component for high-temperature power electronics packaging.

  4. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  5. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/Bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  6. National disparities in treatment package time for resected locally advanced head and neck cancer and impact on overall survival.

    PubMed

    Guttmann, David M; Kobie, Julie; Grover, Surbhi; Lin, Alexander; Lukens, John N; Mitra, Nandita; Rhodes, Karin V; Feng, Weiwei; Swisher-McClure, Samuel

    2018-06-01

    The purpose of this study was to determine national disparities in head and neck cancer treatment package time (the time interval from surgery through the completion of radiation) and the associated impact on survival. We conducted an observational cohort study using the National Cancer Database of 15 234 patients with resected head and neck cancer who underwent adjuvant radiotherapy from 2004-2012. Predictors of prolonged package time were identified by multivariable linear regression. Survival outcomes were assessed using a multivariable Cox model. Mean package time was 100 days (SD 23). Package time was 7.52 days (95% confidence interval [CI] 6.23-8.81; P < .001) longer with Medicaid versus commercial insurance. Low income and African American race also predicted for longer package times. All-cause mortality increased an average of 4% with each 1 week increase in treatment package time (hazard ratio [HR] 1.04; 95% CI 1.03-1.05; P < .001). Significant national socioeconomic disparities exist in treatment package time. Treatment delays in this setting may contribute to worse survival outcomes. © 2018 Wiley Periodicals, Inc.

  7. Progress and challenges associated with halal authentication of consumer packaged goods.

    PubMed

    Premanandh, Jagadeesan; Bin Salem, Samara

    2017-11-01

    Abusive business practices are increasingly evident in consumer packaged goods. Although consumers have the right to protect themselves against such practices, rapid urbanization and industrialization result in greater distances between producers and consumers, raising serious concerns on the supply chain. The operational complexities surrounding halal authentication pose serious challenges on the integrity of consumer packaged goods. This article attempts to address the progress and challenges associated with halal authentication. Advancement and concerns on the application of new, rapid analytical methods for halal authentication are discussed. The significance of zero tolerance policy in consumer packaged foods and its impact on analytical testing are presented. The role of halal assurance systems and their challenges are also considered. In conclusion, consensus on the establishment of one standard approach coupled with a sound traceability system and constant monitoring would certainly improve and ensure halalness of consumer packaged goods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Active and intelligent packaging: The indication of quality and safety.

    PubMed

    Janjarasskul, Theeranun; Suppakul, Panuwat

    2018-03-24

    The food industry has been under growing pressure to feed an exponentially increasing world population and challenged to meet rigorous food safety law and regulation. The plethora of media consumption has provoked consumer demand for safe, sustainable, organic, and wholesome products with "clean" labels. The application of active and intelligent packaging has been commercially adopted by food and pharmaceutical industries as a solution for the future for extending shelf life and simplifying production processes; facilitating complex distribution logistics; reducing, if not eliminating the need for preservatives in food formulations; enabling restricted food packaging applications; providing convenience, improving quality, variety and marketing features; as well as providing essential information to ensure consumer safety. This chapter reviews innovations of active and intelligent packaging which advance packaging technology through both scavenging and releasing systems for shelf life extension, and through diagnostic and identification systems for communicating quality, tracking and brand protection.

  9. Evaluating Penetration Ability of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) Larvae into Multilayer Polypropylene Packages.

    PubMed

    Scheff, Deanna S; Sehgal, Blossom; Subramanyam, Bhadriraju

    2018-04-18

    The larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third instars, and fifth instars of P. interpunctella to determine package resistance at 28 °C and 65% r.h. The packing types were also challenged with two male and two female pupae of P. interpunctella under similar conditions in order to determine which package provided the greatest protection against larval penetration. Samples infested with eggs, third instars, and pupae were evaluated after 21 days and 42 days to count the number of larvae, pupae, and adults found inside the packages. Packages challenged with fifth instars were observed after 21 days to count the number of larvae, pupae, and adults inside each package. The number and diameter of the holes were determined in each package, followed by the amount of damage sustained to the energy bar. Third and fifth instars showed a higher tendency to penetrate all of the packaging types. First instars showed a reduction in package penetration ability compared with third and fifth instars. The increase in exposure time resulted in an increase in the damage sustained to the energy bars. Among packaging types, the thickest package (Test A) was most resilient to penetration by all of the larval stages. In conclusion, energy bar manufacturers need to invest more effort into improving packaging designs, creating thicker gauge films, or advancing odor barrier technology, in order to prevent penetration and infestation by P. interpunctella larvae.

