Sample records for advanced electronic packaging

  1. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  2. Packaging and Embedded Electronics for the Next Generation

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  3. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  4. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  5. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  6. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  7. HALT to qualify electronic packages: a proof of concept

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2014-03-01

    A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting

  8. Advancements in meat packaging.

    PubMed

    McMillin, Kenneth W

    2017-10-01

    Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  10. The Assurance Challenges of Advanced Packaging Technologies for Electronics

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    Advances in microelectronic parts performance are driving towards finer feature sizes, three-dimensional geometries and ever-increasing number of transistor equivalents that are resulting in increased die sizes and interconnection (I/O) counts. The resultant packaging necessary to provide assemble-ability, environmental protection, testability and interconnection to the circuit board for the active die creates major challenges, particularly for space applications, Traditionally, NASA has used hermetically packaged microcircuits whenever available but the new demands make hermetic packaging less and less practical at the same time as more and more expensive, Some part types of great interest to NASA designers are currently only available in non-hermetic packaging. It is a far more complex quality and reliability assurance challenge to gain confidence in the long-term survivability and effectiveness of nonhermetic packages than for hermetic ones. Although they may provide more rugged environmental protection than the familiar Plastic Encapsulated Microcircuits (PEMs), the non-hermetic Ceramic Column Grid Array (CCGA) packages that are the focus of this presentation present a unique combination of challenges to assessing their suitability for spaceflight use. The presentation will discuss the bases for these challenges, some examples of the techniques proposed to mitigate them and a proposed approach to a US MIL specification Class for non-hermetic microcircuits suitable for space application, Class Y, to be incorporated into M. IL-PRF-38535. It has recently emerged that some major packaging suppliers are offering hermetic area array packages that may offer alternatives to the nonhermetic CCGA styles but have also got their own inspectability and testability issues which will be briefly discussed in the presentation,

  11. (abstract) Electronic Packaging for Microspacecraft Applications

    NASA Technical Reports Server (NTRS)

    Wasler, David

    1993-01-01

    The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.

  12. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  13. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  14. Laser Welding in Electronic Packaging

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  15. Packaging of electronic modules

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1966-01-01

    Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.

  16. Thermoelectric Outer Planets Spacecraft (TOPS) electronic packaging and cabling development summary report

    NASA Technical Reports Server (NTRS)

    Dawe, R. H.; Arnett, J. C.

    1974-01-01

    Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.

  17. Reliability Assessment of Advanced Flip-clip Interconnect Electronic Package Assemblies under Extreme Cold Temperatures (-190 and -120 C)

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Ghaffarian, Reza; Shapiro, Andrew; Napala, Phil A.; Martin, Patrick A.

    2005-01-01

    Flip-chip interconnect electronic package boards have been assembled, underfilled, non-destructively evaluated and subsequently subjected to extreme temperature thermal cycling to assess the reliability of this advanced packaging interconnect technology for future deep space, long-term, extreme temperature missions. In this very preliminary study, the employed temperature range covers military specifications (-55 C to 100 C), extreme cold Martian (-120 C to 115 C) and asteroid Nereus (-180 C to 25 C) environments. The resistance of daisy-chained, flip-chip interconnects were measured at room temperature and at various intervals as a function of extreme temperature thermal cycling. Electrical resistance measurements are reported and the tests to date have not shown significant change in resistance as a function of extreme temperature thermal cycling. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work has been carried out to understand the reliability of flip-chip interconnect packages under extreme temperature applications (-190 C to 85 C) via continuously monitoring the daisy chain resistance. Adaptation of suitable diagnostic techniques to identify the failure mechanisms is in progress. This presentation will describe the experimental test results of flip-chip testing under extreme temperatures.

  18. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  19. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  20. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  1. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  2. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  3. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  4. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  5. AIN-Based Packaging for SiC High-Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Savrun, Ender

    2004-01-01

    Packaging made primarily of aluminum nitride has been developed to enclose silicon carbide-based integrated circuits (ICs), including circuits containing SiC-based power diodes, that are capable of operation under conditions more severe than can be withstood by silicon-based integrated circuits. A major objective of this development was to enable packaged SiC electronic circuits to operate continuously at temperatures up to 500 C. AlN-packaged SiC electronic circuits have commercial potential for incorporation into high-power electronic equipment and into sensors that must withstand high temperatures and/or high pressures in diverse applications that include exploration in outer space, well logging, and monitoring of nuclear power systems. This packaging embodies concepts drawn from flip-chip packaging of silicon-based integrated circuits. One or more SiC-based circuit chips are mounted on an aluminum nitride package substrate or sandwiched between two such substrates. Intimate electrical connections between metal conductors on the chip(s) and the metal conductors on external circuits are made by direct bonding to interconnections on the package substrate(s) and/or by use of holes through the package substrate(s). This approach eliminates the need for wire bonds, which have been the most vulnerable links in conventional electronic circuitry in hostile environments. Moreover, the elimination of wire bonds makes it possible to pack chips more densely than was previously possible.

  6. Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2015-01-01

    The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.

  7. Participation in the Center for Advanced Processing and Packaging Studies

    DTIC Science & Technology

    2009-11-24

    University, the University ofCalifomia, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...University, the University of California, Davis, and North Carolina State University to assist in advancing food processing and packaging technology and...amyloliquefaciens, spore inactivation, FT-IR spectroscopy, infrared 11 spectroscopy 12 13 14 15 16 17 Department of Food Science and Technology

  8. Electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  9. Defect printability for high-exposure dose advanced packaging applications

    NASA Astrophysics Data System (ADS)

    Mikles, Max; Flack, Warren; Nguyen, Ha-Ai; Schurz, Dan

    2003-12-01

    Pellicles are used in semiconductor lithography to minimize printable defects and reduce reticle cleaning frequency. However, there are a growing number of microlithography applications, such as advanced packaging and nanotechnology, where it is not clear that pellicles always offer a significant benefit. These applications have relatively large critical dimensions and require ultra thick photoresists with extremely high exposure doses. Given that the lithography is performed in Class 100 cleanroom conditions, it is possible that the risk of defects from contamination is sufficiently low that pellicles would not be required on certain process layer reticles. The elimination of the pellicle requirement would provide a cost reduction by saving the original pellicle cost and eliminating future pellicle replacement and repair costs. This study examines the imaging potential of defects with reticle patterns and processes typical for gold-bump and solder-bump advanced packaging lithography. The test reticle consists of 30 to 90 μm octagonal contact patterns representative of advanced packaging reticles. Programmed defects are added that represent the range of particle sizes (3 to 30 μm) normally protected by the pellicle and that are typical of advanced packaging lithography cleanrooms. The reticle is exposed using an Ultratech Saturn Spectrum 300e2 1X stepper on wafers coated with a variety of ultra thick (30 to 100 μm) positive and negative-acting photoresists commonly used in advanced packaging. The experimental results show that in many cases smaller particles continue to be yield issues for the feature size and density typical of advanced packaging processes. For the two negative photoresists studied it appears that a pellicle is not required for protection from defects smaller than 10 to 15 μm depending on the photoresist thickness. Thus the decision on pellicle usage for these materials would need to be made based on the device fabrication process and the

  10. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  11. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  12. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A

  13. Packaging films for electronic and space-related hardware

    NASA Astrophysics Data System (ADS)

    Shon, E. M.; Hamberg, O.

    1985-08-01

    Flexible packaging films are used to bag and/or wrap precision cleaned electronic or space hardware to protect them from environmental degradation during shipping and storage. Selection of packaging films depends on a knowledge of product requirements and packaging film characteristics. The literature presently available on protective packaging films has been updated to include new materials and to amplify space-related applications. Presently available packaging film materials are compared for their various characteristics: electrostatic discharge (ESD) control, flame retardancy, water vapor transmission rate, particulate shedding, molecular contamination, and transparency. The tradeoff between product requirements and the characteristics of the packaging films available are discussed. Selection considerations are given for the application of specific materials of space hardware-related applications. Applications for intimate, environmental, and electrostatic protective packaging are discussed.

  14. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  15. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  16. Decontamination of food packaging using electron beam—status and prospects

    NASA Astrophysics Data System (ADS)

    Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  17. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  18. JTEC Panel report on electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.

  19. The NASA Electronic Parts and Packaging (NEPP) Program: Insertion of New Electronics Technologies

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2007-01-01

    This viewgraph presentation gives an overview of NASA Electronic Parts and Packaging (NEPP) Program's new electronics technology trends. The topics include: 1) The Changing World of Radiation Testing of Memories; 2) Even Application-Specific Tests are Costly!; 3) Hypothetical New Technology Part Qualification Cost; 4) Where we are; 5) Approaching FPGAs as a More Than a "Part" for Reliability; 6) FPGAs Beget Novel Radiation Test Setups; 7) Understanding the Complex Radiation Data; 8) Tracking Packaging Complexity and Reliability for FPGAs; 9) Devices Supporting the FPGA Need to be Considered; 10) Summary of the New Electronic Technologies and Insertion into Flight Programs Workshop; and 11) Highlights of Panel Notes and Comments

  20. Hermetic electronics package with dual-sided electrical feedthrough configuration

    DOEpatents

    Shah, Kedar G.; Pannu, Satinderpall S.

    2016-11-22

    A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.

  1. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Extreme temperature packaging: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Johnson, R. Wayne

    2016-05-01

    Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.

  3. High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2015-01-01

    Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.

  4. Integrated microsystems packaging approach with LCP

    NASA Astrophysics Data System (ADS)

    Jaynes, Paul; Shacklette, Lawrence W.

    2006-05-01

    Within the government communication market there is an increasing push to further miniaturize systems with the use of chip-scale packages, flip-chip bonding, and other advances over traditional packaging techniques. Harris' approach to miniaturization includes these traditional packaging advances, but goes beyond this level of miniaturization by combining the functional and structural elements of a system, thus creating a Multi-Functional Structural Circuit (MFSC). An emerging high-frequency, near hermetic, thermoplastic electronic substrate material, Liquid Crystal Polymer (LCP), is the material that will enable the combination of the electronic circuit and the physical structure of the system. The first embodiment of this vision for Harris is the development of a battlefield acoustic sensor module. This paper will introduce LCP and its advantages for MFSC, present an example of the work that Harris has performed, and speak to LCP MFSCs' potential benefits to miniature communications modules and sensor platforms.

  5. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  6. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  7. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  8. Robust, Rework-able Thermal Electronic Packaging: Applications in High Power TR Modules for Space

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Hunter, Don; Miller, Jennifer

    2012-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires improvements in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and are now being implemented side-by-side with more standard technology typically used in flight hardware.

  9. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  10. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  11. 1st NASA Electronic Parts Packaging (NEPP) Program Electronic Technology Workshop (ETW)

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    NEPP supports all of NASA for >20 years - 7 NASA Centers and JPL actively participate The NEPP Program focuses on the reliability aspects of electronic devices - Three prime technical areas: Parts (die), Packaging, and Radiation Alternately, reliability may be viewed as: -

  12. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  13. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  14. Diamond-based heat spreaders for power electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  15. [The development and operation of a package inserts service system for electronic medical records].

    PubMed

    Yamada, Hidetoshi; Nishimura, Sachiho; Shimamori, Yoshimitsu; Sato, Seiji; Hayase, Yukitoshi

    2003-03-01

    To promote the appropriate use of pharmaceuticals and to prevent side effects, physicians need package inserts on medicinal drugs as soon as possible. A medicinal drug information service system was established for electronic medical records to speed up and increase the efficiency of package insert communications within a medical institution. Development of this system facilitates access to package inserts by, for example, physicians. The time required to maintain files of package inserts was shortened, and the efficiency of the drug information service increased. As a source of package inserts for this system, package inserts using a standard generalized markup language (SGML) form were used, which are accessible to the public on the homepage of the Organization for Pharmaceutical Safety and Research (OPSR). This study found that a delay occurred in communicating revised package inserts from pharmaceutical companies to the OPSR. Therefore a pharmaceutical department page was set up as part of the homepage of the medical institution for electronic medical records to shorten the delay in the revision of package inserts posted on the medicinal drug information service homepage of the OPSR. The usefulness of this package insert service system for electronic medical records is clear. For more effective use of this system based on the OPSR homepage pharmaceutical companies have been requested to provide quicker updating of package inserts.

  16. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  17. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  18. NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2008-01-01

    This viewgraph presentation reviews NASA's Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission needs. The NEPP Program focuses on the reliability aspects of electronic devices. Three principal aspects to this reliability: (1) lifetime, (2) effects of space radiation and the space environment, and (3) creation and maintenance of the assurance support infrastructure required for success.

  19. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  20. Functional Requirements for an Electronic Work Package System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna H.

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basicmore » document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.« less

  1. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less

  2. Thermal Testing and Quality Assurance of BGA LCC & QFN Electronic Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuper, Cameron Mathias

    The purpose of this project is to experimentally validate the thermal fatigue life of solder interconnects for a variety of surface mount electronic packages. Over the years, there has been a significant amount of research and analysis in the fracture of solder joints on printed circuit boards. Solder is important in the mechanical and electronic functionality of the component. It is important throughout the life of the product that the solder remains crack and fracture free. The specific type of solder used in this experiment is a 63Sn37Pb eutectic alloy. Each package was surrounded conformal coating or underfill material.

  3. Language games: Advanced R & R packages: Book Review

    DOE PAGES

    Hraber, Peter Thomas

    2016-03-23

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  4. Language games: Advanced R & R packages: Book Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hraber, Peter Thomas

    Readers who wrangle answers from data by extended refinement of available computational tools have many options and resources available. Inevitably, they will develop their own methods tailored to the problem at hand.Two new books have recently been published, each of which is useful addition to the library for a scientist who programs with data. The two books reviewed are both written by H. Wickham. The titles are ''Advanced R'' and ''R Packages'', both published in 2015.

  5. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  6. Risk Management of Microelectronics: The NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2005-01-01

    This viewgraph information provides information on how the NASA Electronic Parts and Packaging (NEPP) Program evaluates the reliability of technologies for Electrical, Electronic, and Electromechanical (EEE) parts, and their suitability for spacecraft applications.

  7. Processing of NiTi Reinforced Adaptive Solder for Electronic Packaging

    DTIC Science & Technology

    2004-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PROCESSING OF NITI REINFORCED ADAPTIVE SOLDER FOR ELECTRONIC PACKAGING...March 2004 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Processing of NiTi Reinforced Adaptive Solder for Electronic...reports in the development a process to fabricate solder joints with a fine distribution of shape memory alloys (SMA) NiTi particulates. The

  8. Electronic packaging: new results in singulation by Laser Microjet

    NASA Astrophysics Data System (ADS)

    Wagner, Frank; Sibailly, Ochelio; Richerzhagen, Bernold

    2004-07-01

    Cutting electronic packages that are produced in a matrix array fashion is an important process and deals with the ready-to-use devices. Thus an increase in the singulation yield is directly correlated to an increase in benefit. Due to the usage of different substrate materials, the saws encounter big problems in terms of lifetime and constancy of cut quality in these applications. Today"s equipment manufacturers are not yet in the position to propose an adequate solution for all types of packages. Compared to classical laser cutting, the water-jet guided laser technology minimizes the heat damages in any kind of sample. This new material processing method consists in guiding a laser beam inside a hair thin, lowpressure water-jet by total internal reflection, and is applied to package singulation since two years approximately. Using a frequency doubled Nd:YAG laser guided by a water jet, an LTCC-ceramics based package is singulated according to a scribe and break process. Speeds of 2-10 mm/s are reached in the LTTC and 40 mm/s in the mold compound. The process is wear-free and provides very good edge quality of the LTCC and the mold compound as well as reliable separation of the packages.

  9. Low-dielectric constant insulators for future integrated circuits and packages.

    PubMed

    Kohl, Paul A

    2011-01-01

    Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.

  10. FOREWORD: Proceedings of the 39th International Microelectronics and Packaging IMAPS Poland Conference

    NASA Astrophysics Data System (ADS)

    Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert

    2016-01-01

    These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.

  11. Paperless Work Package Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Jr., William R.; Morrell, Jr., Otto K.; Morrison, Dan

    2014-07-31

    Paperless Work Package (PWP) System is a computer program process that takes information from Asset Suite, provides a platform for other electronic inputs, Processes the inputs into an electronic package that can be downloaded onto an electronic work tablet or laptop computer, provides a platform for electronic inputs into the work tablet, and then transposes those inputs back into Asset Suite and to permanent SRS records. The PWP System will basically eliminate paper requirements from the maintenance work control system. The program electronically relays the instructions given by the planner to work on a piece of equipment which is currentlymore » relayed via a printed work package. The program does not control/approve what is done. The planner will continue to plan the work package, the package will continue to be routed, approved, and scheduled. The supervisor reviews and approves the work to be performed and assigns work to individuals or to a work group. (The supervisor conducts pre job briefings with the workers involved in the job) The Operations Manager (Work Controlling Entity) approves the work package electronically for the work that will be done in his facility prior to work starting. The PWP System will provide the package in an electronic form. All the reviews, approvals, and safety measures taken by people outside the electronic package does not change from the paper driven work packages.« less

  12. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  13. NASA Electronic Parts and Packaging (NEPP) Program - Update

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.

  14. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  15. Materials for High-Density Electronic Packaging and Interconnection

    DTIC Science & Technology

    1990-04-10

    play a prominent role in the future. Glass and Porcelain The earliest use of electronic ceramics was as insulators for carrying telegraph lines...Administration 61L & CORES , (Ot. stem. SAI WCJm 76. LOISS (C". SUMt *oW WVCf B’%2101 Constitution Avenue. N W Washington, D.C. 20418 Washington. D.C. 20301 G...Density Packaging 84 Tape Automated Bonding 87 Diamond 88 Superconductors 88 Composites 89 Materials for Very-High-Frequency Digital Systems 91

  16. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  17. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  18. rEHR: An R package for manipulating and analysing Electronic Health Record data.

    PubMed

    Springate, David A; Parisi, Rosa; Olier, Ivan; Reeves, David; Kontopantelis, Evangelos

    2017-01-01

    Research with structured Electronic Health Records (EHRs) is expanding as data becomes more accessible; analytic methods advance; and the scientific validity of such studies is increasingly accepted. However, data science methodology to enable the rapid searching/extraction, cleaning and analysis of these large, often complex, datasets is less well developed. In addition, commonly used software is inadequate, resulting in bottlenecks in research workflows and in obstacles to increased transparency and reproducibility of the research. Preparing a research-ready dataset from EHRs is a complex and time consuming task requiring substantial data science skills, even for simple designs. In addition, certain aspects of the workflow are computationally intensive, for example extraction of longitudinal data and matching controls to a large cohort, which may take days or even weeks to run using standard software. The rEHR package simplifies and accelerates the process of extracting ready-for-analysis datasets from EHR databases. It has a simple import function to a database backend that greatly accelerates data access times. A set of generic query functions allow users to extract data efficiently without needing detailed knowledge of SQL queries. Longitudinal data extractions can also be made in a single command, making use of parallel processing. The package also contains functions for cutting data by time-varying covariates, matching controls to cases, unit conversion and construction of clinical code lists. There are also functions to synthesise dummy EHR. The package has been tested with one for the largest primary care EHRs, the Clinical Practice Research Datalink (CPRD), but allows for a common interface to other EHRs. This simplified and accelerated work flow for EHR data extraction results in simpler, cleaner scripts that are more easily debugged, shared and reproduced.

  19. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  20. Qualification and Reliability for MEMS and IC Packages

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2004-01-01

    Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface

  1. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  2. Advances in Flexible Hybrid Electronics Reliability

    DTIC Science & Technology

    2017-03-01

    Advances in Flexible Hybrid Electronics Reliability Douglas R. Hackler, Richard L. Chaney, Brian N. Meek, Darrell E. Leber, Seth D. Leija, Kelly J...www.americansemi.com Abstract: Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance...presented for flexible hybrid electronics systems. Keywords: FleX; flexible; flexible hybrid electronics ; FHE; Silicon-on-Polymer Introduction

  3. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-08-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  4. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  5. Dissemination Package for Transition into Electronics (TIE) Project, October 1979-June 1980.

    ERIC Educational Resources Information Center

    Evergreen Valley Coll., San Jose, CA.

    This dissemination package consists of a variety of advertising materials, forms, questionnaires, tests, and handouts developed as a part of the Transition into Electronics (TIE) Project. (The TIE Project was a project that developed, implemented, and evaluated a model designed to encourage persons to pursue education and training leading to…

  6. Packaging Technology for Dielectric-Coating-Less Heavy Ion Radiation Testing of High-Voltage (HV) Electronic Parts

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew; Chen, Liangyu

    2017-01-01

    Testing high voltage (HV) electronic parts (greater than 300 V) for sudden event effects (SEE) caused by cosmic rays in the space environment, consisting of energetic heavy-ions, and neutron radiation in the upper atmosphere is a crucial step towards using these parts in spacecraft and aircraft. Due to the nature of cosmic radiation and neutrons, electronic parts are tested for SEE without any packaging and/or shielding over the top of the device. In the case of commercial HV parts, the top of the packaging is etched off and then a thin dielectric coating is placed over the part in order to avoid electrical arcing between the device surface and wire bonds and other components. Even though the effects of the thin dielectric layer on SEE testing can be accounted for, the dielectric layer significantly hinders post testing failure analysis. Replicating the test capability of state-of-the-art packaging while eliminating the need for post radiation test processing of the die surface (that obscures failure analysis) is the goal. To that end, a new packaging concept for HV parts has been developed that requires no dielectric coating over the part. Testing of prototype packages used with Schottky diodes (rated at 1200V) has shown no electrical arcing during testing and leakage currents during reverse bias testing are within the manufactures specifications.