  10. MEMS packaging: state of the art and future trends

    NASA Astrophysics Data System (ADS)

    Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.

    1998-07-01

    Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.

  11. 76 FR 65707 - Decision and Order Granting a Waiver to LG Electronics, Inc. From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... and Order Granting a Waiver to LG Electronics, Inc. From the Department of Energy Commercial Package... Energy's (DOE) Decision and Order in Case No. CAC-032, which grants LG Electronics, Inc. (LG) a waiver... Electronics, Inc. (LG) (Case No. CAC-032). Background Title III, part C of the Energy Policy and Conservation...

  12. The Development of a Framework for and a Model Teaching-Learning System in Electronics Technology for the Elementary School.

    ERIC Educational Resources Information Center

    Inaba, Lawrence Akio

    Developing a rationale and a structure of knowledge as the basis for an instructional system in electronics technology and designing and developing a packaged instructional system in electronics technology for the sixth grade is the two-fold purpose of this study. The study identifies electronics technology within the broad framework of industrial…

  13. A Survey of Electronics Obsolescence and Reliability

    DTIC Science & Technology

    2010-07-01

    properties but there are many minor and major variations (e.g. curing schedule) affecting their usage in packaging processes and in reworking. Curing...within them. Electronic obsolescence is increasingly associated with physical characteristics that reduce component and system reliability, both in usage ...semiconductor technologies and of electronic systems, both in usage and in storage. By design, electronics technologies include few reliability margins

  14. Thermal Performance Benchmarking: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilbert

    2016-04-08

    The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) maymore » then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.« less

  15. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  16. Radio controlled release apparatus for animal data acquisition devices

    DOEpatents

    Stamps, James Frederick

    2000-01-01

    A novel apparatus for reliably and selectively releasing a data acquisition package from an animal for recovery. The data package comprises two parts: 1) an animal data acquisition device and 2) a co-located release apparatus. One embodiment, which is useful for land animals, the release apparatus includes two major components: 1) an electronics package, comprising a receiver; a decoder comparator, having at plurality of individually selectable codes; and an actuator circuit and 2) a release device, which can be a mechanical device, which acts to release the data package from the animal. To release a data package from a particular animal, a radio transmitter sends a coded signal which is decoded to determine if the code is valid for that animal data package. Having received a valid code, the release device is activated to release the data package from the animal for subsequent recovery. A second embodiment includes floatation means and is useful for releasing animal data acquisition devices attached to sea animals. This embodiment further provides for releasing a data package underwater by employing an acoustic signal.

  17. Joint Services Electronics Program.

    DTIC Science & Technology

    1993-03-05

    Mary- land, June 1992. Interconnection Network Design Based on Packaging Considerations Professor Abhiram Ranade with M. T. Raghunath A central...characterized by our abstract models of packaging technology. JSEP Publications [1] M.T. Raghunath and Abhiram Ranade, "Customizing Interconnection...94720, January 1993. [21 M.T. Raghunath and Abhiram Ranade, "Fault-Tolerant Routing in Partitioned Butterfly Networks," submitted to the 1993

  18. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less

  19. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  20. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) To be valid, the purchaser must sign an electronic order for a Schedule I or II controlled substance... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number...

  1. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) To be valid, the purchaser must sign an electronic order for a Schedule I or II controlled substance... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number...

  2. 21 CFR 111.30 - What requirements apply to automated, mechanical, or electronic equipment?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply to automated, mechanical... Utensils § 111.30 What requirements apply to automated, mechanical, or electronic equipment? For any automated, mechanical, or electronic equipment that you use to manufacture, package, label, or hold a...

  3. Electronic Publishing in Academia: An Economic Perspective.

    ERIC Educational Resources Information Center

    Getz, Malcolm

    The challenge to academia is to invest in services that will turn the abundance of electronic data into sound, useful, compelling information products. The process of filtering, labeling, refining, and packaging, that is, the process of editing and publishing, takes resources and will be shaped by the electronic world in significant ways. This…

  4. Electrical Experiments. VT-214-12-3. Part III. Basic Electronics.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this third document in a series of six electrical learning activity packages focuses on basic electronics. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of information sheets and job…

  5. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  6. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  7. Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System

    DTIC Science & Technology

    1975-10-01

    an addressable reel-to--reel audio tape recorder, a random access audio memory drum , and an interactive software package which permits the user to...audio memory drum , and an interactive software package which permits the user to develop preptogtahmed exercises. Figure 2 illustrates overall...Data Recprding System consists of two elements; an overlay program which performs the real-time sampling of specified variables and stores data to disc

  8. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  9. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    NASA Astrophysics Data System (ADS)

    Jaggi, S.

    1993-02-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  10. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  11. [Development and application of information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province].

    PubMed

    Mao, Yuan-Hua; Li, Dong; Ning, An; Qiu, Ling; Xiong, Ji-Jie

    2011-04-01

    To develop the information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province. Based on Access 2003, the system was programmed by Visual Basic 6.0 and packaged by Setup Factory 8.0. In the system, advanced schistosomiasis data were able to be input, printed, indexed, and statistically analyzed. The system could be operated and maintained easily and timely. The information management system for advanced schistosomiasis chemotherapy and assistance in Jiangxi Province is successfully developed.

  12. 78 FR 5773 - Foreign-Trade Zone 22-Chicago, IL, Notification of Proposed Production Activity, Panasonic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... Electronics), Aurora, IL The Illinois International Port District, grantee of FTZ 22, submitted a notification... facility is used for the kitting of consumer electronics parts into retail packages. Pursuant to 15 CFR 400...

  13. Stitch-bond parallel-gap welding for IC circuits

    NASA Technical Reports Server (NTRS)

    Chvostal, P.; Tuttle, J.; Vanderpool, R.

    1980-01-01

    Stitch-bonded flatpacks are superior to soldered dual-in-lines where size, weight, and reliability are important. Results should interest designers of packaging for complex high-reliability electronics, such as that used in security systems, industrial process control, and vehicle electronics.

  14. Use of tear ring permits repair of sealed module circuitry

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Improved packaging technique for modular electronic circuitry utilizes a tear ring which may be removed for repair and resealed. The tear ring is put over the container and header to which the electronic circuit assembly has been attached.

  15. Tips for Good Electronic Presentations.

    ERIC Educational Resources Information Center

    Strasser, Dennis

    1996-01-01

    Describes library uses of presentation graphics software and offers tips for creating electronic presentations. Tips include: audience retention; visual aid options; software package options; presentation planning; presentation showing; and use of text, colors, and graphics. Sidebars note common presentation errors and popular presentation…

  16. Electronic ripple indicator

    NASA Technical Reports Server (NTRS)

    Davidson, J. K.; Houck, W. H.

    1971-01-01

    Electronic circuit for monitoring excessive ripple voltage on dc power lines senses voltage variations from few millivolts to maximum of 10 volts rms. Instrument is used wherever power supply fluctuations might endanger system operations or damage equipment. Device is inexpensive and easily packaged in small chassis.

  17. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  18. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  19. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  20. Northwestern University Initiative for Teaching NanoSciences (NUITNS): An Approach for Teaching Computational Chemistry to Engineering Undergraduate Students

    ERIC Educational Resources Information Center

    Simeon, Tomekia; Aikens, Christine M.; Tejerina, Baudilio; Schatz, George C.