  7. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  8. Packaging Concerns/Techniques for Large Devices

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2009-01-01

    This slide presentation reviews packaging challenges and options for electronic parts. The presentation includes information about non-hermetic packages, space challenges for packaging and complex package variations.

  9. The effect of electronic package on satisfaction in multiple sclerosis patients

    PubMed Central

    Mohamadirizi, Shahla; Shaygannejad, Vahid; Mohamadirizi, Soheila; Khosrawi, Saeid

    2016-01-01

    Background: Traditional teaching methods used in medical education cannot wholly respond to the rapid changes and growth of information as well as continuous changes in the educational needs of society, especially patients with chronic diseases such as multiple sclerosis (MS). Therefore, this study was designed with the aim of examining the effect of electronic package on satisfaction in MS patients. Materials and Methods: The research was a quasi-experimental study. It was carried out at the MS Kashani Center affiliated to the Isfahan University of Medical Sciences, in 2013. One hundred twenty-eight patients with MS were allocated randomly into two equal groups of 64 each for education by booklet (control) and education by multimedia software (experimental) for 2 weeks. Data were collected by processing questionnaires, which consisted of questions about satisfaction (17 items) and questions about demographic and disease characteristics (9 items), answered by both groups before and 2 weeks after education. SPSS version 14 (DARYA software, Iran) was used to conduct statistical tests such as the independent t-test and the paired t-test for analyzing the data. The statistical significance level was less than 0.05. Results: The results show that there was not any significant difference between the satisfaction scores of the electronic package and control groups before intervention, but that there was a significant difference after 2 weeks’ intervention (P = 0.010). Conclusion: The electronic programs comprised an attractive education method. So this technology can increase motivation in MS patients to study more about the disease process. PMID:27308261

  10. Advanced Electronic Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Patrick, Dale R.

    This curriculum for a 1-semester or 1-year course in electronics is designed to take students from basic through advanced electronic systems. It covers several electronic areas, such as digital electronics, communication electronics, industrial process control, instrumentation, programmable controllers, and robotics. The guide contains…

  11. Skylab electronic technological advancements

    NASA Technical Reports Server (NTRS)

    Hornback, G. L.

    1974-01-01

    The present work describes three electronic devices designed for use in the Skylab airlock module: the teleprinter system, the quartz crystal microbalance contamination monitor (QCM), and the speaker. Design considerations, operation, characteristics, and system development are described for these systems, with accompanying diagrams, graphs, and photographs. The teleprinter is a thermal dot printer used to produce hard copy messages by electrically heating print elements in contact with heat-sensitive paper. The QCM was designed to estimate contamination buildup on optical surfaces of the earth resources experiment package. A vibrating quartz crystal is used as a microbalance relating deposited mass to shifts in the crystal's resonant frequency. Audio devices provide communication between crew members and between crew and STDN, and also provide audible alarms, via the caution and warning system, of out-of-limit-conditions.

  12. Advanced Electronics. Curriculum Development. Bulletin 1778.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This document is a curriculum guide for a 180-hour course in advanced electronics for 11th and 12th grades that has four instructional units. The instructional units are orientation, discrete components, integrated circuits, and electronic systems. The document includes a course flow chart; a two-page section that describes the course, lists…

  13. Information Business: Applying Infometry (Informational Geometry) in Cognitive Coordination and Genetic Programming for Electronic Information Packaging and Marketing.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    1994-01-01

    Describes the use of infometry, or informational geometry, to meet the challenges of information service businesses. Highlights include theoretical models for cognitive coordination and genetic programming; electronic information packaging; marketing electronic information products, including cost-benefit analyses; and recapitalization, including…

  14. Development and testing of the Junkeeper Control Corporation integrated programmable electronic controller and hydronics package

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1979-01-01

    Additional developmental work on the existing programmable electronic controller and hydronic package for use with solar heating and cooling systems is summarized. The controller/hydronics subsystems passed all acceptance tests and performance criteria. The subsystems were shown marketable for public use.

  15. Advances in food packaging films from milk proteins

    USDA-ARS?s Scientific Manuscript database

    Most commercial petroleum-based food packaging films are poor oxygen barriers, do not biodegrade, and some are suspected to even leach compounds into the food product. For instance, three-perfluorinated coatings were banned from convenience food packaging earlier this year. These shortcomings are a ...

  16. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  17. The NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond and Recent Radiation Highlights

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.

  18. Use of advanced modeling techniques to optimize thermal packaging designs.

    PubMed

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  19. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  20. 76 FR 12144 - Advanced Optics Electronics, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advanced Optics Electronics, Inc.; Order of... lack of current and accurate information concerning the securities of Advanced Optics Electronics, Inc... in Advanced Optics Electronics, Inc. Therefore, it is ordered, pursuant to Section 12(k) of the...

  1. Advanced Electronics Systems 1, Industrial Electronics 3: 9327.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The 135 clock-hour course for the 12th year consists of outlines for blocks of instruction on transistor applications to basic circuits, principles of single sideband communications, maintenance practices, preparation for FCC licenses, application of circuits to advanced electronic systems, nonsinusoidal wave shapes, multivibrators, and blocking…

  2. The NASA Electronic Parts and Packaging (NEPP) Program: Results and Direction

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2007-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program's mission is to provide guidance to NASA for the selection and application of microelectronic technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. This viewgraph presentation reviews the NEPP program's goals and objectives, and reviews many of the missions that the NEPP program has impacted, both in and out of NASA. Also included are examples of the evaluation that the program performed.

  3. Applications and advances in electronic-nose technologies

    Treesearch

    A. D. Wilson; M. Baietto

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software...

  4. Applications and Advances in Electronic-Nose Technologies

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690

  5. Nanotechnology: An Untapped Resource for Food Packaging.

    PubMed

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  6. Nanotechnology: An Untapped Resource for Food Packaging

    PubMed Central

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector. PMID:28955314

  7. Characterizing the temperature dependence of electronic packaging-material properties

    NASA Astrophysics Data System (ADS)

    Fu, Chia-Yu; Ume, Charles

    1995-06-01

    A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.

  8. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  9. Fatigue failure of pb-free electronic packages under random vibration loads

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.

    2018-03-01

    The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.

  10. Recent Advancements in Functionalized Paper-Based Electronics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Liu, Qian; Lu, Xiaonan; Xu, Jie

    2016-08-17

    Building electronic devices on ubiquitous paper substrates has recently drawn extensive attention due to its light weight, low cost, environmental friendliness, and ease of fabrication. Recently, a myriad of advancements have been made to improve the performance of paper electronics for various applications, such as basic electronic components, energy storage devices, generators, antennas, and electronic circuits. This review aims to summarize this progress and discuss different perspectives of paper electronics as well as the remaining challenges yet to be overcome in this field. Other aspects included in this review are the fundamental characteristics of paper, modification of paper with functional materials, and various methods for device fabrication.

  11. A systems approach to solder joint fatigue in spacecraft electronic packaging

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1991-01-01

    Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.

  12. Packaging Concerns and Techniques for Large Devices: Challenges for Complex Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    NASA is going to have to accept the use of non-hermetic packages for complex devices. There are a large number of packaging options available. Space application subjects the packages to stresses that they were probably not designed for (vacuum for instance). NASA has to find a way of having assurance in the integrity of the packages. There are manufacturers interested in qualifying non-hermetic packages to MIL-PRF-38535 Class V. Government space users are agreed that Class V should be for hermetic packages only. NASA is working on a new Class for non-hermetic packages for M38535 Appendix B, "Class Y". Testing for package integrity will be required but can be package specific as described by a Package Integrity Test Plan. The plan is developed by the manufacturer and approved by DSCC and government space.

  13. Thermal Management and Packaging Reliability (Text Version) |

    Science.gov Websites

    Transportation Research | NREL Thermal Management and Packaging Reliability (Text Version ) Thermal Management and Packaging Reliability (Text Version) Learn how NREL's thermal management and ;Boosting Thermal Management & Reliability of Vehicle Power Electronics." Better power electronics

  14. GeMS: an advanced software package for designing synthetic genes.

    PubMed

    Jayaraj, Sebastian; Reid, Ralph; Santi, Daniel V

    2005-01-01

    A user-friendly, advanced software package for gene design is described. The software comprises an integrated suite of programs-also provided as stand-alone tools-that automatically performs the following tasks in gene design: restriction site prediction, codon optimization for any expression host, restriction site inclusion and exclusion, separation of long sequences into synthesizable fragments, T(m) and stem-loop determinations, optimal oligonucleotide component design and design verification/error-checking. The output is a complete design report and a list of optimized oligonucleotides to be prepared for subsequent gene synthesis. The user interface accommodates both inexperienced and experienced users. For inexperienced users, explanatory notes are provided such that detailed instructions are not necessary; for experienced users, a streamlined interface is provided without such notes. The software has been extensively tested in the design and successful synthesis of over 400 kb of genes, many of which exceeded 5 kb in length.

  15. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  16. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dong

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  17. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE PAGES

    Su, Dong

    2017-04-01

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  18. Advances in positron and electron scattering*

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime

    2016-10-01

    The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.

  19. High-performance and high-reliability SOT-6 packaged diplexer based on advanced IPD fabrication techniques

    NASA Astrophysics Data System (ADS)

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-08-01

    A diplexer offering the advantages of compact size, high performance, and high reliability is proposed on the basis of advanced integrated passive device (IPD) fabrication techniques. The proposed diplexer is developed by combining a third-order low-pass filter (LPF) and a third-order high-pass filter (HPF), which are designed on the basis of the elliptic function prototype low-pass filter. Primary components, such as inductors and capacitors, are designed and fabricated with high Q-factor and appropriate values, and they are subsequently used to construct a compact diplexer having a chip area of 900 μm × 1100 μm (0.009 λ0 × 0.011 λ0, where λ0 is the guided wavelength). In addition, a small-outline transistor (SOT-6) packaging method is adopted, and reliability tests (including temperature, humidity, vibration, and pressure) are conducted to guarantee long-term stability and commercial success. The packaged measurement results indicate excellent RF performance with insertion losses of 1.39 dB and 0.75 dB at operation bands of 0.9 GHz and 1.8 GHz, respectively. The return loss is lower than 10 dB from 0.5 GHz to 4.0 GHz, while the isolation is higher than 15 dB from 0.5 GHz to 3.0 GHz. Thus, it can be concluded that the proposed SOT-6 packaged diplexer is a promising candidate for GSM/CDMA applications. Synthetic solution of diplexer design, RF performance optimization, fabrication process, packaging, RF response measurement, and reliability test is particularly explained and analyzed in this work.

  20. 75 FR 21367 - Advanced Electronics, Inc.; Boston, MA; Notice of Negative Determination on Remand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-59,517] Advanced Electronics, Inc... Employees of Advanced Electronics, Inc. v. United States Secretary of Labor (Court No. 06-00337). On July 18... former workers of Advanced Electronics, Inc., Boston, Massachusetts (subject firm). The Department's...

  1. A Self-Contained Cold Plate Utilizing Force-fed Evaporation for Cooling of High flux Electronics

    DTIC Science & Technology

    2007-01-01

    additional improvement. The second advanced heat sink to be covered was developed and studied by Sung and Mudawar [27]. They created a hybrid jet...cooling by using manifold microchannel heat sinks.” Advanced Electronic Packaging. 2 (1997) 1837-1842. [27] Sung, M. K. & Mudawar , I

  2. Advanced uncooled infrared system electronics

    NASA Astrophysics Data System (ADS)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  3. Advances in the REDCAT software package

    PubMed Central

    2013-01-01

    Background Residual Dipolar Couplings (RDCs) have emerged in the past two decades as an informative source of experimental restraints for the study of structure and dynamics of biological macromolecules and complexes. The REDCAT software package was previously introduced for the analysis of molecular structures using RDC data. Here we report additional features that have been included in this software package in order to expand the scope of its analyses. We first discuss the features that enhance REDCATs user-friendly nature, such as the integration of a number of analyses into one single operation and enabling convenient examination of a structural ensemble in order to identify the most suitable structure. We then describe the new features which expand the scope of RDC analyses, performing exercises that utilize both synthetic and experimental data to illustrate and evaluate different features with regard to structure refinement and structure validation. Results We establish the seamless interaction that takes place between REDCAT, VMD, and Xplor-NIH in demonstrations that utilize our newly developed REDCAT-VMD and XplorGUI interfaces. These modules enable visualization of RDC analysis results on the molecular structure displayed in VMD and refinement of structures with Xplor-NIH, respectively. We also highlight REDCAT’s Error-Analysis feature in reporting the localized fitness of a structure to RDC data, which provides a more effective means of recognizing local structural anomalies. This allows for structurally sound regions of a molecule to be identified, and for any refinement efforts to be focused solely on locally distorted regions. Conclusions The newly engineered REDCAT software package, which is available for download via the WWW from http://ifestos.cse.sc.edu, has been developed in the Object Oriented C++ environment. Our most recent enhancements to REDCAT serve to provide a more complete RDC analysis suite, while also accommodating a more user

  4. Lithium-Ion Technology for Aerospace Applications- Advancing Battery Management Electronics

    NASA Astrophysics Data System (ADS)

    Gitzendanner, R.; Jones, E.; Deory, C.; Carmen, D.

    2005-05-01

    Lithium-ion technology offers a unique, weight and volume saving, solution to the power storage needs of space applications. With higher energy and power densities than conventional technologies, such as Nickel-Hydrogen (Ni-H) and Nickel/Cadmium (Ni- Cd), and comparable cycle life and reliability, Lithium-ion technology is gaining interest in many space applications. As the demand for Lithium-ion batteries with high reliability and long life increases, the need for battery management electronics, including individual cell balancing and monitoring, becomes apparent. With onboard electronics, the cells are monitored individually, and are protected from over charge or over discharge by way of integral protection circuitry. State of Charge, State of Health and other useful telemetry can also be calculated by the integrated electronics and reported to the application. Lab-based, and real-life, testing and use of these battery systems has shown the advantages of an integrated electronics package.

  5. Multimedia package for LRFD concrete bridge design.

    DOT National Transportation Integrated Search

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  6. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high

  7. Advanced technology component derating

    NASA Astrophysics Data System (ADS)

    Jennings, Timothy A.

    1992-02-01

    A technical study performed to determine the derating criteria of advanced technology components is summarized. The study covered existing criteria from AFSC Pamphlet 800-27 and the development of new criteria based on data, literature searches, and the use of advanced technology prediction methods developed in RADC-TR-90-72. The devices that were investigated were as follows: VHSIC, ASIC, MIMIC, Microprocessor, PROM, Power Transistors, RF Pulse Transistors, RF Multi-Transistor Packages, Photo Diodes, Photo Transistors, Opto-Electronic Couplers, Injection Laser Diodes, LED, Hybrid Deposited Film Resistors, Chip Resistors, and Capacitors and SAW devices. The results of the study are additional derating criteria that extend the range of AFSC Pamphlet 800-27. These data will be transitioned from the report to AFSC Pamphlet 800-27 for use by government and contractor personnel in derating electronics systems yielding increased safety margins and improved system reliability.

  8. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  9. Sterile Product Packaging and Delivery Systems.

    PubMed

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  10. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  11. Application of GA package in functional packaging

    NASA Astrophysics Data System (ADS)

    Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.

    2018-05-01

    The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.

  12. Types, production and assessment of biobased food packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  13. Emerging Chitosan-Based Films for Food Packaging Applications.

    PubMed

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  14. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  15. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  16. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  17. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  18. Towards roll-to-roll fabrication of electronics, optics, and optoelectronics for smart and intelligent packaging

    NASA Astrophysics Data System (ADS)

    Kololuoma, Terho K.; Tuomikoski, Markus; Makela, Tapio; Heilmann, Jali; Haring, Tomi; Kallioinen, Jani; Hagberg, Juha; Kettunen, Ilkka; Kopola, Harri K.

    2004-06-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like packages and printed matter can be used to increase their information content. These functionalities make also possible the realization of new type of entertaining, impressive or guiding effects on the product packages and printed matter. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Additionally, the price of the components for low-end products has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid materials - inks - have made it possible to fabricate functional electrical, optical and optoelectrical components by conventional roll-to-roll techniques such as gravure printing, embossing, digital printing, offset, and screen printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated, optics, electronics and optoelectronics. With few examples, we also demonstrate the printing and hot-embossing capabilities of table scale printing machines and VTT Electronic's 'PICO' roll-to-roll pilot production facility.

  19. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  20. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  1. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  2. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques.

    PubMed

    Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar

    2016-09-01

    In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.

  3. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE PAGES

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...

    2018-04-19

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  4. QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.

    QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less

  5. Evaluation of Five Microcomputer CAD Packages.

    ERIC Educational Resources Information Center

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the…

  6. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  7. Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS

    NASA Astrophysics Data System (ADS)

    Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve

    2018-02-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.

  8. Advanced electronics for the CTF MEG system.

    PubMed

    McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A

    2004-11-30

    Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.

  9. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin

    2016-11-22

    Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.

  10. Structure of a headful DNA-packaging bacterial virus at 2.9 Å resolution by electron cryo-microscopy

    PubMed Central

    Zhao, Haiyan; Li, Kunpeng; Lynn, Anna Y.; Aron, Keith E.; Yu, Guimei; Jiang, Wen; Tang, Liang

    2017-01-01

    The enormous prevalence of tailed DNA bacteriophages on this planet is enabled by highly efficient self-assembly of hundreds of protein subunits into highly stable capsids. These capsids can stand with an internal pressure as high as ∼50 atmospheres as a result of the phage DNA-packaging process. Here we report the complete atomic model of the headful DNA-packaging bacteriophage Sf6 at 2.9 Å resolution determined by electron cryo-microscopy. The structure reveals the DNA-inflated, tensed state of a robust protein shell assembled via noncovalent interactions. Remarkable global conformational polymorphism of capsid proteins, a network formed by extended N arms, mortise-and-tenon–like intercapsomer joints, and abundant β-sheet–like mainchain:mainchain intermolecular interactions, confers significant strength yet also flexibility required for capsid assembly and DNA packaging. Differential formations of the hexon and penton are mediated by a drastic α–helix-to-β–strand structural transition. The assembly scheme revealed here may be common among tailed DNA phages and herpesviruses. PMID:28320961

  11. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  12. Advanced Materials and Devices for Bioresorbable Electronics.

    PubMed

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  13. Battery packaging - Technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  14. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal

  15. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    PubMed

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  16. Advanced Sensor Arrays and Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryter, John Wesley; Romero, Christopher J.; Ramaiyan, Kannan

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La 0.8Sr 0.2CrO 3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fuelingmore » station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.« less

  17. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors

    NASA Astrophysics Data System (ADS)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to

  18. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology usedmore » in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.« less

  19. 78 FR 46621 - Status of the Office of New Reactors' Implementation of Electronic Distribution of Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... of Electronic Distribution of Advanced Reactor Correspondence AGENCY: Nuclear Regulatory Commission. ACTION: Implementation of electronic distribution of advanced reactor correspondence; issuance. SUMMARY... public that, in the future, publicly available correspondence originating from the Division of Advanced...

  20. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  2. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  3. MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science

    NASA Astrophysics Data System (ADS)

    Sébilleau, Didier; Natoli, Calogero; Gavaza, George M.; Zhao, Haifeng; Da Pieve, Fabiana; Hatada, Keisuke

    2011-12-01

    We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile. Program summaryProgram title: MsSpec-1.0 Catalogue identifier: AEJT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 504 438 No. of bytes in distributed program, including test data, etc.: 14 448 180 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any Operating system: Linux, MacOs RAM: Bytes Classification: 7.2 External routines: Lapack ( http://www.netlib.org/lapack/) Nature of problem: Calculation of the cross-section of various spectroscopies. Solution method: Multiple scattering. Running time: The test runs provided only take a few seconds to run.