    2011-01-01

    The Northwestern University Initiative for Teaching Nanosciences (NUITNS) at nanohub.org Web site combines several tools for doing electronic structure calculations and analyzing and displaying the results into a coordinated package. In this article, we describe this package and show how it can be used as part of an upper-level quantum chemistry…

  1. Determination of microbial contamination of plastic cups for dairy products and utilization of electron beam treatment for sterilization.

    PubMed

    Tacker, M; Hametner, C; Wepner, B

    2002-01-01

    Packaging materials are often considered a critical control point in HACCP systems of food companies. Methods for the determination of the microbial contamination rate of plastic cups, especially for dairy products, must reliably detect single moulds, yeasts or coliforms. In this study, a comparison of a specially adapted coating method, impedance method, direct inoculation and membrane filter technique was carried out to determine contamination with yeasts, moulds, coliforms and total bacterial counts using the appropriate agar in each case. The coating method is recommended for determining yeasts, moulds and coliforms as it allows the localization of the microorganisms as well as the determination of single microorganisms. For total bacterial count, a direct inoculation technique is proposed. The employing of simple measures in the production and during transport of packaging materials, such as dust-prevention or tight sealing in polyethylene bags, heavily reduces microbial contamination rates of packaging material. To reduce contamination rates further, electron beam irradiation was applied: plastic cups sealed in polyethylene bags were treated with 4-5 kGy, a dose that already leads to sterile polystyrene and polypropylene cups without influencing mechanical characteristics of the packaging material.

  2. 76 FR 3584 - Time for Payment of Certain Excise Taxes, and Quarterly Excise Tax Payments for Small Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and..., Regulations.gov , we will post, and you may view, copies of this notice, any electronic or mailed comments we... material that we consider unsuitable for posting. You also may view copies of this notice, any electronic...

  3. A Year in the Life of the NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.

    2017-01-01

    NEPP Mission Statement: Provide NASAs leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

  4. 25 CFR 547.15 - What are the minimum technical standards for electronic data communications between system...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... WITH THE PLAY OF CLASS II GAMES § 547.15 What are the minimum technical standards for electronic data...) Player tracking information; (8) Download Packages; and (9) Any information that affects game outcome. (b...

  5. 25 CFR 547.15 - What are the minimum technical standards for electronic data communications between system...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... WITH THE PLAY OF CLASS II GAMES § 547.15 What are the minimum technical standards for electronic data...) Player tracking information; (8) Download Packages; and (9) Any information that affects game outcome. (b...

  6. 25 CFR 547.15 - What are the minimum technical standards for electronic data communications between system...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... WITH THE PLAY OF CLASS II GAMES § 547.15 What are the minimum technical standards for electronic data...) Player tracking information; (8) Download Packages; and (9) Any information that affects game outcome. (b...

  7. Drug packaging in 2014: authorities should direct more efforts towards medication safety.

    PubMed

    2015-05-01

    In 2014, Prescrire examined the packaging quality of about 250 drugs. A few advances stand out, mainly involving recent drugs, but on the whole, the situation is worrisome in terms of medication safety. Although pharmaceutical companies and drug regulatory agencies seem to be taking more account of the risk of accidental poisoning in children, the level of protection remains low overall in the absence of stringent measures on the part of the authorities. New drugs too often have poor-quality or even dangerous packaging at the time of their market introduction. And the packaging quality of older drugs is disturbing. Pharmaceutical companies no longer invest in the packaging of these products, and agencies often fail to take advantage of the opportunities provided by their reassessment to improve the situation. The inappropriate labelling of certain injectable drugs remains a source of medication errors, sometimes resulting in very serious consequences. In 2014, signs of progress in the packaging of several drugs show that its role in medication safety is better appreciated. But the persistence of dangers in the pharmaceuticals market, created by "unfinished", overly complex or poor-quality packaging, raises the question of the responsibility of pharmaceutical companies and agencies for past and present accidents.

  8. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advanced Optics Electronics, Inc.; Order of... lack of current and accurate information concerning the securities of Advanced Optics Electronics, Inc... in Advanced Optics Electronics, Inc. Therefore, it is ordered, pursuant to Section 12(k) of the...

  9. 75 FR 21367 - Advanced Electronics, Inc.; Boston, MA; Notice of Negative Determination on Remand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-59,517] Advanced Electronics, Inc... Employees of Advanced Electronics, Inc. v. United States Secretary of Labor (Court No. 06-00337). On July 18... former workers of Advanced Electronics, Inc., Boston, Massachusetts (subject firm). The Department's...

  10. Electron tunneling in proteins program.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGES

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; ...

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  12. The NASA Electronic Parts and Packaging (NEPP) Program: NEPP Overview - Automotive Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using U.S. Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Council's AECQ standardization program, the second part provides a summary of the results of NASA's procurement and testing experiences and other lessons learned along with preliminary test results.

  13. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  14. ePCR: an R-package for survival and time-to-event prediction in advanced prostate cancer, applied to real-world patient cohorts.

    PubMed

    Laajala, Teemu D; Murtojärvi, Mika; Virkki, Arho; Aittokallio, Tero

    2018-06-15

    Prognostic models are widely used in clinical decision-making, such as risk stratification and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data. We make available an open-source implementation of the top-performing model, ePCR, along with an extended toolbox for its further re-use and development, and demonstrate how to best apply the implemented model to real-world data cohorts of advanced prostate cancer patients. The open-source R-package ePCR and its reference documentation are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/package=ePCR. R-vignette provides step-by-step examples for the ePCR usage. Supplementary data are available at Bioinformatics online.

  15. Technological and organizational diversity and technical advance in the early history of the American semiconductor industry

    NASA Astrophysics Data System (ADS)

    Cohen, W.; Holbrook, D.; Klepper, S.

    1994-06-01

    This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.

  16. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited].

    PubMed

    Stojanović, Vladimir; Ram, Rajeev J; Popović, Milos; Lin, Sen; Moazeni, Sajjad; Wade, Mark; Sun, Chen; Alloatti, Luca; Atabaki, Amir; Pavanello, Fabio; Mehta, Nandish; Bhargava, Pavan

    2018-05-14

    Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

  17. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  18. Improved LED backlight with unique color and intensity control and NVIS capability

    NASA Astrophysics Data System (ADS)

    Herman, Robert; Zagar, Pete; Ulijasz, Ted; Hansen, Hans C.; Ellner, Fred

    2006-05-01

    Currently deployed conventional flat panel AMLCD displays employ fluorescent lamp backlights to achieve the required lighting levels for cockpits in high performance aircraft. Advances have been made in backlighting technology by replacing fluorescent lamps with high performance LEDs. However, these new LED-based backlights are lacking in control of color and luminance intensity especially when related to NVIS requirements in a cockpit. This paper describes a unique integration of LED, electronic, and optical components to meet the requirements of high performance aircraft over their extreme range of operating environments. The LED-based backlight utilizes state-of-art components to enable daylight, night, and NVIS requirements to be implemented in a simple cost-effective package. The performance results presented highlight the advantages of this new design when compared to currently available backlighting designs. Techniques as described in section 2 of this paper are covered under patent application to the US and International Patent Offices.

  19. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  20. High-performance and high-reliability SOT-6 packaged diplexer based on advanced IPD fabrication techniques

    NASA Astrophysics Data System (ADS)

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-08-01

    A diplexer offering the advantages of compact size, high performance, and high reliability is proposed on the basis of advanced integrated passive device (IPD) fabrication techniques. The proposed diplexer is developed by combining a third-order low-pass filter (LPF) and a third-order high-pass filter (HPF), which are designed on the basis of the elliptic function prototype low-pass filter. Primary components, such as inductors and capacitors, are designed and fabricated with high Q-factor and appropriate values, and they are subsequently used to construct a compact diplexer having a chip area of 900 μm × 1100 μm (0.009 λ0 × 0.011 λ0, where λ0 is the guided wavelength). In addition, a small-outline transistor (SOT-6) packaging method is adopted, and reliability tests (including temperature, humidity, vibration, and pressure) are conducted to guarantee long-term stability and commercial success. The packaged measurement results indicate excellent RF performance with insertion losses of 1.39 dB and 0.75 dB at operation bands of 0.9 GHz and 1.8 GHz, respectively. The return loss is lower than 10 dB from 0.5 GHz to 4.0 GHz, while the isolation is higher than 15 dB from 0.5 GHz to 3.0 GHz. Thus, it can be concluded that the proposed SOT-6 packaged diplexer is a promising candidate for GSM/CDMA applications. Synthetic solution of diplexer design, RF performance optimization, fabrication process, packaging, RF response measurement, and reliability test is particularly explained and analyzed in this work.