  4. Automated Work Package: Conceptual Design and Data Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Rashdan, Ahmad; Oxstrand, Johanna; Agarwal, Vivek

    The automated work package (AWP) is one of the U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability Program efforts to enhance the safety and economics of the nuclear power industry. An AWP is an adaptive and interactive work package that intelligently drives the work process according to the plant condition, resources status, and users progress. The AWP aims to automate several manual tasks of the work process to enhance human performance and reduce human errors. Electronic work packages (eWPs), studied by the Electric Power Research Institute (EPRI), are work packages that rely to various extent on electronic data processingmore » and presentation. AWPs are the future of eWPs. They are envisioned to incorporate the advanced technologies of the future, and thus address the unresolved deficiencies associated with the eWPs in a nuclear power plant. In order to define the AWP, it is necessary to develop an ideal envisioned scenario of the future work process without any current technology restriction. The approach followed to develop this scenario is specific to every stage of the work process execution. The scenario development resulted in fifty advanced functionalities that can be part of the AWP. To rank the importance of these functionalities, a survey was conducted involving several U.S. nuclear utilities. The survey aimed at determining the current need of the nuclear industry with respect to the current work process, i.e. what the industry is satisfied with, and where the industry envisions potential for improvement. The survey evaluated the most promising functionalities resulting from the scenario development. The results demonstrated a significant desire to adopt the majority of these functionalities. The results of the survey are expected to drive the Idaho National Laboratory (INL) AWP research and development (R&D). In order to facilitate this mission, a prototype AWP is needed. Since the vast majority of earlier efforts focused on

  5. Advanced educational program in optoelectronics for undergraduates and graduates in electronics

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Schiopu, Paul

    2015-02-01

    The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.

  6. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  7. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  8. Effects of health-oriented descriptors on combustible cigarette and electronic cigarette packaging: an experiment among adult smokers in the United States.

    PubMed

    Sanders-Jackson, Ashley; Tan, Andy S L; Yie, Kyeungyeun

    2017-10-05

    Certain tobacco companies use health-oriented descriptors (eg, 100% organic) on product packaging and advertising of combustible cigarettes or electronic cigarettes (e-cigarettes) that create a 'health halo' around smoking and vaping. Previous observational research suggests that such language may be associated with more favourable attitudes and reduced risk perceptions toward these brands compared with others. This study aimed to determine the effects of health-oriented descriptors on smokers' attitude toward the brand, perception of packaging information, comparative harm versus other brands and intention to purchase either combustible cigarettes or e-cigarettes. US adult smokers were randomly assigned to view either a health-oriented language package ('100% organic,' 'all natural' or 'no additives'), traditional marketing language package ('fine quality,' 'premium blend' or '100% original') or a no-language package of a combustible cigarette brand (Study 1, n=405) or an e-cigarette brand (Study 2, n=396) in an experimental design. Study 1: Participants in the health-oriented condition reported more favourable perceptions toward the package information, lower comparative harm and higher intention to purchase combustible cigarettes versus the no language control. In addition, participants in the health-oriented condition reported more positive attitude toward the brand and lower comparative harm versus the traditional marketing condition. Study 2: Compared with the traditional marketing condition, participants in the health-oriented condition reported greater intention to purchase Absolute e-cigarettes. There were no significant differences in attitude toward the brand, perception of packaging information and comparative harm versus other brands across conditions. The effect of health-oriented language was significant for combustible cigarettesand e-cigarette packages. Policies to restrict health-oriented language on cigarette and e-cigarette packaging are

  9. A microelectronics approach for the ROSETTA surface science package

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer (Editor); Alkalaj, Leon

    1996-01-01

    In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.

  10. Impact of external influences on food packaging.

    PubMed

    Brody, A L

    1977-09-01

    Since the food supply is dependent upon an effective packaging system, threats to packaging represent implied threats to food processing and distribution. Enacted and potential legislation and regulation are retarding technological and commercial progress in food packaging and have already restricted some food packaging/processins systems. The results of these external influences is not simply the sum of the individual acts, but is a cascading self-imposed arresting of food packaging/processing advancement. The technological bases for the enacted and proposed legislation and regulation are presented in the enumeration of the external influences on food packaging. Economic and sociological arguments and facts surrounding the issues are also presented. Among the external influences on food packaging detailed are indirect additives, nutritional labeling, benefit:risk, solid waste and litter, environmental pollution, universal product code, and food industry productivity. The magnitude of the total impact of these external influences upon the food supply is so large that assertive action must be taken to channel these influences into more productive awareness. An objective and comprehensive public communications program supported by the technological community appears mandatory.

  11. Recent trends and future of pharmaceutical packaging technology

    PubMed Central

    Zadbuke, Nityanand; Shahi, Sadhana; Gulecha, Bhushan; Padalkar, Abhay; Thube, Mahesh

    2013-01-01

    The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS) vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD) coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future. PMID:23833515

  12. Radiation treatment for sterilization of packaging materials

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.

    2007-08-01

    Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.

  13. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging.

  14. Status and Trend of Automotive Power Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  15. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  16. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  17. Electronic medication packaging devices and medication adherence: a systematic review.

    PubMed

    Checchi, Kyle D; Huybrechts, Krista F; Avorn, Jerry; Kesselheim, Aaron S

    2014-09-24

    Medication nonadherence, which has been estimated to affect 28% to 31% of US patients with hypertension, hyperlipidemia, and diabetes, may be improved by electronic medication packaging (EMP) devices (adherence-monitoring devices incorporated into the packaging of a prescription medication). To investigate whether EMP devices are associated with improved adherence and to identify and describe common features of EMP devices. Systematic review of peer-reviewed studies testing the effectiveness of EMP systems in the MEDLINE, EMBASE, PsycINFO, CINAHL, International Pharmaceutical Abstracts, and Sociological Abstracts databases from searches conducted to June 13, 2014, with extraction of associations between the interventions and adherence, as well as other key findings. Each study was assessed for bias using the Cochrane Handbook for Systematic Reviews of Interventions; features of EMP devices and interventions were qualitatively assessed. Thirty-seven studies (32 randomized and 5 nonrandomized) including 4326 patients met inclusion criteria (10 patient interface-only "simple" interventions and 29 "complex" interventions integrated into the health care system [2 qualified for both categories]). Overall, the effect estimates for differences in mean adherence ranged from a decrease of 2.9% to an increase of 34.0%, and the those for differences in the proportion of patients defined as adherent ranged from a decrease of 8.0% to an increase of 49.5%. We identified 5 common EMP characteristics: recorded dosing events and stored records of adherence, audiovisual reminders to cue dosing, digital displays, real-time monitoring, and feedback on adherence performance. Many varieties of EMP devices exist. However, data supporting their use are limited, with variability in the quality of studies testing EMP devices. Devices integrated into the care delivery system and designed to record dosing events are most frequently associated with improved adherence, compared with other

  18. Shock-isolation material selection for electronic packages in hard-target environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stotts, Jarrett Eugene

    High velocity munitions and kinetic penetrators experience monumental external forces, impulses, and accelerations. The hard target environment is immensely taxing on sophisticated electronic components and recorders designed to retrieve valuable data related to the systems performance and characteristics in the periods of flight, impact, and post-impact. Such electronic systems have upper limits of overall shock intensity which, if exceeded, will either shorten the operating life of the parts or risk destruction resulting in loss of both the data and the principal value of the recorder. The focus of this project was to refine the categorization of leading material types formore » encapsulation and passive shock isolation and implement them in a method useable for a wide variety of environments. Namely, a design methodology capable of being tailored to the specific impact conditions to maximize the lively hood of sensitive electronics and the information recorded. The results of the study concluded that the materials observed under consistent dynamic high strain rate tests, which include Conathane® EN-4/9, Slygard®-184, and Stycast™-2651, behaved well in certain aspects of energy transmission and shock when considering the frequency environment or package coupled with the isolation material’s application. Key points about the implementation of the materials in extreme shock environments is discussed with the connection to energy analysis, loss attributes, and pulse transmissibility modeling. However, attempts to model the materials solely based on energy transmissibility in the frequency domain using only external experimental data and simplified boundary conditions was not found to be consistent with that acquired from the pressure bar experiments. Further work will include the addition of further material experimentation of the encapsulants in other frequency and temperature states, confined and pre-load boundary states, and composite constructions.« less

  19. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  20. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ...In this final rule, PHMSA is amending packaging requirements in the Hazardous Materials Regulations to enhance compliance flexibility, improve clarity, and reduce regulatory burdens. Specifically, we are revising several packaging related definitions; adding provisions to allow more flexibility when preparing and transmitting closure instructions, including conditions under which closure instructions may be transmitted electronically; adding a requirement for shippers to retain packaging closure instructions; incorporating new language that will allow for a practicable means of stenciling the ``UN'' symbol on packagings; and clarifying a requirement to document the methodology used when determining whether a change in packaging configuration requires retesting as a new design or may be considered a variation of a previously tested design. This final rule also incorporates requirements for construction, maintenance, and use of Large Packagings.

  1. Hermetically sealable package for hybrid solid-state electronic devices and the like

    NASA Technical Reports Server (NTRS)

    Miller, Wilson N. (Inventor); Gray, Ormal E. (Inventor)

    1988-01-01

    A light-weight, inexpensively fabricated, hermetically sealable, repairable package for small electronic or electromechanical units, having multiple connections, is described. A molded ring frame of polyamide-imide plastic (Torlon) is attached along one edge to a base plate formed of a highly heat conducting material, such as aluminum or copper. Bores are placed through a base plate within the area of the edge surface of ring frame which result in an attachment of the ring frame to the base plate during molding. Electrical leads are molded into the ring frame. The leads are L-shaped gold-plated copper wires imbedded within widened portions of the side wall of the ring frame. Within the plastic ring frame wall the leads are bent (typically, though not necessarily at 90 deg) so that they project into the interior volume of the ring frame for connection to the solid state devices.

  2. Electronic Router

    NASA Technical Reports Server (NTRS)

    Crusan, Jason

    2005-01-01

    Electronic Router (E-Router) is an application program for routing documents among the cognizant individuals in a government agency or other organization. E-Router supplants a prior 14 NASA Tech Briefs, May 2005 system in which paper documents were routed physically in packages by use of paper slips, packages could be lost, routing times were unacceptably long, tracking of packages was difficult, and there was a need for much photocopying. E-Router enables a user to create a digital package to be routed. Input accepted by E-Router includes the title of the package, the person(s) to whom the package is to be routed, attached files, and comments to reviewers. Electronic mail is used to notify reviewers of needed actions. The creator of the package can, at any time, see the status of the package in the routing structure. At the end of the routing process, E-Router keeps a record of the package and of approvals and/or concurrences of the reviewers. There are commercial programs that perform the general functions of E-Router, but they are more complicated. E-Router is Web-based, easy to use, and does not require the installation or use of client software.

  3. Availability, Price, and Packaging of Electronic Cigarettes and E-Liquids in Guatemala City Retailers.

    PubMed

    Chacon, Violeta; Arriaza, Astrid; Cavazos-Rehg, Patricia; Barnoya, Joaquin

    2018-01-05

    Electronic cigarettes (e-cigarettes) have the potential to normalize smoking and undermine tobacco control efforts. However, if well regulated, they also have a potential as smoking cessation aids. This study sought to determine the availability and types of e-cigarettes and e-liquids in Guatemala. We also assessed packaging characteristics and price. We surveyed a convenient sample of 39 Guatemala City retailers and purchased all e-cigarettes and e-liquids available. Duplicate samples (same brand, e-liquid type, flavor, nicotine content, or packaging) were purchased when prices were different between each other. Country of manufacture, flavor, expiration date, nicotine concentration, and price were recorded. We also documented package marketing strategies and warning labels. We purchased 64 e-cigarettes (53 unique and 11 duplicates) and 57 e-liquids (52 unique and 5 duplicates), mostly found on mall retailers. Most e-cigarettes (42, 66%) were first generation, followed by second (18, 28%) and third generations (4, 6%). Price of e-cigarettes differed significantly by generation. Most e-cigarettes (31, 58%) and 24 (46%) e-liquids did not include warning labels. Nicotine content was reported in 21 (39%) e-cigarettes that included e-liquids and 41 (79%) e-liquids' packages. E-cigarettes and e-liquids are available among a variety of retailers in Guatemala City and the industry is taking advantage of the fact that they are not regulated (eg, health claims, minimum sales age, and taxation). Our findings support the need for further research on e-cigarettes and e-liquids in Guatemala. To the best of our knowledge, this is the first study describing e-cigarettes and e-liquids available in retailers in a low/middle-income country like Guatemala. E-cigarettes and e-liquids were found in a variety of types, flavors, and nicotine concentrations in Guatemalan retailers. Our findings support the need for further research on e-cigarettes and e-liquids in Guatemala. © The Author

  4. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Advanced electron microscopy methods for the analysis of MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Birajdar, B.; Peranio, N.; Eibl, O.

    2008-02-01

    Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.

  6. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  7. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  8. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  9. DensToolKit: A comprehensive open-source package for analyzing the electron density and its derivative scalar and vector fields

    NASA Astrophysics Data System (ADS)

    Solano-Altamirano, J. M.; Hernández-Pérez, Julio M.

    2015-11-01

    DensToolKit is a suite of cross-platform, optionally parallelized, programs for analyzing the molecular electron density (ρ) and several fields derived from it. Scalar and vector fields, such as the gradient of the electron density (∇ρ), electron localization function (ELF) and its gradient, localized orbital locator (LOL), region of slow electrons (RoSE), reduced density gradient, localized electrons detector (LED), information entropy, molecular electrostatic potential, kinetic energy densities K and G, among others, can be evaluated on zero, one, two, and three dimensional grids. The suite includes a program for searching critical points and bond paths of the electron density, under the framework of Quantum Theory of Atoms in Molecules. DensToolKit also evaluates the momentum space electron density on spatial grids, and the reduced density matrix of order one along lines joining two arbitrary atoms of a molecule. The source code is distributed under the GNU-GPLv3 license, and we release the code with the intent of establishing an open-source collaborative project. The style of DensToolKit's code follows some of the guidelines of an object-oriented program. This allows us to supply the user with a simple manner for easily implement new scalar or vector fields, provided they are derived from any of the fields already implemented in the code. In this paper, we present some of the most salient features of the programs contained in the suite, some examples of how to run them, and the mathematical definitions of the implemented fields along with hints of how we optimized their evaluation. We benchmarked our suite against both a freely-available program and a commercial package. Speed-ups of ˜2×, and up to 12× were obtained using a non-parallel compilation of DensToolKit for the evaluation of fields. DensToolKit takes similar times for finding critical points, compared to a commercial package. Finally, we present some perspectives for the future development and

  10. Electronic publishing and intelligent information retrieval

    NASA Technical Reports Server (NTRS)

    Heck, A.

    1992-01-01

    Europeans are now taking steps to homogenize policies and standardize procedures in electronic publishing (EP) in astronomy and space sciences. This arose from an open meeting organized in Oct. 1991 at Strasbourg Observatory (France) and another business meeting held late Mar. 1992 with the major publishers and journal editors in astronomy and space sciences. The ultimate aim of EP might be considered as the so-called 'intelligent information retrieval' (IIR) or better named 'advanced information retrieval' (AIR), taking advantage of the fact that the material to be published appears at some stage in a machine-readable form. It is obvious that the combination of desktop and electronic publishing with networking and new structuring of knowledge bases will profoundly reshape not only our ways of publishing, but also our procedures of communicating and retrieving information. It should be noted that a world-wide survey among astronomers and space scientists carried out before the October 1991 colloquium on the various packages and machines used, indicated that TEX-related packages were already in majoritarian use in our community. It has also been stressed at each meeting that the European developments should be carried out in collaboration with what is done in the US (STELLAR project, for instance). American scientists and journal editors actually attended both meetings mentioned above. The paper will offer a review of the status of electronic publishing in astronomy and its possible contribution to advanced information retrieval in this field. It will also report on recent meetings such as the 'Astronomy from Large Databases-2 (ALD-2)' conference dealing with the latest developments in networking, in data, information, and knowledge bases, as well as in the related methodologies.

  11. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  12. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  13. Structural and thermodynamic principles of viral packaging.

    PubMed

    Petrov, Anton S; Harvey, Stephen C

    2007-01-01

    Packaging of genetic material inside a capsid is one of the major processes in the lifecycle of bacteriophages. To establish the basic principles of packing double-stranded DNA into a phage, we present a low-resolution model of bacteriophage varphi29 and report simulations of DNA packaging. The simulations show excellent agreement with available experimental data, including the forces of packaging and the average structures seen in cryo-electron microscopy. The conformation of DNA inside the bacteriophage is primarily determined by the shape of the capsid and the elastic properties of DNA, but the energetics of packaging are dominated by electrostatic repulsions and the large entropic penalty associated with DNA confinement. In this slightly elongated capsid, the DNA assumes a folded toroidal conformation, rather than a coaxial spool. The model can be used to study packaging of other bacteriophages with different shapes under a range of environmental conditions.

  14. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  15. Quantification of free convection for embarked QFN64 electronic package: An experimental and numerical survey

    NASA Astrophysics Data System (ADS)

    Baïri, A.

    2017-08-01

    Embarked Quad Flat Non-lead (QFN) electronic devices are equipped with a significant number of sensors used for flight parameters measurement purposes. Their accuracy directly depends on the package thermal state. Flight safety therefore depends on the reliability of these QFNs, whose junction temperature must remain as low as possible while operating. The QFN64 is favored for these applications. In the operating power range considered here (0.01-0.1W), the study shows that radiative heat transfer is negligible with respect to natural convective exchanges. It is then essential to quantify the convective heat transfer coefficient on its different areas so that the arrangement is properly dimensioned. This is the objective of this work. The device is welded on a PCB which may be inclined with respect to the horizontal plane by an angle ranging from 0° to 90°. Numerical approach results are confirmed by thermal and electrical measurements carried out on prototypes for all power-inclination angle combinations. The correlations here proposed help determine the natural convective heat transfer coefficient in any area of the assembly. This work allowed to thermally characterize and certify a new QFN64 package equipped with sensors designed for aeronautics, currently under industrialization process.

  16. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  17. Drug packaging in 2015: risky industry choices and lax regulation.

    PubMed

    2016-06-01

    Prescrire examined the packaging quality of 240 drugs in 2015. No new advances were identified, but drug packaging continues to expose patients to a variety of dangers. Some past advances persist: for example, INNs are often more legible, and recent patient leaflets tend to be clearer and more informative. But these measures are not applied to all drugs, and are rarely applied retroactively to older drugs. The overall picture in 2015 is that many drugs are difficult to identify, risky or downright dangerous to prepare, or supplied with patient leaflets that fail to correctly inform patients about their medication. And measures to prevent drug poisoning in children need to be completely rethought. It is high time for regulators and policy makers to take the issue of drug packaging seriously, so blatant are the signs of their failure to do so: the increasing use of bulk bottles for new drugs; failure to implement guidelines on safe drug packaging (unit-dose presentations, appropriate dosing devices, etc.); and expanding umbrella brands which, given the dangers they pose to patients, should be banned instead. All things considered, healthcare professionals and patients must remain vigilant and report any dangers they identify. A major European initiative on drug packaging is becoming increasingly necessary.

  18. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  19. Cigarette package design: opportunities for disease prevention.

    PubMed

    Difranza, J R; Clark, D M; Pollay, R W

    2002-06-15

    To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.

  20. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.

  1. Power Electronics Thermal Management R&D (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less

  2. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.

  3. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    PubMed

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the release of cppxfel for processing X-ray free-electron laser images.

    PubMed

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian

    2016-06-01

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.

  5. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  6. Evidence-based use of electronic clinical tracking systems in advanced practice registered nurse education: an integrative review.

    PubMed

    Branstetter, M Laurie; Smith, Lynette S; Brooks, Andrea F

    2014-07-01

    Over the past decade, the federal government has mandated healthcare providers to incorporate electronic health records into practice by 2015. This technological update in healthcare documentation has generated a need for advanced practice RN programs to incorporate information technology into education. The National Organization of Nurse Practitioner Faculties created core competencies to guide program standards for advanced practice RN education. One core competency is Technology and Information Literacy. Educational programs are moving toward the utilization of electronic clinical tracking systems to capture students' clinical encounter data. The purpose of this integrative review was to evaluate current research on advanced practice RN students' documentation of clinical encounters utilizing electronic clinical tracking systems to meet advanced practice RN curriculum outcome goals in information technology as defined by the National Organization of Nurse Practitioner Faculties. The state of the science depicts student' and faculty attitudes, preferences, opinions, and data collections of students' clinical encounters. Although electronic clinical tracking systems were utilized to track students' clinical encounters, these systems have not been evaluated for meeting information technology core competency standards. Educational programs are utilizing electronic clinical tracking systems with limited evidence-based literature evaluating the ability of these systems to meet the core competencies in advanced practice RN programs.

  7. Ceramic ball grid array package stress analysis

    NASA Astrophysics Data System (ADS)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  8. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces.

    PubMed

    Michaelides, Angelos; Martinez, Todd J; Alavi, Ali; Kresse, Georg; Manby, Frederick R

    2015-09-14

    This Special Topic section on Advanced Electronic Structure Methods for Solids and Surfaces contains a collection of research papers that showcase recent advances in the high accuracy prediction of materials and surface properties. It provides a timely snapshot of a growing field that is of broad importance to chemistry, physics, and materials science.

  9. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  10. The Electronic Astrophysical Journal Letters Project

    NASA Astrophysics Data System (ADS)

    Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.

    The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.