  1. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  2. Cigarette package design: opportunities for disease prevention.

    PubMed

    Difranza, J R; Clark, D M; Pollay, R W

    2002-06-15

    To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.

  3. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers. PMID:19570250

  4. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.

  5. NASA Electronic Parts and Packaging (NEPP) - A NASA Office of Safety and Mission Assurance (OSMA) Program

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.

    2017-01-01

    NEPP Mission Statement: Provide NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

  6. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  7. The Strategic Study Group on the Status of Women: Report to the President and the Commission for Women--Recommendation Package #2.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., University Park.

    The document presents partial recommendations of a Pennsylvania State University Study Group on the Status of Women at the University. Recommendations concern family-responsive and flexible employee benefits, clerical advancement and development, retention and advancement of women faculty, and sexual harassment of students. Among specific…

  8. Methods of fabricating applique circuits

    DOEpatents

    Dimos, Duane B.; Garino, Terry J.

    1999-09-14

    Applique circuits suitable for advanced packaging applications are introduced. These structures are particularly suited for the simple integration of large amounts (many nanoFarads) of capacitance into conventional integrated circuit and multichip packaging technology. In operation, applique circuits are bonded to the integrated circuit or other appropriate structure at the point where the capacitance is required, thereby minimizing the effects of parasitic coupling. An immediate application is to problems of noise reduction and control in modern high-frequency circuitry.

  9. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    PubMed

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  10. Understanding critical factors for the quality and shelf-life of MAP fresh meat: a review.

    PubMed

    Singh, Preeti; Wani, Ali Abas; Saengerlaub, Sven; Langowski, Horst-Christian

    2011-02-01

    Due to increased demands for greater stringency in relation to hygiene and safety issues associated with fresh food products, coupled with ever-increasing demands by retailers for cost-effective extensions to product shelf-lives and the requirement to meet consumer expectations in relation to convenience and quality, the food packaging industry has rapidly developed to meet and satisfy expectations. One of the areas of research that has shown promise, and had success, is modified atmosphere packaging (MAP). The success of MAP-fresh meat depends on many factors including good initial product quality, good hygiene from the source plants, correct packaging material selection, the appropriate gas mix for the product, reliable packaging equipment, and maintenance of controlled temperatures and humidity levels. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled meat. Although several parameters critical for the quality of MA packed meat have been studied and each found to be crucial, understanding of the interactions between the parameters is needed. This review was undertaken to present the most comprehensive and current overview of the widely available, scattered information about the various integrated critical factors responsible for the quality and shelf life of MA packed meat with an interest to stimulate further research to optimize different quality parameters.

  11. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  12. Advancements of ultra-high peak power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  13. The Design and Implementation of NASA's Advanced Flight Computing Module

    NASA Technical Reports Server (NTRS)

    Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce

    1995-01-01

    This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.

  14. Advanced Resistive Exercise Device (ARED) Flight Software (FSW): A Unique Approach to Exercise in Long Duration Habitats

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark

    2005-01-01

    ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.

  15. 21 CFR 179.21 - Sources of radiation used for inspection of food, for inspection of packaged food, and for...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... radiations at energy levels of not more than 2.2 million electron volts from one of the following isotopes... in food. (4) Machine sources producing X-radiation at energies no greater than 10 million electron...

  16. 21 CFR 179.21 - Sources of radiation used for inspection of food, for inspection of packaged food, and for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... radiations at energy levels of not more than 2.2 million electron volts from one of the following isotopes... in food. (4) Machine sources producing X-radiation at energies no greater than 10 million electron...