  11. Managing Advanced HIV Disease in a Public Health Approach

    PubMed Central

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg; Asero, Patricia; Bologna, Rosa; Chakroun, Mohamed; Chambal, Lucia; Chiller, Tom; Conradie, Francesca; Eholie, Serge; Frigati, Lisa; Gibb, Diana; Goemaere, Eric; Govender, Nelesh; Grant, Alison; Kumarasamy, Nagalingeswaran; Lalloo, David; Le, Thuy; Letang, Emilio; Mbori-Ngacha, Dorothy; Mfinanga, Sayoki; Nacher, Mathieu; Ribakare, Muhayimpundu; Siegfried, Nandi; Sikwese, Kenly; Tun, Nini; Vidal, Jose E

    2018-01-01

    Abstract In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease. PMID:29514232

  12. Managing Advanced HIV Disease in a Public Health Approach.

    PubMed

    Ford, Nathan; Meintjes, Graeme; Calmy, Alexandra; Bygrave, Helen; Migone, Chantal; Vitoria, Marco; Penazzato, Martina; Vojnov, Lara; Doherty, Meg

    2018-03-04

    In 2017, the World Health Organization (WHO) published guidelines for the management of advanced human immunodeficiency virus (HIV) disease within a public health approach. Recent data suggest that more than a third of people starting antiretroviral therapy (ART) do so with advanced HIV disease, and an increasing number of patients re-present to care at an advanced stage of HIV disease following a period of disengagement from care. These guidelines recommend a standardized package of care for adults, adolescents, and children, based on the leading causes of morbidity and mortality: tuberculosis, severe bacterial infections, cryptococcal meningitis, toxoplasmosis, and Pneumocystis jirovecii pneumonia. A package of targeted interventions to reduce mortality and morbidity was recommended, based on results of 2 recent randomized trials that both showed a mortality reduction associated with delivery of a simplified intervention package. Taking these results and existing recommendations into consideration, WHO recommends that a package of care be offered to those presenting with advanced HIV disease; depending on age and CD4 cell count, the package may include opportunistic infection screening and prophylaxis, including fluconazole preemptive therapy for those who are cryptococcal antigen positive and without evidence of meningitis. Rapid ART initiation and intensified adherence interventions should also be proposed to everyone presenting with advanced HIV disease.

  13. Fundamental Materials Studies for Advanced High Power Microwave and Terahertz Vacuum Electronic Radiation Sources

    DTIC Science & Technology

    2014-12-10

    AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz

  14. Application of Electronic Nose for Measuring Total Volatile Basic Nitrogen and Total Viable Counts in Packaged Pork During Refrigerated Storage.

    PubMed

    Li, Miaoyun; Wang, Haibiao; Sun, Lingxia; Zhao, Gaiming; Huang, Xianqing

    2016-04-01

    The objective of this study was to predict the total viable counts (TVC) and total volatile basic nitrogen (TVB-N) in pork using an electronic nose (E-nose), and to assess the freshness of chilled pork during storage using different packaging methods, including pallet packaging (PP), vacuum packaging (VP), and modified atmosphere packaging (MAP, 40% O2 /40% CO2 /20% N2 ). Principal component analysis (PCA) was used to analyze the E-nose signals, and the results showed that the relationships between the freshness of chilled pork and E-nose signals could be distinguished in the loadings plots, and the freshness of chilled pork could be distributed along 2 first principal components. Multiple linear regression (MLR) was used to correlate TVC and TVB-N to E-nose signals. High F and R2 values were obtained in the MLR output of TVB-N (F = 32.1, 21.6, and 24.2 for PP [R2 = 0.93], VP [R2 = 0.94], and MAP [R2 = 0.95], respectively) and TVC (F = 34.2, 46.4, and 7.8 for PP [R2 = 0.98], VP [R2 = 0.89], and MAP [R2 = 0.85], respectively). The results of this study suggest that it is possible to use the E-nose technology to predict TVB-N and TVC for assessing the freshness of chilled pork during storage. © 2016 Institute of Food Technologists®

  15. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  16. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers. PMID:19570250

  17. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  18. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PImore » composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.« less

  19. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  20. Epidermal electronics with advanced capabilities in near-field communication.

    PubMed

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On the release of cppxfel for processing X-ray free-electron laser images

    DOE PAGES

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K.; ...

    2016-05-11

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Herecppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set.Cppxfelis released with the hope that the unique and useful elements of this package can be repurposed formore » existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.« less

  2. Meat packaging solutions to current industry challenges: A review.

    PubMed

    Holman, Benjamin W B; Kerry, Joseph P; Hopkins, David L

    2018-04-30

    Many advances have occurred in the field of smart meat packaging, and the potential for these to be used as tools that respond to challenges faced by industry is exciting. Here, we review packaging solutions to several immediate concerns, encompassing dark cutting, purge and yield losses, product traceability and provenance, packaging durability, microbial spoilage and safety, colour stability, environmental impacts, and the preservation of eating quality. Different active and intelligent packaging approaches to each of these were identified and are discussed in terms of their usefulness - to processors, retailers and/or consumers. From this, it became apparent that prior to selecting a packaging solution, industry should first define their criteria for success (e.g. How much purge is too much? What is a reasonable shelf-life to facilitate product turnover? Is the customer willing to pay for this?), and understand that packaging is not the sole solution, but acts as part of a holistic response to these issues. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Utilization of Pb-free solders in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  4. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  5. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  6. MEMS packaging: state of the art and future trends

    NASA Astrophysics Data System (ADS)

    Bossche, Andre; Cotofana, Carmen V. B.; Mollinger, Jeff R.

    1998-07-01

    Now that the technology for Integrated sensor and MEMS devices has become sufficiently mature to allow mass production, it is expected that the prices of bare chips will drop dramatically. This means that the package prices will become a limiting factor in market penetration, unless low cost packaging solutions become available. This paper will discuss the developments in packaging technology. Both single-chip and multi-chip packaging solutions will be addressed. It first starts with a discussion on the different requirements that have to be met; both from a device point of view (open access paths to the environment, vacuum cavities, etc.) and from the application point of view (e.g. environmental hostility). Subsequently current technologies are judged on their applicability for MEMS and sensor packaging and a forecast is given for future trends. It is expected that the large majority of sensing devices will be applied in relative friendly environments for which plastic packages would suffice. Therefore, on the short term an important role is foreseen for recently developed plastic packaging techniques such as precision molding and precision dispensing. Just like in standard electronic packaging, complete wafer level packaging methods for sensing devices still have a long way to go before they can compete with the highly optimized and automated plastic packaging processes.

  7. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  8. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.

    PubMed

    Jenness, Samuel M; Goodreau, Steven M; Morris, Martina

    2018-04-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.

  9. Herpesvirus capsid assembly and DNA packaging

    PubMed Central

    Heming, Jason D.; Conway, James F.; Homa, Fred L.

    2017-01-01

    Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442

  10. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  11. Validation of a Novel Electronic Health Record Patient Portal Advance Care Planning Delivery System.

    PubMed

    Bose-Brill, Seuli; Feeney, Michelle; Prater, Laura; Miles, Laura; Corbett, Angela; Koesters, Stephen

    2018-06-26

    Advance care planning allows patients to articulate their future care preferences should they no longer be able to make decisions on their own. Early advance care planning in outpatient settings provides benefits such as less aggressive care and fewer hospitalizations, yet it is underutilized due to barriers such as provider time constraints and communication complexity. Novel methods, such as patient portals, provide a unique opportunity to conduct advance care planning previsit planning for outpatient care. This follow-up to our pilot study aimed to conduct pragmatic testing of a novel electronic health record-tethered framework and its effects on advance care planning delivery in a real-world primary care setting. Our intervention tested a previsit advance care planning workflow centered around a framework sent via secure electronic health record-linked patient portal in a real-world clinical setting. The primary objective of this study was to determine its impact on frequency and quality of advance care planning documentation. We conducted a pragmatic trial including 2 sister clinical sites, one site implementing the intervention and the other continuing standard care. A total of 419 patients aged between 50 and 93 years with active portal accounts received intervention (n=200) or standard care (n=219). Chart review analyzed the presence of advance care planning and its quality and was graded with previously established scoring criteria based on advance care planning best practice guidelines from multiple nations. A total of 19.5% (39/200) of patients who received previsit planning responded to the framework. We found that the intervention site had statistically significant improvement in new advance care planning documentation rates (P<.01) and quality (P<.01) among all eligible patients. Advance care planning documentation rates increased by 105% (19/39 to 39/39) and quality improved among all patients who engaged in the previsit planning framework (n=39

  12. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  13. [Packaging: the guarantee of medicinal quality].

    PubMed

    Chaumeil, J-C

    2003-01-01

    Primary packaging guarantees the pharmaceutical quality of the medicinal preparation received by the patient. Glass bottles containing parenteral solutions for example ensure that sterility, quality and optimal stability are preserved until administration. Recent innovations in materials research has lead to improvements in parenteral infusions. Multicompartmental bags, allowing extemporaneous mixtures without opening the container, constitute an extremely beneficial advance for the patient, allowing administration of mixtures with solutions and emulsions which would be unstable if stored. Metered dose pressurized inhalers are an excellent example of drug administration devices designed specifically to ensure quality and bioavailability. These examples illustrate the important role of primary packaging and demonstrate the usefulness of research and development in this area.

  14. Raman spectroscopy, electronic microscopy and SPME-GC-MS to elucidate the mode of action of a new antimicrobial food packaging material.

    PubMed

    Clemente, Isabel; Aznar, Margarita; Salafranca, Jesús; Nerín, Cristina

    2017-02-01

    One critical challenge when developing a new antimicrobial packaging material is to demonstrate the mode of action of the antimicrobials incorporated into the packaging. For this task, several analytical techniques as well as microbiology are required. In this work, the antimicrobial properties of benzyl isothiocyanate, allyl isothiocyanate and essential oils of cinnamon and oregano against several moulds and bacteria have been evaluated. Benzyl isothiocyanate showed the highest antimicrobial activity and it was selected for developing the new active packaging material. Scanning electron microscopy and Raman spectroscopy were successfully used to demonstrate the mode of action of benzyl isothiocyanate on Escherichia coli. Bacteria exhibited external modifications such as oval shape and the presence of septum surface, but they did not show any disruption or membrane damage. To provide data on the in vitro action of benzyl isothiocyanate and the presence of inhibition halos, the transfer mechanism to the cells was assessed using solid-phase microextraction-gas chromatography-mass spectrometry. Based on the transfer system, action mechanism and its stronger antimicrobial activity, benzyl isothiocyanate was incorporated to two kinds of antimicrobial labels. The labels were stable and active for 140 days against two mould producers of ochratoxin A; Penicillium verrucosum is more sensitive than Aspergillus ochraceus. Details about the analytical techniques and the results obtained are shown and discussed. Graphical Abstract Antimicrobial evaluation of pure compounds, incorporation in the packaging and study for mode of action on S. coli by Raman, SEM and SPME-GC-MS.

  15. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  16. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  17. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  18. Advanced large scale GaAs monolithic IF switch matrix subsystem

    NASA Technical Reports Server (NTRS)

    Ch'en, D. R.; Petersen, W. C.; Kiba, W. M.

    1992-01-01

    Attention is given to a novel chip design and packaging technique to overcome the limitations due to the high signal isolation requirements of advanced communications systems. A hermetically sealed 6 x 6 monolithic GaAs switch matrix subsystem with integral control electronics based on this technique is presented. An 0-dB insertion loss and 60-dB crosspoint isolation over a 3.5-to-6-GHz band were achieved. The internal controller portion of the switching subsystem provides crosspoint control via a standard RS-232 computer interface and can be synchronized with an external systems control computer. The measured performance of this advanced switching subsystem is fully compatible with relatively static 'switchboard' as well as dynamic TDMA modes of operation.

  19. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  20. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  1. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    NASA Astrophysics Data System (ADS)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  2. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks

    PubMed Central

    Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina

    2018-01-01

    Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699

  3. Advanced electron microscopy characterization of tri-layer rare-earth oxide superlattices

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick; Disa, Ankit; Ismail-Beigi, Sohrab; Klie, Robert; University of Illinois-Chicago Team; Yale University Team

    2015-03-01

    Rare-earth nickelates are known to display complex electronic and magnetic behaviors owed to a very localized and sensitive Ni-site atomic and electronic structure. Toward realizing the goal of manipulating of the energetic ordering of Ni d orbitals and 2D conduction, the present work focuses on the experimental characterization of thin film superlattice structures consisting of alternating layers of LaTiO3 and LaNiO3 sandwiched between a dull insulator, LaAlO3. Using advanced scanning transmission electron microscopy (STEM)-based methods, properties such as interfacial sharpness, electron transfer, O presence, and local electronic structure can be probed at the atomic scale, and will be discussed at length. By combining both energy dispersive X-ray (EDX) and electronic energy loss (EEL) spectroscopies in an aberration-corrected STEM, it is possible to attain energy and spatial resolutions of 0.35 eV and 100 pm, respectively. Focus of the talk will remain not only on the aforementioned properties, but will also include details and parameters of the acquisitions to facilitate future characterization at this level.

  4. Merging parallel optics packaging and surface mount technologies

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Volpert, Marion; Routin, Julien; Bernabé, Stéphane; Rossat, Cyrille; Tournaire, Myriam; Hamelin, Régis

    2008-02-01

    Optical links are well known to present significant advantages over electrical links for very high-speed data rate at 10Gpbs and above per channel. However, the transition towards optical interconnects solutions for short and very short reach applications requires the development of innovative packaging solutions that would deal with very high volume production capability and very low cost per unit. Moreover, the optoelectronic transceiver components must be able to move from the edge to anywhere on the printed circuit board, for instance close to integrated circuits with high speed IO. In this paper, we present an original packaging design to manufacture parallel optic transceivers that are surface mount devices. The package combines highly integrated Multi-Chip-Module on glass and usual IC ceramics packaging. The use of ceramic and the development of sealing technologies achieve hermetic requirements. Moreover, thanks to a chip scale package approach the final device exhibits a much minimized footprint. One of the main advantages of the package is its flexibility to be soldered or plugged anywhere on the printed circuit board as any other electronic device. As a demonstrator we present a 2 by 4 10Gbps transceiver operating at 850nm.

  5. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  6. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... electronic components. The two components are packaged high electron mobility transistors and packaged..., 2012, FR Doc. 2012- 135). The two components are packaged high electron mobility transistors (HEMT) and...

  7. Apollo 17 Lunar Surface Experiments package

    NASA Image and Video Library

    1972-05-10

    S72-37260 (November 1972) --- The remote antenna for the Lunar Seismic Profiling Experiment, Numbered S-203, a component of the Apollo Lunar Surface Experiments Package which will be carried on the Apollo 17 lunar landing mission. LSPE components are four geophones similar to those used in earlier active seismic experiments an electronics package in the ALSEP central station, and eight explosive packages which will be deployed during the geology traverse. The four geophones will be placed one in the center and at each corner of a 90-meter equilateral triangle. Explosive charges placed on the surface will generate seismic waves of varying strengths to provide data on the structural profile of the landing site. After the charges have been fired by ground command, the experiment will settle down into a passive listening mode, detecting moonquakes, meteorite impacts and the thump caused by the Lunar Module ascent stage impact. The antenna is of the telescoping type.

  8. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  9. Metastable Packaging For Transient Electronics

    DTIC Science & Technology

    2014-09-01

    dated 16 Jan 09. Report contains color. 14. ABSTRACT Metastable polymeric materials were synthesized, formulated with additives and microcapsules ...photoacid generation, thermal activation, and mechanical rupture of acid-filled microcapsules -- were investigated. 15. SUBJECT TERMS transient...carbonate sulfone) (PVBCS)... 11  3.3  Thermal and Mechanical Triggered Transience of Electronic Devices via Embedded Microcapsules

  10. ePCR: an R-package for survival and time-to-event prediction in advanced prostate cancer, applied to real-world patient cohorts.

    PubMed

    Laajala, Teemu D; Murtojärvi, Mika; Virkki, Arho; Aittokallio, Tero

    2018-06-15

    Prognostic models are widely used in clinical decision-making, such as risk stratification and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data. We make available an open-source implementation of the top-performing model, ePCR, along with an extended toolbox for its further re-use and development, and demonstrate how to best apply the implemented model to real-world data cohorts of advanced prostate cancer patients. The open-source R-package ePCR and its reference documentation are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/package=ePCR. R-vignette provides step-by-step examples for the ePCR usage. Supplementary data are available at Bioinformatics online.

  11. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering

    PubMed Central

    2015-01-01

    Summary: dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R's rich ecosystem of packages for performing hierarchical clustering of items. Availability and implementation: The dendextend R package (including detailed introductory vignettes) is available under the GPL-2 Open Source license and is freely available to download from CRAN at: (http://cran.r-project.org/package=dendextend) Contact: Tal.Galili@math.tau.ac.il PMID:26209431

  12. spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains

    NASA Astrophysics Data System (ADS)

    Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo

    2016-09-01

    The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.

  13. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  14. Active and intelligent packaging: The indication of quality and safety.

    PubMed

    Janjarasskul, Theeranun; Suppakul, Panuwat

    2018-03-24

    The food industry has been under growing pressure to feed an exponentially increasing world population and challenged to meet rigorous food safety law and regulation. The plethora of media consumption has provoked consumer demand for safe, sustainable, organic, and wholesome products with "clean" labels. The application of active and intelligent packaging has been commercially adopted by food and pharmaceutical industries as a solution for the future for extending shelf life and simplifying production processes; facilitating complex distribution logistics; reducing, if not eliminating the need for preservatives in food formulations; enabling restricted food packaging applications; providing convenience, improving quality, variety and marketing features; as well as providing essential information to ensure consumer safety. This chapter reviews innovations of active and intelligent packaging which advance packaging technology through both scavenging and releasing systems for shelf life extension, and through diagnostic and identification systems for communicating quality, tracking and brand protection.

  15. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    NASA Astrophysics Data System (ADS)

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  16. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the required cargo information to CBP must be effected through a CBP-approved electronic data... paragraph (a) of this section. (b) Time frame for presenting data—(1) Nearby foreign areas. In the case of... aircraft in the United States. (c) Party electing to file advance electronic cargo data—(1) Other filer. In...

  17. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the required cargo information to CBP must be effected through a CBP-approved electronic data... paragraph (a) of this section. (b) Time frame for presenting data—(1) Nearby foreign areas. In the case of... aircraft in the United States. (c) Party electing to file advance electronic cargo data—(1) Other filer. In...

  18. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

    NASA Astrophysics Data System (ADS)

    Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin

    2015-01-01

    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

  19. DAMQT: A package for the analysis of electron density in molecules

    NASA Astrophysics Data System (ADS)

    López, Rafael; Rico, Jaime Fernández; Ramírez, Guillermo; Ema, Ignacio; Zorrilla, David

    2009-09-01

    DAMQT is a package for the analysis of the electron density in molecules and the fast computation of the density, density deformations, electrostatic potential and field, and Hellmann-Feynman forces. The method is based on the partition of the electron density into atomic fragments by means of a least deformation criterion. Each atomic fragment of the density is expanded in regular spherical harmonics times radial factors, which are piecewise represented in terms of analytical functions. This representation is used for the fast evaluation of the electrostatic potential and field generated by the electron density and nuclei, as well as for the computation of the Hellmann-Feynman forces on the nuclei. An analysis of the atomic and molecular deformations of the density can be also carried out, yielding a picture that connects with several concepts of the empirical structural chemistry. Program summaryProgram title: DAMQT1.0 Catalogue identifier: AEDL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3 No. of lines in distributed program, including test data, etc.: 278 356 No. of bytes in distributed program, including test data, etc.: 31 065 317 Distribution format: tar.gz Programming language: Fortran90 and C++ Computer: Any Operating system: Linux, Windows (Xp, Vista) RAM: 190 Mbytes Classification: 16.1 External routines: Trolltech's Qt (4.3 or higher) ( http://www.qtsoftware.com/products), OpenGL (1.1 or higher) ( http://www.opengl.org/), GLUT 3.7 ( http://www.opengl.org/resources/libraries/glut/). Nature of problem: Analysis of the molecular electron density and density deformations, including fast evaluation of electrostatic potential, electric field and Hellmann-Feynman forces on nuclei. Solution method: The method of Deformed Atoms in Molecules, reported elsewhere [1], is used for partitioning the molecular electron density

  20. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  1. Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics

    PubMed Central

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-01-01

    A flexible technology is proposed to integrate smart electronics and microfluidics all embedded in an elastomer package. The microfluidic channels are used to deliver both liquid samples and liquid metals to the integrated circuits (ICs). The liquid metals are used to realize electrical interconnects to the IC chip. This avoids the traditional IC packaging challenges, such as wire-bonding and flip-chip bonding, which are not compatible with current microfluidic technologies. As a demonstration we integrated a CMOS magnetic sensor chip and associate microfluidic channels on a polydimethylsiloxane (PDMS) substrate that allows precise delivery of small liquid samples to the sensor. Furthermore, the packaged system is fully functional under bending curvature radius of one centimetre and uniaxial strain of 15%. The flexible integration of solid-state ICs with microfluidics enables compact flexible electronic and lab-on-a-chip systems, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing among many other applications.

  2. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  3. Materials science in pre-plated leadframes for electronic packages

    NASA Astrophysics Data System (ADS)

    Liu, Lilin

    Au/Pd/Ni pre-plated leadframes (PPF) are high performance frames for accommodating high-end electronic packages. Cost and reliability are major concerns in their wide application. The present work, from a materials science point view, deepens the understanding of PPFs, optimizes the conventional PPFs, develops a novel PPF architecture and models the residual stress relaxation in heteroepitaxial thin films. The wire pull test, the solderability test, and High-Resolution Transmission Electron Microscopy (HRTEM) were employed to characterize the PPFs in order to understand the relationship between performance and microstructure. We optimized the electroplating profiles and determined the minimum thickness of the Pd layer with the PPF performance satisfying the industry standards. Further increasing the Pd layer thickness beyond the critical thickness will not enhance the performance more, but increase the product cost. With the optimized electroplating profile, the electroplated Au layer is epitaxially deposited on the Pd layer, and so does the Pd layer on the Ni layer. Misfit dislocations and nanotwins are present at the interface between the Pd and Ni layers, which are generated to release the about 10.4% misfit strain between the Pd and Ni lattices. This work demonstrates that the electro-deposition technique can electroplate epitaxy-like Pd films on the highly (200) textured Ni films, which are grown on the Cu substrates. A novel technique for impeding Cu out-diffusion in Cu alloy based pre-plated leadframes was developed by electroplating a 3-4 nm thick Sn layer on a Cu alloy base prior to electroplating a Ni layer. A 10-14 nm thick epitaxy-like and dense (Cu,Ni)3Sn intermetallic compound (IMC) layer is automatically formed en route of diffuse reaction, which leads to a drastic reduction in Cu out-diffusion and hence improves significantly the protection of the leadframes against oxidation and corrosion attack. The oxidation behaviours were quantified by Electron

  4. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    PubMed

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

  5. The Integrated Sensor System Data Enhancement Package

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Reed, W. B.; Rabin, U.; Vincent, J.

    1983-01-01

    The purpose of the Integrated Sensor System (ISS) Data Enhancement Package (DEP) is to improve the accuracies of the data obtained from the inflight tests performed on aircraft. The DEP is a microprocessor-based, flight-qualified electronics package that assimilates data from a Ring Laser Gyro (RGL) system, a standard NASA air data package, and other inputs. The DEP then processes these inputs in real-time to obtain optimal estimates of the aircraft velocity, attitude, and altitude. These estimates can be passed to the flight crew, downlinked, and/or stored on a mass storage medium. The DEP is now being built for the NASA Dryden Flight Research Center. Completion is anticipated in early 1984. A primary use of the ISS/DEP will be for the collection of quality data for the estimation of aircraft aerodynamic coefficients, including stability derivatives, using system identification methods. Initial anticipated applications will be on the AV-8B, F-14, and X-29 test aircraft.

  6. Variations in algorithm implementation among quantitative texture analysis software packages

    NASA Astrophysics Data System (ADS)

    Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.

    2018-02-01

    Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.

  7. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators

  8. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  9. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  10. 21 CFR 1305.21 - Requirements for electronic orders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 1311 of this chapter. (b) The following data fields must be included on an electronic order for... either the purchaser or the supplier). (8) The quantity in a single package or container. (9) The number of packages or containers of each item ordered. (c) An electronic order may include controlled...

  11. National disparities in treatment package time for resected locally advanced head and neck cancer and impact on overall survival.

    PubMed

    Guttmann, David M; Kobie, Julie; Grover, Surbhi; Lin, Alexander; Lukens, John N; Mitra, Nandita; Rhodes, Karin V; Feng, Weiwei; Swisher-McClure, Samuel

    2018-06-01

    The purpose of this study was to determine national disparities in head and neck cancer treatment package time (the time interval from surgery through the completion of radiation) and the associated impact on survival. We conducted an observational cohort study using the National Cancer Database of 15 234 patients with resected head and neck cancer who underwent adjuvant radiotherapy from 2004-2012. Predictors of prolonged package time were identified by multivariable linear regression. Survival outcomes were assessed using a multivariable Cox model. Mean package time was 100 days (SD 23). Package time was 7.52 days (95% confidence interval [CI] 6.23-8.81; P < .001) longer with Medicaid versus commercial insurance. Low income and African American race also predicted for longer package times. All-cause mortality increased an average of 4% with each 1 week increase in treatment package time (hazard ratio [HR] 1.04; 95% CI 1.03-1.05; P < .001). Significant national socioeconomic disparities exist in treatment package time. Treatment delays in this setting may contribute to worse survival outcomes. © 2018 Wiley Periodicals, Inc.

  12. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2899] Certain Integrated Circuit Packages Provided With... complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and..., telephone (202) 205-2000. The public version of the complaint can be accessed on the Commission's electronic...

  13. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal

  14. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    PubMed

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-05-13

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  15. Distinct DNA Exit and Packaging Portals in the Virus Acanthamoeba polyphaga mimivirus

    PubMed Central

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-01-01

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the “stargate”, allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane–containing viruses. PMID:18479185

  16. Advanced Electronics

    DTIC Science & Technology

    2017-07-21

    Technology Branch (RVSW) is conducting a first time experimental and theoretical investigation focused on evaluating new physical phenomena in the quasi ...bandgap energy, are formulated in our microscopic model for explaining the experimentally observed enhancements in both conduction- and valence... experimental and theoretical study on the nature of carrier transport, of both electrons and holes, through narrow constricted crystalline Si “wall

  17. Miniaturization of dielectric liquid microlens in package

    PubMed Central

    Yang, Chih-Cheng; Tsai, C. Gary; Yeh, J. Andrew

    2010-01-01

    This study presents packaged microscale liquid lenses actuated with liquid droplets of 300–700 μm in diameter using the dielectric force manipulation. The liquid microlens demonstrated function focal length tunability in a plastic package. The focal length of the liquid lens with a lens droplet of 500 μm in diameter is shortened from 4.4 to 2.2 mm when voltages applied change from 0 to 79 Vrms. Dynamic responses that are analyzed using 2000 frames∕s high speed motion cameras show that the advancing and receding times are measured to be 90 and 60 ms, respectively. The size effect of dielectric liquid microlens is characterized for a lens droplet of 300–700 μm in diameter in an aspect of focal length. PMID:21267438

  18. 49 CFR 173.472 - Requirements for exporting DOT Specification Type B and fissile packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or (202) 366-3650, or by electronic mail (e-mail) to “[email protected]” Each request is considered in... the package identification marking indicated in the U.S. Competent Authority Certificate. (e) Before... into or through which the package will be transported, unless the offeror has documentary evidence that...

  19. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data

    PubMed Central

    Morgan, Martin; Anders, Simon; Lawrence, Michael; Aboyoun, Patrick; Pagès, Hervé; Gentleman, Robert

    2009-01-01

    Summary: ShortRead is a package for input, quality assessment, manipulation and output of high-throughput sequencing data. ShortRead is provided in the R and Bioconductor environments, allowing ready access to additional facilities for advanced statistical analysis, data transformation, visualization and integration with diverse genomic resources. Availability and Implementation: This package is implemented in R and available at the Bioconductor web site; the package contains a ‘vignette’ outlining typical work flows. Contact: mtmorgan@fhcrc.org PMID:19654119

  20. Auxiliary propulsion system flight package

    NASA Technical Reports Server (NTRS)

    Collett, C. R.

    1987-01-01

    Hughes Aircraft Company developed qualified and integrated flight, a flight test Ion Auxiliary Propulsion System (IAPS), on an Air Force technology satellite. The IAPS Flight Package consists of two identical Thruster Subsystems and a Diagnostic Subsystem. Each thruster subsystem (TSS) is comprised of an 8-cm ion Thruster-Gimbal-Beam Shield Unit (TGBSU); Power Electronics Unit; Digital Controller and Interface Unit (DCIU); and Propellant Tank, Valve and Feed Unit (PTVFU) plus the requisite cables. The Diagnostic Subsystem (DSS) includes four types of sensors for measuring the effect of the ion thrusters on the spacecraft and the surrounding plasma. Flight qualifications of IAPS, prior to installation on the spacecraft, consisted of performance, vibration and thermal-vacuum testing at the unit level, and thermal-vacuum testing at the subsystem level. Mutual compatibility between IAPS and the host spacecraft was demonstrated during a series of performance and environmental tests after the IAPS Flight Package was installed on the spacecraft. After a spacecraft acoustic test, performance of the ion thrusters was reverified by removing the TGBSUs for a thorough performance test at Hughes Research Laboratories (HRL). The TGBSUs were then reinstalled on the spacecraft. The IAPS Flight Package is ready for flight testing when Shuttle flights are resumed.

  1. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    PubMed Central

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2018-01-01

    We compare forces resisting DNA packaging in bacteriophage phi29 inferred from optical tweezers studies with forces driving DNA ejection inferred from osmotic pressure studies. Ejection forces from 0–80% filling are consistent with a model that assumes a repulsive DNA-DNA interaction potential derived from DNA condensation studies and predicts an inverse spool DNA conformation. Forces resisting packaging from ~80–100% filling are also consistent with this model. However, that electron microscopy does not reveal a spool conformation suggests that this model overestimates bending rigidity and underestimates repulsion. Below 80% filling, inferred ejection forces are higher than those resisting packaging. Although unexpected, this suggests that most force that builds during packaging is available to drive DNA ejection. PMID:28618627

  2. Advancing Efficient All-Electron Electronic Structure Methods Based on Numeric Atom-Centered Orbitals for Energy Related Materials

    NASA Astrophysics Data System (ADS)

    Blum, Volker

    This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.

  3. Progress and challenges associated with halal authentication of consumer packaged goods.

    PubMed

    Premanandh, Jagadeesan; Bin Salem, Samara

    2017-11-01

    Abusive business practices are increasingly evident in consumer packaged goods. Although consumers have the right to protect themselves against such practices, rapid urbanization and industrialization result in greater distances between producers and consumers, raising serious concerns on the supply chain. The operational complexities surrounding halal authentication pose serious challenges on the integrity of consumer packaged goods. This article attempts to address the progress and challenges associated with halal authentication. Advancement and concerns on the application of new, rapid analytical methods for halal authentication are discussed. The significance of zero tolerance policy in consumer packaged foods and its impact on analytical testing are presented. The role of halal assurance systems and their challenges are also considered. In conclusion, consensus on the establishment of one standard approach coupled with a sound traceability system and constant monitoring would certainly improve and ensure halalness of consumer packaged goods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGES

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; ...

    2015-06-26

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  5. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  6. Pilot production and advanced development of large-area picosecond photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, Michael J.; Adams, Bernhard W.; Aviles, Melvin; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; Foley, Michael R.; Lyashenko, Alexey; Popecki, Mark A.; Stochaj, Michael E.; Worstell, William A.; Mane, Anil U.; Elam, Jeffrey W.; Siegmund, Oswald H. W.; Ertley, Camden; Frisch, Henry; Elagin, Andrey

    2016-09-01

    We report pilot production and advanced development performance results achieved for Large Area Picosecond Photodetectors (LAPPD). The LAPPD is a microchannel plate (MCP) based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 square centimeters. In December 2015, Incom Inc. completed installation of equipment and facilities for demonstration of early stage pilot production of LAPPD. Initial fabrication trials commenced in January 2016. The "baseline" LAPPD employs an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode and amplified with a stacked chevron pair of "next generation" MCPs produced by applying resistive and emissive atomic layer deposition coatings to borosilicate glass capillary array (GCA) substrates. Signals are collected on RF strip-line anodes applied to the bottom plates which exit the detector via pinfree hermetic seals under the side walls. Prior tests show that LAPPDs have electron gains greater than 107, submillimeter space resolution for large pulses and several mm for single photons, time resolutions of 50 picoseconds for single photons, predicted resolution of less than 5 picoseconds for large pulses, high stability versus charge extraction, and good uniformity. LAPPD performance results for product produced during the first half of 2016 will be reviewed. Recent advances in the development of LAPPD will also be reviewed, as the baseline design is adapted to meet the requirements for a wide range of emerging application. These include a novel ceramic package design, ALD coated MCPs optimized to have a low temperature coefficient of resistance (TCR) and further advances to adapt the LAPPD for cryogenic applications using Liquid Argon (LAr). These developments will meet the needs for DOE-supported RD for the Deep Underground Neutrino

  7. 78 FR 41721 - New Standards to Enhance Package Visibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... supporting electronic documentation including piece-level address or ZIP+4[supreg] Code information effective... package strategy relies on the availability of piece- level information provided through the widespread use of IMpb. IMpb can offer a number of benefits to mailers by providing piece- level visibility...

  8. Advanced uncooled sensor product development

    NASA Astrophysics Data System (ADS)

    Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T.

    2015-06-01

    The partnership between RVS, Seek Thermal and Freescale Semiconductor continues on the path to bring the latest technology and innovation to both military and commercial customers. The partnership has matured the 17μm pixel for volume production on the Thermal Weapon Sight (TWS) program in efforts to bring advanced production capability to produce a low cost, high performance product. The partnership has developed the 12μm pixel and has demonstrated performance across a family of detector sizes ranging from formats as small as 206 x 156 to full high definition formats. Detector pixel sensitivities have been achieved using the RVS double level advanced pixel structure. Transition of the packaging of microbolometers from a traditional die level package to a wafer level package (WLP) in a high volume commercial environment is complete. Innovations in wafer fabrication techniques have been incorporated into this product line to assist in the high yield required for volume production. The WLP seal yield is currently > 95%. Simulated package vacuum lives >> 20 years have been demonstrated through accelerated life testing where the package has been shown to have no degradation after 2,500 hours at 150°C. Additionally the rugged assembly has shown no degradation after mechanical shock and vibration and thermal shock testing. The transition to production effort was successfully completed in 2014 and the WLP design has been integrated into multiple new production products including the TWS and the innovative Seek Thermal commercial product that interfaces directly to an iPhone or android device.

  9. Development of Xi'an-CI package – applying the hole–particle symmetry in multi-reference electronic correlation calculations

    NASA Astrophysics Data System (ADS)

    Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin

    2018-04-01

    This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.

  10. 19 CFR 123.92 - Electronic information for truck cargo required in advance of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and exportation, in another vehicle or conveyance are also subject to the advance electronic... Vehicle Identification Number (VIN) or its license plate number and state of issuance; the equipment... number to be assigned by CBP upon the implementation of the Automated Commercial Environment); and (12...

  11. 19 CFR 123.91 - Electronic information for rail cargo required in advance of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... another vehicle or conveyance is also subject to the advance electronic information filing requirement... a unique number to be assigned by CBP upon the implementation of the Automated Commercial... of the Automated Commercial Environment); (8) The place where the rail carrier takes possession of...

  12. 19 CFR 123.91 - Electronic information for rail cargo required in advance of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... another vehicle or conveyance is also subject to the advance electronic information filing requirement... a unique number to be assigned by CBP upon the implementation of the Automated Commercial... of the Automated Commercial Environment); (8) The place where the rail carrier takes possession of...

  13. 19 CFR 123.91 - Electronic information for rail cargo required in advance of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... another vehicle or conveyance is also subject to the advance electronic information filing requirement... a unique number to be assigned by CBP upon the implementation of the Automated Commercial... of the Automated Commercial Environment); (8) The place where the rail carrier takes possession of...

  14. 19 CFR 123.92 - Electronic information for truck cargo required in advance of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and exportation, in another vehicle or conveyance are also subject to the advance electronic... Vehicle Identification Number (VIN) or its license plate number and state of issuance; the equipment... number to be assigned by CBP upon the implementation of the Automated Commercial Environment); and (12...

  15. 19 CFR 123.91 - Electronic information for rail cargo required in advance of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... another vehicle or conveyance is also subject to the advance electronic information filing requirement... a unique number to be assigned by CBP upon the implementation of the Automated Commercial... of the Automated Commercial Environment); (8) The place where the rail carrier takes possession of...

  16. 30-kW class Arcjet Advanced Technology Transition Demonstration (ATTD) flight experiment diagnostic package

    NASA Astrophysics Data System (ADS)

    Kriebel, M. M.; Stevens, N. J.

    1992-07-01

    TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.

  17. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  18. Experimental Approaches to Study Genome Packaging of Influenza A Viruses.

    PubMed

    Isel, Catherine; Munier, Sandie; Naffakh, Nadia

    2016-08-09

    The genome of influenza A viruses (IAV) consists of eight single-stranded negative sense viral RNAs (vRNAs) encapsidated into viral ribonucleoproteins (vRNPs). It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles), follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH) and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level.

  19. Molding compound trends in a denser packaging world: Qualification tests and reliability concerns

    NASA Astrophysics Data System (ADS)

    Nguyen, L. T.; Lo, R. H. Y.; Chen, A. S.; Belani, J. G.

    1993-12-01

    Molding compound development has traditionally been driven by the memory market, then subsequent applications filter down to other IC technologies such as logic, analog, and ASIC. However, this strategy has changed lately with the introduction of thin packages such as PQFP & TSOP. Rather than targeting a compound for a family of IC such as DRAM or SRAM, compound development efforts are now focused at specific classes of packages. The configurations of these thin packages impose new functional requirements that need to be revisited to provide the optimized combination of properties. The evolution of qualification tests mirrors the advances in epoxy and compounding technologies. From the first standard novolac-based epoxies of the 1970s to the latest 3(sup rd)-generation ultra-low stress materials, longer test times at increasingly harsher environments were achieved. This paper benchmarks the current reliability tests used by the electronic industry, examines those tests that affect and are affected by the molding compounds, discusses the relevance of accelerated testing, and addresses the major reliability issues facing current molding compound development efforts. Six compound-related reliability concerns were selected: moldability, package stresses, package cracking, halogen-induced intermetallic growth at bond pads, moisture-induced corrosion, and interfacial delamination. Causes of each failure type are surveyed and remedies are recommended. Accelerated tests are designed to apply to a limited quantity of devices, bias, or environmental conditions larger than usual ratings, to intensify failure mechanisms that would occur under normal operating conditions. The observed behavior is then extrapolated from the lot to the entire population. Emphasis is on compressing the time necessary to obtain reliability data. This approach has two main drawbacks. With increasingly complex devices, even accelerated tests are expensive. And with new technologies, it becomes

  20. 49 CFR 173.24 - General requirements for packagings and packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) New packagings and packagings which are reused; and (3) Specification and non-specification packagings..., sufficient ullage (outage) must be left to ensure that neither leakage nor permanent distortion of the...

  1. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGES

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; ...

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  2. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  3. 77 FR 18707 - USPS Package Intercept-New Product Offerings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... service that replaced the former recall of mail process. Plans were announced to implement new features.... Additionally, customers using the electronic process will have the option of adding selected extra services to... POSTAL SERVICE 39 CFR Part 111 USPS Package Intercept--New Product Offerings AGENCY: Postal...

  4. An Investigation of Nonuniform Dose Deposition From an Electron Beam

    DTIC Science & Technology

    1994-08-01

    to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR

  5. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  6. Spectroscopic investigation of a dielectric barrier discharge in modified atmosphere packaging

    NASA Astrophysics Data System (ADS)

    Milosavljević, Vladimir; Cullen, Patrick J.

    2017-11-01

    Diagnostics of a dielectric barrier discharge (DBD), in a sealed package (with and without meat) filled with gas mixtures of oxygen and carbon-dioxide (O2-CO2), is reported. The generation and evaluation of the plasma chemistry induced within the confines of the sealed package is studied. The plasma discharges were analyzed by optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS) over a range of plasma process parameters. The study includes a detailed experimental investigation of the spatial and temporal spectroscopic data and links them with plasma kinetics. The results from the spectral radiation from package provide information about the electron energy distribution function. The experimental data indicates that the humidity level in the package with and without meat is unchanged, and that the gas temperature was not significantly modified. Oxygen and nitrogen radicals (trapped gas atmosphere and modified atmosphere) are increased in the package containing meat; at the same time there is no evidence of the presence of carbon monoxide molecules. The role of the nitrogen molecule in the quenching of O2 and CO2 molecules is also evaluated.

  7. 19 CFR 123.92 - Electronic information for truck cargo required in advance of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and exportation, in another vehicle or conveyance are also subject to the advance electronic... of the conveyance is its Vehicle Identification Number (VIN) or its license plate number and state of... number will be a unique number to be assigned by CBP upon the implementation of the Automated Commercial...

  8. 19 CFR 123.92 - Electronic information for truck cargo required in advance of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and exportation, in another vehicle or conveyance are also subject to the advance electronic... of the conveyance is its Vehicle Identification Number (VIN) or its license plate number and state of... number will be a unique number to be assigned by CBP upon the implementation of the Automated Commercial...

  9. 19 CFR 123.91 - Electronic information for rail cargo required in advance of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transportation and exportation, in another vehicle or conveyance is also subject to the advance electronic... identification number will be a unique number to be assigned by CBP upon the implementation of the Automated... implementation of the Automated Commercial Environment); (8) The place where the rail carrier takes possession of...

  10. Recent advances in the application of electron tomography to materials chemistry.

    PubMed

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers

  11. The NASA Electronic Parts and Packaging (NEPP) Program: NEPP Overview - Automotive Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using U.S. Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Council's AECQ standardization program, the second part provides a summary of the results of NASA's procurement and testing experiences and other lessons learned along with preliminary test results.

  12. 19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...

  13. 19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...