  17. 21 CFR 179.21 - Sources of radiation used for inspection of food, for inspection of packaged food, and for...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... radiations at energy levels of not more than 2.2 million electron volts from one of the following isotopes... in food. (4) Machine sources producing X-radiation at energies no greater than 10 million electron...

  18. Major advances in fresh milk and milk products: fluid milk products and frozen desserts.

    PubMed

    Goff, H D; Griffiths, M W

    2006-04-01

    Major technological advances in the fluid milk processing industry in the last 25 yr include significant improvements in all the unit operations of separation, standardization, pasteurization, homogenization, and packaging. Many advancements have been directed toward production capacity, automation, and hygienic operation. Extended shelf-life milks are produced by high heat treatment, sometimes coupled with microfiltration or centrifugation. Other nonthermal methods have also been investigated. Flavored milk beverages have increased in popularity, as have milk beverages packaged in single-service, closeable plastic containers. Likewise, the frozen dairy processing industry has seen the development of large-capacity, automated processing equipment for a wide range of products designed to gain market share. Significant advancements in product quality have been made, many of these arising from improved knowledge of the functional properties of ingredients and their impact on structure and texture. Incidents of foodborne disease associated with dairy products continue to occur, necessitating even greater diligence in the control of pathogen transmission. Analytical techniques for the rapid detection of specific types of microorganisms have been developed and greatly improved during this time. Despite tremendous technological advancements for processors and a greater diversity of products for consumers, per capita consumption of fluid milk has declined and consumption of frozen dairy desserts has been steady during this 25-yr period.

  19. [Packaging: the guarantee of medicinal quality].

    PubMed

    Chaumeil, J-C

    2003-01-01

    Primary packaging guarantees the pharmaceutical quality of the medicinal preparation received by the patient. Glass bottles containing parenteral solutions for example ensure that sterility, quality and optimal stability are preserved until administration. Recent innovations in materials research has lead to improvements in parenteral infusions. Multicompartmental bags, allowing extemporaneous mixtures without opening the container, constitute an extremely beneficial advance for the patient, allowing administration of mixtures with solutions and emulsions which would be unstable if stored. Metered dose pressurized inhalers are an excellent example of drug administration devices designed specifically to ensure quality and bioavailability. These examples illustrate the important role of primary packaging and demonstrate the usefulness of research and development in this area.

  20. Application of Electronic Nose for Measuring Total Volatile Basic Nitrogen and Total Viable Counts in Packaged Pork During Refrigerated Storage.

    PubMed

    Li, Miaoyun; Wang, Haibiao; Sun, Lingxia; Zhao, Gaiming; Huang, Xianqing

    2016-04-01

    The objective of this study was to predict the total viable counts (TVC) and total volatile basic nitrogen (TVB-N) in pork using an electronic nose (E-nose), and to assess the freshness of chilled pork during storage using different packaging methods, including pallet packaging (PP), vacuum packaging (VP), and modified atmosphere packaging (MAP, 40% O2 /40% CO2 /20% N2 ). Principal component analysis (PCA) was used to analyze the E-nose signals, and the results showed that the relationships between the freshness of chilled pork and E-nose signals could be distinguished in the loadings plots, and the freshness of chilled pork could be distributed along 2 first principal components. Multiple linear regression (MLR) was used to correlate TVC and TVB-N to E-nose signals. High F and R2 values were obtained in the MLR output of TVB-N (F = 32.1, 21.6, and 24.2 for PP [R2 = 0.93], VP [R2 = 0.94], and MAP [R2 = 0.95], respectively) and TVC (F = 34.2, 46.4, and 7.8 for PP [R2 = 0.98], VP [R2 = 0.89], and MAP [R2 = 0.85], respectively). The results of this study suggest that it is possible to use the E-nose technology to predict TVB-N and TVC for assessing the freshness of chilled pork during storage. © 2016 Institute of Food Technologists®

Top