  14. 19 CFR 123.92 - Electronic information for truck cargo required in advance of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transportation and exportation, in another vehicle or conveyance are also subject to the advance electronic... of the conveyance is its Vehicle Identification Number (VIN) or its license plate number and state of... number will be a unique number to be assigned by CBP upon the implementation of the Automated Commercial...

  15. 19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...

  16. 19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Information Through the Automated Export System (AES) § 192.14 Electronic information for outward cargo... Automated Export System (AES)). (b) Presentation of data—(1) Time for presenting data. USPPIs or their... regulatory authority to do so. The CBP will also continue to require 72-hour advance notice for used vehicle...

  17. Packaging - Materials review

    NASA Astrophysics Data System (ADS)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  18. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  19. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong

    2010-03-01

    The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.

  20. Packaging Your Training Materials

    ERIC Educational Resources Information Center

    Espeland, Pamela

    1977-01-01

    The types of packaging and packaging materials to use for training materials should be determined during the planning of the training programs, according to the packaging market. Five steps to follow in shopping for packaging are presented, along with a list of packaging manufacturers. (MF)

  1. Drug packaging in 2014: authorities should direct more efforts towards medication safety.

    PubMed

    2015-05-01

    In 2014, Prescrire examined the packaging quality of about 250 drugs. A few advances stand out, mainly involving recent drugs, but on the whole, the situation is worrisome in terms of medication safety. Although pharmaceutical companies and drug regulatory agencies seem to be taking more account of the risk of accidental poisoning in children, the level of protection remains low overall in the absence of stringent measures on the part of the authorities. New drugs too often have poor-quality or even dangerous packaging at the time of their market introduction. And the packaging quality of older drugs is disturbing. Pharmaceutical companies no longer invest in the packaging of these products, and agencies often fail to take advantage of the opportunities provided by their reassessment to improve the situation. The inappropriate labelling of certain injectable drugs remains a source of medication errors, sometimes resulting in very serious consequences. In 2014, signs of progress in the packaging of several drugs show that its role in medication safety is better appreciated. But the persistence of dangers in the pharmaceuticals market, created by "unfinished", overly complex or poor-quality packaging, raises the question of the responsibility of pharmaceutical companies and agencies for past and present accidents.

  2. 19 CFR 192.14 - Electronic information for outward cargo required in advance of departure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Specifically, to effect the advance electronic transmission of the required cargo information to CBP, the USPPI... two hours prior to the arrival of the train at the border. (2) Applicability of time frames. The time... compliance with the time frames provided in paragraph (b)(1) of this section. Requirements placed on exports...

  3. Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package

    ERIC Educational Resources Information Center

    Ibrahim, Dogan

    2009-01-01

    The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…

  4. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas

    2016-04-01

    Current generation automotive power electronics packages utilize silicon devices and lead-free solder alloys. To meet stringent technical targets for 2020 and beyond (for cost, power density, specific power, efficiency and reliability), wide-bandgap devices are being considered since they offer advantages such as operation at higher frequencies, voltages, and temperatures. Traditional power electronics packages must be redesigned to utilize the full potential of wide-bandgap devices, and the die- and substrate-attach layers are key areas where new material development and validation is required. Present solder alloys do not meet the performance requirements for these new package designs while also meeting cost andmore » hazardous substance restrictions. Sintered silver (Ag) promises to meet the needs for die- and substrate-attach interfaces but synthesis optimization and reliability evaluation must be completed. Sintered Ag material was proposed as an alternative solution in power electronics packages almost 20 years back. However, synthesis pressure requirements up 40 MPa caused a higher complexity in the production process and more stringent flatness specifications for the substrates. Recently, several manufacturers have developed sintered Ag materials that require lower (3-5 MPa) or even no bonding pressures. Degradation mechanisms for these sintered Ag materials are not well known and need to be addressed. We are addressing these aspects to some extent in this project. We are developing generalized (i.e., independent of geometry) stress intensity factor versus cycles-to-failure relations for sintered Ag. Because sintered Ag is a relatively new material for automotive power electronics, the industry currently does not have a good understanding of recommended synthesis parameters or expected reliability under prescribed conditions. It is an important deliverable of this project to transfer findings to industry to eliminate barriers to using sintered Ag as a

  5. Packaged die heater

    DOEpatents

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  6. Thermo-Mechanical Analysis for John Deere Electronics Solutions | Advanced

    Science.gov Websites

    impacts of alternative manufacturing processes Die, package, and interface material analysis for power module reliability Manufacturing process impacts versus thermal cycling impacts on power module

  7. Advance Care Planning Documentation in Electronic Health Records: Current Challenges and Recommendations for Change.

    PubMed

    Lamas, Daniela; Panariello, Natalie; Henrich, Natalie; Hammes, Bernard; Hanson, Laura C; Meier, Diane E; Guinn, Nancy; Corrigan, Janet; Hubber, Sean; Luetke-Stahlman, Hannah; Block, Susan

    2018-04-01

    To develop a set of clinically relevant recommendations to improve the state of advance care planning (ACP) documentation in the electronic health record (EHR). Advance care planning (ACP) is a key process that supports goal-concordant care. For preferences to be honored, clinicians must be able to reliably record, find, and use ACP documentation. However, there are no standards to guide ACP documentation in the electronic health record (EHR). We interviewed 21 key informants to understand the strengths and weaknesses of EHR documentation systems for ACP and identify best practices. We analyzed these interviews using a qualitative content analysis approach and subsequently developed a preliminary set of recommendations. These recommendations were vetted and refined in a second round of input from a national panel of content experts. Informants identified six themes regarding current inadequacies in documentation and accessibility of ACP information and opportunities for improvement. We offer a set of concise, clinically relevant recommendations, informed by expert opinion, to improve the state of ACP documentation in the EHR.

  8. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less

  9. Evaluating Penetration Ability of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) Larvae into Multilayer Polypropylene Packages.

    PubMed

    Scheff, Deanna S; Sehgal, Blossom; Subramanyam, Bhadriraju

    2018-04-18

    The larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third instars, and fifth instars of P. interpunctella to determine package resistance at 28 °C and 65% r.h. The packing types were also challenged with two male and two female pupae of P. interpunctella under similar conditions in order to determine which package provided the greatest protection against larval penetration. Samples infested with eggs, third instars, and pupae were evaluated after 21 days and 42 days to count the number of larvae, pupae, and adults found inside the packages. Packages challenged with fifth instars were observed after 21 days to count the number of larvae, pupae, and adults inside each package. The number and diameter of the holes were determined in each package, followed by the amount of damage sustained to the energy bar. Third and fifth instars showed a higher tendency to penetrate all of the packaging types. First instars showed a reduction in package penetration ability compared with third and fifth instars. The increase in exposure time resulted in an increase in the damage sustained to the energy bars. Among packaging types, the thickest package (Test A) was most resilient to penetration by all of the larval stages. In conclusion, energy bar manufacturers need to invest more effort into improving packaging designs, creating thicker gauge films, or advancing odor barrier technology, in order to prevent penetration and infestation by P. interpunctella larvae.

  10. An electron-beam dose deposition experiment: TIGER 1-D simulation code versus thermoluminescent dosimetry

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.

    1991-03-01

    The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

  11. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  12. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  13. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  14. 7 CFR 54.1016 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... applicant under the regulations, or other notification concerning the determination of compliance of...

  15. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  16. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  17. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  18. Visual and x-ray inspection characteristics of eutectic and lead free assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2003-01-01

    For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).

  19. GENERAL PURPOSE ADA PACKAGES

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package

  20. IONIZING RADIATION AND PACKAGING EFFECTS ON RESPIRATORY BEHAVIOR, FUNGAL GROWTH, AND STORAGE-LIFE OF PEACHES, PRUNUS PERSICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaliwal, A.S.; Salunkhe, D.K.

    1963-01-01

    Investigations were conducted in 1960 to study effects of fast electron and gamma radiations and packaging films on respiratory rate, control of fungal deterioration, and subsequent refrigeration life of peaches. The fungi responsible for deterioration of peaches were also studied in vitro to determine if they were susceptible or resistant to ionizing (fast electron and gamma) radiations. Respiratory behavior of the fruits under normal as well as modified conditions was assessed with a Claypool and Keefer-type respirometer and Orsat- type gas analyzer. Two kinds of polyethylene films were used for packaging fruits. The fruits after treatments and packaging were storedmore » at 40 un. Concent 85% F and 85 per cent relative humidity and at 75 un. Concent 85% F and 35 per cent relative humidity. (auth)« less

  1. Detecting small holes in packages

    DOEpatents

    Kronberg, James W.; Cadieux, James R.

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  2. Optomechanical Design and Characterization of a Printed-Circuit-Board-Based Free-Space Optical Interconnect Package

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.

    1999-09-01

    We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.

  3. Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging

    NASA Astrophysics Data System (ADS)

    Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun

    2015-10-01

    The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D10 value than the ones packed aerobically. No significant difference was observed between the D10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens.

  4. Packaging for Food Service

    NASA Technical Reports Server (NTRS)

    Stilwell, E. J.

    1985-01-01

    Most of the key areas of concern in packaging the three principle food forms for the space station were covered. It can be generally concluded that there are no significant voids in packaging materials availability or in current packaging technology. However, it must also be concluded that the process by which packaging decisions are made for the space station feeding program will be very synergistic. Packaging selection will depend heavily on the preparation mechanics, the preferred presentation and the achievable disposal systems. It will be important that packaging be considered as an integral part of each decision as these systems are developed.

  5. Detecting small holes in packages

    DOEpatents

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  6. Financing electronic waste recycling Californian households' willingness to pay advanced recycling fees.

    PubMed

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-09-01

    The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.

  7. Advanced Electronic Technology

    DTIC Science & Technology

    1977-11-15

    Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched

  8. Lumped element filters for electronic warfare systems

    NASA Astrophysics Data System (ADS)

    Morgan, D.; Ragland, R.

    1986-02-01

    Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.

  9. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    NASA Astrophysics Data System (ADS)

    Jaggi, S.

    1993-02-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  10. Anhydrous Ammonia Training Module. Trainer's Package. Participant's Package.

    ERIC Educational Resources Information Center

    Beaudin, Bart; And Others

    This document contains a trainer's and a participant's package for teaching employees on site safe handling procedures for working with anhydrous ammonia, especially on farms. The trainer's package includes the following: a description of the module; a competency; objectives; suggested instructional aids; a training outline (or lesson plan) for…

  11. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  12. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.

    PubMed

    Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan

    2017-08-30

    The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.

  13. 3D packaging of a microfluidic system with sensory applications

    NASA Astrophysics Data System (ADS)

    Morrissey, Anthony; Kelly, Gerard; Alderman, John C.

    1997-09-01

    Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.

  14. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  15. A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments.

    PubMed

    Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T

    2012-08-01

    InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.

  16. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  17. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  18. Electronic Joint Army/Navy Point Detonating/Delay Fuze

    DTIC Science & Technology

    1982-08-01

    be battery powered and will use an existing S & A , such as an M739 . We recormiended that the fuzes be fired at various zones and high-speed cameras...Demonstrator 10 Power Supply Tasks 47 11 Electronic S & A 43 11.1 Explosive Barrier Module 49 11.2 Internal Development Program 51 12 Fuze Packaging...program, contract number DAAK10-80-C-0049. We included the Electronic S & A and Fuze Packaging sections to present a complete understanding of the overall

  19. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kee, R.J.; Rupley, F.M.; Meeks, E.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library.more » This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.« less

  20. Child-resistant and tamper-resistant packaging: A systematic review to inform tobacco packaging regulation.

    PubMed

    Jo, Catherine L; Ambs, Anita; Dresler, Carolyn M; Backinger, Cathy L

    2017-02-01

    We aimed to investigate the effects of special packaging (child-resistant, adult-friendly) and tamper-resistant packaging on health and behavioral outcomes in order to identify research gaps and implications for packaging standards for tobacco products. We searched seven databases for keywords related to special and tamper-resistant packaging, consulted experts, and reviewed citations of potentially relevant studies. 733 unique papers were identified. Two coders independently screened each title and abstract for eligibility. They then reviewed the full text of the remaining papers for a second round of eligibility screening. Included studies investigated a causal relationship between type of packaging or packaging regulation and behavioral or health outcomes and had a study population composed of consumers. Studies were excluded on the basis of publication type, if they were not peer-reviewed, and if they had low external validity. Two reviewers independently coded each paper for study and methodological characteristics and limitations. Discrepancies were discussed and resolved. The review included eight studies: four assessing people's ability to access the contents of different packaging types and four evaluating the impact of packaging requirements on health-related outcomes. Child-resistant packaging was generally more difficult to open than non-child-resistant packaging. Child-resistant packaging requirements have been associated with reductions in child mortality. Child-resistant packaging holds the expectation to reduce tobacco product poisonings among children under six. Published by Elsevier Inc.

  1. Scoring Package

    National Institute of Standards and Technology Data Gateway

    NIST Scoring Package (PC database for purchase)   The NIST Scoring Package (Special Database 1) is a reference implementation of the draft Standard Method for Evaluating the Performance of Systems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms.

  2. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

    PubMed

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.

  3. Electronic Cigarette Refill Liquids: Child-Resistant Packaging, Nicotine Content, and Sales to Minors.

    PubMed

    Buettner-Schmidt, Kelly; Miller, Donald R; Balasubramanian, Narayanaganesh

    2016-01-01

    To determine the accuracy of the labeled quantity of the nicotine content of the e-liquids sold in unlicensed vape stores, whether the packaging of e-liquids sold within the vape stores was child-resistant, whether minors were present within vape stores, and whether sales to minors occurred. This study was conducted across North Dakota prior to implementation of a new e-cigarette state law and provided a baseline assessment before enactment of the new legal requirements. We tested samples of e-liquids and performed observations in 16 stores that were selling e-cigarettes but were not legally required to be licensed for tobacco retail. The e-liquids were analyzed for nicotine content using a validated high-performance liquid chromatography method for nicotine analysis. Of the 70 collected e-liquid samples that claimed to contain nicotine, 17% contained more than the labeled quantity and 34% contained less than the labeled quantity by 10% or more, with one sample containing 172% more than the labeled quantity. Of the 94 e-liquid containers sampled, only 35% were determined to be child-resistant. Minors were present in stores, although no sales to minors occurred. Mislabeling of nicotine in e-liquids is common and exposes the user to the harmful effects of nicotine. The lack of child-resistant packaging for this potentially toxic substance is a serious public health problem. E-cigarettes should be included in the legal definition of tobacco products, child-resistant packaging and nicotine labeling laws should be enacted and strictly enforced, and vape stores should be licensed by states. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. PyPathway: Python Package for Biological Network Analysis and Visualization.

    PubMed

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  5. Metastable Polymers for On Demand Transient Electronic Packaging

    DTIC Science & Technology

    2018-01-17

    a triggerable polymer for engineering applications. 25 Approved for public release; distribution is unlimited. 6 REFERENCES (1) Aso, C.; Tagami, S...R. Advanced Materials 2014, 26, 7637. (4) Ito, H.; Willson, C. G. Polymer Engineering & Science 1983, 23, 1012. (5) Ito, H.; England, W. P.; Ueda, M

  6. Packaging - Materials review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in manymore » shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt

  7. Package Up Your Troubles--An Introduction to Package Libraries

    ERIC Educational Resources Information Center

    Frank, Colin

    1978-01-01

    Discusses a "package deal" library--a prefabricated building including interior furnishing--in terms of costs, fitness for purpose, and interior design, i.e., shelving, flooring, heating, lighting, and humidity. Advantages and disadvantages of the package library are also considered. (Author/MBR)

  8. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  9. Design and analysis study of a spacecraft optical transceiver package

    NASA Technical Reports Server (NTRS)

    Lambert, S. G.

    1985-01-01

    A detailed system level design of an Optical Transceiver Package (OPTRANSPAC) for a deep space vehicle whose mission is outer planet exploration is developed. In addition to the terminal design, this study provides estimates of the dynamic environments to be encountered by the transceiver throughout its mission life. Optical communication link analysis, optical thin lens design, electronic functional design and mechanical layout and packaging are employed in the terminal design. Results of the study describe an Optical Transceiver Package capable of communicating to an Earth Orbiting Relay Station at a distance of 10 Astronomical Units (AU) and data rates up to 100 KBPS. The transceiver is also capable of receiving 1 KBPS of command data from the Earth Relay. The physical dimensions of the terminal are contained within a 3.5' x 1.5' x 2.0' envelope and the transceiver weight and power are estimated at 52.2 Kg (115 pounds) and 57 watts, respectively.

  10. My Favorite Things Electronically Speaking, 1997 Edition.

    ERIC Educational Resources Information Center

    Glantz, Shelley

    1997-01-01

    Responding to an informal survey, 96 media specialists named favorite software, CD-ROMs, and online sites. This article lists automation packages, electronic encyclopedias, CD-ROMs, electronic magazine indexes, CD-ROM and online database services, electronic sources of current events, laser disks for grades 6-12, word processing programs for…

  11. Child-resistant and tamper-resistant packaging: A systematic review to inform tobacco packaging regulation

    PubMed Central

    Jo, Catherine L.; Ambs, Anita; Dresler, Carolyn M.; Backinger, Cathy L.

    2017-01-01

    Objective We aimed to investigate the effects of special packaging (child-resistant, adult-friendly) and tamper-resistant packaging on health and behavioral outcomes in order to identify research gaps and implications for packaging standards for tobacco products. Methods We searched seven databases for keywords related to special and tamper-resistant packaging, consulted experts, and reviewed citations of potentially relevant studies. 733 unique papers were identified. Two coders independently screened each title and abstract for eligibility. They then reviewed the full text of the remaining papers for a second round of eligibility screening. Included studies investigated a causal relationship between type of packaging or packaging regulation and behavioral or health outcomes and had a study population composed of consumers. Studies were excluded on the basis of publication type, if they were not peer-reviewed, and if they had low external validity. Two reviewers independently coded each paper for study and methodological characteristics and limitations. Discrepancies were discussed and resolved. Results The review included eight studies: four assessing people’s ability to access the contents of different packaging types and four evaluating the impact of packaging requirements on health-related outcomes. Child-resistant packaging was generally more difficult to open than non-child-resistant packaging. Child-resistant packaging requirements have been associated with reductions in child mortality. Conclusions Child-resistant packaging holds the expectation to reduce tobacco product poisonings among children under six. PMID:27939602

  12. [The plain packaging of tobacco products: a new strategy for tobacco control].

    PubMed

    Rey-Pino, Juan Miguel; Nerín, Isabel; Lacave-García, Ma Blanca

    There is evidence that global tobacco smoking control policies contribute to decrease the prevalence of smoking among populations, so there is a need to effectively implement different measures in a coordinated way. The plain packaging and labelling of tobacco products is one of the measures proposed by the World Health Organisation Framework Convention on Tobacco Control. At the moment, leading countries are implementing this tobacco control measure, which involves a plain packaging for all tobacco products, i.e., the absence of any promotional or communication tool in the packaging, except the name of the brand, appearing with a standardised font, size, colour and placing in the pack. Australia was the first country to implement this measure in 2012 and recently other countries are legislating and approving it. In Spain, tobacco legislation (2005 and 2010), was an important advance in tobacco control policies. The introduction of plain packaging in Spain would mean the next step in the development of a global strategy for fighting this significant health problem. The aim of this article is to synthesise in a structured manner the role that the packaging of tobacco products has within marketing and communication strategies, as well as to describe the potential effects that the plain packaging has on some aspects of smoking behaviour, according to current literature. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.

    PubMed

    Choi, Suji; Lee, Hyunjae; Ghaffari, Roozbeh; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-06-01

    Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio-sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top-down processing approaches and synthesis-based bottom-up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non-invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New Finsler package

    NASA Astrophysics Data System (ADS)

    Youssef, Nabil L.; Elgendi, S. G.

    2014-03-01

    The book “Handbook of Finsler geometry” has been included with a CD containing an elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this package, an example concerning a Finsler generalization of Einstein’s vacuum field equations was treated. In this example, the calculation of the components of the hv-curvature of Cartan connection leads to wrong expressions. On the other hand, the FINSLER package works only in dimension four. We introduce a new Finsler package in which we fix the two problems and solve them. Moreover, we extend this package to compute not only the geometric objects associated with Cartan connection but also those associated with Berwald, Chern and Hashiguchi connections in any dimension. These improvements have been illustrated by a concrete example. Furthermore, the problem of simplifying tensor expressions is treated. This paper is intended to make calculations in Finsler geometry more easier and simpler.

  15. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  16. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  17. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    PubMed

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Food packages for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  19. Electronics for a Spectrometer

    NASA Image and Video Library

    2014-01-24

    NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.

  20. Advanced combined iodine dispenser and detector. [for microorganism annihilation in potable water

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Schubert, F. H.; Jensen, F. C.; Powell, J. D.

    1977-01-01

    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals.

  1. In-Package Chemistry Abstraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  2. NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance, An Overview

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.

    2017-01-01

    This presentation will cover NASA Electrical, Electronic and Electromechanical (EEE) Parts Assurance Structure, NASA Electronic Parts and Packaging (NEPP) Program, NASA Electronic Parts Assurance Group (NEPAG), examples of assurance challenges, and future challenges.

  3. LavaNet—Neural network development environment in a general mine planning package

    NASA Astrophysics Data System (ADS)

    Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.

    2011-04-01

    LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.

  4. Thermal interface material characterization for cryogenic electronic packaging solutions

    NASA Astrophysics Data System (ADS)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  5. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  6. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  7. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  8. Low-cost, compact, and robust gas abundance sensor package

    NASA Astrophysics Data System (ADS)

    Tran, Dat; Nehmetallah, George; Gorius, Nicolas; Ferguson, Frank T.; Esper, Jaime; Johnson, Natasha M.; Aslam, Shahid; Nixon, Conor

    2018-05-01

    Gas Abundance Sensor Package (GASP) is a stand-alone scientific instrument that has the capability to measure the concentration of target gases based on a non-dispersive infrared sensor system along with atmospheric reference parameters. The main objective of this work is to develop a GASP system which takes advantage of available technologies and off-the-shelf components to provide a cost-effective solution for localized sampling of gas concentrations. GASP will enable scientists to study the atmosphere and will identify the conditions of the target's planetary local environment. Moreover, due to a recent trend of miniaturization of electronic components and thermopiles detectors, a small size and robust instrument with a reduction in power consumption is developed in this work. This allows GASP to be easily integrated into a variety of small space vehicles such as CubeSats or small satellite system, especially the Micro-Reentry Capsule (MIRCA) prototype vehicle. This prototype is one of the most advanced concepts of small satellites that has the capability to survive the rapid dive into the atmosphere of a planet. In this paper, a fully-operational instrument system will be developed and tested in the laboratory environment as well as flight preparation for a field test of the instrument suite will be described.

  9. Advanced Electronic Structures

    DTIC Science & Technology

    1992-10-01

    Physicist Physical Electronics Laboratory SRI Project 2407 D T IC Prepared for: S ELECTEr’ Office of Naval Research DEC 0 81992 800 North Quincy Street...talk at the March 1992 meeting of the American Physical Society. The sub- ject was the use of pressure as a new variable for testing the underlying...on the MIGS model. We intend to submit to Physical Review Letters, and are only waiting for Eike to complete a draft of the ma iuscript. 1 2.1.2

  10. Green Packaging Management of Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Guirong; Zhao, Zongjian

    From the connotation of green logistics management, we discuss the principles of green packaging, and from the two levels of government and enterprises, we put forward a specific management strategy. The management of green packaging can be directly and indirectly promoted by laws, regulations, taxation, institutional and other measures. The government can also promote new investment to the development of green packaging materials, and establish specialized institutions to identify new packaging materials, standardization of packaging must also be accomplished through the power of the government. Business units of large scale through the packaging and container-based to reduce the use of packaging materials, develop and use green packaging materials and easy recycling packaging materials for proper packaging.

  11. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  12. 9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.; Dunn, K.; Hackney, B.

    2011-01-06

    Results from the 9975 Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Materials Storage (KAMS) facility from 10 years to 15 years. This justification is established with the stipulation that surveillance activities will continue throughout this extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The current 10 year storage life was developed prior to storage. A subsequent report was later used to extend the qualification of the 9975 shippingmore » packages for 2 years for shipping plus 10 years for storage. However the qualification for the storage period was provided by the monitoring requirements of the Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the surveillance program began. KAMS is a zero-release facility that depends upon containment by the 9975 to meet design basis storage requirements. Therefore, to confirm the continued integrity of the 9975 packages while stored in KAMS, a 9975 Storage and Surveillance Program was implemented alongside the DOE required Integrated Surveillance Program (ISP) for 3013 plutonium-bearing containers. The 9975 Storage and Surveillance Program performs field surveillance as well as accelerated aging tests to ensure any degradation due to aging, to the extent that could affect packaging performance, is detected in advance of such degradation occurring in the field. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. As such the primary emphasis of the on-going 9975 Surveillance Program is an aging study of the 9975 Viton(reg.sign) GLT containment vessel O-rings and the Celotex(reg.sign) fiberboard

  13. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  14. Food packaging history and innovations.

    PubMed

    Risch, Sara J

    2009-09-23

    Food packaging has evolved from simply a container to hold food to something today that can play an active role in food quality. Many packages are still simply containers, but they have properties that have been developed to protect the food. These include barriers to oxygen, moisture, and flavors. Active packaging, or that which plays an active role in food quality, includes some microwave packaging as well as packaging that has absorbers built in to remove oxygen from the atmosphere surrounding the product or to provide antimicrobials to the surface of the food. Packaging has allowed access to many foods year-round that otherwise could not be preserved. It is interesting to note that some packages have actually allowed the creation of new categories in the supermarket. Examples include microwave popcorn and fresh-cut produce, which owe their existence to the unique packaging that has been developed.

  15. Trends in Food Packaging.

    ERIC Educational Resources Information Center

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  16. Using advanced electron microscopy for the characterization of catalytic materials

    NASA Astrophysics Data System (ADS)

    Pyrz, William D.

    Catalysis will continue to be vitally important to the advancement and sustainability of industrialized societies. Unfortunately, the petroleum-based resources that currently fuel the energy and consumer product needs of an advancing society are becoming increasingly difficult and expensive to extract as supplies diminish and the quality of sources degrade. Therefore, the development of sustainable energy sources and the improvement of the carbon efficiency of existing chemical processes are critical. Further challenges require that these initiatives are accomplished in an environmentally friendly fashion since the effects of carbon-based emissions are proving to be a serious threat to global climate stability. In this dissertation, materials being developed for sustainable energy and process improvement initiatives are studied. Our approach is to use materials characterization, namely advanced electron microscopy, to analyze the targeted systems at the nano- or Angstrom-scale with the goal of developing useful relationships between structure, composition, crystalline order, morphology, and catalytic performance. One area of interest is the complex Mo-V-M-O (M=Te, Sb, Ta, Nb) oxide system currently being developed for the selective oxidation/ammoxidation of propane to acrylic acid or acrylonitrile, respectively. Currently, the production of acrylic acid and acrylonitrile rely on propylene-based processes, yet significant cost savings could be realized if the olefin-based feeds could be replaced by paraffin-based ones. The major challenge preventing this feedstock replacement is the development of a suitable paraffin-activating catalyst. Currently, the best candidate is the Mo-V-Nb-Te-O complex oxide catalyst that is composed of two majority phases that are commonly referred to as M1 and M2. However, there is a limited understanding of the roles of each component with respect to how they contribute to catalyst stability and the reaction mechanism. Aberration

  17. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Berndsen, Zachary T.; Jardine, Paul J.; Smith, Douglas E.

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0 % to 80 % filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ˜80 % to 100 % filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ˜80 % filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  18. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.

    PubMed

    Keller, Nicholas; Berndsen, Zachary T; Jardine, Paul J; Smith, Douglas E

    2017-05-01

    We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.

  19. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  20. Electronic Excitation of Furan by Low Energy Electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh R.; Khakoo, Murtadha A.; Lopes, Maria Cristina A.; da Costa, Romarly; Bettega, Marcio H. F.; Lima, Marco A. P.

    2011-10-01

    We present absolute differential cross section (DCS) measurements and calculations of electron impact excitation of the lowest lying triplet 3B2 and 3A1 electronic states of furan. The incident electron energy range of the present study was 5-15eV. The experimental data were normalized to the elastic DCS data of. The cross sections were determined by unfolding electron energy loss spectra, using an open source data analysis package and the spectroscopic assignments of. The calculations employ a Multichannel Schwinger method with a 9-state closed coupling CI configuration including polarized pseudo-potentials. The preliminary theoretical results show reasonable agreement with experiment below 10eV, but differ at higher energies. Funded by the US NSF and the Brazilian funding agencies CNPq, CAPES and FAPESP.

  1. Food Packaging Materials

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  2. Electronic ripple indicator

    NASA Technical Reports Server (NTRS)

    Davidson, J. K.; Houck, W. H.

    1971-01-01

    Electronic circuit for monitoring excessive ripple voltage on dc power lines senses voltage variations from few millivolts to maximum of 10 volts rms. Instrument is used wherever power supply fluctuations might endanger system operations or damage equipment. Device is inexpensive and easily packaged in small chassis.

  3. Transmission of ˜ 10 keV electron beams through thin ceramic foils: Measurements and Monte Carlo simulations of electron energy distribution functions

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Heindl, T.; Skrobol, C.; Wieser, J.; Krücken, R.; Ulrich, A.

    2008-07-01

    Electron beams with particle energy of ~10 keV were sent through 300 nm thick ceramic (Si3N4 + SiO2) foils and the resulting electron energy distribution functions were recorded using a retarding grid technique. The results are compared with Monte Carlo simulations performed with two publicly available packages, Geant4 and Casino v2.42. It is demonstrated that Geant4, unlike Casino, provides electron energy distribution functions very similar to the experimental distributions. Both simulation packages provide a quite precise average energy of transmitted electrons: we demonstrate that the maximum uncertainty of the calculated values of the average energy is 6% for Geant4 and 8% for Casino, taking into account all systematic uncertainties and the discrepancies in the experimental and simulated data.

  4. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Treesearch

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  5. Unravelling electronic and structural requisites of triplet-triplet energy transfer by advanced electron paramagnetic resonance and density functional theory

    NASA Astrophysics Data System (ADS)

    Di Valentin, M.; Salvadori, E.; Barone, V.; Carbonera, D.

    2013-10-01

    Advanced electron paramagnetic resonance (EPR) techniques, in combination with Density Functional theory (DFT), have been applied to the comparative study of carotenoid triplet states in two major photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants. Carotenoid triplet states are populated by triplet-triplet energy transfer (TTET) from chlorophyll molecules to photoprotect the system from singlet oxygen formation under light-stress conditions. The TTET process is strongly dependent on the relative arrangement and on the electronic properties of the triplet states involved. The proposed spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognisable spin polarisation effects in the time-resolved and field-swept echo-detected EPR spectra. The electron spin polarisation produced at the carotenoid acceptor site depends on the initial polarisation of the chlorophyll donor and on the relative geometrical arrangement of the donor-acceptor zero-field splitting axes. We have demonstrated that a proper analysis of the spectra in the framework of spin angular momentum conservation allows to derive the pathways of TTET and to gain insight into the structural requirements of this mechanism for those antenna complexes, whose X-ray structure is available. We have further proved that this method, developed for natural antenna complexes of known X-ray structure, can be extended to systems lacking structural information in order to derive the relative arrangement of the partners in the energy transfer process. The structural requirements for efficient TTET, obtained from time-resolved and pulse EPR, have been complemented by a detailed description of the electronic structure of the carotenoid triplet state, provided by pulse Electron-Nuclear DOuble Resonance (ENDOR) experiments. Triplet-state hyperfine couplings of the α- and β-protons of the

  6. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  7. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging.

    PubMed

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z

    2008-08-08

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.

  8. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging

    PubMed Central

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z.

    2008-01-01

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent intermolecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a 2-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor. PMID:18514064

  9. Electronic Cigarette Refill Liquids: Child-Resistant Packaging, Nicotine Content, and Sales to Minors2

    PubMed Central

    Buettner-Schmidt, Kelly; Miller, Donald R.; Balasubramanian, Narayanaganesh

    2016-01-01

    Purpose To determine the accuracy of the labeled quantity of the nicotine content of the e-liquids sold in unlicensed vape stores, whether the packaging of e-liquids sold within the vape stores was child-resistant, whether minors were present within vape stores, and whether sales to minors occurred. This study was conducted across North Dakota prior to implementation of a new e-cigarette state law and provided a baseline assessment before enactment of the new legal requirements. Design and Methods We tested samples of e-liquids and performed observations in 16 stores that were selling e-cigarettes but were not legally required to be licensed for tobacco retail. The e-liquids were analyzed for nicotine content using a validated high-performance liquid chromatography method for nicotine analysis. Results Of the 70 collected e-liquid samples that claimed to contain nicotine, 17% contained more than the labeled quantity and 34% contained less than the labeled quantity by 10% or more, with one sample containing 172% more than the labeled quantity. Of the 94 e-liquid containers sampled, only 35% were determined to be child-resistant. Minors were present in stores, although no sales to minors occurred. Conclusions Mislabeling of nicotine in e-liquids is common and exposes the user to the harmful effects of nicotine. The lack of child-resistant packaging for this potentially toxic substance is a serious public health problem. E-cigarettes should be included in the legal definition of tobacco products, child-resistant packaging and nicotine labeling laws should be enacted and strictly enforced, and vape stores should be licensed by states. PMID:27079973

  10. GT-SUPREEM: the Georgia Tech summer undergraduate packaging research and engineering experience for minorities

    NASA Astrophysics Data System (ADS)

    May, Gary S.

    1996-07-01

    The Georgia Tech SUmmer Undergraduate Packaging Research and Engineering Experience for Minorities (GT-SUPREEM) is an eight-week summer program designed to attract qualified minority students to pursue graduate degrees in packaging- related disciplines. The program is conducted under the auspices of the Georgia Tech Engineering Research Center in Low-Cost Electronic Packaging, which is sponsored by the National Science Foundation. In this program, nine junior and senior level undergraduate students are selected on a nationwide basis and paired with a faculty advisor to undertake research projects in the Packaging Research CEnter. The students are housed on campus and provided with a $DLR3,000 stipend and a travel allowance. At the conclusion of the program, the students present both oral and written project summaries. It is anticipated that this experience will motivate these students to become applicants for graduate study in ensuring years. This paper will provide an overview of the GT-SUPREEM program, including student research activities, success stories, lessons learned, and overall program outlook.

  11. Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-08-08

    Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.

  12. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, F.D.; Elshabini, A.

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics requiredmore » by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which

  13. High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics.

    PubMed

    Wang, Binghao; Huang, Wei; Chi, Lifeng; Al-Hashimi, Mohammed; Marks, Tobin J; Facchetti, Antonio

    2018-05-22

    Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.

  14. Polyethylene glycol grafted polyethylene: a versatile platform for nonmigratory active packaging applications.

    PubMed

    Barish, Jeffrey A; Goddard, Julie M

    2011-01-01

    Nonmigratory active packaging, in which bioactive components are tethered to the package, offers the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing nonmigratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. In this work, we describe a method in which a biocompatible polymer (polyethylene glycol, PEG) is grafted from the surface of ozone-treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. Free radical graft polymerization is used to graft PEG onto the LDPE surface, followed by immobilization of ethylenediamine onto the PEG tether. Ethylenediamine was used to demonstrate that amine-terminated molecules could be covalently attached to the PEG-grafted film. Changes in surface chemistry and topography were measured by attenuated total reflectance Fourier transform infrared spectroscopy, contact angle, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. We demonstrate the ability to graft PEG onto the surface of polymer packaging films by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of nonmigratory active packaging.   Nonmigratory active packaging offers the potential for improving food safety and quality while minimizing the migration of the active agent into food. In this paper, we describe a technique to modify polyethylene packaging films such that active agents can be covalently immobilized by a biocompatible tether. Such a technique can be adapted to a number of applications such as antimicrobial, antioxidant, or immobilized enzyme active

  15. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. Copyright © 2015. Published by Elsevier B.V.

  16. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Oziomek, Thomas V.

    2009-01-01

    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable and nutritious. Development of high barrier food packaging will enable this requirement by preventing the ingress and egress of gases and moisture. New high barrier food packaging materials have been identified through a trade study. Practical application of this packaging material within a shelf life test will allow for better determination of whether this material will allow the food system to meet given requirements after the package has undergone processing. The reason to conduct shelf life testing, using a variety of packaging materials, stems from the need to preserve food used for mission durations of several years. Chemical reactions that take place during longer durations may decrease food quality to a point where crew physical or psychological well-being is compromised. This can result in a reduction or loss of mission success. The rate of chemical reactions, including oxidative rancidity and staling, can be controlled by limiting the reactants, reducing the amount of energy available to drive the reaction, and minimizing the amount of water available. Water not only acts as a media for microbial growth, but also as a reactant and means by which two reactants may come into contact with each other. The objective of this study is to evaluate three packaging materials for potential use in long duration space exploration missions.

  17. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  18. Electron treatment of wood pulp for the viscose process

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  19. Creative Thinking Package

    ERIC Educational Resources Information Center

    Jones, Clive

    1972-01-01

    A look at the latest package from a British managment training organization, which explains and demonstrates creative thinking techniques, including brainstorming. The package, designed for groups of twelve or more, consists of tapes, visuals, and associated exercises. (Editor/JB)

  20. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  1. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed pursuant...

  2. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  3. A Survey of Electronics Obsolescence and Reliability

    DTIC Science & Technology

    2010-07-01

    properties but there are many minor and major variations (e.g. curing schedule) affecting their usage in packaging processes and in reworking. Curing...within them. Electronic obsolescence is increasingly associated with physical characteristics that reduce component and system reliability, both in usage ...semiconductor technologies and of electronic systems, both in usage and in storage. By design, electronics technologies include few reliability margins

  4. Photonics and nanophotonics and information and communication technologies in modern food packaging.

    PubMed

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-01-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  5. Photonics and Nanophotonics and Information and Communication Technologies in Modern Food Packaging

    NASA Astrophysics Data System (ADS)

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-05-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  6. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  7. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  8. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  9. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  10. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  11. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  12. Spoilage and safety characteristics of ground beef packaged in traditional and modified atmosphere packages.

    PubMed

    Brooks, J C; Alvarado, M; Stephens, T P; Kellermeier, J D; Tittor, A W; Miller, M F; Brashears, M M

    2008-02-01

    Two separate studies, one with pathogen-inoculated product and one with noninoculated product, were conducted to determine the safety and spoilage characteristics of modified atmosphere packaging (MAP) and traditional packaging of ground beef patties. Ground beef patties were allotted to five packaging treatments (i) control (foam tray with film overwrap; traditional), (ii) high-oxygen MAP (80% 02, 20% CO2), (iii) high-oxygen MAP with added rosemary extract, (iv) low-oxygen carbon monoxide MAP (0.4% CO, 30% CO2, 69.6% N2), and (v) low-oxygen carbon monoxide MAP with added rosemary extract. Beef patties were evaluated for changes over time (0, 1, 3, 5, 7, 14, and 21 days) during lighted display. Results indicated low-oxygen carbon monoxide gas flush had a stabilizing effect on meat color after the formation of carboxymyoglobin and was effective for preventing the development of surface discoloration. Consumers indicated that beef patties packaged in atmospheres containing carbon monoxide were more likely to smell fresh at 7, 14, and 21 days of display, but the majority would probably not consume these products after 14 days of display because of their odor. MAP suppressed the growth of psychrophilic aerobic bacteria when compared with control packages. Generally, control packages had significantly higher total aerobic bacteria and Lactobacillus counts than did modified atmosphere packages. In the inoculated ground beef (approximately 10(5) CFU/g) in MAP, Escherichia coli O157 populations ranged from 4.51 to 4.73 log CFU/g with no differences among the various packages, but the total E. coli O157:H7 in the ground beef in the control packages was significantly higher at 5.61 log CFU/g after 21 days of storage. On days 14 and 21, the total Salmonella in the ground beef in control packages was at 5.29 and 5.27 log CFU/g, respectively, which was significantly higher than counts in the modified atmosphere packages (3.99 to 4.31 log CFU/g on day 14 and 3.76 to 4.02 log CFU

  13. Integrated Approach to Industrial Packaging Design

    NASA Astrophysics Data System (ADS)

    Vorobeva, O.

    2017-11-01

    The article reviews studies in the field of industrial packaging design. The major factors which influence technological, ergonomic, economic and ecological features of packaging are established. The main modern trends in packaging design are defined, the principles of marketing communications and their influence on consumers’ consciousness are indicated, and the function of packaging as a transmitter of brand values is specified. Peculiarities of packaging technology and printing techniques in modern printing industry are considered. The role of designers in the stage-by-stage development of the construction, form and graphic design concept of packaging is defined. The examples of authentic packaging are given and the mention of the tetrahedron packaging history is made. At the end of the article, conclusions on the key research aspects are made.

  14. Romanian experience on packaging testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieru, G.

    2007-07-01

    With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances.more » The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)« less

  15. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  16. Development and Applications of Advanced Electronic Structure Methods

    NASA Astrophysics Data System (ADS)

    Bell, Franziska

    This dissertation contributes to three different areas in electronic structure theory. The first part of this thesis advances the fundamentals of orbital active spaces. Orbital active spaces are not only essential in multi-reference approaches, but have also become of interest in single-reference methods as they allow otherwise intractably large systems to be studied. However, despite their great importance, the optimal choice and, more importantly, their physical significance are still not fully understood. In order to address this problem, we studied the higher-order singular value decomposition (HOSVD) in the context of electronic structure methods. We were able to gain a physical understanding of the resulting orbitals and proved a connection to unrelaxed natural orbitals in the case of Moller-Plesset perturbation theory to second order (MP2). In the quest to find the optimal choice of the active space, we proposed a HOSVD for energy-weighted integrals, which yielded the fastest convergence in MP2 correlation energy for small- to medium-sized active spaces to date, and is also potentially transferable to coupled-cluster theory. In the second part, we studied monomeric and dimeric glycerol radical cations and their photo-induced dissociation in collaboration with Prof. Leone and his group. Understanding the mechanistic details involved in these processes are essential for further studies on the combustion of glycerol and carbohydrates. To our surprise, we found that in most cases, the experimentally observed appearance energies arise from the separation of product fragments from one another rather than rearrangement to products. The final chapters of this work focus on the development, assessment, and application of the spin-flip method, which is a single-reference approach, but capable of describing multi-reference problems. Systems exhibiting multi-reference character, which arises from the (near-) degeneracy of orbital energies, are amongst the most

  17. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  18. Body of Knowledge (BOK) for Leadless Quad Flat No-Lead/Bottom Termination Components (QFN/BTC) Package Trends and Reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.

  19. Sandia Advanced MEMS Design Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor R.; Allen, James J.; Lantz, Jeffrey W.

    This is a major revision to the Sandia Advanced MEMS Design Tools. It replaces all previous versions. New features in this version: Revised to support AutoCAD 2014 and 2015 This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exists somemore » files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  20. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  1. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  2. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  3. Plastic packaged microcircuits: Quality, reliability, and cost issues

    NASA Astrophysics Data System (ADS)

    Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan

    1993-12-01

    Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.

  4. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  5. Electron tunneling in proteins program.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  7. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-12-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  8. Natural biopolimers in organic food packaging

    NASA Astrophysics Data System (ADS)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  9. 19 CFR 103.31a - Advance electronic information for air, truck, and rail cargo; Importer Security Filing...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Advance electronic information for air, truck, and rail cargo; Importer Security Filing information for vessel cargo. 103.31a Section 103.31a Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AVAILABILITY OF INFORMATION Other Information...

  10. Parylene-on-oil packaging for long-term implantable pressure sensors.

    PubMed

    Shapero, Aubrey M; Liu, Yang; Tai, Yu-Chong

    2016-08-01

    This paper reports and analyzes the feasibility study of a parylene-on-oil encapsulation packaging method of pressure sensors targeted for long-term implantation. Commercial barometric digital-output pressure sensors are enclosed in silicone oil and then encapsulated in situ with parylene-C or -D (PA-C, PA-D) chemical vapor deposition. Experimentally, sensors encapsulated with 30,000 cSt silicone oil and 27 μm PA-D show good performance for 6 weeks in 77 °C saline with >99 % of original sensitivity, corresponding to an extrapolated lifetime of around 21 months in 37 °C saline. This work shows that, with proper designs, such a packaging method can preserve the original pressure sensor sensitivity without offset, validated throughout accelerated lifetime tests. In experiments, wires on the prototypes are used for external electronics but it is found that they contributed to early failures, which would be absent in real wireless versions, indicating a potential for even longer lifetimes. Finally, a verified model is presented to predict the pressure sensor sensitivity of parylene-on-oil packaging with and without the presence of a bubble in the oil.

  11. Electronic Publishing in Academia: An Economic Perspective.

    ERIC Educational Resources Information Center

    Getz, Malcolm

    The challenge to academia is to invest in services that will turn the abundance of electronic data into sound, useful, compelling information products. The process of filtering, labeling, refining, and packaging, that is, the process of editing and publishing, takes resources and will be shaped by the electronic world in significant ways. This…

  12. The SEIS Experiment: A Mars Seismic Package

    NASA Technical Reports Server (NTRS)

    Schibler, P.; Lognonne, P.; Giardini, D.; Banerdt, B.; Karczewski, J. F.; Mimoun, D.; Zweifel, P.; Pike, T.; Ammann, J.; Anglade, A.

    2003-01-01

    This experiment will integrate a VBB (Very Broad Band) two axis seismometer, a three axis Short Period seismometer and a series of environmental sensors for pressure, infra-sounds and temperature. IPGP (France) has the overall responsibility of the experiment and is responsible for the VBB and environmental sensors. ETHZ (Switzerland) is responsible for the electronics of the experiment and JPL (USA) for the SP (Short Period) sensors. SEIS instrument was first proposed and accepted for NetLander mission (and will also be in charge of data acquisition for SPICE experiment). This seismic package should also be proposed for future missions.

  13. An underwater work systems package. [remote handling

    NASA Technical Reports Server (NTRS)

    Estabrook, N. B.

    1975-01-01

    A modular unit which is adaptable to several existing deep sea submersibles was developed to extend their working abilities and acquire knowledge of components and techniques for working in the deep sea environment. This work systems package is composed of an aluminum pipe structure on which are mounted two six-function grabber arms, a seven function manipulator, tool suit, 1,000/lb. capacity winch, electrohydraulic power supply, electronics housing, lights, and television. The unit is designed to be operated by itself either remotely or with divers, attached to manned submersibles, or mounted on unmanned cable-controlled submersibles.

  14. RH Packaging Program Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipmentmore » and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  15. RH Packaging Program Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the proceduresmore » described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject

  16. Roles of chemical metrology in electronics industry and associated environment in Korea: a tutorial.

    PubMed

    Kang, Namgoo; Joong Kim, Kyung; Seog Kim, Jin; Hae Lee, Joung

    2015-03-01

    Chemical metrology is gaining importance in electronics industry that manufactures semiconductors, electronic displays, and microelectronics. Extensive and growing needs from this industry have raised the significance of accurate measurements of the amount of substances and material properties. For the first time, this paper presents information on how chemical metrology is being applied to meet a variety of needs in the aspects of quality control of electronics products and environmental regulations closely associated with electronics industry. For a better understanding of the roles of the chemical metrology within electronics industry, the recent research activities and results in chemical metrology are presented using typical examples in Korea where electronic industry is leading a national economy. Particular attention is paid to the applications of chemical metrology for advancing emerging electronics technology developments. Such examples are a novel technique for the accurate quantification of gas composition at nano-liter levels within a MEMS package, the surface chemical analysis of a semiconductor device. Typical metrological tools are also presented for the development of certified reference materials for fluorinated greenhouse gases and proficiency testing schemes for heavy metals and chlorinated toxic gas in order to cope properly with environmental issues within electronics industry. In addition, a recent technique is presented for the accurate measurement of the destruction and removal efficiency of a typical greenhouse gas scrubber. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  18. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  19. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide products...

  20. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing.

    PubMed

    Gruber, Bernd; Unmack, Peter J; Berry, Oliver F; Georges, Arthur

    2018-05-01

    Although vast technological advances have been made and genetic software packages are growing in number, it is not a trivial task to analyse SNP data. We announce a new r package, dartr, enabling the analysis of single nucleotide polymorphism data for population genomic and phylogenomic applications. dartr provides user-friendly functions for data quality control and marker selection, and permits rigorous evaluations of conformation to Hardy-Weinberg equilibrium, gametic-phase disequilibrium and neutrality. The package reports standard descriptive statistics, permits exploration of patterns in the data through principal components analysis and conducts standard F-statistics, as well as basic phylogenetic analyses, population assignment, isolation by distance and exports data to a variety of commonly used downstream applications (e.g., newhybrids, faststructure and phylogeny applications) outside of the r environment. The package serves two main purposes: first, a user-friendly approach to lower the hurdle to analyse such data-therefore, the package comes with a detailed tutorial targeted to the r beginner to allow data analysis without requiring deep knowledge of r. Second, we use a single, well-established format-genlight from the adegenet package-as input for all our functions to avoid data reformatting. By strictly using the genlight format, we hope to facilitate this format as the de facto standard of future software developments and hence reduce the format jungle of genetic data sets. The dartr package is available via the r CRAN network and GitHub. © 2017 John Wiley & Sons Ltd.

  1. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  2. Sustainable Library Development Training Package

    ERIC Educational Resources Information Center

    Peace Corps, 2012

    2012-01-01

    This Sustainable Library Development Training Package supports Peace Corps' Focus In/Train Up strategy, which was implemented following the 2010 Comprehensive Agency Assessment. Sustainable Library Development is a technical training package in Peace Corps programming within the Education sector. The training package addresses the Volunteer…

  3. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Packaging. 262.30 Section 262.30... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before... the waste in accordance with the applicable Department of Transportation regulations on packaging...

  4. Packaging Software Assets for Reuse

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Marshall, J. J.; Downs, R. R.

    2010-12-01

    The reuse of existing software assets such as code, architecture, libraries, and modules in current software and systems development projects can provide many benefits, including reduced costs, in time and effort, and increased reliability. Many reusable assets are currently available in various online catalogs and repositories, usually broken down by disciplines such as programming language (Ibiblio for Maven/Java developers, PyPI for Python developers, CPAN for Perl developers, etc.). The way these assets are packaged for distribution can play a role in their reuse - an asset that is packaged simply and logically is typically easier to understand, install, and use, thereby increasing its reusability. A well-packaged asset has advantages in being more reusable and thus more likely to provide benefits through its reuse. This presentation will discuss various aspects of software asset packaging and how they can affect the reusability of the assets. The characteristics of well-packaged software will be described. A software packaging domain model will be introduced, and some existing packaging approaches examined. An example case study of a Reuse Enablement System (RES), currently being created by near-term Earth science decadal survey missions, will provide information about the use of the domain model. Awareness of these factors will help software developers package their reusable assets so that they can provide the most benefits for software reuse.

  5. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  6. Lead-Free vs Tin-Lead Reliability of Advanced Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2005-01-01

    This presentation will provide the technical background and specific information published in literature related to reliability test, analyses, modeling, and associated issues for lead-free solder package assemblies in comparison to their tin-lead solder alloys. It also presents current understanding of lead-free thermal cycle test performance in support.

  7. Nodes packaging option for Space Station application

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.

    1988-01-01

    Space Station nodes packaging analyses are presented relative to moving environmental control and life support system (ECLSS) equipment from the habitability (HAB) module to node 4, in order to provide more living space and privacy for the crew, remove inherently noisy equipment from the crew quarter, retain crew waste collection and processing equipment in one location, and keep objectionable odor away from the living quarters. In addition, options for moving external electronic equipment from the Space Station truss to pressurized node 3 were evaluated in order to reduce the crew extravehicular-activity time required to install and maintain the equipment. Node size considered in this analysis is 3.66 m in diameter and 5.38 m long. The analysis shows that significant external electronic equipment could be relocated from the Space Station truss structure to node 3, and nonlife critical ECLSS HAB module equipment could be moved to node 4.

  8. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  9. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages

    PubMed Central

    Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan

    2016-01-01

    Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox,  TCGAbiolinks. PMID:28232861

  10. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages.

    PubMed

    Silva, Tiago C; Colaprico, Antonio; Olsen, Catharina; D'Angelo, Fulvio; Bontempi, Gianluca; Ceccarelli, Michele; Noushmehr, Houtan

    2016-01-01

    Biotechnological advances in sequencing have led to an explosion of publicly available data via large international consortia such as The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap). These projects have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high genomic resolution. The Bioconductor project offers more than 1,000 open-source software and statistical packages to analyze high-throughput genomic data. However, most packages are designed for specific data types (e.g. expression, epigenetics, genomics) and there is no one comprehensive tool that provides a complete integrative analysis of the resources and data provided by all three public projects. A need to create an integration of these different analyses was recently proposed. In this workflow, we provide a series of biologically focused integrative analyses of different molecular data. We describe how to download, process and prepare TCGA data and by harnessing several key Bioconductor packages, we describe how to extract biologically meaningful genomic and epigenomic data. Using Roadmap and ENCODE data, we provide a work plan to identify biologically relevant functional epigenomic elements associated with cancer. To illustrate our workflow, we analyzed two types of brain tumors: low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or GBM). This workflow introduces the following Bioconductor packages: AnnotationHub, ChIPSeeker, ComplexHeatmap, pathview, ELMER, GAIA, MINET, RTCGAToolbox,  TCGAbiolinks.

  11. Naval Waste Package Design Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license applicationmore » design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.« less

  12. Actuator and electronics packaging for extrinsic humanoid hand

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Reich, David M. (Inventor); Askew, Scott R. (Inventor)

    2013-01-01

    The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.

  13. 7 CFR 33.6 - Package.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Package. 33.6 Section 33.6 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.6 Package. Package means any container of...

  14. 49 CFR 173.29 - Empty packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of a...

  15. Packaging food for radiation processing

    NASA Astrophysics Data System (ADS)

    Komolprasert, Vanee

    2016-12-01

    Irradiation can play an important role in reducing pathogens that cause food borne illness. Food processors and food safety experts prefer that food be irradiated after packaging to prevent post-irradiation contamination. Food irradiation has been studied for the last century. However, the implementation of irradiation on prepackaged food still faces challenges on how to assess the suitability and safety of these packaging materials used during irradiation. Irradiation is known to induce chemical changes to the food packaging materials resulting in the formation of breakdown products, so called radiolysis products (RP), which may migrate into foods and affect the safety of the irradiated foods. Therefore, the safety of the food packaging material (both polymers and adjuvants) must be determined to ensure safety of irradiated packaged food. Evaluating the safety of food packaging materials presents technical challenges because of the range of possible chemicals generated by ionizing radiation. These challenges and the U.S. regulations on food irradiation are discussed in this article.

  16. AN ADA NAMELIST PACKAGE

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    The Ada Namelist Package, developed for the Ada programming language, enables a calling program to read and write FORTRAN-style namelist files. A namelist file consists of any number of assignment statements in any order. Features of the Ada Namelist Package are: the handling of any combination of user-defined types; the ability to read vectors, matrices, and slices of vectors and matrices; the handling of mismatches between variables in the namelist file and those in the programmed list of namelist variables; and the ability to avoid searching the entire input file for each variable. The principle user benefits of this software are the following: the ability to write namelist-readable files, the ability to detect most file errors in the initialization phase, a package organization that reduces the number of instantiated units to a few packages rather than to many subprograms, a reduced number of restrictions, and an increased execution speed. The Ada Namelist reads data from an input file into variables declared within a user program. It then writes data from the user program to an output file, printer, or display. The input file contains a sequence of assignment statements in arbitrary order. The output is in namelist-readable form. There is a one-to-one correspondence between namelist I/O statements executed in the user program and variables read or written. Nevertheless, in the input file, mismatches are allowed between assignment statements in the file and the namelist read procedure statements in the user program. The Ada Namelist Package itself is non-generic. However, it has a group of nested generic packages following the nongeneric opening portion. The opening portion declares a variety of useraccessible constants, variables and subprograms. The subprograms are procedures for initializing namelists for reading, reading and writing strings. The subprograms are also functions for analyzing the content of the current dataset and diagnosing errors. Two nested

  17. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  18. Tobacco packaging and labeling policies under the U.S. Tobacco Control Act: research needs and priorities.

    PubMed

    Hammond, David

    2012-01-01

    The Family Smoking Prevention and Tobacco Control Act (the "Act"), enacted in June 2009, gave the U.S. Food and Drug Administration authority to regulate tobacco products. The current paper reviews the provisions for packaging and labeling, including the existing evidence and research priorities. Narrative review using electronic literature search of published and unpublished sources in 3 primary areas: health warnings, constituent labeling, and prohibitions on the promotional elements of packaging. The Act requires 9 pictorial health warnings covering half of cigarette packages and 4 text warnings covering 30% of smokeless tobacco packages. The Act also prohibits potentially misleading information on packaging, including the terms "light" and "mild," and provides a mandate to require disclosure of chemical constituents on packages. Many of the specific regulatory provisions are based on the extent to which they promote "greater public understanding of the risks of tobacco." As a result, research on consumer perceptions has the potential to shape the design and renewal of health warnings and to determine what, if any, information on product constituents should appear on packages. Research on consumer perceptions of existing and novel tobacco products will also be critical to help identify potentially misleading information that should be restricted under the Act. Packaging and labeling regulations required under the Act will bring the United States in line with international standards. There is an immediate need for research to evaluate these measures to guide future regulatory action.

  19. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect the...

  20. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2010-10-01 2010-10-01 false Electronic Data Transmission Format C Appendix C...

  1. 45 CFR Appendix C to Part 1355 - Electronic Data Transmission Format

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mainframe-to-mainframe data exchange system using the Sterling Software data transfer package called “SUPERTRACS.” This package will allow data exchange between most computer platforms (both mini and mainframe... 45 Public Welfare 4 2011-10-01 2011-10-01 false Electronic Data Transmission Format C Appendix C...

  2. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  3. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  4. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j

    PubMed Central

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.

    2017-01-01

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over

  5. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  6. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  7. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  8. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  9. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  10. Tips for Good Electronic Presentations.

    ERIC Educational Resources Information Center

    Strasser, Dennis

    1996-01-01

    Describes library uses of presentation graphics software and offers tips for creating electronic presentations. Tips include: audience retention; visual aid options; software package options; presentation planning; presentation showing; and use of text, colors, and graphics. Sidebars note common presentation errors and popular presentation…

  11. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any abbreviation...

  12. Empirical advances with text mining of electronic health records.

    PubMed

    Delespierre, T; Denormandie, P; Bar-Hen, A; Josseran, L

    2017-08-22

    Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and

  13. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.

    1998-01-01

    A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

  14. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

    1998-08-04

    A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

  15. [History of pharmaceutical packaging in modern Japan. II--Package size of pharmaceuticals].

    PubMed

    Hattori, Akira

    2014-01-01

    When planning pharmaceutical packaging, the package size for the product is important for determining the basic package concept. Initially, the sales unit for herbal medicines was the weight; however in 1868, around the early part of the Meiji era, Japanese and Western units were being used and the sales unit was confusing. Since the Edo era, the packing size for OTC medicines was adopted using weight, numbers, dosage or treatment period. These were devised in various ways in consideration of convenience for the consumer, but the concept was not simple. In 1887, from the time that the first edition of the Japanese Pharmacopoeia came out, use of the metric system began to spread in Japan. Its use spread gradually for use in the package size of pharmaceutical products. At the time, the number of pharmaceutical units (i.e., tablets), became the sales unit, which is easy to understand by the purchaser.

  16. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of section...

  17. Review and analysis of dense linear system solver package for distributed memory machines

    NASA Technical Reports Server (NTRS)

    Narang, H. N.

    1993-01-01

    A dense linear system solver package recently developed at the University of Texas at Austin for distributed memory machine (e.g. Intel Paragon) has been reviewed and analyzed. The package contains about 45 software routines, some written in FORTRAN, and some in C-language, and forms the basis for parallel/distributed solutions of systems of linear equations encountered in many problems of scientific and engineering nature. The package, being studied by the Computer Applications Branch of the Analysis and Computation Division, may provide a significant computational resource for NASA scientists and engineers in parallel/distributed computing. Since the package is new and not well tested or documented, many of its underlying concepts and implementations were unclear; our task was to review, analyze, and critique the package as a step in the process that will enable scientists and engineers to apply it to the solution of their problems. All routines in the package were reviewed and analyzed. Underlying theory or concepts which exist in the form of published papers or technical reports, or memos, were either obtained from the author, or from the scientific literature; and general algorithms, explanations, examples, and critiques have been provided to explain the workings of these programs. Wherever the things were still unclear, communications were made with the developer (author), either by telephone or by electronic mail, to understand the workings of the routines. Whenever possible, tests were made to verify the concepts and logic employed in their implementations. A detailed report is being separately documented to explain the workings of these routines.

  18. Trends in the Electron Microscopy Data Bank (EMDB)

    PubMed Central

    Patwardhan, Ardan

    2017-01-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved. PMID:28580912

  19. Trends in the Electron Microscopy Data Bank (EMDB).

    PubMed

    Patwardhan, Ardan

    2017-06-01

    Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.

  20. Active packaging of cheese with allyl isothiocyanate, an alternative to modified atmosphere packaging.

    PubMed

    Winther, Mette; Nielsen, Per Vaeggemose

    2006-10-01

    The natural antimicrobial compound allyl isothiocyanate (AITC), found in mustard oil, is effective against cheese-related fungi both on laboratory media and cheese. Penicillium commune, Penicillium roqueforti, and Aspergillus flavus were more sensitive to AITC when it was added just after the spores had completed 100% germination and branching had started on Czapek yeast extract agar than were spores in the dormant phase. The use of 1 AITC label (Wasaouro interior labels, LD30D, 20 by 20 mm) in combination with atmospheric air in the packaging extended the shelf life of Danish Danbo cheese from 4 1/2 to 13 weeks. Two AITC labels extended the shelf life from 4 1/2 to 28 weeks. Both 1 and 2 labels in combination with modified atmosphere packaging extended the shelf life of the cheese from 18 to 28 weeks. This study showed that AITC was absorbed in the cheese, but it was not possible to detect any volatile breakdown products from AITC in the cheese. Cheese stored for up to 12 weeks with an AITC label had an unacceptable mustard flavor. The mustard flavor decreased to an acceptable level between weeks 12 and 28. Cheese stored in atmospheric air had a fresher taste without a CO2 off-flavor than did cheese stored in modified atmosphere packaging. AITC may be a good alternative to modified atmosphere packaging for cheese. The extended shelf life of cheese in the package is very desirable: the cheese can be transported longer distances, and the packaging can be used for the final maturing of the cheese. Furthermore, AITC can address problems such as pinholes and leaking seals in cheese packaging.